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Abstract—Design patterns (DPs) encapsulate valuable design 

knowledge of object-oriented systems. Detecting DP instances 
helps to reveal the underlying rationale, thus facilitates the 
maintenance of legacy code. Resulting from the internal similarity 
of DPs, implementation variants, and missing roles, approaches 
based on static analysis are unable to well identify structurally 
similar instances. Existing approaches further employ dynamic 
techniques to test the runtime behaviors of candidate instances.  

Automatically verifying the runtime behaviors of DP instances 
is a challenging task in multiple aspects. This paper presents an 
approach to improve the verification process of existing 
approaches. To exercise the runtime behaviors of DP instances in 
cases that test cases of legacy systems are often unavailable, we 
propose a markup language, TSML (Test Script Markup 
Language), to direct the generation of test cases by putting a DP 
instance into use. The execution of test cases is monitored based on 
a trace method that enables us to specify runtime events of interest 
using regular expressions. To characterize runtime behaviors, we 
introduce a modeling and specification method employing Allen’s 
interval-based temporal relations, which supports variant 
behaviors in a flexible way without hard-coded algorithms. A 
prototype tool has been implemented and evaluated on six open 
source systems to verify 466 instances reported by five existing 
approaches with respect to five DPs. The results show that the 
dynamic analysis increases the F1-score by 53.6% in distinguishing 
similar DP instances. 

Index Terms—Design Pattern Detection, Temporal Analysis, 
Reverse Engineering, Software Comprehension, Knowledge 
Representation 

I. INTRODUCTION 
Program comprehension is a key and expensive activity 

during software maintenance [1] [2] [3]. Grappling the intents of 
designers requires rich experience and lots of manual efforts to 
review the code [4] [5] since the design documentation is often 
missing or ignored. In recent decades, DPs are widely accepted 
as a solution of a recurring problem in a context, thus provides a 
good means to facilitate the maintenance of legacy code [6] [7] 
[8]. DPs encapsulate valuable design knowledge that helps to 
construct well-structured and maintainable software systems [2], 
whereas recovering DPs assists maintainers in understanding 
legacy systems during their routine tasks [9]. 

In the well-known GoF (Gang of Four) catalog [8], DPs are 
assigned with different intents to address a particular design 
issue. Each DP specifies how the participating classes and 

objects collaborate. Based on a static analysis of source code, a 
detection approach [2] [10] [11] characterizes the structures of 
participants (e.g., inheritance and composition [8] [12]) and the 
static behaviors of code elements (e.g., method calls and object 
allocations extracted by parsing the source code [7] [13] [14]). A 
candidate instance is reported as a DP if the instance’s 
participating roles (represented by classes) and operations 
(represented by methods) satisfy the constraints of the DP. 

However, some DPs are difficult to distinguish due to their 
similarity. They lack unique features in the source code serving 
as clues to distinguish each other. The reasons for DPs’ internal 
similarity reside in the common mechanisms that DPs are based 
on, e.g., composition and delegation. Although such features can 
be captured, they are helpless in uniquely distinguishing DPs 
based on the same mechanism. In addition to the internal 
similarity of DPs, the similarity of DP instances also results from 
implementation variants and missing roles. The implementation 
of a DP may not strictly comply with the textbook, causing a DP 
instance to be falsely identified or confused with another 
instance. Missing roles also weaken the characteristics of an 
instance. DP instances in APIs (Application Programming 
Interfaces) and frameworks are usually incomplete, leaving the 
client role of a DP unimplemented, since the role is the 
responsibility of the application based on the API or framework. 

While static analysis techniques examine possible execution 
paths, the actual behaviors of objects cannot be decided until 
runtime due to the mechanisms such as dynamic binding [3] [8] 
[15]. As a result, the detection approaches based only on static 
analysis report many false instances on similar DPs. Especially, 
several pairs of patterns, e.g., Strategy / State, Adapter / 
Command, are often treated as the same pattern. Their instances 
are grouped together in the detection results [10] [16] [17] [18].  

To verify candidate instances, existing approaches further 
analyze their runtime behaviors. Three of the core sequential 
processes towards the verification are: test case generation, 
execution monitoring, and behavior verification. The test cases 
aim at triggering the interactions of an instance’s participants. 
Driven by test cases, the program under test is executed, during 
which runtime data (e.g., object allocation) are collected. Finally, 
obtained runtime data are verified by employing techniques such 
as model checking [3] [19] [20]. 
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The main limitations of existing approaches based on 
dynamic analysis reside in the generation of test cases and the 
monitoring of runtime events. In legacy systems, test cases are 
usually not available, or not complete so as to cover the instances 
under test. As manually creating test cases [15] [21] [22] is time-
consuming, automated tools have been utilized to generate test 
cases [20] [23]. But general-purpose test tools are not dedicated 
to exercise the behavior of DPs. As noted in [3], test tools are not 
always able to generate useful test cases even after all the 
branches of each method are covered. Exclusively pursuing high 
code coverage of the whole search space is too expensive, while 
only limited execution paths are relevant to the instance to verify. 
To address the issue, algorithms are proposed to search 
execution paths more efficiently taking method calls involved in 
an instance as optimization objectives [3] [23]. 

For the purpose of covering the candidate instance to verify, 
it could be more straightforward from the viewpoint of how a DP 
intends to be used. As we detect DPs in source code as a way to 
understand the system, candidate instances are expected to 
follow the DP’s intended usage scenario to solve the problem in 
a context. But existing approaches do not take full advantage of 
using the candidate instance itself, i.e., its participating roles and 
operations, to exercise its own behavior. 

To collect data at runtime, the source code or bytecode is 
instrumented with a fragment of code before the program 
executes. The instrumentation is difficult to customize for 
specific analysis tasks. Injected code is tangled with the original 
system, which may interfere with the program’s behavior [15] 
[24]. To avoid side-effects, the injection algorithm, usually hard-
coded, needs to be carefully designed for the events selected and 
the data to be recorded. Besides, the events supported by existing 
approaches based on instrumentation are limited to object 
allocation and method invocation [3] [23] [25]. Other events are 
not well supported, e.g., field access and modification that help 
to identify the data exchange between objects [8] [26]. It limits 
the ability to analyze the behaviors of object interactions. 

In this paper, we define “similar DP instances” as “the 
instances identified as the same DP”, and refer to “distinguishing 
similar DP instances” as “classifying each instance to proper DP 
or avoiding the instances falsely identified as a DP”. Aiming at 
reducing false instances resulting from their similarity, we 
present an approach to automatically verify the runtime 
behaviors of DP instances in Java systems. For automatic DP 
detection, a previous work [18] transforms software artifacts into 
a knowledge graph (KG) [27] by parsing AST (Abstract Syntax 
Tree), which represents the code artifacts for static analysis. We 
utilize the KG as the fundamental static facts for relation 
inference and code artifact search. By extending their approach 
with temporal analysis, the main contributions of this paper are: 

• First, a markup language, TSML, is proposed to reproduce 
the usage scenario of a DP. Based on TSML, a test script 
puts a candidate instance into use by introducing marked-up 
fragments within a normal piece of test code. The marked-
up fragments direct the generation of test cases by not only 
indicating the search boundary of code artifacts, but also 
enabling us to apply different search strategies. 

• Second, we present a trace method to monitor runtime 
events without instrumentation. The underlying technique 

supports a wide range of runtime events and enables us to 
specify events of interest with regular expressions. 

