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SmartFuzz: An Automated Smart Fuzzing Approach
for Testing SmartThings Apps

Lwin Khin Shar, Ta Nguyen Binh Duong
Lingxiao Jiang, David Lo
Singapore Management University
{lkshar, donta, Ixjiang, davidlo} @smu.edu.sg

Abstract—As 10T ecosystem has been fast-growing recently,
there have been various security concerns of this new computing
paradigm. Malicious IoT apps gaining access to IoT devices
and capabilities to execute sensitive operations (sinks), e.g.,
controlling door locks and switches, may cause serious security
and safety issues. Unlike traditional mobile/web apps, IoT apps
highly interact with a wide variety of physical IoT devices and
respond to environmental events, in addition to user inputs. It is
therefore important to conduct comprehensive testing of IoT apps
to identify possible anomalous behaviours. On the other hand, it
is also important to optimize the number of test cases generated,
considering that there may be many possible ways in which apps,
devices, environmental events, and user inputs interact. Existing
works investigating security in IoT apps have been using ad-hoc
testing approaches, in which test cases are usually designed to
test some particular aspects of apps or devices.

In this work, we develop an automated, smart fuzzing ap-
proach, called SmartFuzz, for testing Samsung SmartThings
IoT apps. More specifically, SmartFuzz combines combinatorial
test generation with light-weight program analysis, and aims
to improve test coverage of sinks in an efficient, automated
manner. We have implemented and evaluated our approach using
a publicly available dataset of 60 SmartApps. The results have
demonstrated the effectiveness and efficiency of SmartFuzz. In
particular, SmartFuzz improved coverage of sinks by 184 %, while
generating and executing 20% fewer test cases as compared to
ad-hoc testing.

Keywords-fuzzing; smart apps; IoT security; SmartThings;

I. INTRODUCTION

Despite the increasing adoption of Internet of Things (IoT),
one major critic of this new computing paradigm is that
existing platforms lack techniques and tools for adequate
security analyses. Zhou et al. [I] reported unique features
of IoT that make its security analysis challenging. Among
them, two features are of concerns to this work, which are
interdependence and diversity. IoT apps do not function like
traditional mobile or web apps: they highly interact with
physical smart devices and respond to various events such as
door locked/unlocked, time events, user inputs, and user events
such as location home/away. There are diverse IoT devices
with various capabilities, and an app may be granted access
to the capabilities of one or more devices.

Malicious IoT apps gaining access to smart devices could
cause serious harms that are different from those caused
by traditional mobile apps. For example, a malicious light
controller app can leak out information about the absence of
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people at home by manipulating light intensity, and a malicious
door lock app can open the door for thieves [2].

Due to high inter-dependency among IoT apps, users, and
devices, there may be several possible kinds of interactions
among these entities, leading to various possibilities of safe
and unsafe behaviors. To detect anomalous (possibly unsafe)
behaviours of IoT apps, static analysis approaches such as
[21-[5]], as well as dynamic analysis and runtime monitoring
approaches such as [6]-[9] have been proposed. But these
approaches focus on generating events randomly in an attempt
to trigger sensitive operations as much as possible. There is
yet to be an efficient and effective test generation approach,
which optimally generates test cases taking into account
combinations and sequences of events, to systematically deal
with inter-dependencies and diverse nature of IoT ecosys-
tem [10]. On the other hand, it is known that combinatorial
test generation strategy [11] can be used to systematically
test software systems to observe possible interactions among
several parameters; but it has not been specifically developed
for testing IoT apps yet.

Motivation. In this paper, we develop an automated test-
ing approach, called SmartFuzz, for effective and efficient
testing of IoT apps, considering the interplay between app,
events, and user inputs. We aim to achieve effectiveness at
exercising as many app behaviors as possible. We also aim to
achieve efficiency in terms of test generation. In literature, test
generation efficiency is considered one of the central aspects
in building and defining test strategy [12], [13]]. This work
complements prior research investigating security in IoT apps
in terms of systematically generating test cases that trigger
sensitive operations.

