
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2020

Generating question titles for Stack Overflow from mined code Generating question titles for Stack Overflow from mined code

snippets snippets

Zhipeng GAO
Monash University

Xin XIA
Monash University

John GRUNDY
Monash University

David LO
Singapore Management University, davidlo@smu.edu.sg

Yuan-Fang LI
Monash University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
GAO, Zhipeng; XIA, Xin; GRUNDY, John; LO, David; and LI, Yuan-Fang. Generating question titles for Stack
Overflow from mined code snippets. (2020). ACM Transactions on Software Engineering and
Methodology. 29, (4), 1-37.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5622

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5622&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

39

GeneratingQuestion Titles for Stack Overflow from Mined
Code Snippets∗

ZHIPENG GAO,Monash University, Australia
XIN XIA,Monash University, Australia
JOHN GRUNDY,Monash University, Australia
DAVID LO, Singapore Management University, Singapore
YUAN-FANG LI,Monash University, Australia

Stack Overflow has been heavily used by software developers as a popular way to seek programming-related
information from peers via the internet. The Stack Overflow community recommends users to provide the
related code snippet when they are creating a question to help others better understand it and offer their help.
Previous studies have shown that a significant number of these questions are of low-quality and not attractive
to other potential experts in Stack Overflow. These poorly asked questions are less likely to receive useful
answers and hinder the overall knowledge generation and sharing process. Considering one of the reasons for
introducing low-quality questions in SO is that many developers may not be able to clarify and summarize the
key problems behind their presented code snippets due to their lack of knowledge and terminology related to
the problem, and/or their poor writing skills, in this study we propose an approach to assist developers in
writing high-quality questions by automatically generating question titles for a code snippet using a deep
sequence-to-sequence learning approach. Our approach is fully data-driven and uses an attention mechanism
to perform better content selection, a copy mechanism to handle the rare-words problem and a coverage
mechanism to eliminate word repetition problem. We evaluate our approach on Stack Overflow datasets over
a variety of programming languages (e.g., Python, Java, Javascript, C# and SQL) and our experimental results
show that our approach significantly outperforms several state-of-the-art baselines in both automatic and
human evaluation. We have released our code and datasets to facilitate other researchers to verify their ideas
and inspire the follow up work.

CCS Concepts: • Software and its engineering→ Software evolution; Maintaining software;

Additional Key Words and Phrases: Stack Overflow, Question Generation, Question Quality, Sequence-to-
sequence

ACM Reference Format:
Zhipeng GAO, Xin Xia, John Grundy, David Lo, and Yuan-Fang Li. 2019. Generating Question Titles for Stack
Overflow from Mined Code Snippets. ACM Trans. Softw. Eng. Methodol. 9, 4, Article 39 (March 2019), 37 pages.
https://doi.org/0000001.0000001

∗Corresponding Authors: Xin Xia

Authors’ addresses: Zhipeng GAO, Monash University, Melbourne, VIC, 3168, Australia, zhipeng.gao@monash.edu; Xin Xia,
Monash University, Melbourne, VIC, 3168, Australia, xin.xia@monash.edu; John Grundy, Monash University, Melbourne,
VIC, 3168, Australia, john.grundy@monash.edu; David Lo, Singapore Management University, Singapore, Singapore,
davidlo@smu.edu.sg; Yuan-Fang Li, Monash University, Melbourne, VIC, 3168, Australia, yuanfang.li@monash.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2009 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1049-331X/2019/3-ART39 $15.00
https://doi.org/0000001.0000001

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

ar
X

iv
:2

00
5.

10
15

7v
2

 [
cs

.S
E

]
 1

3
Ju

l 2
02

0
Published in ACM Transactions on Software Engineering and Methodology, October 2020,
29 (4), Article number 3401026. DOI: 10.1109/SCAM51674.2020.00024

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

39:2 Zhipeng GAO et al.

1 INTRODUCTION
In recent years, question and answer (Q&A) platforms have become one of the most important user
generated content (UGC) portals. Compared with general Q&A sites such as Quora1 and Yahoo!
Answers2, Stack Overflow3 is a vertical domain Q&A site, its content covers the specific domain of
computer science and programming. Q&A sites, such as Stack Overflow, are quite open and have
little restrictions, which allow their users to post their problems in detail. Most of the questions
will be answered by users who are often domain experts.

Stack Overflow (SO) has been used by developers as one of the most common ways to seek
coding and related information on the web. Millions of developers now use Stack Overflow to search
for high-quality questions to their programming problems, and Stack Overflow has also become
a knowledge base for people to learn programming skills by browsing high-quality questions
and answers. The success of Stack Overflow and of community-based question and answer sites
in general depends heavily on the will of the users to answer others’ questions. Intuitively, an
effectively written question can increase the chance of getting help. This is beneficial not only for
the information seekers, since it increases the likelihood of receiving support, but also for the whole
community as well, since it enhances the behavior of effective knowledge sharing. A high-quality
question is likely to obtain more attention from potential answerers. On the other hand, low-quality
questions may discourage potential helpers [3, 8, 34, 44, 47, 72].

To help users effectively write questions, Stack Overflow has developed a list of quality assurance
guidelines4 for community members. However, despite the detailed guidelines, a significant number
of questions submitted to SO are of low-quality [4, 12]. Previous research has provided some
insight into the analysis of question quality on Stack Overflow [3, 4, 11, 12, 14, 37, 42, 58, 73, 75].
Correa and Sureka [12] investigated closed questions on SO, which suggest that the good question
should contain enough code for others to reproduce the problem. Arora et al. [4] proposed a novel
method for improving the question quality prediction accuracy by making use of content extracted
from previously asked similar questions in the forum. More recent work [58] studied the way of
identifying unclear questions in CQA websites. However, all of the work focuses on predicting
the poor quality questions and how to increase the accuracy of the predictions, more in-depth
research of dealing with the low-quality questions is still lacking. To the best of our knowledge, this
is the first work that investigates the possibility of automatically improving low-quality questions
in Stack Overflow. Previous studies [11, 57, 58] have shown that one of the major reasons for
the introduction of low-quality questions is that developers do not create informative question
titles. Considering information seekers may lack the knowledge and terminology related to their
questions and/or their writing may be poor, formulating a clear question title and questioning on
the key problems could be a non-trivial task for some developers. Lacking important terminology
and pool expression may happen even more often when the developer is less experienced or less
proficient in English.

Among the Stack Overflow quality assurance guidelines, one of which is that developers should
attach code snippets to questions for the sake of clarity and completeness of information, which
lead to an impressive number of code snippets together with relevant natural language descriptions
accumulated in Stack Overflow over the years. Some prior work has investigated retrieving or
generating code snippets based on natural language queries, as well as annotating code snippets
using natural language (e.g., [2, 13, 15, 20, 21, 27, 30, 32, 35, 38, 41, 43, 48, 61, 68, 74]). However, to

1https://www.quora.com/
2https://answers.yahoo.com/
3https://stackoverflow.com/
4https://stackoverflow.com/help/how-to-ask

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

GeneratingQuestion Titles for Stack Overflow from Mined Code Snippets 39:3

1.   Source	Code	Snippet	(Python)	:	
import		unittest	
import	sys	
import	mymodule	
	
Class	BookTests(unittest.TestCase):	

	@classmethod	
	def	setUpClass(cls):	
	 	cls._mine	=mymodule.myclass(‘test_file.txt’,	‘baz’)	

	
Question:	
How	do	I	use	unittest	setUpClass	method()	?	
	
	
2.	Source	Code	Snippet(Python)	
client	=	paramiko.SSHClient()	
stdin,	stdout,	stderr	=	client.exec_command(command)	
	
Question:�
How	can	I	get	the	SSH	return	code	using	Paramiko?	�

Fig. 1. Example Code Snippet &Question Pairs

the best of our knowledge, there have been no studies dedicated to the question generation5 task
in Stack Overflow, especially generating questions based on a code snippet.
Fig. 1 shows some example code snippets and corresponding question titles in Stack Overflow.

Generating such a question title is often a challenging task since the corpus not only includes
natural language text, but also complex code text. Moreover, some rare tokens occur among the
code snippet, such as “setUpClass” and “Paramiko” illustrated in the aforementioned examples.
We propose an approach to help developers write high-quality questions based on their code

snippets by automatically generating question titles from given code snippets. We frame this
question generation task in Stack Overflow as a sequence-to-sequence learning problem, which
directly maps a code snippet to a question. To solve this novel task, we propose an end-to-end
sequence-to-sequence system, enhanced with an attentionmechanism [5] to perform better content
selection, a copy mechanism [23] to handle the rare-words problem, as well as a coverage mecha-
nism [59] to avoid meaningless repetition. Our system consists of two components: a source-code
encoder and a question decoder. Particularly, the code snippet is transformed by a source-code
encoder into a vector representation. When it comes to the decoding process, the question decoder
reads the code embeddings to generate the target question titles. Moreover, our approach is fully
data-driven and does not rely on hand-crafted rules.

To demonstrate the effectiveness of our model, we evaluated it using automatic metrics such as
BLEU [49] and ROUGE [40] score, together with a human evaluation for naturalness and relevance
of the output. We also performed a practical manual evaluation to measure the effectiveness of
our approach for improving the low-quality questions in Stack Overflow. From the automatic
evaluation, we found that our approach significantly outperforms a collection of state-of-the-
art baselines, including the approach based on information retrieval [52], a statistical machine
translation approach [36], and an existing sequence-to-sequence architecture approach in commit
message generation [33]. For human evaluation, questions generated by our system are also rated
as more natural and relevant to the code snippet compared with the baselines. The practical

5“question generation” in this paper is to generate the question titles for a Stack Overflow post.

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

39:4 Zhipeng GAO et al.

manual evaluation shows that our approach can improve the low-quality question titles in terms of
Clearness, Fitness and Willingness.

In summary, this paper makes the following three main contributions:
• We propose a novel question generation task based on a sequence-to-sequence learning
approach, which can help developers to phrase high-quality question titles from given code
snippets. Enhanced with the attention mechanism, our model can perform the better content
selection, with the help of and copy mechanism and coverage mechanism, our model can
manage rare word in the input corpus and avoid the meaningless repetitions. To the best
of our knowledge, this is the first work which investigates the possibility of improving the
low-quality questions in Stack Overflow.
• We performed comprehensive evaluations on Stack Overflow datasets to demonstrate the
effectiveness and superiority of our approach. Our system outperforms strong baselines by a
large margin and achieves state of the art performance.
• We collected more than 1M ⟨code snippet, question⟩ pairs from Stack Overflow, which covers
a variety of programming languages (e.g., Python, Java, Javascript, C# and SQL). We have
released our code6 and datasets [17] to facilitate other researchers to repeat our work and
verify their ideas. We also implemented a web service tool, named Code2Que to facilitate
developers and inspire the follow-up work.

The rest of the paper is organized as follows. Section 2 presents key related work on question
generation and relevant techniques. Section 3 presents the motivation of this study. Section 4
presents the details of our approach for the question generation task in Stack Overflow. Section 5
presents the experimental setup, the baseline methods and the evaluation metrics used in our study.
Section 6 presents the detailed research questions and the evaluation results under each research
question. Section 7 presents the contribution of the paper and discusses the strength and weakness
of this study. Section 8 presents threats to validity of our approach. Section 9 concludes the paper
with possible future work.

2 RELATEDWORK
Due to the great value of Stack Overflow in helping software developers, there is a growing body
of research conducted on Stack Overflow and its data. This section discusses various work in the
literature closely related to our work, i.e., deep source code summarization, the empirical study of
Stack Overflow on quality assurance, and different tasks by mining the Stack Overflow dataset. It
is by no means a complete list of all relevant papers.

2.1 Deep Source Code Summarization
A number of previous works have proposed methods for mining the ⟨natural language, code
snippet⟩ pairs, these techniques can be applied to tasks such as code summarization as well as
commit message generation. (e.g., [32], [30], [33], [62]).

One similar work with ours is Iyer et at.[32]. They proposed Code-NN, which uses an attentional
sequence-to-sequence algorithm to summarize code snippets. This work is similar to our approach
because our approach also uses an sequence-to-sequence model. However, there are three key
differences between our approach and Code-NN. First, the goal of of Code-NN is summarizing
source code snippets while the goal of our approach is generating questions from code snippets.
Second, the Code-NN only incorporates attention mechanism while our approach also employs
copy mechanism and coverage mechanism, which is more suitable for the specific task of question
generation. Third, Code-NN needs to parse the code into AST, while most code snippets in SO are
6https://github.com/beyondacm/Code2Que

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

https://github.com/beyondacm/Code2Que

GeneratingQuestion Titles for Stack Overflow from Mined Code Snippets 39:5

not parsable (e.g., the example code in Fig. 8). Followed by Iyer’s work, Hu et al. [30] proposed to
use the neural machine translation model on the code summarization with the assistance of the
structural information (i.e., the AST). And Wan et al. [62] applied deep reinforcement learning (i.e.,
tree structure recurrent neural network) to improve the performance of code summarization. Their
approach also use AST as the input. All of the aforementioned studies rely on the AST structure
of the source code, and note that most of the code in Stack Overflow are not parsable. Thus, the
AST-based approaches can not apply to our work.