• Third, a modeling and specification method of runtime 
behaviors is introduced by employing interval-based 
temporal relations, based on which our understanding of 
participating roles’ temporal behaviors at runtime can be 
expressed flexibly in behavior specifications.  

The evaluation results of the prototype tool SparT-ETA 
(Software Architectural Pattern Recognition Tool Enhanced by 
Temporal Analysis) show that the temporal analysis improves 
the F1-score from 24.2% to 77.8% in distinguishing similar 
instances. Compared with ePAD [3], another automatic 
approach based on dynamic analysis, (SparT-) ETA achieves 
better F1-score (78.4% vs. 59.6%) on the systems and DPs 
considered by both approaches. 

The paper is structured as follows. Section II presents the 
approach. After we set up the empirical evaluation in Section III, 
the evaluation results are analyzed in Section IV. Then we 
discuss the practical observations of SparT in Section V. 
Following the debate of threats to validity in Section VI, the 
discussion of related approaches in Section VII. Finally, the 
conclusions and future work are presented in Section VIII. 

II. APPROACH 
As presented in Fig. 1, the proposed approach contains four 

main modules. The Fact Constructor (Section II-A) transforms 
the source code into a KG that serves as the Static Facts of code 
artifacts. The Test Case Generator (Section II-B) parses a Test 
Script (marked up with TSML) according to a given DP instance 
and generates a set of Test Cases by searching relevant code 
artifacts and fulfilling marked-up fragments. A generated test 
case is a runnable piece of Java code aiming to put a DP instance 
into use. The execution of test cases is controlled by the Trace 
Manager (Section II-C) that is composed of a Trace Agent and a 
Log Parser. The former takes a regular expression as input to 
specify the events of interest, then outputs trace logs, while the 
latter parses log lines to create Temporal Facts. The temporal 
facts are integrated with static facts by linking retrieved events 
back to static facts. Finally, the Behavior Verifier matches the 
Temporal Facts with the Behavior Specifications to verify 
whether a DP instance acts as expected (Section II-D). The 
approach proposed in [18] formally defines DPs using 
description logic to constrain involved roles and operations. 
Further, DP detection is to satisfy the formal definition. To 
separate concerns, the KG is organized as a layered structure that 

A. Fact 
Constructor

Static 
Facts

C. Trace 
Manager

Temporal 
Facts

D. Behavior 
Verifier

B. Test Case 
Generator

Source 
Code

Bytecode

Test Cases

Test 
Scripts

Candidate 
Instances

Verified 
Instances

Behavior 
Specifications

Knowledge Repository

Java 1001
0110

Java

< >
Java { }

 
Fig. 1. Overview of the approach 
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supports customizable inference rules and pattern templates. 
Based on the clarified roles and operations in the DP definition, 
the Test Scripts and Behavior Specifications focus on a DP 
instance’s usage scenario and behavioral feature respectively. 
Together with the inference rules and pattern templates, the Test 
Scripts and Behavior Specifications exist as pluggable 
components of the Knowledge Repository (KR) that enables us 
to represent and share the experience of DP detection.  

A. Knowledge Graph Construction and Inference 
Fig. 1 shows an excerpt from a sample code [28] [29] of the 

State pattern in the textbooks [26] [30]. The class Door and the 
interface DoorState play the Context role and State role 
respectively. Corresponding to the sample code, generated facts 
are illustrated by the KG in Fig. 2, where code artifacts are 
represented as language constructs (e.g., class and method) and 
their relations (e.g., “extends” and “implements”). 

The constructs we extract include Class, Method, Package, 
Interface, Enumeration, Primitives (e.g., boolean), Parameter 
(method parameter), Field, and TypeParam (type parameter). 
The relations include extends, implements, hasField (field of a 
class), hasParam (parameter of a method), and methodSig 
(signature of a method), etc. Two main static behaviors that we 
consider are class instantiation (instsClass) and method call 
(callsMethod). Class instantiations can be extracted from the 
“new” operation ahead of a class (e.g., line 06, Fig. 1). Method 
calls can be extracted from statements, e.g., at line 09, Fig. 1 
where Door.touch() calls DoorState.touch().  

Based on these constructs and relations, two main steps to 
build a KG are: extracting individuals and fulfilling relations. An 
individual is one type of a language construct, e.g., Door (Fig. 1) 
is a type of Class. For automatic processing, the facts in the KG 
are manipulated in the form of triples: 

 (subject property object) 

In a triple, a subject can be an individual; a property refers to 
a relation; and an object can be an individual or a literal. To 
extract individuals, each construct is enumerated to retrieve 
corresponding artifacts from source code. For example, the 
following facts are created for the construct Class: (Door type 
Class) and (ClosedState type Class), etc., where “Door” and 
“ClosedState” are created individuals. The relation type indicates 
that the individual is a type of Class. After all individuals of each 
construct are created, the relations are enumerated to associate 
these individuals. For example, to fulfill hasMethod, each 
individual of Class and Interface is connected to their containing 
methods. As a result, one of the generated facts is (Door 

hasMethod Door.touch). Finally, the KG is built, which contains 
the facts that represent the system under study. 

Then an inference process is conducted to summarize 
indirect relations, which facilitate the search of code artifacts in 
subsequent steps. Examples of inferred relations are inherits, 
realizes, and isA that describe different relationships of classes 
and interfaces. While inherits and realizes describe multilayer 
inheritance, isA describes safe up-casting. Given x and y, each of 
which is a class or an interface, the relations are defined as: 

(x inherits y), (x isA y)←(x extends+ y) 
(x realizes y), (x isA y)←(x implements / extends* y) 
(x isA y)←(x extends+ / implements y) 
The rules are based on SPARQL (Simple Protocol and RDF 

(Resource Description Framework) Query Language) grammar 
[31], where “/” connects two relations. For example, (x 
implements r) and (r extends y) can be expressed as (x 
implements/extends y) (an interface can extend another interface 
in Java). The “*” (“+”) is equivalent to the connection of zero 
(one) or more relations ahead.  

Inferred relations enable us to express complex structures in 
a concise way. For example, specifying (s isA DoorState) highly 
synthesizes possible variants of DoorState’s descendant type “s”. 
The inference technique also enables us to search relevant code 
artifacts according to the mechanisms of Java programming. For 
example, the static method call relation does not decide the real 
type of participants. Namely, if the field “Door.state” holds an 
object of DoorState’s subclass (e.g., ClosedState) that overrides 
“DoorState.touch()”, the actually called method will be 
“ClosedState.touch()”. In spite of this, the actual methods 
possibly called at runtime can be located by searching overriding 
methods along inheritance relations. The override relation 
between two methods can be inferred from the methods’ 
modifier, name, and signature. We employ the algorithms 
proposed in [18] for fact generation and relation inference. A 
description of all the constructs and relations we use can be 
found in online Appendix A [32]. 