Approach. While our approach has general validity, we
limit our implementation and evaluation in this paper to
IoT apps built for Samsung’s SmartThings platform, which
is one of the more mature platforms with a growing set
of apps and users. SmartFuzz applies light-weight program
analysis techniques: static analysis of source code is first
used to identify sensitive operations (sinks), capabilities re-
quested, input parameters and their data types in the app;
code instrumentation is then performed to track coverage of
the sinks and to simulate certain events via endpoints; and
dynamic analysis is used to extract possible values of the
parameters, and to track the coverage of sinks during test



execution. Next, Selenium-based automatic web app testing
is conducted on instrumented SmartApps. To systematically
treat inter-dependency and diversity nature of IoT ecosystem,
SmartFuzz applies a novel combinatorial testing method that
seamlessly combines pairwise test generation, permutation-
based test generation, and all combinations-based test gen-
eration techniques, with randomization. Information extracted
by program analysis is used to generate valid inputs and track
coverage of sinks. As output, SmartFuzz produces sequences
of generated events and corresponding actions performed by
the app, to be reviewed by the tester for possible anomalies.

Contributions. This paper makes the following specific
contributions:

o We propose a novel approach, called smart fuzzing, for
automated testing of IoT apps built for SmartThings
platform. The approach consists of light-weight pro-
gram analysis, combinatorial test case generation, and
Selenium-based automatic web app testing.

o We implement the smart fuzzing approach, and automate
the testing of SmartApps.

o We evaluate SmartFuzz on 60 apps obtained from Smart-
Things official app market [[14] and from a widely-
used benchmark [15]]. The evaluation demonstrates the
effectiveness and efficiency of SmartFuzz. It improved
coverage of sinks by 184% and produced 20% fewer test
cases compared to an ad-hoc testing approach.

We make the following artifacts publicly available at [[16]:
our app dataset, sink APIs set, random fuzzing tool, and the
lightweight version of SmartFuzz tool.

II. BACKGROUND AND RELATED WORK

A. SmartThings platform
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Fig. 1: Architecture of the SmartThings Platform

Mobile App

In this paper, we focus on IoT apps in the Samsung
SmartThings platform, called SmartApps. Z| shows the
architecture of the SmartThings platform. It has the following
main components: a hub, a cloud backend system, and a smart-
phone app. The hub connects wirelessly (e.g. via protocols
such as WiFi) to the physical smart devices, e.g. sensors,
locks, lights, etc. The hub enables communication between
these devices, the smartphone app, and the cloud backend. The

'We note that Samsung has just released a new generation of SmartApps.
This paper considers only classic SmartApps, as there have not been many
new generation apps available yet and classic apps still run in SmartThings
platform.

smartphone app enables the installations and configurations of
various SmartApps, which run on the cloud and control the
physical smart devices.

SmartApps are basically Groovy scripts developed in the
web-based SmartThings IDEﬂ These apps run in a sand-
boxed environment hosted on SmartThings cloud backend.
A SmartApp may expose web service endpoints to handle
external HTTP requests; such endpoints are protected using
OAuth2 authentication. This allows external apps to retrieve
information or control physical devices via web API calls. It is
also possible to do dynamic method invocation, i.e., methods
in SmartApps can be invoked using the methods’ names.

A typical SmartApp is structured as follows: 1) a definition
section to provide the app’s metadata such as name and
description; 2) a preference section to define what informa-
tion the app would need from users. When users install a
SmartApp, they need to explicitly select and authorize the
particular devices that the app can control; 3) a pre-defined
callback section containing methods to be called during app
installation, update, uninstallation, etc.; and 4) event listeners
and handlers to specify the events the SmartApp listens to and
the actions it executes upon these events’ occurrences.

Device Handlers are software wrappers representing phys-
ical smart devices. They are responsible for the communica-
tion between actual devices and SmartApps. Device-specific
messages are sent to device handlers, which output stan-
dardized SmartThings events. Device handlers run on the
cloud backend, also in a Groovy sandbox. A SmartApp can
invoke method calls via device handlers to control the physical
devices, e.g., to turn on the light; or it can subscribe to events
generated by device handlers, e.g., movement detected. These
communications are subjected to permission checking, called
capability checks in SmartThings.