2.2 QuestionQuality Study on Stack Overflow
The general consensus is that the quality of user-generated content is a key factor to attract users
to visit knowledge-sharing websites. Many studies have investigated the content quality in Stack
Overflow (e.g., [3, 4, 11, 12, 14, 37, 42, 46, 50, 58, 72, 73, 75]).
For example, Nasehi et al. [46] manually performed a qualitative assessment to investigate the

important features of precise code examples in answers of 163 SO posts. Yao et at. [73] investigated
quality prediction of both Q&As on SO. The output revealed that answer quality is strongly
positively associated with that of its question. Yang et al. [72] found that the number of edits on a
question is a very good indicator of question quality. Ponzanelli [50] developed an approach to do
automatic categorization of questions based on their quality. Correa et al. [11] studied the closed
questions in Stack Overflow, finding that the occurrence of code fragments is significant.
All of the above mentioned studies are either predicting quality of the post or increasing the

accuracy of predictions. Different from the existing research, our approach is related to improve
the quality of the questions. To the best of our knowledge, this is the first work which investigates
the possibility of improving the low quality questions using code snippets in Stack Overflow.

2.3 Machine/Deep Learning on Software Engineering
Recently, an interesting direction of software engineering is to use machine/deep learning for
different tasks to improve software development. Such as code search (e.g., [2, 24, 31, 39]), clone
detection (e.g., [7, 18, 19, 64, 67]), program repair (e.g,. [10, 45, 60, 66]), document (such as API and
questions/answers/tags) recommendation (e.g., [22, 25, 26, 55, 63, 65, 69, 70, 76]).
For code search tasks, Gu et al. [24] proposed a deep code search model which uses two deep

neural networks to encode source code and natural language description into a vector representation
and then uses a cosine similarity function to calculate their similarity. Allamanis et al. [2] proposed
a system that uses Stackoverflow data and web search logs to create models for retrieving C#
code snippets given natural language questions and vice versa. For clone detection tasks, white
et al. [67] first proposed a deep learning-based clone detection method to identify code clones
via extracting features from program tokens. For program repair tasks, White et al. [66] propose
an automatic program repair approach, DeepRepair, which leverages a deep learning model to
identify the similarity between code snippets. For document recommendation tasks, Xia et al. [69]
developed a tool, called TagCombine, an automatic tag recommendation method which analyzes
objects in software information sites. Gkotsis et al. [22] developed a novel approach to search
and suggest the best answers through utilizing textual features. Gangul et al. [16] examined the
retrieval of a set of documents, which are closely associated with a newly posted question. Chen et
al. [9] studied cross-lingual question retrieval to assist non-native speakers more easily to retrieve
relevant questions.

Although the aforementioned studies have utilized machine/deep learning for different software
development activities, to our best knowledge, no one has yet considered the question generation
task in Stack Overflow. In contrast to all previous work, we propose a novel approach to generate a

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

39:6 Zhipeng GAO et al.

question by a given code snippet. Our work is first to tackle such a task for helping developers to
generate a question when presenting a given code snippet.

3 MOTIVATION
In this section, we first summarise the problem and our solution in this study. Following that, we
present some example user scenarios of employing our approach in the software development
process. We then show some motivating examples from Stack Overflow of the sorts of problems
our work addresses.

3.1 The Problem and Our Solution
Despite the detailed guidelines provided by the community, a very large number of questions
in Stack Overflow are of low-quality [4, 12]. These poorly asked questions are often ambiguous,
vague, and/or incomplete, and hardly attract potential experts to provide answers, thus hindering
the progress of knowledge generation and sharing. In order to improve question quality, we need
to improve title, body and tags. In this work, we focus on improving titles. The motivation for
our work is that improving low-quality question titles can potentially be helpful in increasing the
likelihood of getting help for the information seekers, as well as reducing the manual effort for
quality maintenance of the CQA community. We propose a novel approach to assist developers in
posting high-quality questions by generating question titles for a given code snippet. Our approach
provides benefit for the following tasks: (i) Question Improvement: many developers can not post
clear and/or informative questions due to their lack of knowledge and terminology related to
the problem, and/or their poor english writing skills. Our approach can generate high-quality
question titles for helping developers to summarize the key problems behind their presented code
snippet. (ii) Edits Assistance: the SO community has employed a collaborative editing mechanism
to maintain a satisfactory quality level for the post. However, the editing process may require
several interactions between the asker and other community members, thus delaying the answering
and even causing questions to sink in the list of open issues. Our approach can be used as an
automatic edit assistance tool to improve the question formulation process and reduce the manual
effort for quality maintenance. (iii) Code Embeddings: Another byproduct of our approach is the
code embeddings generated by our approach. In this study, we have collected more than 1M code
snippets which covers various programming languages such as Java, Python, Javascript, C#, etc. All
the code snippets are embedded into a high-dimensional vector space by our approach. A variety of
applications such as code search (e.g., [24, 31, 39]) , summarization (e.g., [30, 32, 33, 62]), retrieval
(e.g., [1, 9, 71]), and API recommendation (e.g., [25, 26]) can benefit from the code embeddings used
in our study.

3.2 Illustrative User Scenarios
We implement our model as a standalone web application tool, called Code2Que. Developers can
copy and paste their code snippet to our tool to generate a question title for the code snippet.
Meanwhile, by utilizing the vector representation of the code snippets, Code2Que also retrieves a
list of top related questions in Stack Overflow and recommends them to the developers. The usage
scenarios of our proposed tool are as follows:

Without Tool. Consider Bob who is a developer, who is learning a new development framework.
He is also a non-native English speaker with poor English writing skills. Daily, Bob encounters
various programming problems during development. He locates the code that is the root cause
of the problem, but he cannot figure it out. Due to his lack of the knowledge and terminology of
the development framework being used, he does not even know how to most effectively search
for answers to the problem on the Internet. Therefore, he creates a question in Stack Overflow,

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

GeneratingQuestion Titles for Stack Overflow from Mined Code Snippets 39:7

Fig. 2. Example of ProblemQuestions Title (for Python)

provides his code snippet in the question body according to the Stack Overflow guidelines, and then
tries his best to write a question title to summarize the problem. Unfortunately, his question title
turns out to be very unclear and uninformative, and there are few users attracted by his question.
Bob waits for a long time but does not get any help.

With Tool. Now consider that Bob adopts tool Code2Que. Before he searches on the Internet,
Bob copies his code snippet to our Code2Que tool to generate a question title for the code snippet.
Bob uses the generated question as a query to search on the internet. The searching results are now
closely related to the development framework, even though he is not very familiar with it. Bob can
also quickly review a list of related questions in Stack Overflow which have a similar problem code
snippet. After going through these results, Bob can gain a better understanding of the problem that
he is trying to solve and quickly fix the problem by himself. Moreover, Bob can also go back to his
earlier poorly asked questions, Bob can use our tool as an edit assistance tool on question titles
for reformulating these low-quality questions. Bob provides the code snippet in the question body
and writes a question title based on the question title generated by our tool and the knowledge he
learned from the results. This time, his question title is much more clear and informative and Bob’s

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

39:8 Zhipeng GAO et al.

Fig. 3. Example of ProblemQuestions Title (for Java)

question soon attracts an expert of the development framework. With the help of this expert, Bob
successfully figures his problem out.

3.3 Motivating Examples
A large number of questions have been closed by community members because their question titles
are unclear and need further clarifying. For example, the screenshots in Fig. 2 and Fig. 3 show two
examples of problematic Stack Overflow question titles. Developers posted a question “Fibonacci
sequence in Python3.2” and “I am creating a notepad in java ... to paste it at location of cursor” in
Stack Overflow. They attached their code snippet and tried to explain the key meaning of their
problems. However, such question titles are still very uninformative (in Fig. 2) and confusing (in
Fig. 3). Both of these questions have been marked as having lack of clarity and need to be further
improved upon. Such titles run a real risk of not being found by the ideal people to answer them,
may make potential question answering users lose interest, or make users who may answer them
have to painstakingly browse the additional paragraph to understand the key point. All reduce the
likelihood of them giving help.

Using the tool Code2Que described in this paper, we can provide a way to automate the process
of improving such poor quality question titles, which is potentially helpful in reducing the manual
effort for the quality maintenance of CQA forums. Based on the developer’s code snippet, the
generated question title by our tool is “how to find the fibonacci series through recursion?” for the
code snippet shown in Fig. 2 and “how to change the string value in textarea field using java?” for
the code snippet shown in Fig. 3. These newly generated question titles are much more clear and
informative to readers, and also questioning on the key problems of the user’s concern. This is
helpful for the potential helpers to understand the key problems of the question better and also for
the askers to formulate a related question better.

4 APPROACH
In this section, we firstly define the task of question generation, then present the details of Stack
Overflow question generation system. Fig. 4 demonstrates the workflow used by our model. A

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

GeneratingQuestion Titles for Stack Overflow from Mined Code Snippets 39:9

Fig. 4. Workflow of Our Model

Long Short Term Memory (LSTM) encoder-decoder architecture, is enhanced by attention mech-
anism [5], copy mechanism [23] and coverage mechanism [59]. In general, our model consists of
two components: A Source-code Encoder and A Question Decoder. The source code snippet is
transformed by Source-code Encoder into a vector representation, which is then read by a Ques-
tion Decoder to generate the target question titles. Our model is a differentiable Seq2Seq model
with aforementioned three mechanism, i.e., attention mechanism, copy mechanism and coverage
mechanism, which can be trained in an end-to-end fashion with gradient descent.

4.1 Question Generation Task Definition
The motivation for our work is to improve the low-quality questions in Stack Overflow. Considering
many developers may not be able to describe the problems due to their lack of knowledge and
terminology, and/or they are not native english speakers, we propose a novel task in this paper -
automatic generation of question titles from a code snippet, the central theme of which is helping
developers to create better question titles based on their targets and code snippets. We formulate
this task as a sequence-to-sequence learning problem.

Given C is the sequence of tokens within a code snippet, our target is to generate a Question Q,
which is relevant, natural, syntactically and semantically correct. To be more specific, our main
objective is to learn the underlying conditional probability distribution Pθ (Q|C) parameterized
by θ . In other words, the goal is to train a model θ using ⟨code snippet, question⟩ pairs such that
the probability Pθ (Q|C) is maximized over the given training dataset. More formally given a code
snippet C as a sequence of tokens (x1,x2, ...,xM) of lengthM , and a question title Q as a sequence
of natural language words (y1,y2, ...,yN) of length N . Mathematically, our task is defined as finding
y, such that:

y = arдmaxQPθ (Q|C) (1)

where Pθ (Q|C) is defined as:

Pθ (Q|C) =
L∏
i=1

Pθ (yi |y1, ...,yi−1;x1, ...,xM) (2)

Pθ (Q|C) can be seen as the conditional log-likelihood of the predicted question title Q given the
input code snippet C.

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

39:10 Zhipeng GAO et al.

4.2 Source-code Encoder
Source code token in the code snippet is fed sequentially into the encoder, which generates a
sequence of hidden states. Our encoder is a two-layer bidirectional LSTM network,

−−→
fwt =

−−−−−→
LSTM2

(
xt ,
−−−→
ht−1

)
←−−
bwt =

←−−−−−
LSTM2

(
xt ,
←−−−
ht−1

)
where xt is the given input source code token at time step step t , and

−→
ht and

←−
ht are the hidden

states at time step t for the forward pass and backward pass respectively. The hidden states(from
the forward and backward pass) of the last layer of the source-code encoder are concatenated to
form a state s as s = [−−→fwt ;

←−−
bwt].

4.3 Question Decoder

Our question decoder is a singe-layer LSTM network, initialized with the state s as s = [−−→fwt ;
←−−
bwt].

Let qwordt be the target word at time stamp t of the ground truth question title. During training,
at each time step t the decoder takes as input the embedding vector yt−1 of the previous word
qwordt−1 and the previous state st−1, and concatenates them to produce the input of the LSTM
network. The output of the LSTM network is regarded as the decoder hidden state st , as follows:

st = LSTM1 (yt−1, st−1) (3)

The decoder produces one symbol at a time and stops when the END symbol is emitted. The only
change with the decoder at testing time is that it uses output from the previous word emitted by
the decoder in place ofwordt−1 (since there is no access to a ground truth then).

4.4 Incorporating Attention Mechanism
We model the attention [5] distribution over words in the source code snippets. We calculate the
attention (ati) over the ith code snippet token as :

eti = v
t tanh (Wehhi +Wshst + batt) (4)
ati = softmax

(
eti
)

(5)
Here, vt ,Wsh and batt are model parameters to be learned, and hi is the concatenation of forward
and backward hidden states of source-code encoder. We use this attention ati to generate the context
vector c∗t as the weighted sum of encoder hidden states :

c∗t =
∑

i=1, .., |x |
ati hi (6)

We further use the c∗t vector to obtain a probability distribution over the words in the vocabulary
as follows,

P = softmax
(
Wv [st , c∗t] + bv

)
(7)

whereWv andbv are model parameters. Thus during decoding, the probability of a word is P(qword).
During the training process for each word at each timestamp, the loss associated with the generated
question title is :

Loss = − 1
T

T∑
t=0

loдP(qwordt) (8)

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

GeneratingQuestion Titles for Stack Overflow from Mined Code Snippets 39:11

Fig. 5. Attention & Copy & Coverage Mechanism

The attentionmechanism allows the model to focus on the most relevant parts of the input sequence
as needed. For example in Fig. 4, at time step 2, the context vector c∗t amplifies related hidden states
hk with high scores, and drowning out unrelated hidden states with low scores. For such a case, it
enables the question decoder to focus on the word “del” when it generates the word “remove”. This
ability to amplify the signal from the relevant part of the input sequence makes attention models
produce better results than models without attention.

