
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

2-2020

Distinguishing similar design pattern instances through temporal Distinguishing similar design pattern instances through temporal

behavior analysis behavior analysis

Renhao XIONG
Southeast University

David LO
Singapore Management University, davidlo@smu.edu.sg

Bixin LI
Southeast University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
XIONG, Renhao; LO, David; and LI, Bixin. Distinguishing similar design pattern instances through temporal
behavior analysis. (2020). 2020 27th IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER): February 18-21, Ontario, Canada: Proceedings. 296-307.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5614

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5614&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5614&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Distinguishing Similar Design Pattern Instances
through Temporal Behavior Analysis

Renhao Xiong

School of Computer Science and Engineering
Southeast University

Nanjing, China
renhao.x@seu.edu.cn

David Lo
School of Information Systems

Singapore Management University
Singapore, Singapore
davidlo@smu.edu.sg

Bixin Li
School of Computer Science and Engineering

Southeast University
Nanjing, China

bx.li@seu.edu.cn

Abstract—Design patterns (DPs) encapsulate valuable design

knowledge of object-oriented systems. Detecting DP instances
helps to reveal the underlying rationale, thus facilitates the
maintenance of legacy code. Resulting from the internal similarity
of DPs, implementation variants, and missing roles, approaches
based on static analysis are unable to well identify structurally
similar instances. Existing approaches further employ dynamic
techniques to test the runtime behaviors of candidate instances.

Automatically verifying the runtime behaviors of DP instances
is a challenging task in multiple aspects. This paper presents an
approach to improve the verification process of existing
approaches. To exercise the runtime behaviors of DP instances in
cases that test cases of legacy systems are often unavailable, we
propose a markup language, TSML (Test Script Markup
Language), to direct the generation of test cases by putting a DP
instance into use. The execution of test cases is monitored based on
a trace method that enables us to specify runtime events of interest
using regular expressions. To characterize runtime behaviors, we
introduce a modeling and specification method employing Allen’s
interval-based temporal relations, which supports variant
behaviors in a flexible way without hard-coded algorithms. A
prototype tool has been implemented and evaluated on six open
source systems to verify 466 instances reported by five existing
approaches with respect to five DPs. The results show that the
dynamic analysis increases the F1-score by 53.6% in distinguishing
similar DP instances.

Index Terms—Design Pattern Detection, Temporal Analysis,
Reverse Engineering, Software Comprehension, Knowledge
Representation

I. INTRODUCTION
Program comprehension is a key and expensive activity

during software maintenance [1] [2] [3]. Grappling the intents of
designers requires rich experience and lots of manual efforts to
review the code [4] [5] since the design documentation is often
missing or ignored. In recent decades, DPs are widely accepted
as a solution of a recurring problem in a context, thus provides a
good means to facilitate the maintenance of legacy code [6] [7]
[8]. DPs encapsulate valuable design knowledge that helps to
construct well-structured and maintainable software systems [2],
whereas recovering DPs assists maintainers in understanding
legacy systems during their routine tasks [9].

In the well-known GoF (Gang of Four) catalog [8], DPs are
assigned with different intents to address a particular design
issue. Each DP specifies how the participating classes and

objects collaborate. Based on a static analysis of source code, a
detection approach [2] [10] [11] characterizes the structures of
participants (e.g., inheritance and composition [8] [12]) and the
static behaviors of code elements (e.g., method calls and object
allocations extracted by parsing the source code [7] [13] [14]). A
candidate instance is reported as a DP if the instance’s
participating roles (represented by classes) and operations
(represented by methods) satisfy the constraints of the DP.

However, some DPs are difficult to distinguish due to their
similarity. They lack unique features in the source code serving
as clues to distinguish each other. The reasons for DPs’ internal
similarity reside in the common mechanisms that DPs are based
on, e.g., composition and delegation. Although such features can
be captured, they are helpless in uniquely distinguishing DPs
based on the same mechanism. In addition to the internal
similarity of DPs, the similarity of DP instances also results from
implementation variants and missing roles. The implementation
of a DP may not strictly comply with the textbook, causing a DP
instance to be falsely identified or confused with another
instance. Missing roles also weaken the characteristics of an
instance. DP instances in APIs (Application Programming
Interfaces) and frameworks are usually incomplete, leaving the
client role of a DP unimplemented, since the role is the
responsibility of the application based on the API or framework.

While static analysis techniques examine possible execution
paths, the actual behaviors of objects cannot be decided until
runtime due to the mechanisms such as dynamic binding [3] [8]
[15]. As a result, the detection approaches based only on static
analysis report many false instances on similar DPs. Especially,
several pairs of patterns, e.g., Strategy / State, Adapter /
Command, are often treated as the same pattern. Their instances
are grouped together in the detection results [10] [16] [17] [18].

To verify candidate instances, existing approaches further
analyze their runtime behaviors. Three of the core sequential
processes towards the verification are: test case generation,
execution monitoring, and behavior verification. The test cases
aim at triggering the interactions of an instance’s participants.
Driven by test cases, the program under test is executed, during
which runtime data (e.g., object allocation) are collected. Finally,
obtained runtime data are verified by employing techniques such
as model checking [3] [19] [20].

978-1-7281-5143-4/20/$31.00 c© 2020 IEEE SANER 2020, London, ON, Canada
Research Papers

296

The main limitations of existing approaches based on
dynamic analysis reside in the generation of test cases and the
monitoring of runtime events. In legacy systems, test cases are
usually not available, or not complete so as to cover the instances
under test. As manually creating test cases [15] [21] [22] is time-
consuming, automated tools have been utilized to generate test
cases [20] [23]. But general-purpose test tools are not dedicated
to exercise the behavior of DPs. As noted in [3], test tools are not
always able to generate useful test cases even after all the
branches of each method are covered. Exclusively pursuing high
code coverage of the whole search space is too expensive, while
only limited execution paths are relevant to the instance to verify.
To address the issue, algorithms are proposed to search
execution paths more efficiently taking method calls involved in
an instance as optimization objectives [3] [23].

For the purpose of covering the candidate instance to verify,
it could be more straightforward from the viewpoint of how a DP
intends to be used. As we detect DPs in source code as a way to
understand the system, candidate instances are expected to
follow the DP’s intended usage scenario to solve the problem in
a context. But existing approaches do not take full advantage of
using the candidate instance itself, i.e., its participating roles and
operations, to exercise its own behavior.

To collect data at runtime, the source code or bytecode is
instrumented with a fragment of code before the program
executes. The instrumentation is difficult to customize for
specific analysis tasks. Injected code is tangled with the original
system, which may interfere with the program’s behavior [15]
[24]. To avoid side-effects, the injection algorithm, usually hard-
coded, needs to be carefully designed for the events selected and
the data to be recorded. Besides, the events supported by existing
approaches based on instrumentation are limited to object
allocation and method invocation [3] [23] [25]. Other events are
not well supported, e.g., field access and modification that help
to identify the data exchange between objects [8] [26]. It limits
the ability to analyze the behaviors of object interactions.

In this paper, we define “similar DP instances” as “the
instances identified as the same DP”, and refer to “distinguishing
similar DP instances” as “classifying each instance to proper DP
or avoiding the instances falsely identified as a DP”. Aiming at
reducing false instances resulting from their similarity, we
present an approach to automatically verify the runtime
behaviors of DP instances in Java systems. For automatic DP
detection, a previous work [18] transforms software artifacts into
a knowledge graph (KG) [27] by parsing AST (Abstract Syntax
Tree), which represents the code artifacts for static analysis. We
utilize the KG as the fundamental static facts for relation
inference and code artifact search. By extending their approach
with temporal analysis, the main contributions of this paper are:

• First, a markup language, TSML, is proposed to reproduce
the usage scenario of a DP. Based on TSML, a test script
puts a candidate instance into use by introducing marked-up
fragments within a normal piece of test code. The marked-
up fragments direct the generation of test cases by not only
indicating the search boundary of code artifacts, but also
enabling us to apply different search strategies.

• Second, we present a trace method to monitor runtime
events without instrumentation. The underlying technique

supports a wide range of runtime events and enables us to
specify events of interest with regular expressions.

• Third, a modeling and specification method of runtime
behaviors is introduced by employing interval-based
temporal relations, based on which our understanding of
participating roles’ temporal behaviors at runtime can be
expressed flexibly in behavior specifications.

The evaluation results of the prototype tool SparT-ETA
(Software Architectural Pattern Recognition Tool Enhanced by
Temporal Analysis) show that the temporal analysis improves
the F1-score from 24.2% to 77.8% in distinguishing similar
instances. Compared with ePAD [3], another automatic
approach based on dynamic analysis, (SparT-) ETA achieves
better F1-score (78.4% vs. 59.6%) on the systems and DPs
considered by both approaches.

The paper is structured as follows. Section II presents the
approach. After we set up the empirical evaluation in Section III,
the evaluation results are analyzed in Section IV. Then we
discuss the practical observations of SparT in Section V.
Following the debate of threats to validity in Section VI, the
discussion of related approaches in Section VII. Finally, the
conclusions and future work are presented in Section VIII.