B. Test Case Generation 
A test script of the State pattern is presented in Fig. 3. The 

test script plays the client role and reproduces a usage idiom of 
the State pattern corresponding to Fig. 1 (line 13-15). A test 
script is a piece of normal code marked up with TSML blocks. 
Each type of TSML block is enclosed with a different pair of 

Door Door.Door

DoorState

ClosedState

Door.state

hasField

fieldTypeIs

hasMethod

true

isConstructor

implements

Door.touch

DoorState.touch

hasMethod

hasMethod

callsMethod

“public”hasModifier

Class
type

Legend individual literal relationontology class

Method

type

Door.mainhasMethod

instsClass

“DoorState”

methodSighasModifier

 
Fig. 3. The knowledge graph (KG) that involves Door and DoorState 

(The KG presented here is a part of the whole system under study. 
It is simplified for brevity, thus not all relevant individuals and 

relations are shown. The individual names are also in omitted form. 
In practice, we use the fully qualified names, e.g., 
“example.Door.touch” instead of “Door.touch”.) 

 

package example;

public class Door {
  private DoorState state;
  
  public Door() { setState(new ClosedState()); } 
  public Door(DoorState s) { setState(s); } 

  public void touch() { state.touch(this); }
  protected void setState(DoorState s) { state = s; }

  public static void main(String[] args) {
    DoorState open = new OpenState();
    Door door = new Door(open); 
    door.touch();
  }
}

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17  

Fig. 2. A Door with a one-touch button that controls the 
Door’s state: closed or open. The door can be constructed with 
a default (closed) state (line 06) or a given state (line 07) 
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brackets ({ }, [ ], ( ), or < >). The four types of blocks are pattern 
block (Fig. 3.d), search block (Fig. 3.e), function block (Fig. 3.a), 
and argument block (Fig. 3.f). Within each pair of brackets, a 
block is formatted as:  

instruction: parameter1, parameter2, …  
An instruction indicates a block’s action taking the 

parameters that follow a colon (:) as inputs. Both instructions and 
parameters can be omitted. Nested blocks are allowed as an outer 
block’s parameter (Fig. 3.a). Given a DP instance, the test cases 
are generated by enumerating the values of marked-up blocks. 

The pattern block returns specified roles or operations 
according to its instruction, “role” or “oper”. The instructions 
refer to the participating roles and operations of a DP instance. 
Assuming the given State instance is illustrated in Fig. 1, a value 
of the pattern block Fig. 3.d will be “example.DoorState”. The 
generator enumerates the blocks’ values in the order that they 
appear. During a walk-through of all blocks, their values are 
decided one after another. The “role” instruction uses the context 
information of decided blocks. For the first appearance of {role: 
StaRole} (Fig. 3.b), all possible values are prepared for 
subsequent enumeration, one of which is consumed for the 
current walk-through. When it comes to the same block in Fig. 
3.d, the block will directly return the value previously decided. 
For the “oper” instruction (Fig. 3.j), the block value depends on 
not only its parameter, but also the type of the variable that 
invokes the operation. 

The search block applies different strategies to search for 
code artifacts. An example is the “concrete” instruction in Fig. 
3.e. It returns the classes that can be allocated by a “new” 
operation. Its parameter is the class or interface to which the 
returned classes can be safely up-casted. This instruction is 
executed by applying the isA relation. The function block 
modifies the value of a parameter block. The “name” instruction 
(Fig. 3.a) returns a local name of the input parameter. The “seq” 
instruction (Fig. 3.c) generates unique serial numbers during the 
output of test cases. The argument block represents the 
arguments passed to a method (or constructor). Given a method 
M, which is provided by the previous block, the argument block 
decides the values according to M’s signature. The argument 
decision algorithm (detailed in Appendix B [32]) includes three 
steps: (i) searching the methods whose name equals to M and 
parameter types match the argument block’s input parameters, 
(ii) deciding the positions of the argument block’s parameters 
since their positions can be specified arbitrarily in the test script, 
and (iii) providing values to each parameter type of M and 
initializing allocated objects based on closure. 

By abstracting the decision of block values as an iterator, the 
test case generation algorithm is presented in Algorithm 1. To 
record the context information during a walk-through of all 
blocks, a context object is constructed (line 02) taking the DP 
instance (dpInstance) and KG (kg) as inputs. Each block creates 
an iterator (line 06, 23) according to context information to 
prepare the values of the block. If nested blocks exist, the outer 
block clones the context object to nested blocks. The outer block 
recursively retrieves the values of nested blocks, so as to decide 
its own value. Before the walk-through, all outer blocks (shaded 
ones in Fig. 3) are indexed (line 03). A walk-through decides the 
values of all outer blocks in sequence and saves decided values 
to an array (line 09). During the parsing of blocks (line 03), a 
block is connected to relevant blocks to retrieve the decided 
value of that block, e.g., a variable’s type. The walk-through 
(line 10-28) uses a stack (line 04) to traverse all possible 
combinations of outer blocks’ values. Starting with the iterator 
of the first block (line 06-07), one value is decided at a time (line 
13 and 22-24). If no value is available, the stack pops the iterator 
and switches to the previous iterator (line 15-16). Once all block 
values are decided, a test case is generated by replacing the 
blocks with decided values (line 26). Otherwise, no test case is 
generated since no combination of the values is possible. 

The generation algorithm employs several strategies to prune 
unreachable and error branches. Before continuing to decide the 
next block, succeeding values are checked based on already 
decided values (line 19). If one of the blocks after the current 
block is not possible to return a value, the current value is 
abandoned and the walk-through turns to the next value of the 
current block (line 20). Another strategy is to pre-execute the 
generated test case and exploit the exception stack (e.g., null 
pointer exception) to suppress the values returned by relevant 
blocks during the subsequent generation.  

To support variant usage scenarios as demonstrated in 
textbooks [8] [26] [30], multiple test scripts can be created 
independent of the generation algorithm. The instructions of 

Algorithm 1 Test case generation algorithm 

01 
 

02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

procedure generateTestCases(dpInstance, 
testScript, kg, outputPath)       

context := new Context(dpInstance, kg)     
blocks := testScript.parseBlocks() 
stack := new Stack() 

 
valIter := blocks[0].valueIterator(context) 
stack.push(valIter) 

     
  blockValues := new BlockValue[blocks.size()] 
  while stack.size() > 0 then 
    last := stack.lastElement() 
    if last.hasNext() then 
      blockValues[stack.size()-1] := last.next() 
    else 
      stack.pop() 
      continue 
    end if     

if stack.size() < blocks.size() then 
  if not hasSucceedingValues(context) then 
    continue 
  end if 

      nextBlock := blocks[stack.size()] 
      valIter := nextBlock.valueIterator(context) 
      stack.push(valIter) 
    else 
      testScript.generate(blockValues, outputPath) 
    end if 
  end while     
end procedure 

 

package test.auto;

public class 
  State_<name: {role: StaCtxRole}>_<name: {role: StaRole}>_<seq:>
{
  public static void main(String[] args) {
    {role: StaRole} state = new [concrete: {role: StaRole}] (:);
    {role: StaCtxRole} context = new {role: StaCtxRole} (:state);
    context.{oper: CtxReqOper} (:); 
  }
} 

01
02
03
04
05
06
07
08
09
10
11

(a)

(d)
(e) (f)

(i)

(b)

(h)
(j) (k)

(c)

(g)

 
Fig. 4. A test script of the State pattern based on TSML (StaCtxRole: Context 

role of the State pattern, StaRole: State role, CtxReqOper: Request 
operation of the Context role) 
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blocks also can be easily extended since they are implemented 
outside the generation algorithm in a function-like way, which 
takes input parameters and returns values.  