4.5 Incorporating Copy Mechanism
A copy mechanism [23] is used to facilitate copying some tokens from the source code snippet to
the target generated question title. As illustrated in Fig. 1, some words such as “setUpClass” are
naturally going to be much less frequent than other words. Thus it is highly unlikely for a decoder
that is solely based on a language model to generate such a word with very rare occurrences in
a corpus. In such cases, the possibly rare words in the input sequence might be required to be
copied from our source code snippet to the target generated question title. We incorporate a copy
mechanism to handle such rare word problem for Stack Overflow question generation.

In order to learn to copy (from source) as well as to generate words from the vocabulary (using
the decoder), we calculate pcд ∈ [0, 1]. This is the decision of a binary classifier that determines
whether to generate a word from the vocabulary or to copy the word directly from the input code
snippet, based on attention distribution ati :

pcд = siдmoid(W T
ehc
∗
t +W

T
shst +Wxxt + bcд) (9)

HereWeh ,Wsh ,Wx and bcд are trainable model parameters. The final probability of decoding a
word is specified by the mixture model :

p∗(qword) = pcд
∑

i :wi=qword

ati + (1 − pcд)p(qword) (10)

where p ∗ (qword) is the final distribution over the union of the vocabulary and the input sequence.
As discussed earlier, Equation (10) addresses the rare words issue, since a word not in our vocabulary
will have probability p(qword) = 0. Therefore, in such cases, our model will replace the < unk >
token for out-of-vocabulary words with a word in the input sequence having the highest attention
obtained using attention distribution ati . The copy mechanism allows the model to locate a certain
segment of the input sequence and puts that segment into the output sequence. pcд is a soft switch

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

39:12 Zhipeng GAO et al.

to choose between generating a word from vocabulary or copying a word from the input sequence.
For example, in Fig. 1, the rare word “setUpClass” in the question title is copied from the input
source code snippet. For such a rare word, copy mechanism increases the copy-mode probability
and decreases the generate-mode probability, which can correctly catch the rare word and put it to
the output sequence.

4.6 Incorporating a Coverage Mechanism
Repetition is a common problem for sequence-to-sequence models and to discourage meaningless
repetitions, we maintain a word coverage vector cov , which is the sum of attention distributions
over all previous decoder timesteps:

covt =
t−1∑
t ′=0

at
′

(11)

Intuitively, covt is a distribution over source code snippet tokens that represents the degree of
coverage that those tokens have received from the attention mechanism so far. Note that no word
is generated before timestamp 0, and hence cov0 will be a zero vector then. The update equation (4)
is now modified to be:

eti = v
t tanh

(
Wcvcov

t
i +Wehhi +Wshst + batt

)
(12)

Here,Wcv are trainable parameters that ensure the attention mechanism’s current decision is
informed by a reminder of its previous decisions. The coverage mechanism allows our model to
solve the word repetition problem in the output sequence (see Figure 12). The coverage mechanism
ensures that the attention mechanism’s current decision is informed by a reminder of its previous
decisions (summarized in covt). This should make it easier for the attention mechanism to avoid
repeatedly attending to the same locations, and thus avoid generating repetitive text.

Following the incorporation of the copy and coverage mechanism in our attentional sequence-to-
sequence architecture, the final loss function will be:

Loss =
1
T

T∑
t=0

loдP∗(qwordt) + λLcov (13)

where λ is a reweighted hyperparameter and the coverage loss Lcov is defined as:

Lcov =
∑
i

min(ati , covti) (14)

Once the model is trained, we do inference using a beam search. The beam search is parametrized
by the possible paths number k . The inference process stops when the model generates the END
token which stands for the end of the sentence.

5 EXPERIMENTAL SETUP
In this section, we firstly describe the evaluation corpus of the task.We then introduce the implemen-
tation details of our neural generation approach, the baselines to compare, and their experimental
settings. Lastly, we explain the evaluation metrics.

5.1 Pre-processing
We experiment with our neural question generation model on the latest dump of the Stack Overflow
(SO) dataset, which is publicly available7. Each post comprises a short question title, a detailed
question body, and one or more associated answers and multiple tags.
7https://archive.org/details/stackexchange

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

https://archive.org/details/stackexchange

GeneratingQuestion Titles for Stack Overflow from Mined Code Snippets 39:13

Table 1. Dataset Statistics

Languages #Code Tokens #Question Tokens Avg.Code Length Avg.Question Length
Python 2,367,148 109,329 84.7 11.2
Java 3,371,946 123,994 103.2 10.8
Javascript 2,814,729 121,854 94.1 10.8
C# 2,340,202 100,178 82.1 11.0
SQL 1,483,056 48,668 84.1 10.1

Table 2. Number of Training/Validation/Testing Samples

Python # pairs (Train) 186,976 # pairs (Test-Raw) 3,000
pairs (Val) 3,000 # pairs (Test-Clean) 2,940

Java # pairs (Train) 250,708 # pairs (Test-Raw) 3,000
pairs (Val) 3,000 # pairs (Test-Clean) 2,963

Javascript # pairs (Train) 290,610 # pairs (Test-Raw) 3,000
pairs (Val) 3,000 # pairs (Test-Clean) 2,940

C# # pairs (Train) 178,830 # pairs (Test-Raw) 3,000
pairs (Val) 3,000 # pairs (Test-Clean) 2,974

SQL # pairs (Train) 150,002 # pairs (Test-Raw) 3,000
pairs (Val) 3,000 # pairs (Test-Clean) 2,980

In this study, we performed our experiment on a variety of programming languages, which
include Python, Java, Javascript, C# and SQL. To do that, we used the Python, Java, Javascript, C#
and SQL tag for collecting questions associated with the corresponding programming language
respectively. Then we removed all questions whose question scores were less than 1. This is
reasonable since our goal is to generate high-quality questions to help developers. We extracted
code snippets (using ⟨code⟩ tags) within the post’s question body and corresponding post question
title. We added the resulting ⟨question, code snippet⟩ pairs to our corpus.

5.1.1 Data Preprocessing. We tokenized the code snippet with respect to each programming
language for pre-processing respectively. We adopted the NLTK toolkit [6] to separate tokens and
symbols. One of the challenging tasks during the tokenization was the structural complexity of
the code snippet in our dataset. We stripped out all comments by using the regular expression for
different programming languages. After that, in order to avoid being context-specific, numbers
and strings within a code snippet and replaced them with special tokens “VAR”, “NUMBER” and
“STRING” respectively. Table 1, Fig. 6 and Fig. 7 shows some data statistics on the processed
dataset. We can see that the length of Java and Javascript code snippets are much longer than the
other programming languages. On average, Java and Javascript code snippets contain 103 and 94
tokens respectively, while the code snippets of the other three programming languages are just
around 84 tokens long. On the other hand, the question titles of all the programming languages are
approximately at the same level, the overall average of the question titles are 11 tokens long.

5.1.2 Data Filtering. Users can post different types of questions in SO, such as “how to X” and
“What/Why is Y”. In our preliminary study, we targeted questions which include interrogative
keywords such as “how”, “what”, “why”, “which”, “when”. For the above collection of question-code
pairs, only the pairs where the aforementioned keywords appear in the question title were kept.
After that, we removed pairs where the code snippets are too long or too short. Based on the

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

39:14 Zhipeng GAO et al.

Fig. 6. Volinplots of Code Distribution

Fig. 7. Volinplots of Question Distribution

interquartile range (IQR) of the violin plots in Fig. 6 and Fig. 7, we only preserved pairs where the
token range from 16 tokens to 128 tokens for code snippet and the token range from 4 tokens to 16
tokens for question titles. At this stage, we collected more than 1M ⟨question, code snippet⟩ pairs
in total for Python, Java, Javascript, C# and SQL programming languages. We randomly sampled
3,000 pairs for validation and 3,000 pairs for testing respectively, and kept the rest for training.
The details of the training, validation and testing samples for each programming language are
summarized in Table 2.

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

GeneratingQuestion Titles for Stack Overflow from Mined Code Snippets 39:15

Table 3. Clone Detection Analysis

Similarity Python Java Javascript C# SQL
si ∈ [0.0, 0.2) 2,153 2,241 1,939 2,328 2,359
si ∈ [0.2, 0.4) 512 473 651 422 413
si ∈ [0.4, 0.6) 195 187 272 182 159
si ∈ [0.6, 0.8) 80 62 78 42 49
si ∈ [0.8, 1.0] 60 37 60 26 20

5.1.3 Clone Detection. Considering that there may be duplicate and/or very similar ⟨code snippet,
question⟩ pairs between the training set and testing set, this may mislead the evaluation results.
We further conducted a primitive clone detection analysis to remove the noisy examples from
our testing data set. A lot of methods have been proposed for clone detection in recent years
(e.g., [7, 18, 19, 64, 67]). We followed the approach proposed by [18] for clone detection. For each
code snippet, we compose a numerical vector by summing up the word embedding vectors for all
the relevant tokens within the code snippet. Then the similarity between two code snippets C1 and
C2 can be calculated as follows:

Distance(C1,C2) = Euclidean(e1, e2) (15)

Similarity(C1,C2) = 1 − Distance(C1,C2) (16)
where e1 and e2 are the corresponding code embedding vectors of C1 and C2. Each code snippet Ci
in the testing set is queried against all the code snippets in the training set, the maximum similarity
score si associated with the Ci is retrieved. The results of si with respect to each programming
language are summarized in Table 3. If the similarity score si is over a threshold δ (δ is set to 0.8 in
this study), then the code snippet Ci is viewed as a code clone and will be deleted from our testing
set. From the table we can see that the number of clone code snippets is very small, while most
code snippets get relatively low similarity scores. After removing all the examples with similarity
scores above 0.8 from the testing set, we reconstructed a clean testing set for each programming
language, the final results are summarized in Table 2. The clean testing set is used for the final
evaluation of this study.

5.2 Implementation Details
We implemented our system in Python using Tensorflow framework. We added special START and
END tokens for each sequence in our training set. The vocabulary size for the Java and Python
dataset were set to 50,000 and 80,000 respectively. We use a two-layer bidirectional LSTM for the
encoder and a single-layer LSTM for the decoder. We set the number of LSTM hidden states to 256
in both encoder and decoder. We choose the word embeddings of 300 dimensions. Optimization is
performed using stochastic gradient descent (SGD) with a learning rate of 0.01. We fix the batch
size for updating to be 32. During decoding, we perform beam search with beam size of 10. We train
the model for 30 epochs. Our hyper-parameters were tuned on the validation set, the evaluation
results were reported on the test set. We discuss the details of the parameter tuning in Section 6.

5.3 Baselines
To demonstrate the effectiveness of our proposed approach, we compared it with several competitive
baseline approaches. We adapted these approaches slightly for our problems, i.e., generating ques-
tion titles from a given code snippet. We briefly introduced these approaches and the experimental

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

39:16 Zhipeng GAO et al.

settings as below. For each method mentioned below, the involved parameters were carefully tuned,
and the parameters with the best performance were used to report the final comparison results.

(1) IR stands for the information retrieval baseline. For a given code snippet ci , it retrieves the
question titles associated with the code c j that is closest to the input code ci from the training
set. We use TF-IDF [52] metric to calculate the distance between two code snippets, and build
a nearest neighbor model to retrieve the most similar instance from the traning set.

(2) MOSES [36] is a widely used phrase-based statistical machine translation system. Here, we
treat a tokenzied code snippet as the source language text, and the corresponding question
title as the target language text. We run the translation from code snippets to question titles.
We train a 3-gram language model on target side texts using KenLM [28], and perform turning
with MERT on dev set.

(3) NMT Jiang et al. [33] proposed an sequence-to-sequence approach to generate commit
message from code, we refer to it as NMT in our study. We choose NMT as one comparing
approach since its promising performance in commit generation. NMT model take source
code as inputs and associated question title as outputs. Hyperparameters are tuned with
validation set.

(4) CODE-NN Iyer et al. [32] proposed an attention-based Long Short Term Memory (LSTM)
neural network, named CODE-NN, to generate descriptive summaries for C# code snippets
and SQL queries. In order to use CODE-NN, the C# code fragments and SQL statements first
need to be parsed by the modified version of parser. Considering code snippets in SO are
usually incomplete and not parsable, and it is non-trivial to design specific parser to parse
code snippets of various programming languages, we tried our best to apply our approach to
the CODE-NN dataset, which include 60k+ C# (title, query) pairs and 30k+ SQL (title, query)
pairs respectively.

5.4 Evaluation Metrics
We evaluate our task with automatic evaluation, and also perform human evaluation via a user
study.

(1) Automatic Evaluation To evaluate different models, We adopt BLEU-1, BLEU-2, BLEU-3,
BLEU-4 [49], ROUGE-1, ROUGE-2 and ROUGE-L [40] scores. BLEU is a precision-oriented
measure commonly used in translation tasks, which measures the average n-gram precision
on a set of reference sentences, with a penalty for overly short sentences. BLEU-n is the BLEU
score that uses up ton-grams for counting co-occurrences. ROUGE is a recall-orientedmeasure
widely used in summarization tasks, which used to evaluate n-grams recall of the summaries
with gold-standard sentences as references. ROUGE-1 and ROUGE-2 measures the uigram
and bigrams between the system and reference summaries. ROUGE-L is a longest common
subsequencemeasuremetric, it does not require consecutivematches but in-sequencematches
that reflect sentence level word order. We conducted a large scale automatic evaluation over
various kinds of programming languages, i.e., Python, Java, Javascript, C# and SQL. In our
work, we regard the generated question titles as candidates, and the original human written
question titles as gold-standard references.