II. APPROACH
As presented in Fig. 1, the proposed approach contains four

main modules. The Fact Constructor (Section II-A) transforms
the source code into a KG that serves as the Static Facts of code
artifacts. The Test Case Generator (Section II-B) parses a Test
Script (marked up with TSML) according to a given DP instance
and generates a set of Test Cases by searching relevant code
artifacts and fulfilling marked-up fragments. A generated test
case is a runnable piece of Java code aiming to put a DP instance
into use. The execution of test cases is controlled by the Trace
Manager (Section II-C) that is composed of a Trace Agent and a
Log Parser. The former takes a regular expression as input to
specify the events of interest, then outputs trace logs, while the
latter parses log lines to create Temporal Facts. The temporal
facts are integrated with static facts by linking retrieved events
back to static facts. Finally, the Behavior Verifier matches the
Temporal Facts with the Behavior Specifications to verify
whether a DP instance acts as expected (Section II-D). The
approach proposed in [18] formally defines DPs using
description logic to constrain involved roles and operations.
Further, DP detection is to satisfy the formal definition. To
separate concerns, the KG is organized as a layered structure that

A. Fact
Constructor

Static
Facts

C. Trace
Manager

Temporal
Facts

D. Behavior
Verifier

B. Test Case
Generator

Source
Code

Bytecode

Test Cases

Test
Scripts

Candidate
Instances

Verified
Instances

Behavior
Specifications

Knowledge Repository

Java 1001
0110

Java

< >
Java { }

Fig. 1. Overview of the approach

297

supports customizable inference rules and pattern templates.
Based on the clarified roles and operations in the DP definition,
the Test Scripts and Behavior Specifications focus on a DP
instance’s usage scenario and behavioral feature respectively.
Together with the inference rules and pattern templates, the Test
Scripts and Behavior Specifications exist as pluggable
components of the Knowledge Repository (KR) that enables us
to represent and share the experience of DP detection.

A. Knowledge Graph Construction and Inference
Fig. 1 shows an excerpt from a sample code [28] [29] of the

State pattern in the textbooks [26] [30]. The class Door and the
interface DoorState play the Context role and State role
respectively. Corresponding to the sample code, generated facts
are illustrated by the KG in Fig. 2, where code artifacts are
represented as language constructs (e.g., class and method) and
their relations (e.g., “extends” and “implements”).

The constructs we extract include Class, Method, Package,
Interface, Enumeration, Primitives (e.g., boolean), Parameter
(method parameter), Field, and TypeParam (type parameter).
The relations include extends, implements, hasField (field of a
class), hasParam (parameter of a method), and methodSig
(signature of a method), etc. Two main static behaviors that we
consider are class instantiation (instsClass) and method call
(callsMethod). Class instantiations can be extracted from the
“new” operation ahead of a class (e.g., line 06, Fig. 1). Method
calls can be extracted from statements, e.g., at line 09, Fig. 1
where Door.touch() calls DoorState.touch().

Based on these constructs and relations, two main steps to
build a KG are: extracting individuals and fulfilling relations. An
individual is one type of a language construct, e.g., Door (Fig. 1)
is a type of Class. For automatic processing, the facts in the KG
are manipulated in the form of triples:

 (subject property object)

In a triple, a subject can be an individual; a property refers to
a relation; and an object can be an individual or a literal. To
extract individuals, each construct is enumerated to retrieve
corresponding artifacts from source code. For example, the
following facts are created for the construct Class: (Door type
Class) and (ClosedState type Class), etc., where “Door” and
“ClosedState” are created individuals. The relation type indicates
that the individual is a type of Class. After all individuals of each
construct are created, the relations are enumerated to associate
these individuals. For example, to fulfill hasMethod, each
individual of Class and Interface is connected to their containing
methods. As a result, one of the generated facts is (Door

hasMethod Door.touch). Finally, the KG is built, which contains
the facts that represent the system under study.

Then an inference process is conducted to summarize
indirect relations, which facilitate the search of code artifacts in
subsequent steps. Examples of inferred relations are inherits,
realizes, and isA that describe different relationships of classes
and interfaces. While inherits and realizes describe multilayer
inheritance, isA describes safe up-casting. Given x and y, each of
which is a class or an interface, the relations are defined as:

(x inherits y), (x isA y)←(x extends+ y)
(x realizes y), (x isA y)←(x implements / extends* y)
(x isA y)←(x extends+ / implements y)
The rules are based on SPARQL (Simple Protocol and RDF

(Resource Description Framework) Query Language) grammar
[31], where “/” connects two relations. For example, (x
implements r) and (r extends y) can be expressed as (x
implements/extends y) (an interface can extend another interface
in Java). The “*” (“+”) is equivalent to the connection of zero
(one) or more relations ahead.

Inferred relations enable us to express complex structures in
a concise way. For example, specifying (s isA DoorState) highly
synthesizes possible variants of DoorState’s descendant type “s”.
The inference technique also enables us to search relevant code
artifacts according to the mechanisms of Java programming. For
example, the static method call relation does not decide the real
type of participants. Namely, if the field “Door.state” holds an
object of DoorState’s subclass (e.g., ClosedState) that overrides
“DoorState.touch()”, the actually called method will be
“ClosedState.touch()”. In spite of this, the actual methods
possibly called at runtime can be located by searching overriding
methods along inheritance relations. The override relation
between two methods can be inferred from the methods’
modifier, name, and signature. We employ the algorithms
proposed in [18] for fact generation and relation inference. A
description of all the constructs and relations we use can be
found in online Appendix A [32].

B. Test Case Generation
A test script of the State pattern is presented in Fig. 3. The

test script plays the client role and reproduces a usage idiom of
the State pattern corresponding to Fig. 1 (line 13-15). A test
script is a piece of normal code marked up with TSML blocks.
Each type of TSML block is enclosed with a different pair of

Door Door.Door

DoorState

ClosedState

Door.state

hasField

fieldTypeIs

hasMethod

true

isConstructor

implements

Door.touch

DoorState.touch

hasMethod

hasMethod

callsMethod

“public”hasModifier

Class
type

Legend individual literal relationontology class

Method

type

Door.mainhasMethod

instsClass

“DoorState”

methodSighasModifier

Fig. 3. The knowledge graph (KG) that involves Door and DoorState

(The KG presented here is a part of the whole system under study.
It is simplified for brevity, thus not all relevant individuals and

relations are shown. The individual names are also in omitted form.
In practice, we use the fully qualified names, e.g.,
“example.Door.touch” instead of “Door.touch”.)

package example;

public class Door {
 private DoorState state;

 public Door() { setState(new ClosedState()); }
 public Door(DoorState s) { setState(s); }

 public void touch() { state.touch(this); }
 protected void setState(DoorState s) { state = s; }

 public static void main(String[] args) {
 DoorState open = new OpenState();
 Door door = new Door(open);
 door.touch();
 }
}

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

Fig. 2. A Door with a one-touch button that controls the
Door’s state: closed or open. The door can be constructed with
a default (closed) state (line 06) or a given state (line 07)

298

brackets ({ }, [], (), or < >). The four types of blocks are pattern
block (Fig. 3.d), search block (Fig. 3.e), function block (Fig. 3.a),
and argument block (Fig. 3.f). Within each pair of brackets, a
block is formatted as:

instruction: parameter1, parameter2, …
An instruction indicates a block’s action taking the

parameters that follow a colon (:) as inputs. Both instructions and
parameters can be omitted. Nested blocks are allowed as an outer
block’s parameter (Fig. 3.a). Given a DP instance, the test cases
are generated by enumerating the values of marked-up blocks.

The pattern block returns specified roles or operations
according to its instruction, “role” or “oper”. The instructions
refer to the participating roles and operations of a DP instance.
Assuming the given State instance is illustrated in Fig. 1, a value
of the pattern block Fig. 3.d will be “example.DoorState”. The
generator enumerates the blocks’ values in the order that they
appear. During a walk-through of all blocks, their values are
decided one after another. The “role” instruction uses the context
information of decided blocks. For the first appearance of {role:
StaRole} (Fig. 3.b), all possible values are prepared for
subsequent enumeration, one of which is consumed for the
current walk-through. When it comes to the same block in Fig.
3.d, the block will directly return the value previously decided.
For the “oper” instruction (Fig. 3.j), the block value depends on
not only its parameter, but also the type of the variable that
invokes the operation.

The search block applies different strategies to search for
code artifacts. An example is the “concrete” instruction in Fig.
3.e. It returns the classes that can be allocated by a “new”
operation. Its parameter is the class or interface to which the
returned classes can be safely up-casted. This instruction is
executed by applying the isA relation. The function block
modifies the value of a parameter block. The “name” instruction
(Fig. 3.a) returns a local name of the input parameter. The “seq”
instruction (Fig. 3.c) generates unique serial numbers during the
output of test cases. The argument block represents the
arguments passed to a method (or constructor). Given a method
M, which is provided by the previous block, the argument block
decides the values according to M’s signature. The argument
decision algorithm (detailed in Appendix B [32]) includes three
steps: (i) searching the methods whose name equals to M and
parameter types match the argument block’s input parameters,
(ii) deciding the positions of the argument block’s parameters
since their positions can be specified arbitrarily in the test script,
and (iii) providing values to each parameter type of M and
initializing allocated objects based on closure.