C. Runtime Trace and Behavior Modeling 
Driven by test cases, the program is executed and traced. We 

implemented a trace agent to monitor runtime events. During the 
trace, the agent records key-value pairs in a log file in predefined 
format when notified of interested events. The agent supports a 
wide range of events, including method entry, method exit, field 
modification, and object allocation (a full list is available at 
[33]). Fig. 4 presents a fragment of the trace log during the 
execution of example.Door (Fig. 1) by specifying the command: 

java -classpath {CLASSPATH} “-agentpath:{AGENTPAT
H}=method=^Lexample/#field=^Lexample/” example.Door 

{CLASSPATH} represents the path of bytecode, while 
{AGENTPATH} represents the path of the agent. The string 
after {AGENTPATH} specifies the events to record using 
regular expressions. It means to capture events of methods and 
fields (separated by “#”) whose JNI (Java Native Interface) type 
signature [34] starts with “Lexample/”. The letter L is the JNI 
type signature of a fully qualified class. Thus, “Lexample/Door” 
(line 01, Fig. 4) refers to “example.Door”. Each log line records 
multiple key-value pairs separated by “,”. The first pair is an 
event-value pair and the rest pairs are property-value pairs. 
Method (field) names are recorded after a semicolon (;) in 
method (field) events. The method “<init>” is the initialization 
method of a class [35]. It is supplied by a Java compiler. We use 
this special method to identify object allocations. 

To express runtime behaviors, we model the events based on 
Allen’s interval-based temporal relations [36] [37]. The 13 
binary relations between two intervals are: before, after, meets, 
metBy, overlaps, overlappedBy, finishedBy, finishes, contains, 
during, startedBy, starts, and equals. (They are displayed in 
Appendix C [32].) Exactly one of the relations holds, given a pair 
of excluding point-intervals. The interval of an event is 
determined by a pair of time instants, i.e., the timepoint it starts 
(startsAt) and ends (endsAt). Therefore, we can infer the 
temporal relation between two events given two pairs of time 
instants, e.g., (t1, t4) and (t2, t3), as presented in Fig. 5. Since the 
temporal facts are linked back to static facts, additional 
information is available, which provides traceable clues to 
characterize language constructs and relations.  

To generate temporal facts, a trace log is transformed using 
a globally incremental timepoint for each log line. A method 
invocation event is created from a pair of method entry and 

method exit events. The event startsAt the timepoint of a method 
entry (e.g., line 04, Fig. 4) and endsAt the timepoint of 
corresponding method exit (line 08). While some records, e.g., 
field modification (line 06), only occupy one log line, they 
consume two timepoints. For each log line, an individual is 
created from the event-value pair for the corresponding event. 
For line 04, e.g., the triple (event1 methodCalled Door.Door) is 
generated. “event1” is the individual created for the event. For 
each following property-value pair, a triple (event1 property 
value) is also generated, e.g., (event1 objTag 2). The property 
objTag (i.e., obj_tag) refers to the globally unique identifier of 
the object that owns the invoked method. The property 
“param_obj_tag” refers to the object passed to a method as a 
parameter. In a field modification event, the event individual is 
also linked to the method where the event happens (in_method, 
i.e., fieldVisitMethod), the field’s declaring class (dec_cls), the 
owner object of the field (owner_obj_tag, i.e., ownerObjTag) 
and the modified value (field_obj_tag, i.e., fieldObjTag).  

 The dynamic analysis has the advantage to summarize 
implementation variants, regardless of, e.g., whether 
“Door.Door” (line 07, Fig. 1) is implemented as “setState(s);” or 
“state=s;”. Both cases achieve the same purpose of initializing 
“Door.state” within “Door.Door”. 

D. Behavior Specification and Verification 
A behavior specification describes expected behaviors of a 

DP. As we manipulate the KG with triples, the behavior 
specification is also in the form of triples. For example, the 
events “an object Q’s method is invoked passing an object R as 
a parameter, during which a field of Q is set to hold R” can be 
specified as: 

?e1 methodCalled ?method; objTag ?objQ; paramObjTag ?objR.
[] hasMethod ?method; hasField ?field.
?e1 contains ?e2. # or “?e2 during ?e1.”
?e2 visitedField ?field; fieldObjTag ?objR; ownerObjTag ?objQ. 
In a triple, the subjects or objects started with “?” are named 

variables; a “[ ]” refers to an unnamed variable; a “;” connects 
two triples with the same subject; a “.” separates different triples; 
and a “#” starts a comment. By matching the specification with 
temporal facts, the variables will be bound to proper values if 
such events exist (e.g., ?e1 is bound to event1 in Fig. 5). 
Otherwise, the temporal facts do not comply with the 
specification if no such event is found. 

A behavior specification aims to capture the key behavior 
features that distinguish different instances. In the example of 
Fig. 1, we expect to toggle the door’s state by touching the 
control button. While we specify the behavior sequence “the 
control button is touched, then the door’s state is toggled” as the 
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Fig. 6. Inferring the temporal relation between event1 (object allocation, line 

04-08, Fig. 4) and event2 (field modification, line 06, Fig. 4) (The axis 
“t” indicates the flow of time. The static facts refer to Fig. 2.) 
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method_entry: Lexample/Door;main
  method_entry: Lexample/OpenState;<init>, obj_tag: 1
  method_exit: Lexample/OpenState;<init>
  method_entry: Lexample/Door;<init>, obj_tag: 2, param_obj_tag: 1
    method_entry: Lexample/Door;setState, obj_tag: 2, 
param_obj_tag: 1
      field_modi: Lexample/DoorState;state, dec_cls: 
Lexample/Door;, in_method: Lexample/Door;setState, field_obj_tag: 
1, owner_obj_tag: 2
    method_exit: Lexample/Door;setState
  method_exit: Lexample/Door;<init>
  ...
method_exit: Lexample/Door;main  

Fig. 5. A fragment of the trace log during the execution of 
example.Door (The full log is available in [32]. The line numbers 

do not correspond to Fig. 1.) 

300



key behaviors, the triggering of key behaviors may depend on 
specific conditions. Touching the control button may not close 
an open door in the case that someone is walking through the 
door. In spite of this case, the door has the ability to exercise its 
full functions. The test case generation algorithm (Algorithm 1) 
enumerates possible combinations of block values, expecting a 
test case exists to trigger the key behaviors. Therefore, we define 
a verified instance as:  

 Definition 1. An instance of a DP is verified if there exists 
a test case whose runtime behaviors comply with the behavior 
specification of the DP. 

As illustrated in the textbooks [8] [26] [30] and 
demonstration projects (TCPConnection [8], Door2 [28], and 
StatePatternEx [29]), the State pattern intends to allow an object 
to alter its behavior when its internal state changes. A Context 
usually encapsulates a State as its field to record its internal state. 
The request delivered to Context is delegated to State, thus the 
Context’s behavior alters when the state changes. A Client 
usually does not directly operate State to perform the request but 
uses the interface provided by the Request operation of Context. 
Thus we specify “a request delivered to Context triggers the 
transition of state” as the key behaviors of the State pattern. 