(2) Human EvaluationSince automatic evaluation of generated text does not always agree with
the actual human-perceived quality and usefulness of the results, we also perform human
evaluation studies to measure how humans perceive the generated questions. To do this, we
consider two modalities in our user study : Naturalness and Relevance. Naturalness measures
the grammatical correctness and fluency of the question title generated. Relevance measures
how relevant the question title is to the code snippet, and indicates the factual divergence

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

GeneratingQuestion Titles for Stack Overflow from Mined Code Snippets 39:17

of the code snippet to the reference question titles. We randomly sampled 50 ⟨code snippet,
question⟩ pairs from Python and Java test results respectively, for each code snippet, we
provided 5 associated question titles: one was generated by human (the ground truth question
title), while the others were generated by baseline methods and our approach. Then we
invited 5 evaluators, including 4 Ph.D students and 1 Masters student, all of whom are not
co-authors, majoring in Computer Science and have industrial experience with Python as
well as Java programming (ranging from 1-3 years). All of the five evaluators have at least
one year of studying/working-experience in English speaking countries. Each participant
was asked to manually rate generated question titles on a scale between 1 and 5 (5 for the
best results) across the above modalities. The volunteers were blinded as to which question
title was generated by our approach.

(3) Practical Manual Evaluation Following the human evaluation, we also performed a practi-
cal manual evaluation to further analyze whether our approach can generate better question
titles for low-quality questions in Stack Overflow. To do this, we randomly sampled 50 low-
quality ⟨code snippet, question⟩ pairs from our Python and Java datasets before the data
preprocessing. It is worth mentioning that different from human evaluation, these sampled
posts were not included in our training and/or testing set, because all the questions with
score less than 1 were removed before training processing. For each code snippet, we applied
our approach to generate a question title for manual annotation. We conducted pairwise
comparison between two question titles (one was generated by humans, one was generated
by our tool) for the same code snippet. For each pairwise comparison, we asked the same
5 evaluators to decide which one is better or non-distinguishable in terms of the follow-
ing three metrics: Clearness, Fitness,Willingness to Respond. Clearness measures whether a
question title is expressed in a clear way. Unclear questions are ambiguous, vague, and/or
incomplete. Fitness measures whether a question title is reasonable in logic with the provided
code snippet, and whether it is questioning on the key information. Unfit question titles are
either irrelevant to the code snippet or universal questions. Willingness to Respond measures
whether a user is willing to respond to a specific question. This metric is used to justify how
likely the generated questions can elicit further interactions. If people are willing to respond,
the interactions can go further. Each metric is evaluated independently on each pairwise
comparison. Also the two question titles were randomly shuffled and the participants do not
know which question is generated by our approach.

6 RESULTS AND ANALYSIS
To gain a deeper understanding of the performance of our approach, we conduct analysis on our
evaluation results in this section. For quantitative analysis, firstly we study the experimental results
of automatic evaluation, then we examine the outcome of human evaluation. Specifically, we mainly
focus on the following research questions:

• RQ-1: How effective is our approach under automatic evaluation?
• RQ-2: How effective is our approach compared with the CODE-NN model?
• RQ-3: How effective is our approach under human evaluation?
• RQ-4: How effective is our approach for improving low-quality questions?
• RQ-5: How effective is our use of attention mechanism, copy mechanism and coverage mecha-
nism under automatic evaluation?
• RQ-6: How effective is our approach under different parameter settings?
• RQ-7: How efficient is our approach in practical usage?

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

39:18 Zhipeng GAO et al.

Table 4. Automatic evaluation(Python dataset)

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
IRTFIDF 20.2 ± 1.1% 17.7 ± 0.4% 18.4 ± 0.3% 18.0 ± 0.2% 24.4 ± 1.4% 6.9 ± 0.6% 21.8 ± 1.2%
Moses 20.4 ± 1.4% 18.1 ± 0.8% 17.8 ± 0.7% 17.4 ± 0.6% 26.9 ± 1.3% 6.2 ± 0.5% 20.4 ± 1.1%
NMT 28.9 ± 1.7% 21.9 ± 0.7% 21.3 ± 0.3% 20.3 ± 0.2% 34.1 ± 2.2% 10.6 ± 1.1% 31.2 ± 1.9%
Ours 35.8 ± 2.0% 30.1 ± 0.9% 26.8 ± 0.4% 24.2 ± 0.3% 39.9 ± 2.5% 12.6 ± 2.5% 36.7 ± 2.4%

Table 5. Automatic evaluation(Java dataset)

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
IRTFIDF 18.1 ± 1.1% 17.2 ± 0.5% 18.0 ± 0.4% 17.6 ± 0.3% 22.2 ± 1.3% 6.2 ± 0.7% 19.9 ± 1.2%
Moses 18.5 ± 1.0% 17.3 ± 0.6% 17.1 ± 0.5% 16.7 ± 0.4% 25.2 ± 1.5% 5.3 ± 0.4% 20.6 ± 1.2%
NMT 25.0 ± 1.6% 20.7 ± 0.7% 20.9 ± 0.3% 20.2 ± 0.2% 30.0 ± 2.0% 9.6 ± 1.1% 27.3 ± 1.8%
Ours 31.8 ± 1.8% 27.5 ± 0.7% 25.2 ± 0.3% 23.3 ± 0.2% 35.4 ± 2.2% 10.0 ± 1.8% 32.6 ± 2.1%

Table 6. Automatic evaluation(Javascript dataset)

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
IRTFIDF 18.7 ± 1.1% 17.6 ± 0.4% 18.3 ± 0.3% 17.9 ± 0.2% 22.6 ± 1.3% 6.2 ± 0.6% 20.2 ± 1.1%
Moses 18.9 ± 1.2% 18.8 ± 0.7% 18.7 ± 0.7% 18.3 ± 0.6% 25.7 ± 1.2% 5.8 ± 0.4% 20.1 ± 1.0%
NMT 28.1 ± 1.6% 22.0 ± 0.6% 21.5 ± 0.3% 20.5 ± 0.2% 32.8 ± 1.9% 10.3 ± 1.0% 30.4 ± 1.7%
Ours 33.2 ± 1.9% 26.4 ± 0.8% 24.1 ± 0.4% 22.1 ± 0.3% 37.3 ± 2.2% 11.7 ± 1.8% 34.7 ± 2.1%

Table 7. Automatic evaluation(C# dataset)

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
IRTFIDF 18.0 ± 1.0% 17.1 ± 0.4% 17.9 ± 0.3% 17.6 ± 0.2% 21.9 ± 1.3% 6.3 ± 0.6% 19.9 ± 1.1%
Moses 18.5 ± 1.0% 16.8 ± 0.7% 16.6 ± 0.6% 16.3 ± 0.6% 25.4 ± 1.2% 6.0 ± 0.4% 20.0 ± 1.0%
NMT 24.4 ± 1.7% 19.3 ± 0.7% 19.8 ± 0.2% 19.3 ± 0.2% 29.4 ± 1.6% 9.7 ± 0.8% 27.1 ± 1.4%
Ours 30.9 ± 1.8% 27.7 ± 0.7% 25.3 ± 0.3% 23.4 ± 0.2% 34.8 ± 2.3% 10.2 ± 1.9% 31.8 ± 2.2%

6.1 RQ-1: How effective is our approach under automatic evaluation?
6.1.1 Automatic Evaluation Results. The automatic evaluation results of our proposed model and
aforementioned baselines are summarized in Table 4, 5, 6, 7, 8 for Python, Java, Javascript, C#,
and SQL respectively. The best performing system for each column is highlighted in boldface. As
can be seen, our model outperforms all the other methods considerably in terms of BLEU
score and ROUGE score. BLEU score measures precision of the system. To be more specific, it
measures how many words (and/or n-grams) in the machine generated question titles appear in
the ground truth question titles. For ROUGE scores, it measures the recall of the system i.e. how
many words(and/or n-grams) in the ground-truth question titles appear in the machine generated
questions titles. From the table, we can observe the following points:
(1) In general, encoder-decoder architecture baselines, i.e., NMT and our proposed methods,

outperform both the IR based approach and the statistical machine translation approach
(e.g., Moses) by a large margin. For IR based approach, it retrieves questions from existing
database according to similarity score, which relies heavily on whether similar code snippets
can be found and how similar the code snippets are. As a result, it is unable to consider the
context of the code snippet, which is reflecting that memorizing the training set is not enough
for this task. For the phrase-based statistical approaches which use separately engineered
subcomponents, the encoder-decoder model uses the vector representation for words and
internal states, semantic and structural information can be learned from these vectors by
taking global context into consideration.

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

GeneratingQuestion Titles for Stack Overflow from Mined Code Snippets 39:19

Table 8. Automatic evaluation(SQL dataset)

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
IRTFIDF 15.6 ± 1.0% 17.6 ± 0.4% 18.4 ± 0.3% 17.9 ± 0.3% 19.3 ± 1.2% 3.7 ± 0.6% 16.4 ± 1.0%
Moses 17.3 ± 0.9% 16.6 ± 0.7% 16.5 ± 0.6% 16.2 ± 0.6% 21.4 ± 1.1% 3.4 ± 0.3% 15.0 ± 0.8%
NMT 22.0 ± 1.3% 20.4 ± 0.5% 20.7 ± 0.4% 19.9 ± 0.2% 26.6 ± 1.7% 7.4 ± 1.0% 22.9 ± 1.5%
Ours 26.8 ± 1.6% 23.8 ± 0.6% 22.6 ± 0.3% 21.2 ± 0.2% 30.5 ± 2.0% 8.4 ± 1.3% 26.3 ± 1.9%

(2) Regarding the BLEU score, our approach is significantly better than the other methods (e.g.,
traditional IR method, phrase-based statistical method, and NMT methods) and achieves
understandable results [54]. For example, it improves over NMT methods on BLEU-4 by
19.2%8 on Python dataset and 15.3% on Java dataset.We attribute this to the following reasons:
firstly, our approach is based on a sequence-to-sequence architecture and hence it is superior
to the statistical baselines[36]. Secondly, compared with NMT baseline which is solely based
on the sequence-to-sequence approach, besides using the encoder-decoder architecture, our
approach also incorporates an attention mechanism to perform better content selection, a
copy mechanism to manage the rare-words problem in source code snippet, as well as a
coverage mechanism to eliminate meaningless repetitions, which makes it superior to the
NMT baselines. According to [54], the bleu-1 score above 0.30 generally reflect understandable
results and above 0.50 reflect good and fluent translations, the bleu score of our approach
can be considered as acceptable, but there is still a large gap compared with ground truth
question titles.

(3) Regarding the ROUGE score, the advantage of our proposed model is also clear. The potential
explanation is that baselinemethods, such asMoses, NMT, evenwith amuch larger vocabulary,
still has a large number of out of vocabulary words. Our model, augmented with the copy
mechanism to handle the rare-words problem, beats these baselines by a large margin. This
further justifies that the copy mechanism generally helps when dealing with the question
generation tasks. It also signals that out of vocabulary tokens within code snippet convey
much valuable information when generating question titles.

(4) The proposed approach performs best on the Python dataset and worst on the SQL dataset.
This is in part because, compared with Python code snippet, SQL code snippets only contain
a set of keywords and functions, and thus generating question titles for SQL code snippet is
more challenging for solely relying on the compositional structures in the input.

6.1.2 Examples of the Automatic Evaluation. We examine several sample outputs by hand to
perform a further qualitative analysis. Fig. 8 shows some examples of the question titles generated
by human (Golden questions), the baselines (e.g., IR, Moses and NMT) and our approach for the
given code snippets in the test set. We have the following interesting observations:
(1) We see a large gap between our approach and other baselines. Our approach generates

syntactically and semantically correct and relevant question titles in most cases,
while the outputs of every other model are less meaningful and/or more irrelevant. This
is consistent with our previous automatic evaluation results. For the IR method, often the
question titles are unable to connect to the code snippet. For example in the third sample, the
ground truth question is about “find difference between two values”, while the IR methods
retrieved the question of “how to calculate the diff between two dates in django”. The
statistical machine translation model, such as Moses, is unable to generate a syntactically
correct question title. For example, in the sixth and seventh sample, the question titles

8The improvement ratio is defined within https://www.d.umn.edu/~gshute/arch/improvements.xhtml

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

https://www.d.umn.edu/~gshute/arch/improvements.xhtml

39:20 Zhipeng GAO et al.

Table 1

ID Code Snippet Questions

1

import unittest 
import sys 
Class BookTests(unittest TestCase): 
 @classmethod  
 def setUpClass(cls): 
 cls._mine = mymodule.myclass(‘test_file.txt’, ‘baz’)

Golden : How do I use unittest setUpClass method() ?

IR :how to run code when a class is subclassed?

Moses : how do i import a class booktests unit test how to mine and python

NMT : how do i write a pytest from testsuit ?

Ours : how do i use a unittest setup class method() ?

2
import win32gui  
 
ImportError : No module named win32gui

Golden : How to use the win32gui module with Python ?