By abstracting the decision of block values as an iterator, the
test case generation algorithm is presented in Algorithm 1. To
record the context information during a walk-through of all
blocks, a context object is constructed (line 02) taking the DP
instance (dpInstance) and KG (kg) as inputs. Each block creates
an iterator (line 06, 23) according to context information to
prepare the values of the block. If nested blocks exist, the outer
block clones the context object to nested blocks. The outer block
recursively retrieves the values of nested blocks, so as to decide
its own value. Before the walk-through, all outer blocks (shaded
ones in Fig. 3) are indexed (line 03). A walk-through decides the
values of all outer blocks in sequence and saves decided values
to an array (line 09). During the parsing of blocks (line 03), a
block is connected to relevant blocks to retrieve the decided
value of that block, e.g., a variable’s type. The walk-through
(line 10-28) uses a stack (line 04) to traverse all possible
combinations of outer blocks’ values. Starting with the iterator
of the first block (line 06-07), one value is decided at a time (line
13 and 22-24). If no value is available, the stack pops the iterator
and switches to the previous iterator (line 15-16). Once all block
values are decided, a test case is generated by replacing the
blocks with decided values (line 26). Otherwise, no test case is
generated since no combination of the values is possible.

The generation algorithm employs several strategies to prune
unreachable and error branches. Before continuing to decide the
next block, succeeding values are checked based on already
decided values (line 19). If one of the blocks after the current
block is not possible to return a value, the current value is
abandoned and the walk-through turns to the next value of the
current block (line 20). Another strategy is to pre-execute the
generated test case and exploit the exception stack (e.g., null
pointer exception) to suppress the values returned by relevant
blocks during the subsequent generation.

To support variant usage scenarios as demonstrated in
textbooks [8] [26] [30], multiple test scripts can be created
independent of the generation algorithm. The instructions of

Algorithm 1 Test case generation algorithm

01

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

procedure generateTestCases(dpInstance,
testScript, kg, outputPath)

context := new Context(dpInstance, kg)
blocks := testScript.parseBlocks()
stack := new Stack()

valIter := blocks[0].valueIterator(context)
stack.push(valIter)

 blockValues := new BlockValue[blocks.size()]
 while stack.size() > 0 then
 last := stack.lastElement()
 if last.hasNext() then
 blockValues[stack.size()-1] := last.next()
 else
 stack.pop()
 continue
 end if

if stack.size() < blocks.size() then
 if not hasSucceedingValues(context) then
 continue
 end if

 nextBlock := blocks[stack.size()]
 valIter := nextBlock.valueIterator(context)
 stack.push(valIter)
 else
 testScript.generate(blockValues, outputPath)
 end if
 end while
end procedure

package test.auto;

public class
 State_<name: {role: StaCtxRole}>_<name: {role: StaRole}>_<seq:>
{
 public static void main(String[] args) {
 {role: StaRole} state = new [concrete: {role: StaRole}] (:);
 {role: StaCtxRole} context = new {role: StaCtxRole} (:state);
 context.{oper: CtxReqOper} (:);
 }
}

01
02
03
04
05
06
07
08
09
10
11

(a)

(d)
(e) (f)

(i)

(b)

(h)
(j) (k)

(c)

(g)

Fig. 4. A test script of the State pattern based on TSML (StaCtxRole: Context

role of the State pattern, StaRole: State role, CtxReqOper: Request
operation of the Context role)

299

blocks also can be easily extended since they are implemented
outside the generation algorithm in a function-like way, which
takes input parameters and returns values.

C. Runtime Trace and Behavior Modeling
Driven by test cases, the program is executed and traced. We

implemented a trace agent to monitor runtime events. During the
trace, the agent records key-value pairs in a log file in predefined
format when notified of interested events. The agent supports a
wide range of events, including method entry, method exit, field
modification, and object allocation (a full list is available at
[33]). Fig. 4 presents a fragment of the trace log during the
execution of example.Door (Fig. 1) by specifying the command:

java -classpath {CLASSPATH} “-agentpath:{AGENTPAT
H}=method=^Lexample/#field=^Lexample/” example.Door

{CLASSPATH} represents the path of bytecode, while
{AGENTPATH} represents the path of the agent. The string
after {AGENTPATH} specifies the events to record using
regular expressions. It means to capture events of methods and
fields (separated by “#”) whose JNI (Java Native Interface) type
signature [34] starts with “Lexample/”. The letter L is the JNI
type signature of a fully qualified class. Thus, “Lexample/Door”
(line 01, Fig. 4) refers to “example.Door”. Each log line records
multiple key-value pairs separated by “,”. The first pair is an
event-value pair and the rest pairs are property-value pairs.
Method (field) names are recorded after a semicolon (;) in
method (field) events. The method “<init>” is the initialization
method of a class [35]. It is supplied by a Java compiler. We use
this special method to identify object allocations.

To express runtime behaviors, we model the events based on
Allen’s interval-based temporal relations [36] [37]. The 13
binary relations between two intervals are: before, after, meets,
metBy, overlaps, overlappedBy, finishedBy, finishes, contains,
during, startedBy, starts, and equals. (They are displayed in
Appendix C [32].) Exactly one of the relations holds, given a pair
of excluding point-intervals. The interval of an event is
determined by a pair of time instants, i.e., the timepoint it starts
(startsAt) and ends (endsAt). Therefore, we can infer the
temporal relation between two events given two pairs of time
instants, e.g., (t1, t4) and (t2, t3), as presented in Fig. 5. Since the
temporal facts are linked back to static facts, additional
information is available, which provides traceable clues to
characterize language constructs and relations.

To generate temporal facts, a trace log is transformed using
a globally incremental timepoint for each log line. A method
invocation event is created from a pair of method entry and

method exit events. The event startsAt the timepoint of a method
entry (e.g., line 04, Fig. 4) and endsAt the timepoint of
corresponding method exit (line 08). While some records, e.g.,
field modification (line 06), only occupy one log line, they
consume two timepoints. For each log line, an individual is
created from the event-value pair for the corresponding event.
For line 04, e.g., the triple (event1 methodCalled Door.Door) is
generated. “event1” is the individual created for the event. For
each following property-value pair, a triple (event1 property
value) is also generated, e.g., (event1 objTag 2). The property
objTag (i.e., obj_tag) refers to the globally unique identifier of
the object that owns the invoked method. The property
“param_obj_tag” refers to the object passed to a method as a
parameter. In a field modification event, the event individual is
also linked to the method where the event happens (in_method,
i.e., fieldVisitMethod), the field’s declaring class (dec_cls), the
owner object of the field (owner_obj_tag, i.e., ownerObjTag)
and the modified value (field_obj_tag, i.e., fieldObjTag).

 The dynamic analysis has the advantage to summarize
implementation variants, regardless of, e.g., whether
“Door.Door” (line 07, Fig. 1) is implemented as “setState(s);” or
“state=s;”. Both cases achieve the same purpose of initializing
“Door.state” within “Door.Door”.

D. Behavior Specification and Verification
A behavior specification describes expected behaviors of a

DP. As we manipulate the KG with triples, the behavior
specification is also in the form of triples. For example, the
events “an object Q’s method is invoked passing an object R as
a parameter, during which a field of Q is set to hold R” can be
specified as:

?e1 methodCalled ?method; objTag ?objQ; paramObjTag ?objR.
[] hasMethod ?method; hasField ?field.
?e1 contains ?e2. # or “?e2 during ?e1.”
?e2 visitedField ?field; fieldObjTag ?objR; ownerObjTag ?objQ.
In a triple, the subjects or objects started with “?” are named

variables; a “[]” refers to an unnamed variable; a “;” connects
two triples with the same subject; a “.” separates different triples;
and a “#” starts a comment. By matching the specification with
temporal facts, the variables will be bound to proper values if
such events exist (e.g., ?e1 is bound to event1 in Fig. 5).
Otherwise, the temporal facts do not comply with the
specification if no such event is found.

A behavior specification aims to capture the key behavior
features that distinguish different instances. In the example of
Fig. 1, we expect to toggle the door’s state by touching the
control button. While we specify the behavior sequence “the
control button is touched, then the door’s state is toggled” as the

event1

event2

t

event1

event2

contains

Inferred Temporal
Relations

startsAt endsAt

startsAt endsAt

Door.Door

Door.state

Door.main
methodCaller

methodCalled

visitedField

Door

hasMethod
hasMethod

t1 t2 t3 t4

Door.setState
fieldVisitMethod

1

fieldObjTag

ownerObjTag

paramObjTag
objTag

hasField

hasMethod1

2
Temporal Facts Static Facts

t1<t2<t3<t4 2

Fig. 6. Inferring the temporal relation between event1 (object allocation, line

04-08, Fig. 4) and event2 (field modification, line 06, Fig. 4) (The axis
“t” indicates the flow of time. The static facts refer to Fig. 2.)