Initially, a Context instantiates a default State as presented at 
line 06, Fig. 1 [28]. A variant [29] is to provide a State object to 
Context as presented at line 07, Fig. 1. Who defines the state 
transitions is not forced in the State pattern as noted in the GoF 
textbook [8]. The textbook suggests the successor state can be 
specified either in Context (Appendix D.1) or State (Appendix 
D.2 [32]). By covering these variants, the behavior specification 
of State considers the following behavior features in addition to 
the delegation of request: (i) the temporal relations of 
instantiating Context and State, and (ii) the state of Context 
changes during the request delivered to Context. For (i), the State 
can be instantiated before or during the instantiation of Context. 
The State object also can be initiated in the field declaration of 
Context (Door2 [28]), e.g., initiating at line 04, Fig. 2 with the 
statement “state = new ClosedState();”. Since field initiation is 
processed within the special method <init> at runtime, initiating 
the State object in field declaration acts the same as providing a 
default State object in the constructor of Context. For (ii), a state 
transition exists during the request, regardless of who defines the 
state transition.  

For Strategy, which is almost structurally identical to State, 
the main differences with State are noted in the textbook [26]. 
First, “Strategy might allow a client to select or provide a 
strategy, an idea that rarely applies to State”. To characterize this 
feature, in addition to providing the Strategy object through 
Context’s constructor, the specification allows a setter operation 
of Context. A setter sets a strategy taking a Strategy object as 
input. As demonstrated in [29] (StrategyPatternEx), the setter is 
invoked after the instantiation of Context and State. The Context 
object is set to hold the State object during the invocation of the 
setter. Second, “state transitions are important when modeling 
State but strategy transitions are usually irrelevant when 
choosing Strategy”. Based on this feature, in contrast to the State 
pattern, Strategy is specified as no strategy transition exists 
during the request, as presented in [8] (Composition), [28] 
(Customer2), and [29] (StrategyPatternEx). Based on these 

observations, behavior specifications allow us to encode our 
experience in identifying DP instances. The behavior 
specifications of Strategy and State, which support the 
mentioned variants, are detailed in Appendix E [32].  

III. EMPIRICAL EVALUATION SETUP 
In this section, we set up the evaluation of the prototype tool 

ETA. The empirical study follows the Goal Question Metric 
guidelines [38]. 

A. Context Selection 
The goal of the evaluation was to assess the proposed 

approach for the purpose of improving existing approaches with 
respect to the accuracy of automatic DP detection from the 
viewpoint of system developers and maintainers who intend to 
employ the proposed approach by assessing its accuracy. The 
evaluation context consisted of six open source systems and five 
DP detection approaches with respect to five GoF DPs. The 
evaluation was performed on six systems (TABLE I), i.e., 
JHotDraw 5.1 (JHD), JUnit 3.7 (JUN), JRefactory 2.6.24 (JRF), 
QuickUML 2001 (QUM), PMD 1.8 (PMD), and MapperXML 
1.9.7 (MPX). We selected these systems because (i) they are 
open source systems whose source code is publicly available, (ii) 
they have been studied by existing approaches in the literature 
[2] [3] [10] [11], and (iii) they are implemented in Java since our 
approach focuses on Java systems. 

The five existing approaches involved in the evaluation are 
RaM [10], DPD (Design Pattern Detection) [2], DPF (Design 
Pattern Finder) [11], ePAD [3], and SparT (Software 
Architectural Pattern Recognition Tool) [18]. We chose these 
approaches since they report detailed detection results rather 
than only instance numbers. While RaM, DPD, and DPF focus 
on all the 23 GoF patterns, ePAD focuses on 12 creational and 
behavioral patterns, and SparT focuses on 22 GoF patterns 
except Façade. All the approaches report the instances of JHD, 
JUN, and JRF, while only DPD does not consider QUM; only 
DPF and SparT consider PMD; and only ePAD and SparT 
consider MPX. We also noticed other approaches, including the 
ones proposed in [15], [21], [39], [40], and [41]. We did not 
choose them since the systems used were unavailable [21] [39] 
[40] or only instance numbers were reported [15] [41]. 

The evaluation focused on five GoF patterns, i.e., Strategy, 
State, Bridge, Command, and Template Method. We chose them 
since they occupied the most proportion of false instances based 
on the investigation of the five approaches. 

B. Research Questions and Metrics 
To address our goal, the evaluation aimed to answer the 

following research questions (RQ): 

RQ1. What is the accuracy of ETA in improving existing 
approaches? 

RQ2. How is the accuracy of ETA compared with existing 
approaches based on dynamic analysis? 

While RQ1 focused on the accuracy in verifying candidate 
instances to avoid false instances and keep true instances, RQ2 
aimed to assess the accuracy compared with other dynamic 
approaches. As ETA aimed to improve the detection results by 
verifying existing instances, to answer RQ1, ETA took all the 
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true and false instances reported by the five approaches as input 
candidate instances with respect to the five selected DPs. 

While RaM, DPD, DPF, and SparT aim to detect DP 
instances in source code based on static analysis, ePAD employs 
dynamic analysis to further verify the instances reported by its 
static phase. Therefore, to address RQ2, we compared ETA with 
ePAD in accuracy. The comparison was carried out on four of 
the five selected DPs, i.e., Strategy, State, Command, and 
Template Method, since ePAD does not focus on Bridge. We 
also noticed other approaches based on dynamic analysis. ETA 
was not compared with them since they are evaluated on sample 
systems whose source code is not available [21] [22] [42], or 
only instance numbers are reported [1] [15] [25] [41]. 

To assess the accuracy, we employed precision, recall, F1-
score [43], and MCC (Matthews Correlation Coefficient) [44]. 
The precision measures the fraction of relevant instances among 
all detected instances, i.e., |TP| / |TP∪FP|, where TP (True 
Positive) is the set of true instances and FP (False Positive) is the 
set of false instances. The recall measures the fraction of relevant 
ones in detected instances among all relevant instances, i.e., |TP| 
/ |TP∪FN|, in which FN (False Negative) is the set of missed 
instances. The harmonic average of precision and recall is 
measured by F1-score, i.e., 2·precision·recall / (precision + 
recall). To assess the verification of candidate instances as a 
binary classification problem, the MCC has the advantage over 
F1-score to balance TP, TN (True Negative), FP, and FN. It can 
be calculated as (|TP|·|TN| - |FP|·|FN|) / ((|TP| + |FP|)·(|TP| + 
|FN|)·(|TN| + |FP|)·(|TN| + |FN|))1/2, where TN is the set of actual 
negative instances among unverified instances. 

Over recent decades, several benchmarks have been built to 
evaluate DP detection results. We adopted the benchmarks 
published in [2], [3], [10], [11], and [18] to evaluate the accuracy. 
For the instances disagreed between these benchmarks, we 
followed the validation procedure proposed in [3] to decide each 
instance. First, all the instances disagreed between the 
benchmarks were collected. Second, three Ph.D. students 
independently analyzed the documentation, source code, and 
online resources to validate these instances. At last, for the 
instances that did not reach a consensus among the full group, a 
discussion was conducted. An instance is considered as true 
only if the full group agreed. 

C. Experimental Setup 
ETA was fully automated taking source code, bytecode, and 

candidate instances as inputs. ETA was implemented based on 
Jena [45], a Java framework for building linked data 
applications. It supports manipulating triples with SPARQL. The 
static facts were automatically generated using JDT (Java 
Development Tools) [46] through AST parsing. Then the trace 
agent employed JVM TI (Java Virtual Machine Tool Interface) 

[33] to monitor the execution of target systems. The test scripts 
and behavior specifications of the five DPs were built according 
to the textbooks [8] [26] [30] and demonstration projects [28] 
[29]. We also studied the source code of JHD since its 
documentation is available, which reduces the misunderstanding 
of the system. Finally, the compliance verification between 
behavior specifications and temporal facts was performed 
through triple matching. The evaluation was conducted on a 
desktop computer (Intel Core i7 4790@3.6GHz, 8GB RAM). 