IR : import error: no module named numpy

Moses : python win com guiimport guiwin gui importerror module in windows ?

NMT : how to choose window to a python script to window with window ?

Ours : how to install win32gui . in windows without

3

def distance(x, y): 
 if x >= y:
 result = x - y
 else:
 result = y - x
 return result

Golden : How do I find the difference between two values without knowing which is larger?

IR : How to calculate diff between two dates in django

Moses : how do I get return to print to console in this code ?

NMT : how to make a python program that is not a list of list ?

Ours : How to find the absolute distance of two point in python ?

4
In[2] : mimetypes. 
 guess_extension('image/jpeg', strict=False)  
Out[2] : ‘.jpe’

Golden : Why the various JPEG Extensions?

IR : How to load JPE image file?

Moses : how to extension in how to include header in python

NMT : how to get the index of a list of a list of list in python ?

Ours : how to safely get the file extensions from a file use django ?

5

<?xml version="1.0" encoding="UTF-8"?>
<MyDocument xmi:version="2.0">
 <Thingamabob name="A" hasDohicky="//@Dohicky.0">
 <Dingus/> 
 </Thingamabob>
 <Dohicky name="B"/>
</MyDocument>

Golden : In XML what do you call this: //@Dohicky.0 and how to address it in Java

IR : Why should you use XML CDATA blocks?

Moses : how to use uniqueconstraint with single table inherite jpa ?

NMT : how to get the current time in java ? is not abl to get the ip address and host name ?

Ours : how to get the attribute of node and its value in xml use dom in java ?

6

String path = “/puppy.png”  
try { 
 BufferedImage image = ImageIO.read( 
 getClass().getResourceAsStream(path)); 
} catch (Exception ex) {  
 ex.printStackTrace(); 
}

Golden : java input == null why ?

IR : how do I generate random integers within a specific range in java?

Moses : file pixel in java ?

NMT : how to read a file from a file in java ? is not abl to do so

Ours : how to get the path of an image in java ?

7 webbrowser.open(‘STRING’) 
gmail_user = raw_input(‘Please enter your Gmail username:’)

Golden : How can I disable webbrowser message in python ?

IR : how to throw custom 404 messages in python

Moses : how to input

NMT : how to open a file from a file use python ?

Ours : how to I open the web browser message when python2 ?

8

def test1(): 
 exec(‘print “hi from test1”’) 
 
def test2(): 
 exec(‘print “hi from test2”’) 
 def subfunction(): 
 return True

Golden : Why doesn’tt exec work in a function with a subfunction?

IR : Why does Python code run faster in a function?

Moses : how to test work in a function with a subfunction ? python

NMT: in python, why does’t the alternative of a function with a subfunction ?

Ours : how python, what is this, ? this function ? some subfunction ?

�1

Fig. 8. Examples of output generated by each model

generated by Moses are incomplete and meaningless. For the NMT method, although it can
generate the question titles in the right format in some cases, it still fails to replicate the
critical tokens (e.g., example1) because of the difficulty brought by the unseen words in the
code snippet.

(2) Our approach handles out of vocabulary words well, and it can generate acceptable
question titles for a code snippet with rare words. In contrast, the baseline methods often fail
in such cases. For example, in the first sample, in which the focus should be put on “setUpClass”
method in the code snippet, Our model successfully captures this rare phrase, while other
baselines return non-relevant descriptions. It is quite interesting that our model automatically

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

GeneratingQuestion Titles for Stack Overflow from Mined Code Snippets 39:21

learns to select informative tokens in the code snippet, which shows the extractive ability of
our model. At the same time, our approach often generates words to “connect” those critical
tokens, showing its aspect of abstractive ability.

(3) A large number of the question titles generated by our model produce meaningful
output for simple code snippets. Note that in some cases, the generated question titles
are not exactly inline with the standard ones, yet still make sense by looking at the meaning
of the code snippet. For example, in the second case, the ground truth question title is “How
to use win32gui module with Python”, our system generates a question title about “how to
install win32gui”. This is reasonable given the source code contains “ImportError” while
“import win32gui”. In the third case, our approach generates a question title of “how to find
the absolute distance of two point in python”, this is because the code snippet defines a
function that returns the distance of two points. For such cases, it is reasonable to generate
different question titles that look at the code snippet from different aspects. Our question
titles can also be viewed as correct and meaningful by looking at the meanings of the code
snippet.

(4) Sometimes, our approach can generate question titles that are more clear and infor-
mative than the ground truth question titles, such as samples 4-6. For example, in the
fourth sample, the ground truth question title is “why the various JPEG extensions?” which is
uninformative and unclear to the potential helpers, after using our tool the question title can
be rephrased as “how to safely get the file extensions from a file” which is more attractive
and informative than the original ones.

(5) However, outputs from our system are not always “correct”. For example, in the last
second sample, the ground truth question title is “How can I disable the web browser message
in python”, however, our system output an “opposite” question title of “How to I open the
web browser message when python2”. This example reveals that in some cases, question
titles can be generated incorrectly by only looking at the implementation details of the code
snippet. This is because we can not judge the developers’ intent just through the code snippet
attached to the question.

(6) Also, outputs from our system are not always “perfect”. The gap between ground truth
question titles and machine generated question titles is still large. For example, in the last
sample, The question quality of our model degrades on longer and compositional inputs. This
indicates that there is still a large room for our question generation system to improve. It
would be interesting to further investigate how to interpret why certain irrelevant words are
generated in the question title. For example, in the second and fifth samples, there are some
irrelevant words at the end of generated questions. We will address such problems in the
future.

Answer to RQ-1: How effective is our approach under automatic evaluation? - we con-
clude that our approach is effective under automatic evaluation and beats the baselines by a large
margin.

6.2 RQ-2: How effective is our approach compared with the CODE-NN model?
CODE-NN trained a neural attention model generate summaries of C# and SQL code fragment,
they have published their C# and SQL datasets, which include 66,015 (title, query) pairs for C# and
32,337 pairs for SQL. It is worth emphasizing that CODE-NN removed all the non-parsable code
snippets and retained only the parsable code snippets. We retrained our approach on the CODE-NN
datasets, the automatic evaluation results of our approach and CODE-NN model are summarized in
Table 9. Because CODE-NN use the BLEU-4 metric for evaluation, we only report the BLEU-4 score

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

39:22 Zhipeng GAO et al.

Table 9. Automatic evaluation(CODE-NN dataset)

Model BLEU-4 (C# Dataset) BLEU-4 (SQL Dataset)
IR 13.7 13.5
Moses 11.6 15.4
CODE-NN 20.5 18.4
Ours 22.1 20.4
Ours (Transfer) 21.3 18.4

in our table. Apart from that, we also explored the effectiveness of transferring our trained model
to the new datasets. We further applied the C# and SQL model already obtained to the CODE-NN
datasets. This is reasonable because CODE-NN extracted the code snippet only from the accepted
answers containing exactly one code snippet, while our approach extracted the code snippet from
the questions, so training dataset of our approach will not contaminate the CODE-NN datasets. In
other words, our model does not see any test case in the CODE-NN dataset during the training
process. From the table, we can observe the following points:
(1) In general, our approach and CODE-NN outperforms the other baselines by a large margin.

The results are consistent with our previous evaluation. This further justifies the encoder-
decoder architecture approach is helpful to learn the semantic and structural information
from the code snippet.

(2) The neural models, i.e., CODE-NN and ours, have better performance on C# than SQL. This is
probably due to the following reasons: First, generating question titles for SQL code snippets
is a more challenging task since the SQL code snippet only has a handful of keywords and
functions, and the generation models need to rely on other structural aspects. Second, the
size of the SQL training data (32,337 pairs) is much smaller than the size of the C# training
data (66,015 pairs), it is more difficult to train a good neural model if there is lack of sufficient
training data.

(3) By using CODE-NN datasets, our model performs better than CODE-NN. It improves BLEU-4
score by 7.8% on C# dataset and 10.8% on SQL dataset. We attribute this to the copy mechanism
and coverage mechanism incorporated into our approach, which is able to handle the low
frequency tokens and reduce the redundancy during the generation process.

(4) By transferring existing trained models to the CODE-NN datasets, it is notable that even
without training directly on the CODE-NN datasets, we can still achieve comparable results
compared with the CODE-NN model. We attribute this to the advantage of our model as well
as the larger datasets constructed with our approach. We have collected more than 170K ⟨code
snippet, question⟩ pairs for C# and more than 150K pairs for SQL. The CODE-NN datasets
only include 60k+ C# pairs and 30k+ SQL pairs. This verifies the importance of using big
training data for applying deep learning-based methods in software engineering.

Answer to RQ-2: How effective is our approach compared with CODE-NN? - we conclude
that our approach is more effective compared with Code-NN.

6.3 RQ-3: How effective is our approach under human evaluation?
6.3.1 Human Evaluation Results. Fig. 9 shows one example in our human evaluation study. We
obtain 250 groups of scores from human evaluation for Python and Java Dataset respectively. Each
group contains 4 pairs of scores, which were rated for candidates produced by IR, Moses, Seq2Seq
and our approach. Each pair contains a score for the Naturalness modality and a score for Relevance
modality. We regard a score of 1 and 2 as low-quality, a score of 3 as medium quality, and a score of 4

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

GeneratingQuestion Titles for Stack Overflow from Mined Code Snippets 39:23
Table 1

Please rate each Candidate for N(Naturalness) and R(Relevance) from 1-5 (5 is the best)

Reference : Using apache httpclient how to set cookie for http request ?

Candidate1 : how to connect android app with mysql database through php N: R:

Candidate2 : how to use the java httpclient . x how to imit send from us ? N: R:

Candidate3 : how to get the url from a http post request ? is not work N: R:

Candidate4 : how to get cookie from apache httpclient ? N: R:

�1

Fig. 9. User Study Case (Human Evaluation)

and 5 as high-quality. Regarding human evaluation study results, the responses from all evaluators
is then averaged for each modality. We also count the proportion of each quality type within each
modality. The quality distribution and average score of Naturalness and Relevance across each
methods are presented in Table 10 and Table 11. From the table, several points stand out:

(1) From Naturalness prospective, IR performs a slightly better than our approach. This
is reasonable since it retrieves other similar question titles which are all also written by
humans. However its output lacks the explanation to the actual input code snippet, which
also explains its surprisingly low score on Relevance.

(2) From Relevance prospective, the question titles generated by our approach are much
more appreciated by the volunteers. Its superior performance in terms of Relevance further
supports our claim that it manages to select content from input more effectively.

(3) In general, our model performs well across both dimensions. The results of human
evaluation are consistent with automatic evaluation results. The considerable proportion
of high-quality questions generated by our approach with respect to the Naturalness and
Relevance also reconfirms the effectiveness of our system.

Answer to RQ-3:How effective is our approach under human evaluation? In general, for
considering the combination of both modality, i.e., Naturalness and Relevance, our model beats the
baselines by a large margin.

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

39:24 Zhipeng GAO et al.

Table 10. Human Evaluation(Python dataset)

Model Naturalness LowN MediumN HighN Relevance LowR MediumR HighR
IR 3.91 13.2% 15.6% 71.2% 2.22 66.4% 19.2% 14.4%
Moses 2.44 62.4% 17.2% 20.4% 2.73 40.8% 30.8% 28.4%
NMT 3.38 22.0% 28.4% 49.6% 2.90 35.6% 32.4% 32.0%
Ours 3.75 18.4% 12.8% 68.8% 3.55 18.8% 22.8% 58.4%

Table 11. Human Evaluation(Java dataset)

Model Naturalness LowN MediumN HighN Relevance LowR MediumR HighR
IR 3.56 19.6% 22.8% 57.6% 2.29 68.4% 14.4% 17.2%
Moses 2.37 62.4% 18.4% 19.2% 2.24 65.2% 21.6% 13.2%
NMT 2.96 28.0% 45.2% 26.8% 2.66 47.2% 27.6% 25.2%
Ours 3.42 22.0% 27.2% 50.8% 3.25 28.8% 24.4% 26.8%

Fig. 10. User Study Case (Practical Manual Evaluation)

6.4 RQ-4: How effective is our approach for improving low-quality questions?
6.4.1 Practical Manual Evaluation Results. Fig. 10 shows one example of our practical manual
evaluation study. We collected 50 pairs of question titles (one was generated by humans and one
was generated by our approach) for Python and Java respectively for comparison purposes. For
each pairwise comparison, we got 5 groups of selections from the evaluators. Each group contains
three user selections with respect to the Clearness, Fitness andWillingness measures respectively.
We calculated the proportion of the user selection according to each evaluation metric. Table 12
and Table 13 show the results of the practical manual evaluation for Python and Java respectively.
From the table we can see that:
(1) The question titles generated by our approach outperform the poor quality question titles in

terms of all the metrics. This demonstrates that our approach produces more clear and/or ap-
propriate question titles, which is potentially helpful for improving the low-quality questions
in Stack Overflow.

(2) Particularly, our question titles have substantially better willingness scores, indicating that
developers are more willing to respond to our questions. This shows that question titles
generated by our model are more likely to elicit further interactions, which is helpful to
increase the likelihood of receiving answers.