01
02
03
04
05

06

07
08
~
18

method_entry: Lexample/Door;main
 method_entry: Lexample/OpenState;<init>, obj_tag: 1
 method_exit: Lexample/OpenState;<init>
 method_entry: Lexample/Door;<init>, obj_tag: 2, param_obj_tag: 1
 method_entry: Lexample/Door;setState, obj_tag: 2,
param_obj_tag: 1
 field_modi: Lexample/DoorState;state, dec_cls:
Lexample/Door;, in_method: Lexample/Door;setState, field_obj_tag:
1, owner_obj_tag: 2
 method_exit: Lexample/Door;setState
 method_exit: Lexample/Door;<init>
 ...
method_exit: Lexample/Door;main

Fig. 5. A fragment of the trace log during the execution of
example.Door (The full log is available in [32]. The line numbers

do not correspond to Fig. 1.)

300

key behaviors, the triggering of key behaviors may depend on
specific conditions. Touching the control button may not close
an open door in the case that someone is walking through the
door. In spite of this case, the door has the ability to exercise its
full functions. The test case generation algorithm (Algorithm 1)
enumerates possible combinations of block values, expecting a
test case exists to trigger the key behaviors. Therefore, we define
a verified instance as:

 Definition 1. An instance of a DP is verified if there exists
a test case whose runtime behaviors comply with the behavior
specification of the DP.

As illustrated in the textbooks [8] [26] [30] and
demonstration projects (TCPConnection [8], Door2 [28], and
StatePatternEx [29]), the State pattern intends to allow an object
to alter its behavior when its internal state changes. A Context
usually encapsulates a State as its field to record its internal state.
The request delivered to Context is delegated to State, thus the
Context’s behavior alters when the state changes. A Client
usually does not directly operate State to perform the request but
uses the interface provided by the Request operation of Context.
Thus we specify “a request delivered to Context triggers the
transition of state” as the key behaviors of the State pattern.

Initially, a Context instantiates a default State as presented at
line 06, Fig. 1 [28]. A variant [29] is to provide a State object to
Context as presented at line 07, Fig. 1. Who defines the state
transitions is not forced in the State pattern as noted in the GoF
textbook [8]. The textbook suggests the successor state can be
specified either in Context (Appendix D.1) or State (Appendix
D.2 [32]). By covering these variants, the behavior specification
of State considers the following behavior features in addition to
the delegation of request: (i) the temporal relations of
instantiating Context and State, and (ii) the state of Context
changes during the request delivered to Context. For (i), the State
can be instantiated before or during the instantiation of Context.
The State object also can be initiated in the field declaration of
Context (Door2 [28]), e.g., initiating at line 04, Fig. 2 with the
statement “state = new ClosedState();”. Since field initiation is
processed within the special method <init> at runtime, initiating
the State object in field declaration acts the same as providing a
default State object in the constructor of Context. For (ii), a state
transition exists during the request, regardless of who defines the
state transition.

For Strategy, which is almost structurally identical to State,
the main differences with State are noted in the textbook [26].
First, “Strategy might allow a client to select or provide a
strategy, an idea that rarely applies to State”. To characterize this
feature, in addition to providing the Strategy object through
Context’s constructor, the specification allows a setter operation
of Context. A setter sets a strategy taking a Strategy object as
input. As demonstrated in [29] (StrategyPatternEx), the setter is
invoked after the instantiation of Context and State. The Context
object is set to hold the State object during the invocation of the
setter. Second, “state transitions are important when modeling
State but strategy transitions are usually irrelevant when
choosing Strategy”. Based on this feature, in contrast to the State
pattern, Strategy is specified as no strategy transition exists
during the request, as presented in [8] (Composition), [28]
(Customer2), and [29] (StrategyPatternEx). Based on these

observations, behavior specifications allow us to encode our
experience in identifying DP instances. The behavior
specifications of Strategy and State, which support the
mentioned variants, are detailed in Appendix E [32].

III. EMPIRICAL EVALUATION SETUP
In this section, we set up the evaluation of the prototype tool

ETA. The empirical study follows the Goal Question Metric
guidelines [38].

A. Context Selection
The goal of the evaluation was to assess the proposed

approach for the purpose of improving existing approaches with
respect to the accuracy of automatic DP detection from the
viewpoint of system developers and maintainers who intend to
employ the proposed approach by assessing its accuracy. The
evaluation context consisted of six open source systems and five
DP detection approaches with respect to five GoF DPs. The
evaluation was performed on six systems (TABLE I), i.e.,
JHotDraw 5.1 (JHD), JUnit 3.7 (JUN), JRefactory 2.6.24 (JRF),
QuickUML 2001 (QUM), PMD 1.8 (PMD), and MapperXML
1.9.7 (MPX). We selected these systems because (i) they are
open source systems whose source code is publicly available, (ii)
they have been studied by existing approaches in the literature
[2] [3] [10] [11], and (iii) they are implemented in Java since our
approach focuses on Java systems.

The five existing approaches involved in the evaluation are
RaM [10], DPD (Design Pattern Detection) [2], DPF (Design
Pattern Finder) [11], ePAD [3], and SparT (Software
Architectural Pattern Recognition Tool) [18]. We chose these
approaches since they report detailed detection results rather
than only instance numbers. While RaM, DPD, and DPF focus
on all the 23 GoF patterns, ePAD focuses on 12 creational and
behavioral patterns, and SparT focuses on 22 GoF patterns
except Façade. All the approaches report the instances of JHD,
JUN, and JRF, while only DPD does not consider QUM; only
DPF and SparT consider PMD; and only ePAD and SparT
consider MPX. We also noticed other approaches, including the
ones proposed in [15], [21], [39], [40], and [41]. We did not
choose them since the systems used were unavailable [21] [39]
[40] or only instance numbers were reported [15] [41].

The evaluation focused on five GoF patterns, i.e., Strategy,
State, Bridge, Command, and Template Method. We chose them
since they occupied the most proportion of false instances based
on the investigation of the five approaches.

B. Research Questions and Metrics
To address our goal, the evaluation aimed to answer the

following research questions (RQ):

RQ1. What is the accuracy of ETA in improving existing
approaches?

RQ2. How is the accuracy of ETA compared with existing
approaches based on dynamic analysis?

While RQ1 focused on the accuracy in verifying candidate
instances to avoid false instances and keep true instances, RQ2
aimed to assess the accuracy compared with other dynamic
approaches. As ETA aimed to improve the detection results by
verifying existing instances, to answer RQ1, ETA took all the

301

true and false instances reported by the five approaches as input
candidate instances with respect to the five selected DPs.

While RaM, DPD, DPF, and SparT aim to detect DP
instances in source code based on static analysis, ePAD employs
dynamic analysis to further verify the instances reported by its
static phase. Therefore, to address RQ2, we compared ETA with
ePAD in accuracy. The comparison was carried out on four of
the five selected DPs, i.e., Strategy, State, Command, and
Template Method, since ePAD does not focus on Bridge. We
also noticed other approaches based on dynamic analysis. ETA
was not compared with them since they are evaluated on sample
systems whose source code is not available [21] [22] [42], or
only instance numbers are reported [1] [15] [25] [41].

To assess the accuracy, we employed precision, recall, F1-
score [43], and MCC (Matthews Correlation Coefficient) [44].
The precision measures the fraction of relevant instances among
all detected instances, i.e., |TP| / |TP∪FP|, where TP (True
Positive) is the set of true instances and FP (False Positive) is the
set of false instances. The recall measures the fraction of relevant
ones in detected instances among all relevant instances, i.e., |TP|
/ |TP∪FN|, in which FN (False Negative) is the set of missed
instances. The harmonic average of precision and recall is
measured by F1-score, i.e., 2·precision·recall / (precision +
recall). To assess the verification of candidate instances as a
binary classification problem, the MCC has the advantage over
F1-score to balance TP, TN (True Negative), FP, and FN. It can
be calculated as (|TP|·|TN| - |FP|·|FN|) / ((|TP| + |FP|)·(|TP| +
|FN|)·(|TN| + |FP|)·(|TN| + |FN|))1/2, where TN is the set of actual
negative instances among unverified instances.

Over recent decades, several benchmarks have been built to
evaluate DP detection results. We adopted the benchmarks
published in [2], [3], [10], [11], and [18] to evaluate the accuracy.
For the instances disagreed between these benchmarks, we
followed the validation procedure proposed in [3] to decide each
instance. First, all the instances disagreed between the
benchmarks were collected. Second, three Ph.D. students
independently analyzed the documentation, source code, and
online resources to validate these instances. At last, for the
instances that did not reach a consensus among the full group, a
discussion was conducted. An instance is considered as true
only if the full group agreed.