Capabilities specify available commands and attributes of a
SmartThings physical device that can be used by SmartApps.
Commands are basically methods for controlling the device.
Attributes represent device states such as switch is ‘on’ or
‘off’. A device may support multiple capabilities. This capa-
bility system allows developers to build SmartApps that works
with any device, as long as the device supports the capabilities

requested. [Table I| lists example capabilities.

TABLE I: Examples of capabilities

Capability Commands Attributes
lock lock(), unlock() lock
alarm siren(), strobe(), off(), both()  alarm
switch on(), off() switch
switchLevel setLevel() level
motionSensor motion

B. SmartApps security

In this section, we highlight recent research in security
analyses for SmartApps. In this aspect, many approaches
including static [2]], [4], [3], [17], [18]] and dynamic analysis
[6l, [7, [9] have been considered. In the following, we provide
a brief discussion of notable approaches.

Zhttps://graph.api.smartthings.com/



Static analyses. Fernandes et al. [2] pioneered the use of
program analysis to detect vulnerabilities in IoT apps. The
work paved the way for subsequent research to develop further
program analysis techniques for detecting security and privacy
problems in IoT apps. SmartAuth [18|] considered IoT app
authorization issues. They used static analysis and natural
language processing to extract security-relevant information
from an IoT app’s description, code and annotations. Saint
[3] and Soteria [4] developed static analysis techniques to
track information flows in SmartThings IoT apps; and detect
whether the flows violate the safety, security, privacy or
functionality properties defined by users. They implement
information flow tracking on the abstract syntax tree of the
app to generate an intermediate representation code where
information sources and sinks (security-sensitive operations)
are identified. Taint-Things [5] addressed similar problems
but implemented information flow tracking by computing
dependency chains (dependencies between sources and sinks)
directly from source code via inductive transformation, which
improved analysis performance.

Dynamic analyses. FlowFence [6] is a runtime monitoring
system that enforces user-defined information flow policies
for IoT apps to protect sensitive data. ContexIoT [8] is a
permission-based system that provides contextual integrity for
IoT apps at runtime. ProvThings [9] logs information flows
at runtime so that users can verify provenance of commands
when IoT devices exhibit unexpected behaviours, e.g., un-
locking the smart door while nobody is at home. IoTGuard
[7]] monitors the usages of sensitive resources by IoT apps at
runtime and guards against insecure usages by verifying them
against user-defined security policies.

Despite these recent advances in the security analysis of
IoT apps, Zhou et al. [1]] noted that further improvements are
needed for better applicability, scalability, or effectiveness. Ce-
lik et al. [[10]] reported that current security analysis approaches
for IoT apps would be much improved if more effective test
generation techniques could be used. We note that the lack
of effective test generation tools has been preventing current
dynamic analyses of IoT apps from effectively capturing the
interplay between various entities in the IoT ecosystem. Unlike
traditional mobile apps, the inter-dependency and diversity
nature of IoT apps make the task of effective test generation
daunting. These findings motivate the research in this paper.

C. Automated test generation

Dynamic analysis of SmartApps requires generation of
events and inputs from users or devices to trigger the cor-
responding actions implemented in the apps. Automated event
and input generation for testing is challenging since Smar-
tApps may control various physical devices and each of them
may have a large set of internal states. To increase code
coverage and detect possible anomalous behaviours of the app,
a test generation tool may need to generate a huge number of
test cases. This might increase the test execution time, and
make the testing process less scalable.