IV. ANALYSIS OF EVALUATION RESULTS 
In this section, we analyze the evaluation results in response 

to the research questions. 

A. RQ1. What Is the Accuracy of ETA in Improving Existing 
Approaches? 

ETA verified 466 candidate instances reported by the five 
approaches. TABLE II aggregates the instances of each system. 
Candidate instances (C) include all the true and false instances, 
the true instances of which refer to the benchmark (BM). While 
verified instances (V) are the instances verified by ETA, the true 
positives (TP) refer to the true instances among verified 
instances. Since RaM, DPD, and SparT treat Strategy and State 
as the same pattern, in TABLE II, the instance numbers of the 
two patterns are counted respectively by regarding each of the 
two patterns as reporting the same instances. 

Based on TABLE II, TABLE III compares the accuracy of 
candidate (Candidate) and verified instances (Verified) in terms 
of precision (P), recall (R), and F1-score (FS) with respect to each 
pattern. (Detailed results are available online [32].) The recalls 
of candidate instances are always 100% since candidate 
instances include all true positives. There is no Bridge instance 
in the benchmark, thus the recall and F1-score of Bridge are not 
available (/). Although the precisions of Bridge are zeros, the 
verification reduces 29 false candidate instances to one.  

Among 312 Strategy and State instances, 280 ones are false 
instances; 99 ones are reported as both Strategy and State (i.e., 
overlapped); 32 ones are true instances. Through the dynamic 
analysis, 97% (271 of 280) false instances are avoided; 75% (24 
of 32) instances are classified to proper DPs; finally, no 
overlapped instance exists. For Bridge, Command, and Template 
Method, 97% (118 of 122) false instances are avoided, four of 
which are actually Proxy or Adapter instances. In total, TABLE 
III shows that ETA achieves a precision of 79.0% and a recall of 
76.7%. The overall F1-score is 77.8%; the overall MCC is 0.74. 
From TABLE II, we can observe 13 false positives, i.e., the ones 
verified (V) but not among benchmark (BM); we can also 
observe 15 false negatives, i.e., the ones among benchmark but 
not verified.  In the rest of this section, we analyze the evaluation 
results to identify why ETA failed at these instances. The main 
reasons (RS) are summarized by RS1-4 below. While RS1 and 
RS2 explained the 13 false instances, RS3 and RS4 explained the 
15 missed instances. 

RS1. Relevant objects interact based on the same 
mechanisms as employed by a DP, but with different purposes. 

The behaviors of 11 instances act similarly as a DP. For four 
Strategy instances (two of JHD and two of JRF), the interacting 
objects are composed by delegating the request from one object 

TABLE I. SYSTEMS CONSIDERED IN THE EVALUATION 

ID System #Files #LoC a #Classes #Methods 
1 JHotDraw 5.1 (JHD) 144 8,419 173 1,332 
2 JUnit 3.7 (JUN) 78 4,886 157 714 
3 JRefactory 2.6.24 (JRF) 569 55,871 575 4,865 
4 QuickUML 2001 (QUM) 156 9,249 228 1,096 
5 PMD 1.8 (PMD) 446  41,321  505  3,680 
6 MapperXML 1.9.7 (MPX) 217 14,372 263 2,110 

a. LoC: Lines of Code (excluding comment lines and blank lines) 
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to the other, but not for encapsulating algorithms as in the 
Strategy pattern. Five Strategy instances of MPX are involved in 
the document (e.g. MDocument) that composites discrete 
models (e.g. TextModel) for the purpose of data manipulation. 
A model also composites a value holder (e.g. ListValueHolder) 
to save the model’s data. Two Template Method instances of 
MPX employ abstract methods in the superclass to defer an 
operation to its subclass, but not to provide a primitive operation 
of an algorithm like the Template Method pattern. 

RS2. The instances can be distinguished in structure, while 
ETA focuses on the interactions of runtime objects.  

One Bridge instance of JHD (Abstraction / Implementor 
roles: DecoratorFigure / Figure) is actually a  Decorator instance. 
Bridge and Decorator are partially similar in structure. Both the 
Abstraction role of Bridge and the Decorator role of Decorator 
delegate a request to the aggregated objects, except that 
Decorator aggregates its superclass. The aggregation of a 
superclass is a unique feature that can be utilized to distinguish 
Decorator from Bridge. ETA does not identify this difference 
since it focuses on runtime behaviors to verify candidate 
instances. For one Command instance of PMD (Command / 
ConcreteCommand / Receiver roles: ViewerModelListener / 
ASTPanel / ViewerModel), it is actually an Observer instance. 
The structure of the Command pattern’s Command / 
ConcreteCommand / Receiver roles is similar to the structure of 
the Observer pattern’s Observer / ConcreteObserver / 
ConcreteSubject roles. The difference is, while a Command 
instance does not force the existence of an Invoker role, the 
Subject role of Observer keeps the references to multiple 
observers and, meanwhile, exists as the superclass of the 
ConcreteSubject role. This structural difference can be used to 
distinguish Observer from Command. 

RS3. The generated test cases do not meet the conditions to 
trigger expected behaviors. 

Thirteen missed instances are involved in two situations: (i) 
expected behaviors rely on a series of operations, but the test 
cases do not successfully reproduce them, and (ii) no concrete 
class is available to allocate an object. Situation (i) explains 10 
missed instances (one Strategy, five State, one Command, and 

three Template Method instances). An example is the instance of 
JHD, ConnectionTool / Figure (Context / State roles). The 
ConnectionTool is used by a drawing application to connect two 
figures with an arrowed line. It aggregates a Figure object to 
track the Figure under the mouse pointer during mouse action. 
To exercise the behaviors of ConnectionTool / Figure, the 
operations are to create two figures on the drawing palette, press 
the left mouse button on one of the figures, and drag the arrowed 
line to the other figure. The test case generator can hardly 
simulate the series of mouse events with proper event types at 
proper palette locations. Situation (ii) explains the other three 
Template Method instances, e.g., NodeIterator (AbstractClass 
role) in PMD. No class is available to allocate the object for an 
instance’s role or an argument block’s argument. 

RS4. Non-GoF variants exist, which are not considered by 
ETA currently. 

The other two missed State instances are XMLLinePrinter / 
State and FileSummary / SummaryLoaderState (Context / State 
roles) of JRF. Their State objects appear as local variables inside 
a class method, thus are not shared with other operations of the 
Context object. We consider this variant as a non-GoF pattern 
since the structure of the GoF State pattern is based on 
aggregation, which implies that “an aggregate object and its 
owner have identical lifetimes” as noted in the GoF textbook [8]. 

In summary, while 13 instances are falsely verified (mainly 
due to RS1 and RS2) and 15 instances are falsely avoided (mainly 
due to RS3 and RS4), ETA increases the overall F1-score by 
53.6% (from 24.2% to 77.8%) (TABLE III).  