C. Experimental Setup
ETA was fully automated taking source code, bytecode, and

candidate instances as inputs. ETA was implemented based on
Jena [45], a Java framework for building linked data
applications. It supports manipulating triples with SPARQL. The
static facts were automatically generated using JDT (Java
Development Tools) [46] through AST parsing. Then the trace
agent employed JVM TI (Java Virtual Machine Tool Interface)

[33] to monitor the execution of target systems. The test scripts
and behavior specifications of the five DPs were built according
to the textbooks [8] [26] [30] and demonstration projects [28]
[29]. We also studied the source code of JHD since its
documentation is available, which reduces the misunderstanding
of the system. Finally, the compliance verification between
behavior specifications and temporal facts was performed
through triple matching. The evaluation was conducted on a
desktop computer (Intel Core i7 4790@3.6GHz, 8GB RAM).

IV. ANALYSIS OF EVALUATION RESULTS
In this section, we analyze the evaluation results in response

to the research questions.

A. RQ1. What Is the Accuracy of ETA in Improving Existing
Approaches?

ETA verified 466 candidate instances reported by the five
approaches. TABLE II aggregates the instances of each system.
Candidate instances (C) include all the true and false instances,
the true instances of which refer to the benchmark (BM). While
verified instances (V) are the instances verified by ETA, the true
positives (TP) refer to the true instances among verified
instances. Since RaM, DPD, and SparT treat Strategy and State
as the same pattern, in TABLE II, the instance numbers of the
two patterns are counted respectively by regarding each of the
two patterns as reporting the same instances.

Based on TABLE II, TABLE III compares the accuracy of
candidate (Candidate) and verified instances (Verified) in terms
of precision (P), recall (R), and F1-score (FS) with respect to each
pattern. (Detailed results are available online [32].) The recalls
of candidate instances are always 100% since candidate
instances include all true positives. There is no Bridge instance
in the benchmark, thus the recall and F1-score of Bridge are not
available (/). Although the precisions of Bridge are zeros, the
verification reduces 29 false candidate instances to one.

Among 312 Strategy and State instances, 280 ones are false
instances; 99 ones are reported as both Strategy and State (i.e.,
overlapped); 32 ones are true instances. Through the dynamic
analysis, 97% (271 of 280) false instances are avoided; 75% (24
of 32) instances are classified to proper DPs; finally, no
overlapped instance exists. For Bridge, Command, and Template
Method, 97% (118 of 122) false instances are avoided, four of
which are actually Proxy or Adapter instances. In total, TABLE
III shows that ETA achieves a precision of 79.0% and a recall of
76.7%. The overall F1-score is 77.8%; the overall MCC is 0.74.
From TABLE II, we can observe 13 false positives, i.e., the ones
verified (V) but not among benchmark (BM); we can also
observe 15 false negatives, i.e., the ones among benchmark but
not verified. In the rest of this section, we analyze the evaluation
results to identify why ETA failed at these instances. The main
reasons (RS) are summarized by RS1-4 below. While RS1 and
RS2 explained the 13 false instances, RS3 and RS4 explained the
15 missed instances.

RS1. Relevant objects interact based on the same
mechanisms as employed by a DP, but with different purposes.

The behaviors of 11 instances act similarly as a DP. For four
Strategy instances (two of JHD and two of JRF), the interacting
objects are composed by delegating the request from one object

TABLE I. SYSTEMS CONSIDERED IN THE EVALUATION

ID System #Files #LoC a #Classes #Methods
1 JHotDraw 5.1 (JHD) 144 8,419 173 1,332
2 JUnit 3.7 (JUN) 78 4,886 157 714
3 JRefactory 2.6.24 (JRF) 569 55,871 575 4,865
4 QuickUML 2001 (QUM) 156 9,249 228 1,096
5 PMD 1.8 (PMD) 446 41,321 505 3,680
6 MapperXML 1.9.7 (MPX) 217 14,372 263 2,110

a. LoC: Lines of Code (excluding comment lines and blank lines)

302

to the other, but not for encapsulating algorithms as in the
Strategy pattern. Five Strategy instances of MPX are involved in
the document (e.g. MDocument) that composites discrete
models (e.g. TextModel) for the purpose of data manipulation.
A model also composites a value holder (e.g. ListValueHolder)
to save the model’s data. Two Template Method instances of
MPX employ abstract methods in the superclass to defer an
operation to its subclass, but not to provide a primitive operation
of an algorithm like the Template Method pattern.

RS2. The instances can be distinguished in structure, while
ETA focuses on the interactions of runtime objects.

One Bridge instance of JHD (Abstraction / Implementor
roles: DecoratorFigure / Figure) is actually a Decorator instance.
Bridge and Decorator are partially similar in structure. Both the
Abstraction role of Bridge and the Decorator role of Decorator
delegate a request to the aggregated objects, except that
Decorator aggregates its superclass. The aggregation of a
superclass is a unique feature that can be utilized to distinguish
Decorator from Bridge. ETA does not identify this difference
since it focuses on runtime behaviors to verify candidate
instances. For one Command instance of PMD (Command /
ConcreteCommand / Receiver roles: ViewerModelListener /
ASTPanel / ViewerModel), it is actually an Observer instance.
The structure of the Command pattern’s Command /
ConcreteCommand / Receiver roles is similar to the structure of
the Observer pattern’s Observer / ConcreteObserver /
ConcreteSubject roles. The difference is, while a Command
instance does not force the existence of an Invoker role, the
Subject role of Observer keeps the references to multiple
observers and, meanwhile, exists as the superclass of the
ConcreteSubject role. This structural difference can be used to
distinguish Observer from Command.

RS3. The generated test cases do not meet the conditions to
trigger expected behaviors.

Thirteen missed instances are involved in two situations: (i)
expected behaviors rely on a series of operations, but the test
cases do not successfully reproduce them, and (ii) no concrete
class is available to allocate an object. Situation (i) explains 10
missed instances (one Strategy, five State, one Command, and

three Template Method instances). An example is the instance of
JHD, ConnectionTool / Figure (Context / State roles). The
ConnectionTool is used by a drawing application to connect two
figures with an arrowed line. It aggregates a Figure object to
track the Figure under the mouse pointer during mouse action.
To exercise the behaviors of ConnectionTool / Figure, the
operations are to create two figures on the drawing palette, press
the left mouse button on one of the figures, and drag the arrowed
line to the other figure. The test case generator can hardly
simulate the series of mouse events with proper event types at
proper palette locations. Situation (ii) explains the other three
Template Method instances, e.g., NodeIterator (AbstractClass
role) in PMD. No class is available to allocate the object for an
instance’s role or an argument block’s argument.

RS4. Non-GoF variants exist, which are not considered by
ETA currently.

The other two missed State instances are XMLLinePrinter /
State and FileSummary / SummaryLoaderState (Context / State
roles) of JRF. Their State objects appear as local variables inside
a class method, thus are not shared with other operations of the
Context object. We consider this variant as a non-GoF pattern
since the structure of the GoF State pattern is based on
aggregation, which implies that “an aggregate object and its
owner have identical lifetimes” as noted in the GoF textbook [8].

In summary, while 13 instances are falsely verified (mainly
due to RS1 and RS2) and 15 instances are falsely avoided (mainly
due to RS3 and RS4), ETA increases the overall F1-score by
53.6% (from 24.2% to 77.8%) (TABLE III).

B. RQ2. How Is the Accuracy of ETA Compared with Existing
Approaches Based On Dynamic Analysis?
ETA focuses on the verification of candidate instances. It can

be applied to any DP detection approach that reports DP
instances since it does not depend on intermediate processes of
the approaches. While ePAD includes a dynamic phase to verify
the instances reported by its static phase, ETA verifies all the true
and false instances reported by the five existing approaches
(including ePAD). Both ePAD and ETA consider JHD, JUN,
JRF, QUM, and MPX with respect to Strategy, State, Command,
and Template Method. To answer RQ2, we compared ETA with
ePAD in accuracy on these systems and DPs.

For the Command pattern, the final results of ePAD achieve
better average accuracy than ETA (P / R / FS: 86.4% / 100.0%
/ 92.7% vs. 92.3% / 92.3% / 92.3%). ETA falsely verifies one
instance due to RS2 and misses one instance due to RS3, while
ePAD reports more false instances. For the State pattern, ETA
outperforms ePAD in average accuracy (P / R / FS: 100.0% /

TABLE II. CANDIDATE AND VERIFIED INSTANCE NUMBERS OF THE
FIVE DESIGN PATTERNS IN THE SIX SYSTEMS

System Str. c Sta. Bri. Cmd. TM.