Fuzzing is a well-known technique which has been used
extensively in software testing to increase code coverage.
Fuzzing runs the app with invalid or random inputs and events.
The app is then monitored for any anomalous behaviours such
as crashing, memory leaking, etc. For example, AFL [19] is a
popular fuzzer employing code instrumentation and genetic
algorithms to automatically generate good test cases of a
given program. Android Monkey [20] can generate random
test cases covering user and system inputs. loTFuzzer [21] is
another tool using automatic fuzzing to find memory corrup-
tion vulnerabilities in physical IoT devices via probing their
accompanied mobile apps. Our work targets a different and
important component in the IoT ecosystem, i.e., SmartApps
which run on the cloud backend and control the IoT devices
from there. IoTFuzzer’s approach does not work with IoT
devices which use cloud-based communication. To improve
the quality of auto-generated test cases, heuristics such as
genetic algorithms have been used for avoiding repeated code
paths and increasing code coverage effectively [19], [22],
[23]. To our knowledge, there is no automated test case
generation approach for effective and efficient coverage of
sensitive operations in SmartApps, or IoT apps in general.

III. APPROACH

Our approach consists of five main steps, as shown in
Figure 2] An overview is given below:

A. Static Analysis: SmartFuzz initially performs static analysis
on the source code (Groovy) of SmartApp to extract
information such as capabilities requested by the app, user
inputs, sinks, etc. and to perform code instrumentation,
which assist with test generation.

B. App Deployment: Instrumented app is then deployed on
SmartThings’ web-based simulator IDE.

C. Dynamic Analysis: SmartFuzz launches the SmartApp (in
simulator IDE) and performs dynamic analysis on the
app interface to extract possible values with respect to
capabilities and user inputs.

D. Test Generation: SmartFuzz generates test cases using
combinatorial testing strategy based on the information
extracted in static and dynamic analysis steps.

E. Test Execution: SmartFuzz executes test cases and produces
test reports.

The static analysis part is implemented based on an existing
static analysis tool for SmartApps, called ContexIoT [8]]. Test
execution is done using Selenium tool [24]. Dynamic analysis
and test generation are implemented in Python.

Figure 3| shows our running example. It shows partial
source code of a SmartApp. The app interacts with two
types of devices — motion sensors (Line 2-4) and switches
(Line 8-10) — and responds to state change events of those
devices (Line 21-23). It also responds to user location change
event (Line 24) and to time event (Line 5-7). It contains an
anomalous behavior that sends device identifier information to
a phone number predefined in the app (Line 28, 38, and 41).
The following explains the detail of the approach, using our
running example.
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Fig. 2: Work flow of the SmartFuzz Approach

A. Static analysis

SmartFuzz performs static analysis on the inter-procedural
control flow graph (ICFG) from program entry points to the
sinks. We construct ICFG using ContexIoT tool [8[], which
is designed to handle the trigger-action programming model
of SmartThings and models program entry points that can
potentially be triggered by runtime events.

1) Extracting parameters: The goal here is to identify
parameters that need to be exercised to observe possible app
behaviors and be able to generate valid values. SmartFuzz
traverses through the nodes in ICFG of a given app to
extract requested capabilities, user preferences, and endpoints.
Various events and device states can be typically simulated by
manipulating those parameters. More specifically, SmartFuzz
analyzes preference section to extract requested capabilities
(e.g. capability.motionSensor) and user preferences.
It also extracts endpoints specified in the app. Requested
capabilities specify possible device commands and attributes;
user preferences typically specify user or environmental con-
ditions; and endpoints specify external events. For those
parameters, SmartFuzz determines corresponding data types,
e.g. capability, endpoint, enum, text, number, decimal, phone,
etc. The output of this static analysis step is tuples of the
form (param, dtype). For example, SmartFuzz extracts the
tuples from our example app in as shown in the first
and second columns of [Table 11}

In addition, SmartFuzz analyzes expressions (assignments,
conditions, and method invocations) in the whole source code
and extracts literal values used in those expressions. Those
values are placed in a pool, which are used by SmartFuzz’s
test generator when randomization is applied (explained in
Section [[II-D). For the example in one of the
extracted pool values is "Yes" corresponding to the condition
expression in Line 39.