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

GeneratingQuestion Titles for Stack Overflow from Mined Code Snippets 39:25

Table 12. Practical Manual Evaluation (Python dataset)

Ours vs. Human Win (%) Lose (%) Non-distinguishable (%)
Clearness 52.4 33.2 14.4
Fitness 55.2 24.0 20.8

Willingness 61.2 31.6 7.2

Table 13. Practical Manual Evaluation (Java dataset)

Ours vs. Human Win (%) Lose (%) Non-distinguishable (%)
Clearness 42.8 34.0 23.2
Fitness 47.2 39.6 13.2

Willingness 49.2 26.8 24.0

6.4.2 Examples of Practical Manual Evaluation. Fig. 11 presents three examples of manual evalua-
tion results. From these cases we can see that:
(1) The question titles with poor scores in Stack Overflow are often unclear (e.g., Example1)

and/or unappropriate (e.g., Example2). For such cases, the question titles generated by our
approach are more clear and attractive, such as Example1, and also questioning on key
information. For example, the newly generated question titles in Example2 are much more
appreciated by the evaluators than the original ones, which increases the likelihood and
willingness of the developers to offer help.

(2) Not all of the poor quality question titles can be improved by our approach. Notably for
some posts, our approach suffered from semantic drift, that is the questions generated
by our approach do not align well with the developers’ intent. Such as in Example3, the
developer’s problem was more about “writing with large data”, while the semantics of our
question generated has drifted to the problem of “java with bytebuffer”. This is because the
string variable “very large data” has been replaced by STR during data preprocessing, such
information loss hinders the learning process of our approach.

(3) Even though the results generated by our approach are still not perfect, our approach is the
first step on this topic and we also release our code and dataset to inspire further follow-up
work.

Answer to RQ-4: How effective is our approach for improving low-quality questions?
In general, for a large number of low-quality questions in Stack Overflow, our approach can improve
the quality of the question titles via Clearness, Fitness andWillingness measures.

6.5 RQ-5: How effective is our use of attentionmechanism, copy mechanism and
coverage mechanism under automatic evaluation?

6.5.1 Ablation Analysis Results. We added an attention mechanism, a copy mechanism and a
coverage mechanism to our sequence-to-sequence architecture. The ablation analysis is to verify
the effectiveness of the three mechanisms, to be more specific, we compare our approach with
several of its incomplete variants:
• ModelAtten+Copy removes the coverage mechanism from our approach.
• ModelAtten+Coverage removes the copy mechanism from our approach.
• ModelAtten removes the copy and coverage mechanism from our approach.
• ModelBasic removes all the attention, copy and coverage mechanism from our approach.

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

39:26 Zhipeng GAO et al.

Example1(6795345) — Question Score: -3 Example2 (4099140) — Question Score: -3 Example3 (876602) — QuestionScore: -3
import urllib2, urllib
from BeautifulSoup import BeautifulSoup
import re
import urlparse  
… 
raw = urllib.rulopen(url) 
soup = BeautifulSoup(raw) 
parse = list(urlparse.urlparse(url)) 
 
for ender in soup.findAll(ender): 
 links = "%(src)s"% ender 
 if “.jpg” in links: end = “.jpg” 
 if “.jpeg” in links: end = “.jpeg”  
 if “.gif” in links: end = “.gif”  
 if “.png” in links: end = “.png” 
 i += 1  
 urllib.urlretrieve(links, “%s%s” % (i, end))  
 

import org.xsocket.connection.*;
import java.io.IOException; 
 
public class SocketClient {
 public static void main(String[] args) {
 try {
 IBlockingConnection bc = new
BlockingConnection("127.0.0.1", 8090);
 String req = "Hello server";
 bc.write(req + "\r\n");
 } catch (IOException e) {}
 System.out.println("missing");
 }
} 
 
C:\Users\Wildfire\Desktop>java -cp xSocket-2.8.14.jar
SocketClient.java  
Exception in thread "main"
java.lang.NoClassDefFoundError: SocketClient/java

 
 
message = "very large data"+"\n";
 
ByteBuffer buf = ByteBuffer.wrap(message.getBytes());
 
int nbytes = channel.write(buf);

Human: Need help with a Python scraper Human: Can compile but not run the code Human: problem with writing large data using  
 java nio socket channel

Ours: how to extract all links from url  
 using beautiful soup?

Ours: java - how do i handle the  
 noclassdeffounderror ?

Ours: how to write nbytes in java with  
 bytebuffer ?

Ours vs. Human:  
Clearness(5:0) Fitness(4:1) Willingness(5:0)

Ours vs. Human:  
Clearness(4:1) Fitness(4:1) Willingness(5:0)

Ours vs. Human:  
Clearness(2:2) Fitness(1:4) Willingness(3:2)

�1

Fig. 11. Practical Manual Evaluation Example

The ablation analysis results are presented in the Table 14 and Table 15. We can observe the
following points:
(1) By comparing the results of ModelBasic and ModelAtten, it is clear that incorporating an

attention mechanism is able to improve the overall performance. For example, by adding
attention mechanism, the average BLEU-4 score of the Attention-based model was improved
by 9% and 13.3%, ROUGE-L score was improved by 6.8% and 10.8% on Python and Java dataset
respectively. We attribute this to the ability of attention mechanism to perform better content
selection, which can focus on the more salient part of the source code snippet.

(2) By comparing ModelAtten with ModelAtten+Copy and ModelAtten+Coverage, we can measure
the performance improvements achieved due to the incorporation of copy mechanism and
coverage mechanism respectively. Better performance can be achieved by solely adding copy
or coverage mechanism to the attention-based model. This signals that both copy and coverage
mechanism do have contributions to the performance improvements.

(3) Without copy mechanism, there is a drop overall in every evaluation measure, the ROUGE-
L score drops 13% and 9.4% on Python and Java dataset respectively. On the other hand,
without coveragemechanism, we see a consistent but sufficiently lower drop in each evaluation
measure, the ROUGE-L drops 12.3% on Python and 3.8% on Java.

(4) By comparing the results of our approach with each of the variant model, we can see that no
matter which type of mechanism we dropped, it does hurt the performance of our model.
This verifies the importance and effectiveness of these three mechanisms.

6.5.2 Examples of Ablation Analysis. To gain further insight into our approach, we further illustrate
some examples from the ablation analysis to show the effect of employing the attention, copy and
coverage mechanism. The results are shown in Fig. 12, we can see that:
(1) Question titles generated by the basic model are of low-quality. Comparing the results of the

basic model and attention model, we can see that by adding the attention mechanism, the
generated question titles are more meaningful and relevant for the given code snippet. The
attention mechanism enables the model to focus on the relevant parts of the input sequence
as needed. As shown in Example1, the model will focus on the “request” related segment in
source code when it generates “post request” for the question title.

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

GeneratingQuestion Titles for Stack Overflow from Mined Code Snippets 39:27

Fig. 12. Ablation Analysis Example

(2) Repetition is a common problem for attentional sequence to sequencemodels (e.g., [53, 56, 59]).
Meaningless repeated words are produced during the generation process (highlighted with
yellow color). We introduce a coverage mechanism for discouraging such repetitions in our
generator by quantitatively emphasizing the coverage of sentence words while decoding. As
can be seen in Example2, “a harshmap” has been meaningless repeated twice, employing the
coverage mechanism can effectively discourage such repetitions.

(3) We observe that a high-quality question title is generated using our approach. Recall that a
code snippet usually contains tokens (highlighted with a blue color) with very rare occur-
rences. It is difficult for a decoder to generate such words solely based on language modeling.
For such cases, we incorporate the copy mechanism to copy the rare tokens from the code
snippet to the question title. In the first example, the method name get_client_ip has been
properly picked up from the source code snippet to the generated question titles.

Answer toRQ-5:How effective is our use of attentionmechanism, copymechanism and
coverage mechanism under automatic evaluation? In summary, all the three mechanisms, i.e.,
attention mechanism, copy mechanism, coverage mechanism, are effective and helpful to enhance
the performance of our approach.

6.6 RQ-6: How effective is our approach under different parameter settings?
One of the key parameter of our approach is the vocabulary size. The encoder-decoder architecture
models need a fixed vocabulary for the source input and target output. To generate all the possible
words, the basic Seq2Seq model has to include all the vocabulary tokens that appeared in the
training set, which requires a lot of time and memory to train the models. One advantage of our
model is that, with the help of copy mechanism, our approach can copy words from source input
to the target output. We can maintain a small size vocabulary which exclude the low frequency
words, but also get better performance and generalization ability.

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

39:28 Zhipeng GAO et al.

Table 14. Ablation evaluation (Python dataset)

Measure ModelBasic ModelAtten ModelAtten+Coverage ModelAtten+Copy Ours
BLEU-1 25.1 ± 1.5% 28.6 ± 1.7% 29.6 ± 1.8% 31.5 ± 1.9% 35.8 ± 2.0%
BLEU-2 20.2 ± 0.7% 22.3 ± 0.8% 24.6 ± 0.6% 27.8 ± 0.8% 30.1 ± 0.9%
BLEU-3 19.1 ± 0.4% 21.7 ± 0.4% 23.8 ± 0.5% 25.4 ± 0.4% 26.8 ± 0.4%
BLEU-4 18.7 ± 0.3% 20.3 ± 0.3% 22.3 ± 0.2% 23.1 ± 0.2% 24.2 ± 0.3%
ROUGE-1 32.8 ± 2.0% 34.1 ± 2.3% 35.3 ± 2.2% 35.4 ± 2.4% 39.9 ± 2.5%
ROUGE-2 9.1 ± 0.8% 10.2 ± 1.2% 10.6 ± 2.1% 10.8 ± 2.0% 12.6 ± 2.5%
ROUGE-L 29.2 ± 5.8% 31.2 ± 2.0% 31.9 ± 2.1% 32.2 ± 2.2% 36.7 ± 2.4%

Table 15. Ablation evaluation (Java dataset)

Measure ModelBasic ModelAtten ModelAtten+Coverage ModelAtten+Copy Ours
BLEU-1 20.5 ± 1.0% 25.2 ± 1.6% 27.8 ± 1.6% 29.7 ± 1.7% 31.8 ± 1.8%
BLEU-2 16.4 ± 0.6% 20.7 ± 0.7% 25.0 ± 0.6% 26.1 ± 0.6% 27.5 ± 0.7%
BLEU-3 17.8 ± 0.4% 21.1 ± 0.3% 23.6 ± 0.3% 24.4 ± 0.3% 25.2 ± 0.3%
BLEU-4 18.1 ± 0.2% 20.5 ± 0.2% 22.0 ± 0.1% 22.6 ± 0.2% 23.3 ± 0.2%
ROUGE-1 28.3 ± 1.3% 30.5 ± 2.0% 31.2 ± 2.0% 33.2 ± 2.1% 35.4 ± 2.2%
ROUGE-2 6.9 ± 0.5% 7.9 ± 1.1% 8.2 ± 1.2% 8.7 ± 1.5% 10.0 ± 1.8%
ROUGE-L 24.6 ± 1.1% 27.3 ± 1.8% 28.8 ± 1.9% 30.6 ± 2.0% 31.8 ± 2.2%

Table 16. Vocab Size & Training Time(per epoch)

Python

Threshold Vocab Size Training Time
1 58,536 766.9
2 49,656 719.1
3 36,277 663.7
5 22,244 593.8
7 16,368 549.2
10 12,142 539.1
100 2,503 499.9

Java

Threshold Vocab Size Training Time
1 221,160 2218.3
2 131,862 1692.3
3 79,048 1074.1
5 54,352 962.2
7 38,670 898.4
10 27,341 831.4
100 4,642 723.8

We set different word frequency threshold, i.e., 1, 2, 3, 5, 7, 10, 100, for constructing the vocabulary.
Settingword frequency threshold to 1means the vocabulary is constructedwithwords that appeared
at least twice in the training set. Different models were trained under these parameters on the
Python and Java datasets separately. The vocabulary size and training time under different threshold
are summarised in Table 16. Fig. 13 and Fig. 14 shows the influence of different threshold settings
on the BLEU-4 score and ROUGE-L score. We have the following observations from these figures:
(1) Our approach achieves its best performance on Java dataset when the similarity threshold

set to 3, the corresponding vocabulary size is 79,048. When the vocabulary size is too big,

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

GeneratingQuestion Titles for Stack Overflow from Mined Code Snippets 39:29

1 2 3 5 7 10 100
18

20

22

24

26

28
JAVA
PYTHON

Fig. 13. BLEU4 Score under different vocab threshold

1 2 3 5 7 10 100
20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0
JAVA
PYTHON

Fig. 14. ROUGE-L Score under different vocab threshold

i.e., 221,160 with threshold equals 1, the BLEU4 and ROUGE-L score becomes lower. This is
because some non-generic words will be included in the fixed vocabulary, which leads to
difficulties for our approach to learn how to copy words from the input source sequence.

(2) The results of our approach are best on Python dataset when the word frequency threshold
set to 1, the corresponding vocabulary size is 58,536. Compared with the results of the Java
dataset, the optimum vocabulary size settings of our approach can be around 60000.

(3) When the word frequency threshold rockets up to 100, the vocabulary size decreases to 2,503
and 4,626 on Python and Java dataset respectively. Even with a much smaller vocabulary size,
our approach can still have a comparable performance against Basic Seq2Seq model, which
further supports the generalization ability of our approach.