JHD b
C BM 47 6 45 6 28 0 24 13 11 5
V TP 8 6 2 2 1 0 12 12 3 3

JUN
C BM 18 2 10 1 0 0 0 0 6 1
V TP 1 1 1 1 0 0 0 0 1 1

JRF
C BM 52 0 34 2 0 0 23 0 31 6
V TP 2 0 0 0 0 0 0 0 6 6

QUM
C BM 18 0 10 1 0 0 8 0 9 4
V TP 0 0 0 0 0 0 0 0 2 2

PMD
C BM 27 8 27 5 0 0 4 0 2 2
V TP 8 8 5 5 0 0 1 0 1 1

MPX
C BM 12 1 12 0 1 0 0 0 7 1
V TP 6 1 0 0 0 0 0 0 2 0

(Total)
C BM 174 17 138 15 29 0 59 13 66 19
V TP 25 16 8 8 1 0 13 12 15 13

b. C: Candidate, BM: Benchmark, V: Verified, TP: True Positives in Verified Instances
c. Str.: Strategy, Sta.: State, Bri.: Bridge, Cmd.: Command, TM.: Template Method

TABLE III. THE ACCURACY OF CANDIDATE AND VERIFIED RESULTS IN TERM
OF PRECISION (P), RECALL (R), F1-SCORE (FS) (IN PERCENTAGE), AND

MATTHEWS CORRELATION COEFFICIENT (MCC) (IN DECIMAL)

Design Pattern Candidate Verified
P R FS P R FS MCC

Strategy 9.8 100.0 17.8 64.0 94.1 76.2 0.75
State 10.9 100.0 19.6 100.0 53.3 69.6 0.71
Bridge 0.0 / / 0.0 / / /
Command 22.0 100.0 36.1 92.3 92.3 92.3 0.90
Template Method 28.8 100.0 44.7 86.7 68.4 76.5 0.69
(Total) 13.7 100.0 24.2 79.0 76.6 77.8 0.74

303

53.3% / 69.6% vs. 38.3% / 94.7% / 54.5%). ETA misses seven
instances due to RS3 and RS4; ePAD achieves higher recall but
reports more false instances. For the other two patterns, ETA
achieves better precision and recall. The total recall of ePAD
(84.9%) is better than ETA (76.6%), while ETA achieves better
precision (80.3%) than ePAD (45.9%). Overall, ETA achieves
better F1-score than ePAD (78.4% vs. 59.6%).

C. Time Performance
For each candidate instance, the Trace Manager (Fig. 1.C)

parallelized the verification by manipulating multiple threads to
consume the test cases generated for the instance. According to
Definition 1, if an instance is verified by one of the threads, the
Test Case Generator (Fig. 1.B) stops generating and turns to
another instance. The thread number was experientially set to
eight. We did not tune the time performance since the evaluation
focused on accuracy. The initial results are presented in TABLE
IV. For 466 candidate instances (#Candidate), 9,845 test cases
(#Test Case) were generated. The total time consumed was 39.13
minutes, including the time to generate and compile test cases
(Generation), and to monitor program execution and verify
candidate instances (Verification). Compared with the dynamic
analysis phase of ePAD, which took 659.2 minutes to verify 258
candidate instances from its previous static analysis phase, ETA
achieved better average time performance to process each
candidate instance (5.03s vs. 153.30s).

V. DISCUSSION
Towards incremental understanding of legacy systems.

Manually reviewing the code to identify DP instances is a time-
consuming task. To reduce manual efforts, we gain insights into
the selection and use of tools from measurements, each of which
has its typical application scenario as an evaluation criterion.
Automated tools with higher recall cover more actual instances,
but the results will be misleading if too many false instances are
reported. In practice, we progressively comprehend the code,
guided by the instances suggested by tools as a starting point.
However, we observed that the experience we gain in a context,
e.g., project-specific naming conventions and individual
developers’ coding preferences, is not well utilized by automated
tools because the tools generally make few assumptions about
how DPs are applied. Towards incremental understanding,
customizable tools that integrate multiple stages or employ
multiple strategies are more feasible in gradually improving the
precision of coarse-grained results.

SparT in practice. In a previous work, SparT models and
represents software artifacts employing a KG, which supports
various static analysis tasks such as query and inference. The KG
resides in a layered structure to be extensible, under the blueprint
of which SparT-ETA extends the ontology models to support
dynamic analysis. Since the test scripts and behavior
specifications [32] serve as pluggable components of the KR,
they can be shared in the form of text files (e.g., Fig. 3) among
developers and maintainers who employ SparT. To customize or
create test scripts, it does not require additional experience for
developers who are familiar with DPs and Java. Based on
SPARQL, a W3C (World Wide Web Consortium)
recommendation, the behavior specifications in the form of
triples are also easy to understand and create even for beginners.
While establishing KR requires manual efforts, we believe that

developers will harvest from shared knowledge. Feedback from
developers should be studied in the future to assess to what
extent the harvests are worth the efforts. The latest updates of
SparT will be available at the demonstration project online [47].

VI. THREATS TO VALIDITY
A threat that could affect the internal validity arises during

the adoption of benchmarks. As manually recovering all the DP
instances of each software system requires much effort and may
introduce subjectivity, we adopted the benchmarks proposed in
[2], [3], [10], [11], and [18]. The benchmarks are publicly
available and maintained by the researchers over the years. They
are widely studied in the literature [7] [14] [17] [48], which
reduces human mistakes. To eliminate disagreed instances
between these benchmarks, three volunteers analyzed the
instances separately following the validation procedure proposed
in [3]. To mitigate human error and subjective bias, the final
results were decided through a discussion of the whole group.
Although the three volunteers have years of experience in
developing industrial Java systems, they may misunderstand the
system due to the lack of documentation. Intended to broaden the
discussion out to more researchers, the reasons why the group
supported or did not support each instance are reported in
Appendix F [32], which refers to existing documentation and
code comments of the systems.

The selection of the systems could pose a threat to external
validity. The systems were chosen since they have been widely
studied in existing approaches and published detailed results,
which enables a thorough comparison. To mitigate this threat,
the evaluation context included all the six systems evaluated by
the five approaches, while the common systems evaluated are
JHD, JUN, and JRF. We also noticed various other systems
considered by existing approaches, e.g., Swing [41], Ant [49],
AWT [50], and Log4J [51]. We did not choose them mainly
because: (i) different versions are used, which hinders the
comparison of different approaches, (ii) the evaluated version is
no longer available for download, or (iii) only instance numbers
are reported. While these systems were not selected in the
evaluation context, we maintained a website [47] to update the
evaluation results of them. In consideration of replicating the
evaluation on other systems, all available resources of the
evaluation are published online [32], including the static facts,
generated test cases, trace agent (with a double-click-to-run
example), trace logs, dynamic facts, and detailed results.

VII. RELATED WORK
Over recent decades, various approaches have been proposed

for DP detection. Based on an investigation of the papers in the
literature in addition to existing mapping studies [6] [52] and
surveys [12] [51] [53], this section discusses related work

TABLE IV. THE NUMBER OF CANDIDATE INSTANCES (#CANDIDATE),
GENERATED TEST CASES (#TEST CASE), AND THE TIME TO GENERATE

TEST CASES (GENERATION) AND VERIFY CANDIDATE INSTANCES
(VERIFICATION) (IN WALL CLOCK MINUTES)

 JHD JUN JRF QUM PMD MPX (Total)
#Candidate 155 34 140 45 60 32 466
#Test Case 4,868 17 621 787 2,451 1,101 9,845
Generation 9.00 0.01 2.85 0.80 0.69 0.75 14.10
Verification 14.71 0.07 1.84 1.46 5.28 1.67 25.03
Total Time 23.71 0.08 4.69 2.26 5.97 2.42 39.13

304

regarding the techniques employed to address the challenges in
DP detection. (The investigation involved 112 papers, a
comparison of which is detailed in Appendix G [32].)

Aimed at capturing the structures and static behaviors,
numerous techniques are employed to detect DP instances in
source code and UML (Unified Modeling Language) diagrams,
including graph matching [2] [7] [11], visual language parsing
[13], similar matrix [54] [55], and machine learning [14] [56]
[57] [58]. Existing approaches based on static analysis are
limited in supported DPs. While the approaches cover most types
of GoF patterns, several pairs of patterns are considered as
similar, including Object Adapter / Command [2], Adapter /
Bridge [8], Composite / Decorator [8] [55], Composite /
Observer [41], Decorator / Proxy [8], State / Strategy [2] [26],
and Strategy / Bridge [59]. Different approaches vary in
performance. According to the detection results published in
[2], [3], [10], [11], and [18], the top-five DPs that report the most
false instances are Strategy, State, Bridge, Command, and
Template Method. Only a few approaches support Strategy and
State, but treat the two patterns as the same one and group their
instances together in the detection results [2] [17] [18]. While
several approaches focus on all GoF patterns [60] [48] [61] or
declare to distinguish Strategy and State by employing machine
learning [62] [63] or linguistic aspects of source code [64], no
data package is provided in order to replicate the evaluation of
these approaches.

To reduce false positives, dynamic analysis techniques are
utilized to verify the runtime behaviors of DP instances from
UML sequence diagrams [60] [55] or bytecode. The proposed
approach focuses on the latter, aiming at legacy systems whose
design information is not available. To exercise runtime
behaviors, existing approaches use several methods to generate
test cases, i.e., creating manually [15] [21] [22], utilizing test
tools [20] [23], or proposing dedicated algorithms [3], instead
of assuming test cases are available [1] [22] [40] [41]. Manual
ways require considerable effort to study the systems under test,
thus are limited in practical use. Although test tools (e.g.,
EvoSuite [3]) are able to generate test cases automatically, they
are not suitable to exercise the behavior of a DP instance since
they work at unit level according to a coverage criterion [3].