B. RQ2. How Is the Accuracy of ETA Compared with Existing 
Approaches Based On Dynamic Analysis? 
ETA focuses on the verification of candidate instances. It can 

be applied to any DP detection approach that reports DP 
instances since it does not depend on intermediate processes of 
the approaches. While ePAD includes a dynamic phase to verify 
the instances reported by its static phase, ETA verifies all the true 
and false instances reported by the five existing approaches 
(including ePAD).  Both ePAD and ETA consider JHD, JUN, 
JRF, QUM, and MPX with respect to Strategy, State, Command, 
and Template Method. To answer RQ2, we compared ETA with 
ePAD in accuracy on these systems and DPs.  

For the Command pattern, the final results of ePAD achieve 
better average accuracy than ETA  (P / R / FS: 86.4% / 100.0% 
/ 92.7% vs. 92.3% / 92.3% / 92.3%). ETA falsely verifies one 
instance due to RS2 and misses one instance due to RS3, while 
ePAD reports more false instances. For the State pattern, ETA 
outperforms ePAD in average accuracy (P / R / FS: 100.0% / 

TABLE II. CANDIDATE AND VERIFIED INSTANCE NUMBERS OF THE 
FIVE DESIGN PATTERNS IN THE SIX SYSTEMS 

System  Str. c Sta. Bri. Cmd. TM. 

JHD b 
C BM 47 6 45 6 28 0 24 13 11 5 
V TP 8 6 2 2 1 0 12 12 3 3 

JUN 
C BM 18 2 10 1 0 0 0 0 6 1 
V TP 1 1 1 1 0 0 0 0 1 1 

JRF 
C BM 52 0 34 2 0 0 23 0 31 6 
V TP 2 0 0 0 0 0 0 0 6 6 

QUM 
C BM 18 0 10 1 0 0 8 0 9 4 
V TP 0 0 0 0 0 0 0 0 2 2 

PMD 
C BM 27 8 27 5 0 0 4 0 2 2 
V TP 8 8 5 5 0 0 1 0 1 1 

MPX 
C BM 12 1 12 0 1 0 0 0 7 1 
V TP 6 1 0 0 0 0 0 0 2 0 

(Total) 
C BM 174 17 138 15 29 0 59 13 66 19 
V TP 25 16 8 8 1 0 13 12 15 13 

b. C: Candidate, BM: Benchmark, V: Verified, TP: True Positives in Verified Instances 
c. Str.: Strategy, Sta.: State, Bri.: Bridge, Cmd.: Command, TM.: Template Method 

 

TABLE III. THE ACCURACY OF CANDIDATE AND VERIFIED RESULTS IN TERM  
OF PRECISION (P), RECALL (R), F1-SCORE (FS) (IN PERCENTAGE), AND 

MATTHEWS CORRELATION COEFFICIENT (MCC) (IN DECIMAL) 

Design Pattern Candidate Verified 
P R FS P R FS MCC 

Strategy 9.8 100.0 17.8 64.0 94.1 76.2 0.75 
State 10.9 100.0 19.6 100.0 53.3 69.6 0.71 
Bridge 0.0 / / 0.0 / / / 
Command 22.0 100.0 36.1 92.3 92.3 92.3 0.90 
Template Method 28.8 100.0 44.7 86.7 68.4 76.5 0.69 
(Total) 13.7 100.0 24.2 79.0 76.6 77.8 0.74 
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53.3% / 69.6% vs. 38.3% / 94.7% / 54.5%). ETA misses seven 
instances due to RS3 and RS4; ePAD achieves higher recall but 
reports more false instances. For the other two patterns, ETA 
achieves better precision and recall. The total recall of ePAD 
(84.9%) is better than ETA (76.6%), while ETA achieves better 
precision (80.3%) than ePAD (45.9%). Overall, ETA achieves 
better F1-score than ePAD (78.4% vs. 59.6%).  

C. Time Performance 
For each candidate instance, the Trace Manager (Fig. 1.C) 

parallelized the verification by manipulating multiple threads to 
consume the test cases generated for the instance. According to 
Definition 1, if an instance is verified by one of the threads, the 
Test Case Generator (Fig. 1.B) stops generating and turns to 
another instance. The thread number was experientially set to 
eight. We did not tune the time performance since the evaluation 
focused on accuracy. The initial results are presented in TABLE 
IV. For 466 candidate instances (#Candidate), 9,845 test cases 
(#Test Case) were generated. The total time consumed was 39.13 
minutes, including the time to generate and compile test cases 
(Generation), and to monitor program execution and verify 
candidate instances (Verification). Compared with the dynamic 
analysis phase of ePAD, which took 659.2 minutes to verify 258 
candidate instances from its previous static analysis phase, ETA 
achieved better average time performance to process each 
candidate instance (5.03s vs. 153.30s). 

V. DISCUSSION 
Towards incremental understanding of legacy systems. 

Manually reviewing the code to identify DP instances is a time-
consuming task. To reduce manual efforts, we gain insights into 
the selection and use of tools from measurements, each of which 
has its typical application scenario as an evaluation criterion. 
Automated tools with higher recall cover more actual instances, 
but the results will be misleading if too many false instances are 
reported. In practice, we progressively comprehend the code, 
guided by the instances suggested by tools as a starting point. 
However, we observed that the experience we gain in a context, 
e.g., project-specific naming conventions and individual 
developers’ coding preferences, is not well utilized by automated 
tools because the tools generally make few assumptions about 
how DPs are applied. Towards incremental understanding, 
customizable tools that integrate multiple stages or employ 
multiple strategies are more feasible in gradually improving the 
precision of coarse-grained results. 

SparT in practice. In a previous work, SparT models and 
represents software artifacts employing a KG, which supports 
various static analysis tasks such as query and inference. The KG 
resides in a layered structure to be extensible, under the blueprint 
of which SparT-ETA extends the ontology models to support 
dynamic analysis. Since the test scripts and behavior 
specifications [32] serve as pluggable components of the KR, 
they can be shared in the form of text files (e.g., Fig. 3) among 
developers and maintainers who employ SparT. To customize or 
create test scripts, it does not require additional experience for 
developers who are familiar with DPs and Java. Based on 
SPARQL, a W3C (World Wide Web Consortium) 
recommendation, the behavior specifications in the form of 
triples are also easy to understand and create even for beginners. 
While establishing KR requires manual efforts, we believe that 

developers will harvest from shared knowledge. Feedback from 
developers should be studied in the future to assess to what 
extent the harvests are worth the efforts. The latest updates of 
SparT will be available at the demonstration project online [47]. 

VI. THREATS TO VALIDITY 
A threat that could affect the internal validity arises during 

the adoption of benchmarks. As manually recovering all the DP 
instances of each software system requires much effort and may 
introduce subjectivity, we adopted the benchmarks proposed in 
[2], [3], [10], [11], and [18]. The benchmarks are publicly 
available and maintained by the researchers over the years. They 
are widely studied in the literature [7] [14] [17] [48], which 
reduces human mistakes. To eliminate disagreed instances 
between these benchmarks, three volunteers analyzed the 
instances separately following the validation procedure proposed 
in [3]. To mitigate human error and subjective bias, the final 
results were decided through a discussion of the whole group. 
Although the three volunteers have years of experience in 
developing industrial Java systems, they may misunderstand the 
system due to the lack of documentation. Intended to broaden the 
discussion out to more researchers, the reasons why the group 
supported or did not support each instance are reported in 
Appendix F [32], which refers to existing documentation and 
code comments of the systems. 