Another parameter of our approach is the dimension ofword embeddings.We choose five different
word embedding sizes, i.e., 100, 200, 300, 400, 500, and qualitatively compare the performance of
our approach in these different word embeddings. Fig. 15 and Fig. 16 show the influence of different
word embedding sizes on the BLEU-4 and ROUGE-L score. One can clearly see that our approach
achieves the best BLEU-4 and ROUGE-L score when the embedding size is set to 300. Too large
word embedding size may not be helpful to improve the accuracy.

6.7 RQ-7: How efficient is our approach in practical usage?
The experiment was conducted on an Nvidia GeForce GTX 1080 GPU with 8GB memory. The time
cost of our approach is mostly for the training process which takes approximately 8 to 10 hours for

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

39:30 Zhipeng GAO et al.

100 150 200 250 300 350 400 450 500

16

18

20

22

24

26

28

30
JAVA
PYTHON

Fig. 15. BLEU4 Score under different sizes of word embeddings

100 150 200 250 300 350 400 450 500
20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0
JAVA
PYTHON

Fig. 16. ROUGE-L Score under different sizes of word embeddings

different datasets. The testing process on around 3,000 examples takes one to three minutes, while
generating a single question title only costs 20 to 60ms.
Considering that the query for generating a question title using our approach is efficient, we

have implemented our approach as a standalone web-based tool, named Code2Que, to facilitate
developers in using our approach and to inspire follow up research. Fig. 17 shows theweb interface of
Code2Que. Developers can copy and paste their code snippet into our web application. Code2Que
embeds the code snippet via source code encoder and generates the question titles for the developers.
We below describe the details of the input and output of such a process.
• Input: the input to the Code2Que is a code snippet, which is an ordered sequence of source
code lines. We have provided support for different types of programming languages (e.g.,
Python, Java, Javascript, C# and SQL) for users to select. The input box in Fig. 17 shows an
example of a Python code snippet. After inputting the code snippet, the developers can click
the “Generate” button to submit their query.
• Output: the output of Code2Que is in two parts: (i) Generated Questions: Code2Que will
generate a question title using our backend model according to the code snippet and program-
ming language they choose. For example, “how to extract text from html pages using html2text”
is generated for the given code snippet. (ii) Retrieved Questions: After the developer submits
his/her code snippet to the server, the code snippet is converted into a vector by our backend
Source Code Encoder, then Code2Que searches through our codebase and returns the top3
questions with similar code snippets. The link to these questions on the Stack Overflow
website is also provided for reference. Developers can use these to quickly browse the related
questions to have a better understanding of the problem.

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

GeneratingQuestion Titles for Stack Overflow from Mined Code Snippets 39:31

Fig. 17. CODE2QUE Web Service Tool

Answer to RQ-7: How efficient is our approach in practical usage? In summary, our ap-
proach is efficient enough for practical use and we have implemented a web service tool, named
Code2Que, to apply our approach for practical use.

7 DISCUSSION
In this section, we discuss the main contribution of our work and analyze the strength and potential
weakness of our work associated with each contribution.

7.1 QuestionQuality Improvement
It is important for CQA forums to maintain a satisfactory quality level for the questions and
answers so as to improve community reputation and provide better user experience. Questions
are a fundamental aspect of a CQA website. Poorly formulated questions are less likely to receive
useful responses, thus hindering the overall knowledge generation and sharing process.

• Strength of our work. Previous work related to CQA quality studies focus on question quality
prediction. For example, the authors in [51] developed a model for predicting question
quality using the content of the question. The authors in [4] proposed a method to identify
inappropriate questions by using previously asked similar questions. Different from the
existing research, our study aims to improve low-quality questions in Stack Overflow. To the
best of our knowledge, this is the first work that investigates the possibility of automatically
improving low-quality questions in Stack Overflow.
• Weakness of our work. According to our practical manual evaluation results, our approach can
improve a large number of low-quality questions in Stack Overflow via Clearness, Fitness and
Willingness measures. However, the results generated by our approach are still not perfect,

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

39:32 Zhipeng GAO et al.

and for some posts, our approach suffers from semantic drift problems. We plan to incorporate
more context information for generating better question titles in the future.

7.2 Deep Sequence to Sequence Approach
Recently, deep learning has achieved promising results in solving many software engineering
tasks, such as code search (e.g., [24, 31, 39]), code summarization (e.g., [30, 32, 33, 62]), and API
recommendation (e.g., [25, 26]). Among these works, a number of researchers have applied the
sequence to sequence methods for mining the ⟨natural language, code snippet⟩ pairs, such as the
commit message generation. (e.g., [32, 33]).
• Strength of our work. A major challenge for question generation tasks in our study is the
semantic gap between the code snippet and natural language descriptions. To bridge the
gap between code fragment and natural language queries, we employed a deep sequence to
sequence approach to build the neural language model for both code snippets and natural
language questions. The neural language model automatically learns common patterns from
the large scale source code snippets. Furthermore, different from the existing sequence to
sequence learning approach, we add attention, copy and coverage mechanism to our sequence-
to-sequence architecture to suit our specific task. The attention mechanism can perform
better content selection from the input, while the copy mechanism can handle the rare word
problems among the code snippet, and the coveragemechanism can eliminate the meaningless
repetitions.
• Weakness of our work. Previous works [30, 32, 62] have shown that incorporating structural
information of the source code (i.e., the AST) can improve the performance of the model,
However, considering that themajority of the code snippets are not parsable in Stack Overflow,
we do not use the AST structural information at the current stage. We plan to use the program
repair algorithm to fix the code snippet in Stack Overflow and employ more contextual
information of the source code in the future.

7.3 Question Generation Task
Stack Overflow is a collaborative question answering website, its target audience are software
developers, maintenance professionals and programmers. Over the recent years, Stack Overflow
has attracted increasing attention from the software engineering research community. However,
since the questions and answers posted by developers on Stack Overflow are usually unstructured
natural language texts containing code snippets, which makes it more challenging for researchers
to mine and analyze these posts.
• Strength of our work. To improve the software development process, researchers have in-
vestigated the Stack Overflow knowledge-base for various software development activities,
such as predicting the post quality [4, 50, 51, 72, 73], answer recommendation [22, 55, 70],
code/questions retrieval [2, 9, 16, 29, 71] etc. However, to the best of our knowledge, this is
the first work which investigates the question generation task in Stack Overflow. We first
perform such a task to assist developers to generate a question title when presenting a code
snippet.
• Weakness of our work. We collected more than 1M ⟨code snippet, question⟩ pairs from Stack
Overflow, which covers a variety of programming languages (e.g., Python, Java, Javascript,
C# and SQL). Considering our study is the first step on this topic, we have published our
data to inspire further follow-up work. However, even though we have cleaned the data
via pre-processing, some data may still be noisy. We plan to improve the dataset quality by
further manual checking in the future.

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

GeneratingQuestion Titles for Stack Overflow from Mined Code Snippets 39:33

8 THREATS TO VALIDITY
We have identified the following threats to validity among our study:
Internal Validity Threats to internal validity are concerned with potential errors in our code
implementation and study settings. For the automatic evaluation, in order to reduce errors, we
have double-checked and fully tested our source code. We have carefully tuned the parameters of
the baseline approaches and used them in their highest performing settings for comparison, but
there may still exist errors that we did not note. Considering such cases, we have published our
source code and dataset to facilitate other researchers to replicate and extend our work.
External Validity The external validity relates to the quality and generalizability of our dataset.
Our dataset is constructed from the official Stack Overflow data dump which contains a variety
of programming languages, such as Python, Java, Javascript, C# and SQL. However, there are still
many other programming languages in Stack Overflow which are not considered in our study.
We believe that our results will generalize to other programming languages, due to the overall
reasonable similarity in code snippets despite particular language syntax, semantics and APIs. We
will try to extend our approach to other programming languages to benefit more users in future
studies.
Construct Validity The construct validity concerns the relation between theory and observation.
In this study, such threats are mainly due to the suitability of our evaluation measures. For the
practical manual evaluation, the manual validation could be affected by the subjectiveness of the
evaluators and the human errors. For the human evaluation, the evaluators’ degree of careful-
ness, effort and English skills in the examination process may affect the validity of judgements.
We minimized such threats by choosing experienced participants who have at least one year of
studying/working experience in English speaking countries, and are familiar with Python and Java
programming languages. We also gave the participants enough time to complete the evaluation
tasks.
Conclusion Validity The conclusion validity relates to issues that could affect the ability to draw
correct conclusions about relations between the treatment and the outcome of an experiment. One
issue during the data filtering procedure is that we only keep the questions which contain several
keywords, such as “how”, “what”, “why”. However, since the questions in Stack Overflow can be
rather complicated, our results do not shed light on how effective our solution is on questions of
other kinds. On the other hand, from the human evaluation analysis, we see a key challenge for our
current work is that the questions generated by our approach suffered from semantic drift. This is
because it is difficult to judge a question poster’s intent by solely looking at his/her code snippet.
In such a case, more relevant information such as question description, question tags could further
be incorporated within our model, which may help to generate a question that is more accurate
and precise.

9 CONCLUSION AND FUTUREWORK
In this work, we have proposed a model for the task of automatic question generation based on
a given code snippet. Our model is based on sequence-to-sequence architecture, and enhanced
with an attention mechanism to perform better content selection, a copy mechanism to handle the
rare-words problem within the input code snippet as well as coverage mechanism to discourage the
meaningless repetitions. We carried out comprehensive evaluation on Stack Overflow datasets to
demonstrate the effectiveness of our approach, compared with several existing baselines, our model
achieves the best performance in both the automatic evaluation and human evaluation. We have
also released our code and datasets to facilitate other researchers to verify their ideas and inspire

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

39:34 Zhipeng GAO et al.

the follow up work. For future work, we plan to design better models to generate meaningful
question titles by considering extra context information, such as question description. Additional
work will be needed to address this context-sensitive question generation task.

10 ACKNOWLEDGEMENTS
This research was partially supported by the Australian Research CouncilâĂŹs Discovery Early
Career Researcher Award (DECRA) funding scheme (DE200100021), ARC Laureate Fellowship
funding scheme (FL190100035), ARC Discovery grant DP170101932 and SingaporeâĂŹs Ministry
of Education (MOE2019-T2-1-193).

REFERENCES
[1] Miltiadis Allamanis and Charles Sutton. 2013. Why, when, and what: analyzing stack overflow questions by topic,

type, and code. In Proceedings of the 10th Working Conference on Mining Software Repositories. IEEE Press, 53–56.
[2] Miltos Allamanis, Daniel Tarlow, Andrew Gordon, and Yi Wei. 2015. Bimodal modelling of source code and natural

language. In International Conference on Machine Learning. 2123–2132.
[3] Ashton Anderson, Daniel Huttenlocher, Jon Kleinberg, and Jure Leskovec. 2012. Discovering value from community

activity on focused question answering sites: a case study of stack overflow. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining. 850–858.

[4] Piyush Arora, Debasis Ganguly, and Gareth JF Jones. 2015. The good, the bad and their kins: Identifying questions with
negative scores in stackoverflow. In 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM). IEEE, 1232–1239.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align
and translate. arXiv preprint arXiv:1409.0473 (2014).

[6] Steven Bird and Edward Loper. 2004. NLTK: the natural language toolkit. In Proceedings of the ACL 2004 on Interactive
poster and demonstration sessions. Association for Computational Linguistics, 31.

[7] Lutz Büch and Artur Andrzejak. 2019. Learning-based recursive aggregation of abstract syntax trees for code clone
detection. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
95–104.

[8] Fabio Calefato, Filippo Lanubile, and Nicole Novielli. 2018. How to ask for technical help? Evidence-based guidelines
for writing questions on Stack Overflow. Information and Software Technology 94 (2018), 186–207.

[9] Guibin Chen, Chunyang Chen, Zhenchang Xing, and Bowen Xu. 2016. Learning a dual-language vector space for
domain-specific cross-lingual question retrieval. In 2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 744–755.

[10] Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys Poshyvanyk, andMartin Monperrus.
2019. Sequencer: Sequence-to-sequence learning for end-to-end program repair. IEEE Transactions on Software
Engineering (2019).

[11] Denzil Correa and Ashish Sureka. 2013. Fit or unfit: analysis and prediction of’closed questions’ on stack overflow. In
Proceedings of the first ACM conference on Online social networks. ACM, 201–212.

[12] Denzil Correa and Ashish Sureka. 2014. Chaff from the wheat: Characterization and modeling of deleted questions on
stack overflow. In Proceedings of the 23rd international conference on World wide web. 631–642.

[13] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark Marron, Subhajit Roy, et al. 2016.
Program synthesis using natural language. In Proceedings of the 38th International Conference on Software Engineering.
ACM, 345–356.

[14] Maarten Duijn, Adam Kucera, and Alberto Bacchelli. 2015. Quality questions need quality code: Classifying code
fragments on stack overflow. In 2015 IEEE/ACM 12thWorking Conference on Mining Software Repositories. IEEE, 410–413.

[15] Christine Franks, Zhaopeng Tu, Premkumar Devanbu, and Vincent Hellendoorn. 2015. Cacheca: A cache language
model based code suggestion tool. In Proceedings of the 37th International Conference on Software Engineering-Volume 2.
IEEE Press, 705–708.

[16] Debasis Ganguly and Gareth JF Jones. 2015. Partially labeled supervised topic models for RetrievingSimilar questions in
CQA forums. In Proceedings of the 2015 International Conference on The Theory of Information Retrieval. ACM, 161–170.