To solve the problem, ePAD, the first approach that
automatically generates test cases to recover DP instances, is
proposed in [3] and [23] by employing a genetic algorithm.
While forcing the genetic algorithm to cover the right sequence
of method calls is still too expensive, their approach
approximately ensures that at least all the methods involved in
an instance are executed. To take full advantage of a DP
instance to exercise its own behavior, this paper presents a new
method to generate test cases from the viewpoint of a DP’s
usage idiom. The proposed test case generation algorithm is
more efficient in covering relevant method calls since a test
script indicates the invoking sequence of participating
operations. A test script allows us to express the experience of
applying a DP in the same way as we write a normal piece of
test code. Test scripts also can be easily extended to support DP
variants and emerging DPs.

Driven by test cases, target systems are executed and
monitored to obtain runtime data. Some approaches employ

instrumentation tools to inject the source code (e.g., Recoder
[41]) or bytecode (e.g., Probekit [3] [20] [23] [25]) with a
fragment of code that collects runtime data. The Probekit tool
belongs to the Test and Performance Tools Platform (TPTP)
[65], a project of Eclipse. To avoid the side-effects of
instrumentation [15] [24], profiling techniques under the Java
Platform Debugger Architecture (JPDA) [22] [40] [66],
including JVMDI (JVM Debug Interface) [24], JDI (Java
Debug Interface) [1] [21] [67], and JVMPI (JVM Profiling
Interface) [15], are widely used to inspect the state of running
applications. JVMDI and JDI work at different layers of JPDA,
i.e., back-end and front-end respectively, where JVMDI is
closer to the virtual machine, thus has better performance and is
able to use low-level functionality. Since JDK (Java
Development Kit) 5.0, JVMDI and the experimental JVMPI are
removed [68] and replaced by a new interface JVM TI [33]. In
this paper, the trace agent employs JVM TI whereas other
supporting tools and platforms, i.e., Recoder and TPTP, stopped
updating [69] or terminated [65].

Finally, candidate instances are verified by matching
obtained runtime data with behavior specifications based on
Prolog programming [1] [15] [21], model checking [3] [19]
[20], database query [22] [24] [40], or dedicated algorithms [25]
[41] [67]. The proposed approach employs Allen’s interval-
based temporal logic [36] to model runtime events. The
behaviors of DPs are specified based on SPARQL grammar
without hard-coded algorithms.

VIII. CONCLUSIONS AND FUTURE WORK
An approach has been presented to automatically verify

design pattern instances, based on which the prototype tool
SparT-ETA has been evaluated and compared with another
dynamic approach. The evaluation results support its accuracy
and time performance in improving existing approaches. The
analysis of evaluation results in Section IV-A indicates the future
work mainly in three aspects. First, in cases that DP instances act
similarly but with different intents (RS1), one improvement
direction is to exploit semantic and linguistic aspects integrating
multisource information from code comments, documentation,
and online resources. Second, the test case generator can be
enhanced based on the assessment of the feasibility to simulate
user operations in typical application scenarios such as drawing
(RS3). Third, to support emerging design patterns (RS4), the
knowledge repository can be extended based on the investigation
of how widely these patterns are approved by the development
community.

ACKNOWLEDGEMENT
We would like to thank the reviewers’ insightful suggestions

which helped to improve this paper. We especially thank the
generous help of Prof. Nikolaos Tsantalis
(nikolaos.tsantalis@concordia.ca), Prof. He Jiang
(jianghe@dlut.edu.cn), Prof. Li Li (li.li@monash.edu), and an
anonymous researcher during the research and writing. This
work was supported partially by the National Key R&D Program
of China under Grant No. 2018YFB1003902, the National
Natural Science Foundation of China under Grant No.
61572126, No. 61872078 and No. 61402103.

305

REFERENCES
[1] Y. G. Gueheneuc and G. Antoniol, “Demima: A multilayered approach for

design pattern identification,” IEEE Transactions on Software
Engineering, vol. 34, no. 5, pp. 667–684, 2008.

[2] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis,
“Design pattern detection using similarity scoring,” IEEE Transactions on
Software Engineering, vol. 32, no. 11, pp. 896–909, 2006.

[3] C. G. Andrea De Lucia, Vincenzo Deufemia and M. Risi, “Detecting the
behavior of design patterns through model checking and dynamic
analysis,” ACM Transactions on Software Engineering and Methodology,
vol. 26, no. 4, pp. 1–41, 2018.

[4] D. Q. Hou, “Using structural constraints to specify and check design intent
in source code,” in Proceedings - IEEE International Conference on
Software Maintenance. Los Alamitos: IEEE Computer Society, 2006, pp.
343–346.

[5] X. Liu, L. Huang, C. Li, and V. Ng, “Linking source code to untangled
change intents,” in Proceedings-IEEE International Conference on
Software Maintenance, 2018, pp. 393–403.

[6] B. B. Mayvan, A. Rasoolzadegan, and Z. G. Yazdi, “The state of the art
on design patterns: A systematic mapping of the literature,” Journal of
Systems and Software, vol. 125, pp. 93–118, 2017.

[7] B. B. Mayvan and A. Rasoolzadegan, “Design pattern detection based on
the graph theory,” Knowledge-Based Systems, vol. 120, pp. 211–225,
2017.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[9] V. E. Zafeiris, S. H. Poulias, N. A. Diamantidis, and E. A. Giakoumakis,
“Automated refactoring of super-class method invocations to the Template
Method design pattern,” Information and Software Technology, vol. 82,
pp. 19–35, 2017.

[10] G. Rasool and P. Mäder, “A customizable approach to design patterns
recognition based on feature types,” Arabian Journal for Science and
Engineering, vol. 39, no. 12, pp. 8851–8873, 2014.

[11] M. L. Bernardi, M. Cimitile, and G. Di Lucca, “Design patterns detection
using a DSL-driven graph matching approach,” Journal of Software-
evolution and Process, vol. 26, no. 12, pp. 1233–1266, 2014.

[12] J. Dong, Y. Zhao, and T. Peng, “A review of design pattern mining
techniques,” International Journal of Software Engineering and
Knowledge Engineering, vol. 19, no. 6, pp. 823–855, 2009.

[13] A. De Lucia, V. Deufemia, C. Gravino, and M. Risi, “Design pattern
recovery through visual language parsing and source code analysis,”
Journal of Systems and Software, vol. 82, no. 7, pp. 1177–1193, 2009.

[14] M. Zanoni, F. Arcelli Fontana, and F. Stella, “On applying machine
learning techniques for design pattern detection,” Journal of Systems and
Software, vol. 103, pp. 102–117, 2015.

[15] H. Y. Huang, S. S. Zhang, J. Cao, and Y. H. Duan, “A practical pattern
recovery approach based on both structural and behavioral analysis,”
Journal of Systems and Software, vol. 75, no. 1-2, pp. 69–87, 2005.

[16] I. Issaoui, N. Bouassida, and H. Ben-Abdallah, “Using metric-based
filtering to improve design pattern detection approaches,” Innovations in
Systems and Software Engineering, vol. 11, no. 1, pp. 39–53, 2015.

[17] A. Alnusair, T. Zhao, and G. Yan, “Rule-based detection of design
patterns in program code,” International Journal on Software Tools for
Technology Transfer, vol. 16, no. 3, pp. 315–334, 2014.

[18] R. Xiong and B. Li, “Accurate design pattern detection based on idiomatic
implementation matching in java language context,” in 2019 IEEE 26th
International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2019, pp. 163–174.

[19] A. De Lucia, V. Deufemia, C. Gravino, and M. Risi, “An eclipse plug-in
for the detection of design pattern instances through static and dynamic
analysis,” in Proceedings - IEEE International Conference on Software
Maintenance. New York: IEEE, 2010.

[20] ——, “Improving behavioral design pattern detection through model
checking,” in European Conference on Software Maintenance and
Reengineering. Los Alamitos: IEEE Computer Society, 2010, pp. 176–
185.

[21] S. Hayashi, J. Katada, R. Sakamoto, T. Kobayashi, and M. Saeki, “Design
pattern detection by using meta patterns,” IEICE Transactions on
Information and Systems, vol. E91D, no. 4, pp. 933–944, 2008.

[22] F. Arcelli, F. Perin, C. Raibulet, and S. Ravani, “Jadept: Dynamic analysis
for behavioral design pattern detection.” Setubal: Insticc-Inst Syst
Technologies Information Control & Communication, 2009, pp. 95–106.

[23] A. De Lucia, V. Deufemia, C. Gravino, and M. Risi, “Towards
automating dynamic analysis for behavioral design pattern detection,”
2015 31ST International Conference on Software Maintenance and
Evolution (ICSME) Proceedings, pp. 161–170, 2015.

[24] N. Pettersson, “Measuring precision for static and dynamic design pattern
recognition as a function of coverage.” St. Louis, MO, United states:
Association for Computing Machinery, Inc, 2005.