The selection of the systems could pose a threat to external 
validity. The systems were chosen since they have been widely 
studied in existing approaches and published detailed results, 
which enables a thorough comparison. To mitigate this threat, 
the evaluation context included all the six systems evaluated by 
the five approaches, while the common systems evaluated are 
JHD, JUN, and JRF. We also noticed various other systems 
considered by existing approaches, e.g., Swing [41], Ant [49], 
AWT [50], and Log4J [51]. We did not choose them mainly 
because: (i) different versions are used, which hinders the 
comparison of different approaches, (ii) the evaluated version is 
no longer available for download, or (iii) only instance numbers 
are reported. While these systems were not selected in the 
evaluation context, we maintained a website [47] to update the 
evaluation results of them. In consideration of replicating the 
evaluation on other systems, all available resources of the 
evaluation are published online [32], including the static facts, 
generated test cases, trace agent (with a double-click-to-run 
example), trace logs, dynamic facts, and detailed results. 

VII. RELATED WORK 
Over recent decades, various approaches have been proposed 

for DP detection. Based on an investigation of the papers in the 
literature in addition to existing mapping studies [6] [52] and 
surveys [12] [51] [53], this section discusses related work 

TABLE IV. THE NUMBER OF CANDIDATE INSTANCES (#CANDIDATE), 
GENERATED TEST CASES (#TEST CASE), AND THE TIME TO GENERATE 

TEST CASES (GENERATION) AND VERIFY CANDIDATE INSTANCES 
(VERIFICATION) (IN WALL CLOCK MINUTES) 

 JHD JUN JRF QUM PMD MPX (Total) 
#Candidate 155 34 140 45 60 32 466 
#Test Case 4,868  17  621  787  2,451  1,101  9,845  
Generation 9.00 0.01 2.85 0.80 0.69 0.75 14.10 
Verification 14.71 0.07 1.84 1.46 5.28 1.67 25.03 
Total Time 23.71 0.08 4.69 2.26 5.97 2.42 39.13 
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regarding the techniques employed to address the challenges in 
DP detection. (The investigation involved 112 papers, a 
comparison of  which  is detailed in Appendix G [32].) 

Aimed at capturing the structures and static behaviors, 
numerous techniques are employed to detect DP instances in 
source code and UML (Unified Modeling Language) diagrams, 
including graph matching [2] [7] [11], visual language parsing 
[13], similar matrix [54] [55], and machine learning [14] [56] 
[57] [58]. Existing approaches based on static analysis are 
limited in supported DPs. While the approaches cover most types 
of GoF patterns, several pairs of patterns are considered as 
similar, including Object Adapter / Command [2], Adapter / 
Bridge [8], Composite / Decorator [8] [55], Composite / 
Observer [41], Decorator / Proxy [8], State / Strategy [2] [26], 
and Strategy / Bridge [59]. Different approaches vary in 
performance. According to the detection results published in 
[2], [3], [10], [11], and [18], the top-five DPs that report the most 
false instances are Strategy, State, Bridge, Command, and 
Template Method. Only a few approaches support Strategy and 
State, but treat the two patterns as the same one and group their 
instances together in the detection results [2] [17] [18]. While 
several approaches focus on all GoF patterns [60] [48] [61] or 
declare to distinguish Strategy and State by employing machine 
learning [62] [63] or linguistic aspects of source code [64], no 
data package is provided in order to replicate the evaluation of 
these approaches. 

To reduce false positives, dynamic analysis techniques are 
utilized to verify the runtime behaviors of DP instances from 
UML sequence diagrams [60] [55] or bytecode. The proposed 
approach focuses on the latter, aiming at legacy systems whose 
design information is not available. To exercise runtime 
behaviors, existing approaches use several methods to generate 
test cases, i.e., creating manually [15] [21] [22], utilizing test 
tools [20] [23], or proposing dedicated algorithms [3], instead 
of assuming test cases are available [1] [22] [40] [41]. Manual 
ways require considerable effort to study the systems under test, 
thus are limited in practical use. Although test tools (e.g., 
EvoSuite [3]) are able to generate test cases automatically, they 
are not suitable to exercise the behavior of a DP instance since 
they work at unit level according to a coverage criterion [3].  

To solve the problem, ePAD, the first approach that 
automatically generates test cases to recover DP instances, is 
proposed in [3] and [23] by employing a genetic algorithm. 
While forcing the genetic algorithm to cover the right sequence 
of method calls is still too expensive, their approach 
approximately ensures that at least all the methods involved in 
an instance are executed. To take full advantage of a DP 
instance to exercise its own behavior, this paper presents a new 
method to generate test cases from the viewpoint of a DP’s 
usage idiom. The proposed test case generation algorithm is 
more efficient in covering relevant method calls since a test 
script indicates the invoking sequence of participating 
operations. A test script allows us to express the experience of 
applying a DP in the same way as we write a normal piece of 
test code. Test scripts also can be easily extended to support DP 
variants and emerging DPs.  

Driven by test cases, target systems are executed and 
monitored to obtain runtime data. Some approaches employ 

instrumentation tools to inject the source code (e.g., Recoder 
[41]) or bytecode (e.g., Probekit [3] [20] [23] [25]) with a 
fragment of code that collects runtime data. The Probekit tool 
belongs to the Test and Performance Tools Platform (TPTP) 
[65], a project of Eclipse. To avoid the side-effects of 
instrumentation [15] [24], profiling techniques under the Java 
Platform Debugger Architecture (JPDA) [22] [40] [66], 
including JVMDI (JVM Debug Interface) [24], JDI (Java 
Debug Interface) [1] [21] [67], and JVMPI (JVM Profiling 
Interface) [15], are widely used to inspect the state of running 
applications. JVMDI and JDI work at different layers of JPDA, 
i.e., back-end and front-end respectively, where JVMDI is 
closer to the virtual machine, thus has better performance and is 
able to use low-level functionality. Since JDK (Java 
Development Kit) 5.0, JVMDI and the experimental JVMPI are 
removed [68] and replaced by a new interface JVM TI [33]. In 
this paper, the trace agent employs JVM TI whereas other 
supporting tools and platforms, i.e., Recoder and TPTP, stopped 
updating [69] or terminated [65]. 

Finally, candidate instances are verified by matching 
obtained runtime data with behavior specifications based on 
Prolog programming [1] [15] [21], model checking [3] [19] 
[20], database query [22] [24] [40], or dedicated algorithms [25] 
[41] [67]. The proposed approach employs Allen’s interval-
based temporal logic [36] to model runtime events. The 
behaviors of DPs are specified based on SPARQL grammar 
without hard-coded algorithms.  

VIII. CONCLUSIONS AND FUTURE WORK 
An approach has been presented to automatically verify 

design pattern instances, based on which the prototype tool 
SparT-ETA has been evaluated and compared with another 
dynamic approach. The evaluation results support its accuracy 
and time performance in improving existing approaches. The 
analysis of evaluation results in Section IV-A indicates the future 
work mainly in three aspects. First, in cases that DP instances act 
similarly but with different intents (RS1), one improvement 
direction is to exploit semantic and linguistic aspects integrating 
multisource information from code comments, documentation, 
and online resources. Second, the test case generator can be 
enhanced based on the assessment of the feasibility to simulate 
user operations in typical application scenarios such as drawing 
(RS3). Third, to support emerging design patterns (RS4), the 
knowledge repository can be extended based on the investigation 
of how widely these patterns are approved by the development 
community. 
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