[17] Zhipeng Gao. 2020. Dataset for the paper: Generating Question Titles for Stack Overflow from Mined Code Snippets.
https://doi.org/10.5281/zenodo.3942027

[18] Zhipeng Gao, Vinoj Jayasundara, Lingxiao Jiang, Xin Xia, David Lo, and John Grundy. 2019. SmartEmbed: A Tool for
Clone and Bug Detection in Smart Contracts through Structural Code Embedding. In 2019 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 394–397.

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

https://doi.org/10.5281/zenodo.3942027

GeneratingQuestion Titles for Stack Overflow from Mined Code Snippets 39:35

[19] Z. Gao, L. Jiang, X. Xia, D. Lo, and J. Grundy. 2020. Checking Smart Contracts with Structural Code Embedding. IEEE
Transactions on Software Engineering (2020), 1–1. https://doi.org/10.1109/TSE.2020.2971482

[20] Alessandra Giordani and Alessandro Moschitti. 2009. Semantic mapping between natural language questions and SQL
queries via syntactic pairing. In International Conference on Application of Natural Language to Information Systems.
Springer, 207–221.

[21] Alessandra Giordani and Alessandro Moschitti. 2012. Translating questions to SQL queries with generative parsers
discriminatively reranked. Proceedings of COLING 2012: Posters (2012), 401–410.

[22] George Gkotsis, Karen Stepanyan, Carlos Pedrinaci, John Domingue, and Maria Liakata. 2014. It’s all in the content:
state of the art best answer prediction based on discretisation of shallow linguistic features. In Proceedings of the 2014
ACM conference on Web science. ACM, 202–210.

[23] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. 2016. Incorporating copying mechanism in sequence-to-sequence
learning. arXiv preprint arXiv:1603.06393 (2016).

[24] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). IEEE, 933–944.

[25] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep API learning. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. 631–642.

[26] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2017. DeepAM: Migrate APIs with multi-modal
sequence to sequence learning. arXiv preprint arXiv:1704.07734 (2017).

[27] Sumit Gulwani and Mark Marron. 2014. Nlyze: Interactive programming by natural language for spreadsheet data
analysis and manipulation. In Proceedings of the 2014 ACM SIGMOD international conference on Management of data.
ACM, 803–814.

[28] Kenneth Heafield. 2011. KenLM: Faster and smaller language model queries. In Proceedings of the Sixth Workshop on
Statistical Machine Translation. Association for Computational Linguistics, 187–197.

[29] Stefan Henβ , Martin Monperrus, and Mira Mezini. 2012. Semi-automatically extracting FAQs to improve accessibility
of software development knowledge. In Proceedings of the 34th International Conference on Software Engineering. IEEE
Press, 793–803.

[30] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment generation. In Proceedings of the 26th
Conference on Program Comprehension. ACM, 200–210.

[31] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. 2019. CodeSearchNet
Challenge: Evaluating the State of Semantic Code Search. arXiv preprint arXiv:1909.09436 (2019).

[32] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016. Summarizing source code using a neural
attention model. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Vol. 1. 2073–2083.

[33] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generating commit messages from diffs using
neural machine translation. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering. IEEE Press, 135–146.

[34] Xianhao Jin and Francisco Servant. 2019. What Edits Are Done on The Highly Answered Questions in Stack Overflow?
An Empirical Study. In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR). IEEE,
225–229.

[35] Iman Keivanloo, Juergen Rilling, and Ying Zou. 2014. Spotting working code examples. In Proceedings of the 36th
International Conference on Software Engineering. ACM, 664–675.

[36] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan,
Wade Shen, Christine Moran, Richard Zens, et al. 2007. Moses: Open source toolkit for statistical machine translation.
In Proceedings of the 45th annual meeting of the ACL on interactive poster and demonstration sessions. Association for
Computational Linguistics, 177–180.

[37] Baichuan Li, Tan Jin, Michael R Lyu, Irwin King, and Barley Mak. 2012. Analyzing and predicting question quality
in community question answering services. In Proceedings of the 21st International Conference on World Wide Web.
775–782.

[38] Fei Li and Hosagrahar V Jagadish. 2014. NaLIR: an interactive natural language interface for querying relational
databases. In Proceedings of the 2014 ACM SIGMOD international conference on Management of data. ACM, 709–712.

[39] Hongyu Li, Seohyun Kim, and Satish Chandra. 2019. Neural Code Search Evaluation Dataset. arXiv preprint
arXiv:1908.09804 (2019).

[40] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. Text Summarization Branches Out
(2004).

[41] Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ, Andrew Senior, Fumin Wang, and Phil
Blunsom. 2016. Latent predictor networks for code generation. arXiv preprint arXiv:1603.06744 (2016).

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

https://doi.org/10.1109/TSE.2020.2971482

39:36 Zhipeng GAO et al.

[42] Jing Liu, Quan Wang, Chin-Yew Lin, and Hsiao-Wuen Hon. 2013. Question difficulty estimation in community question
answering services. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. 85–90.

[43] Nicholas Locascio, Karthik Narasimhan, Eduardo DeLeon, Nate Kushman, and Regina Barzilay. 2016. Neural generation
of regular expressions from natural language with minimal domain knowledge. arXiv preprint arXiv:1608.03000 (2016).

[44] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn Hartmann. 2011. Design lessons from the
fastest q&a site in the west. In Proceedings of the SIGCHI conference on Human factors in computing systems. 2857–2866.

[45] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandilian. 2019. DeepDelta: learning to repair
compilation errors. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 925–936.

[46] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012. What makes a good code example?: A
study of programming Q&A in StackOverflow. In 2012 28th IEEE International Conference on Software Maintenance
(ICSM). IEEE, 25–34.

[47] Liqiang Nie, Xiaochi Wei, Dongxiang Zhang, Xiang Wang, Zhipeng Gao, and Yi Yang. 2017. Data-driven answer
selection in community QA systems. IEEE transactions on knowledge and data engineering 29, 6 (2017), 1186–1198.

[48] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura.
2015. Learning to generate pseudo-code from source code using statistical machine translation (t). In Automated
Software Engineering (ASE), 2015 30th IEEE/ACM International Conference on. IEEE, 574–584.

[49] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a method for automatic evaluation of
machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics. Association
for Computational Linguistics, 311–318.

[50] Luca Ponzanelli, Andrea Mocci, Alberto Bacchelli, and Michele Lanza. 2014. Understanding and classifying the quality
of technical forum questions. In Quality Software (QSIC), 2014 14th International Conference on. IEEE, 343–352.

[51] Sujith Ravi, Bo Pang, Vibhor Rastogi, and Ravi Kumar. 2014. Great question! question quality in community q&a. In
Eighth International AAAI Conference on Weblogs and Social Media.

[52] Stephen E Robertson and Steve Walker. 1994. Some simple effective approximations to the 2-poisson model for
probabilistic weighted retrieval. In Proceedings of the 17th annual international ACM SIGIR conference on Research and
development in information retrieval. Springer-Verlag New York, Inc., 232–241.

[53] Baskaran Sankaran, Haitao Mi, Yaser Al-Onaizan, and Abe Ittycheriah. 2016. Temporal attention model for neural
machine translation. arXiv preprint arXiv:1608.02927 (2016).

[54] Sanja Seljan, Marija Brkic, and Tomislav Vicic. 2012. BLEU Evaluation of Machine-Translated English-Croatian
Legislation.. In LREC. 2143–2148.

[55] Priyanka Singh and Elena Simperl. 2016. Using semantics to search answers for unanswered questions in q&a forums.
In Proceedings of the 25th International Conference Companion on World Wide Web. International World Wide Web
Conferences Steering Committee, 699–706.

[56] Jun Suzuki and Masaaki Nagata. 2016. Rnn-based encoder-decoder approach with word frequency estimation. arXiv
preprint arXiv:1701.00138 (2016).

[57] Laszlo Pal Toth, Balázs Nagy, Dávid Janthó, László Vidács, and Tibor Gyimóthy. 2019. Towards an Accurate Prediction
of the Question Quality on Stack Overflow using a Deep-Learning-Based NLP Approach. In ICSOFT.

[58] Jan Trienes and Krisztian Balog. 2019. Identifying Unclear Questions in Community Question Answering Websites. In
ECIR.

[59] Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. 2016. Modeling coverage for neural machine
translation. arXiv preprint arXiv:1601.04811 (2016).

[60] Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and Rishabh Singh. 2019. Neural program repair by jointly
learning to localize and repair. arXiv preprint arXiv:1904.01720 (2019).

[61] Venkatesh Vinayakarao, Anita Sarma, Rahul Purandare, Shuktika Jain, and Saumya Jain. 2017. Anne: Improving source
code search using entity retrieval approach. In Proceedings of the Tenth ACM International Conference on Web Search
and Data Mining. ACM, 211–220.

[62] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and Philip S Yu. 2018. Improving automatic
source code summarization via deep reinforcement learning. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. ACM, 397–407.

[63] Shaowei Wang, David Lo, Bogdan Vasilescu, and Alexander Serebrenik. 2018. EnTagRec++: An enhanced tag recom-
mendation system for software information sites. Empirical Software Engineering 23, 2 (2018), 800–832.

[64] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting Code Clones with Graph Neural Networkand
Flow-Augmented Abstract Syntax Tree. arXiv preprint arXiv:2002.08653 (2020).

[65] Xin-Yu Wang, Xin Xia, and David Lo. 2015. Tagcombine: Recommending tags to contents in software information
sites. Journal of Computer Science and Technology 30, 5 (2015), 1017–1035.

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

GeneratingQuestion Titles for Stack Overflow from Mined Code Snippets 39:37

[66] Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys Poshyvanyk. 2019. Sorting and
transforming program repair ingredients via deep learning code similarities. In 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, 479–490.

[67] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. 2016. Deep learning code fragments
for code clone detection. In 2016 31st IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 87–98.

[68] Edmund Wong, Jinqiu Yang, and Lin Tan. 2013. Autocomment: Mining question and answer sites for automatic
comment generation. In Automated Software Engineering (ASE), 2013 IEEE/ACM 28th International Conference on. IEEE,
562–567.

[69] Xin Xia, David Lo, Xinyu Wang, and Bo Zhou. 2013. Tag recommendation in software information sites. In 2013 10th
Working Conference on Mining Software Repositories (MSR). IEEE, 287–296.

[70] Bowen Xu, Zhenchang Xing, Xin Xia, and David Lo. 2017. AnswerBot: Automated generation of answer summary to
developers’ technical questions. In 2017 32nd IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 706–716.

[71] Bowen Xu, Zhenchang Xing, Xin Xia, David Lo, and Shanping Li. 2018. Domain-specific cross-language relevant
question retrieval. Empirical Software Engineering 23, 2 (2018), 1084–1122.

[72] Jie Yang, Claudia Hauff, Alessandro Bozzon, and Geert-Jan Houben. 2014. Asking the right question in collaborative
q&a systems. In Proceedings of the 25th ACM conference on Hypertext and social media. ACM, 179–189.

[73] Yuan Yao, Hanghang Tong, Tao Xie, Leman Akoglu, Feng Xu, and Jian Lu. 2013. Want a good answer? ask a good
question first! arXiv preprint arXiv:1311.6876 (2013).

[74] Pengcheng Yin and Graham Neubig. 2017. A syntactic neural model for general-purpose code generation. arXiv
preprint arXiv:1704.01696 (2017).

[75] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and Miryung Kim. 2018. Are code examples
on an online Q&A forum reliable?: a study of API misuse on stack overflow. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). IEEE, 886–896.

[76] Jiangang Zhu, Beijun Shen, Xuyang Cai, and Haofen Wang. 2015. Building a Large-scale Software Programming
Taxonomy from Stackoverflow.. In SEKE. 391–396.

Received Mar 2019; revised ?? 2019; accepted ?? 2019

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.

	Generating question titles for Stack Overflow from mined code snippets
	Citation

	Abstract
	1 Introduction
	2 Related Work
	2.1 Deep Source Code Summarization
	2.2 Question Quality Study on Stack Overflow
	2.3 Machine/Deep Learning on Software Engineering

	3 Motivation
	3.1 The Problem and Our Solution
	3.2 Illustrative User Scenarios
	3.3 Motivating Examples

	4 Approach
	4.1 Question Generation Task Definition
	4.2 Source-code Encoder
	4.3 Question Decoder
	4.4 Incorporating Attention Mechanism
	4.5 Incorporating Copy Mechanism
	4.6 Incorporating a Coverage Mechanism

	5 Experimental Setup
	5.1 Pre-processing
	5.2 Implementation Details
	5.3 Baselines
	5.4 Evaluation Metrics

	6 Results and Analysis
	6.1 RQ-1: How effective is our approach under automatic evaluation?
	6.2 RQ-2: How effective is our approach compared with the CODE-NN model?
	6.3 RQ-3: How effective is our approach under human evaluation?
	6.4 RQ-4: How effective is our approach for improving low-quality questions?
	6.5 RQ-5: How effective is our use of attention mechanism, copy mechanism and coverage mechanism under automatic evaluation?
	6.6 RQ-6: How effective is our approach under different parameter settings?
	6.7 RQ-7: How efficient is our approach in practical usage?

	7 Discussion
	7.1 Question Quality Improvement
	7.2 Deep Sequence to Sequence Approach
	7.3 Question Generation Task

	8 Threats to Validity
	9 Conclusion and Future work
	10 Acknowledgements
	References