[25] H. Lei and K. Sartipi, “Dynamic analysis and design pattern detection in
java programs,” in Twentieth International Conference on Software
Engineering & Knowledge Engineering, 2008.

[26] S. J. Metsker and W. C. Wake, Design Patterns in Java. Boston, MA,
USA: Pearson Education, Inc., 2006.

[27] H. Li, S. Li, J. Sun, Z. Xing, X. Peng, M. Liu, and X. Zhao, “Improving
api caveats accessibility by mining api caveats knowledge graph,” in 2018
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2018.

[28] S. J. Metsker and W. C. Wake, “Source Code of the Book "Design Patterns
in Java",” https://xp123.com/oozinoz/designpatternsinjava.htm, accessed:
2019-02-10.

[29] V. Sarcar, “Source Code of the Book "Java Design Patterns: A Tour with
23 Gang of Four Design Patterns in Java",” https://github.com/apress/-
java-design-patterns, accessed: 2019-02-10.

[30] ——, Java Design Patterns: A Tour with 23 Gang of Four Design Patterns
in Java. New York, NY, USA: Apress Media, LLC, 2016.

[31] World Wide Web Consortium, “SPARQL 1.1 Update,” https://-
www.w3.org/TR/sparql11-update, 2013.

[32] Renhao Xiong, “Online Appendixes and Data Package for: Distinguishing
Similar Design Patterns Instances through Temporal Behavior Analysis,”
https://github.com/Megre/Dataset4SparT-ETA, accessed: 2019-10-22.

[33] Oracle Co., Ltd., “JVM Tool Interface,” https://docs.oracle.com/javase/-
9/docs/specs/jvmti.html, accessed: 2019-02-12.

[34] ——, “JNI Types and Data Structures,” https://docs.oracle.com/javase/8/-
docs/technotes/guides/jni/spec/types.html, accessed: 2019-02-10.

[35] ——, “Java Virtual Machine Specification - Loading, Linking, and
Initializing,” https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-
5.html, accessed: 2019-02-07.

[36] J. F. Allen, “Maintaining knowledge about temporal intervals,” Readings
in Qualitative Reasoning About Physical Systems, vol. 26, no. 11, pp.
361–372, 1990.

[37] A. Alessandro and F. Enrico, “Chapter 12 – temporal description logics,”
Foundations of Artificial Intelligence, vol. 1, pp. 375–388, 2005.

[38] V. R. Basili, G. Caldiera, and H. D. Rombach, “Goal question metric
paradigm,” Encyclopedia of Software Engineering, 1994.

[39] H. Lee, H. Youn, and E. Lee, “Automatic detection of design pattern for
reverse engineering.” Los Alamitos: IEEE Computer Society, 2007, pp.
577–583.

[40] F. Arcelli, F. Perin, C. Raibulet, and S. Ravani, “Design pattern detection
in java systems: A dynamic analysis based approach,” in Communications
in Computer and Information Science. Berlin: Springer-Verlag Berlin,
2010, vol. 69, pp. 163–179.

[41] D. Heuzeroth, T. Holl, G. Hogstrom, and W. Lowe, “Automatic design
pattern detection,” in International Workshop on Program
Comprehension. Los Alamitos: IEEE Computer Society, 2003, pp. 94–
103.

[42] D. Heuzeroth, S. Mandel, and W. Lowe, “Generating design pattern
detectors from pattern specifications,” pp. 245–248, 2003, 18th IEEE
International Conference on Automated Software Engineering, Montreal,
Canada, Oct 06-10, 2003.

[43] C. Sammut and G. I. Webb, Encyclopedia of machine learning. Springer
Science & Business Media, 2011.

306

[44] D. Chicco, “Ten quick tips for machine learning in computational
biology,” Biodata Mining, vol. 10, no. 1, p. 35, 2017.

[45] Apache Software Foundation, “Jena Ontology API,” http://-
jena.apache.org/documentation/ontology, accessed: 2018-06-10.

[46] Oracle, “Eclipse Java development tools (JDT),” http://www.eclipse.org/-
jdt, accessed: 2018-08-01.

[47] Renhao Xiong, “The Online Version of SparT,” http://www.spart.group,
accessed: 2018-07-10.

[48] D. Yu, Y. Zhang, and Z. Chen, “A comprehensive approach to the
recovery of design pattern instances based on sub-patterns and method
signatures,” Journal of Systems and Software, vol. 103, pp. 1–16, 2015.

[49] M. Esmaeilpour, V. Naderifar, and Z. Shukur, “Design pattern mining
using distributed learning automata and DNA sequence alignment,” PLOS
ONE, vol. 9, no. e1063139, 2014.

[50] M. Oruc, F. Akal, and H. Sever, “Detecting design patterns in object-
oriented design models by using a graph mining approach.” New York:
IEEE, 2016, pp. 115–121.

[51] S. Z. Yang, A. Manzer, and V. Tzerpos, “Measuring the quality of design
pattern detection results.” New York: IEEE, 2015, pp. 53–62.

[52] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Research state of
the art on gof design patterns: A mapping study,” Journal of Systems and
Software, vol. 86, no. 7, pp. 1945–1964, 2013.

[53] G. Rasool, P. Maeder, and I. Philippow, “Evaluation of design pattern
recovery tools,” in Procedia Computer Science. Amsterdam: Elsevier
Science BV, 2011, vol. 3, pp. 813–819.

[54] J. Dong, Y. Zhao, and Y. Sun, “A Matrix-Based Approach to Recovering
Design Patterns,” IEEE Transactions on Systems Man and Cybernetics
Part A-Systems and Humans, vol. 39, no. 6, pp. 1271–1282, 2009.

[55] Y. Wang, H. Guo, H. Liu, and A. Abraham, “A fuzzy matching approach
for design pattern mining,” Journal of Intelligent & Fuzzy Systems,
vol. 23, no. 2-3, pp. 53–60, 2012.

[56] H. Thaller, L. Linsbauer, and A. Egyed, “Feature maps: A comprehensible
software representation for design pattern detection,” 2019, pp. 207–217,
26th IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER).

[57] S. Alhusain, S. Coupland, R. John, and M. Kavanagh, “Towards machine
learning based design pattern recognition.” New York: IEEE, 2013, pp.
244–251.

[58] S. Hussain, J. Keung, A. A. Khan, A. Ahmad, S. Cuomo, F. Piccialli,
G. Jeon, and A. Akhunzada, “Implications of deep learning for the
automation of design patterns organization,” Journal of Parallel and
Distributed Computing, vol. 117, pp. 256–266, 2018.

[59] J. Dong, D. S. Lad, and Y. Zhao, “Dp-miner: Design pattern discovery
using matrix.” Los Alamitos: IEEE Computer Society, 2007, pp. 371–380.

[60] B. Di Martino and A. Esposito, “A rule-based procedure for automatic
recognition of design patterns in UML diagrams,” Software-Practice &
Experience, vol. 46, no. 7, pp. 983–1007, 2016.

[61] A. Pande, M. Gupta, and A. K. Tripathi, “A new approach for detecting
design patterns by graph decomposition and graph isomorphism,” in
Communications in Computer and Information Science. Berlin: Springer-
Verlag Berlin, 2010, vol. 95, pp. 108–119.

[62] F. Arcelli and L. Cristina, “Enhancing software evolution through design
pattern detection.” Los Alamitos: IEEE Computer Society, 2007, pp. 7–
14, 3rd International IEEE Workshop on Software Evolvability.

[63] S. Uchiyama, H. Washizaki, Y. Fukazawa, and A. Kubo, “Design pattern
detection using software metrics and machine learning,” vol. 708.
Oldenburg, Germany: CEUR-WS, 2011, pp. 38–47.

[64] N. Bouassida and H. Ben-Abdallah, “A new approach for pattern problem
detection,” in Lecture Notes in Computer Science. Berlin: Springer-Verlag
Berlin, 2010, vol. 6051, pp. 150–164.

[65] Oracle Co., Ltd., “Eclipse Test and Performance Tools Platform,” https://-
wiki.eclipse.org/TPTP, accessed: 2019-08-11.

[66] ——, “Java Platform Debugger Architecture,” https://docs.oracle.com/-
javase/1.5.0/docs/guide/jpda/architecture.html, accessed: 2019-08-11.

[67] H. Lee, H. Youn, and E. Lee, “A design pattern detection technique that
aids reverse engineering,” International Journal of Security and its
Applications, vol. 2, no. 1, pp. 1–12, 2008.

[68] Oracle Co., Ltd., “The JVM Tool Interface (JVM TI): How VM Agents
Work,” https://www.oracle.com/technetwork/articles/javase/index-
140680.html, accessed: 2019-08-11.

[69] heuzeroth, mtrifu, and tgutzmann, “The Recoder Framework,” https://-
sourceforge.net/projects/recoder/, accessed: 2019-08-11.

307

	Distinguishing similar design pattern instances through temporal behavior analysis
	Citation

	Distinguishing Similar Design Pattern Instances through Temporal Behavior Analysis