2) Identifying sinks: Following [8], we define sinks of
SmartApps as API calls that perform security- or safety-critical
operations. We categorize sinks into five different types:

preferences {
section ("When there is no motion ...") {
input "motions", "capability.motionSensor"
4 }
5 section("After this time of day") {
6 input "timeOfDay", "time"
7 }
8 section ("When these switches are all off") {
9 input "switches", "capability.switch"
10 }
11 section("Change to this mode") {
12 input "newMode", "mode"
13 }
14 section( "Notifications" ) {
15 input "sendPushMsg", "enum"
16 input "phone", "phone"
17 }
18 }

20 def installed() {
21 subscribe (motions,
activeHandler)
subscribe (motions, "motion.inactive",
inactiveHandler)
subscribe (switches, "switch.off",offHandler)
24 subscribe (location, modeChangeHandler)

}

"motion.active",

27 def offHandler (evt) {
28 state.msg = evt.devicelId // sensitive data

29 if (correctMode () && correctTime()) {
30 if (noMotions () && switchesOff())
31 takeActions ()

}
}

private takeActions () {
36 def msg = "Changed the mode to $newMode"
37 setLocationMode (newMode)

38 def phone = "22222222" // attacker’s number

39 if (sendPushMsg == "Yes")
0 sendPush (msqg)
41 sendSms (phone, state.msqg)

42 }

Fig. 3: Partial source code (simplified) of an anomalous Smar-
tApp. Source code of some methods (e.g. correctMode) are
not shown for brevity but they are self-explanatory.

i. Cap: capability-protected APIs

ii. Int: APIs that provide Internet services
iii. Msg: APIs that provide messaging services

iv. Refl: Dynamic method invocations

v. Loc: APIs that control user location information

Capability-protected APIs can be used to manipulate de-
vice behaviors and states. Presently, there are 135 capability-
protected APIs supported by SmartThings [25]. Internet, mes-
saging, and location APIs can be used to leak sensitive
data or invoke covert behaviors. Dynamic method invocations
are dangerous because they can cause covert behaviors. For
example, malware can use setLocationMode to disarm
the house by changing the mode to “Home”, use httpPost
to leak sensitive data, and use sendPush to to send phishing
messages to the victim’s contacts. We collected 20 such APIs.
Altogether, our sink API set contains 155 APIs.

For a given SmartApp under test, these sinks are identi-



fied and recorded by SmartFuzz. For example, three sinks
— setLocationMode, sendPush, sendSms — can be
identified in takeActions method in

3) Code instrumentation: Code instrumentation is done on
the source code to enable dynamic analysis and test generation.
There are two objectives for performing code instrumentation:

o To send executed sink information to backend server.
o To enable simulation of user events by our test generator.

Regarding the first objective, SmartFuzz instruments code in
methods containing sinks in such a way that the executed sink
information is sent to our backend server. This information is
used by SmartFuzz dynamically to record the information of
sinks that are executed, and to compute the coverage of sinks.

For example, regarding the three sinks identified in
SmartFuzz instruments code (highlighted in gray) as follows:

I private takeActions () {
2 def data = [:]
def msg = "Changed the mode to $newMode"
data["sinkl"] = "setLocationMode $newMode"
setLocationMode (newMode)
6 def phone = "22222222" // attacker’s number
7 if (sendPushMsg == "Yes") {
8 data["sink2"]
9 sendPush (msqg)
10 }
11 data["sink3"] = "sendSms S$phone $state.msg"
12 sendSms (phone, state.msqg)
13 sendRequest (data)

= "sendPush $msg"

As shown in the listing above, the code instrumentation
ensures that the sink information is recorded in data and is
later sent to the backend server via sendRequest method,
which is also injected by SmartFuzz (not shown here).

Regarding the second objective, SmartFuzz injects web ser-
vice endpoints which can trigger user events such as location
mode change and app touch. An example is shown below:

mappings {
path("/location/:command") {
action: [ PUT: "location" ]
4 }
5}
6 void location() {
location.setMode (params.command)
s}

B. App deployment

Once the app has been instrumented, the tester is to deploy
the app in Samsung’s web-based IDE, for testing purposes.
This has to be done manually. Based on her/his domain
knowledge, the tester is to specify appropriate device handlers
for the app and also to specify default or valid values for
other input parameters at the app interface to assist with test
generatior[} as shown in an example in

30ur test generator still functions well and will perform random value
selections or generate random values of valid data types, even when the tester
does not interact with the app interface.

When there is no motion on any of these sensors

Where?

Virtual Devices
motionSensors[1]
motionSensors[0]
motionSensors[2]

Physical Devices
vmultis_15
VMS_15

oo oam

After this time of day
Time?
11:23
When these switches are all off
Which?
switches[1]
switches[0]

Change to this mode

Mode?

Away A

Notifications

Send a push notification?
Yes

Send a Text Message?

11111111

Fig. 4: Interface of our running example app appearing in
Samsung’s web-based simulator IDE, in which the tester can
specify device handlers and default values

C. Dynamic analysis

Dynamic analysis complements static analysis and performs
two tasks. The first task is to identify possible values of the
parameters identified by static analysis. The second task is to
track the coverage of sinks during test execution.

Firstly, SmartFuzz uses Selenium’s web driver to automat-
ically launch the app in SmartThings simulator IDE. It then
performs dynamic analysis on the app’s installation interface
to extract possible values of the parameters as arrays. For ex-
ample, from the interface shown in[Figure 4] option values cor-
responding to various parameters and tester-provided default
values are extracted. Similarly, after the app has been installed,
possible device commands and attributes of capability-type
parameters, depending on specific device handlers selected
during the installation, become available and are extracted.

If there is no value (empty string) for a given parameter,
SmartFuzz automatically generates a default, valid value, ac-
cording to the data type of the parameter. There are various
ways to design and implement value generation process. In our
current implementation, we use certain heuristics, based on our
observations from a few samples of SmartApps, to produce
input values that are likely to trigger sinks. For example,
SmartFuzz generates current date and time for date- and time-
type parameters, a small random decimal value (e.g. 0.001)
for decimal-type parameters, a random number ranging from



-10 to 100 for number-type parameters, a random string, email,
URL, and phone number for string-, email-, URL-, and phone-
type parameters, respectively, etc.

The output of this dynamic analysis step is triples of
the form (param,dtype,values), complementing the
tuples extracted in static analysis. For our running example in
SmartFuzz extracts the triples as shown in
Note that location parameter corresponds to the endpoint
injected by SmartFuzz (see Section and its values are
predefined.

TABLE II: Information extracted by program analyses

param dtype values
motions[0] capability. ["active’,
motionSensor inactive’]
motions[1] capability. ["active’,
motionSensor inactive’]
timeOfDay time [711:23"]
switches[0] capability.switch ["on’,"off’]
switches[1] capability.switch ["on’,"off’]
newMode mode ["Home’, ’Away’]
sendPushMsg enum ["Yes’, ’"No’]
phone phone [11111111)
location endpoint ["Home’, ’Away’]

Secondly, during test execution, dynamic analysis identifies
input fields appearing in the app interface dynamically and
provides corresponding test inputs, which are generated by
the test generator, to the test execution module. It also ex-
tracts endpoint URL and OAuth token information from the
IDE, which are required for sending authorized web service
requests, to exercise endpoint parameters. When a test run is
completed, it computes the sinks covered by the test case.

D. Test generation

Our approach aims to observe possible interactions between
app, devices, environmental conditions, and user, which may
lead to sensitive operations. On the other hand, we also aim
to achieve efficiency in terms of the number of test cases gen-
erated. Since this is a combinatorial problem, intuitively our
test generation strategy adopts combinatorial testing method.
More specifically, we use a novel test generation strategy
combining pairwise method, permutation ordering method,
and all-combinations method. Pairwise method generates test
cases that cover all 2-way combinations of parameter values.
Permutation ordering method generate new test cases that
test all possible ordering of parameters, from the test cases
generated by pairwise method. All-combinations method ex-
haustively tests all possible combinations of parameter val-
ues. Pairwise testing method has been widely accepted and
used in industry as an effective and efficient way to detect
majority of software faults [11]], [26], [27]. However, Bach
and Shroeder [28|]] recommended to take the characteristics of
software systems into consideration when applying a testing
strategy. In our context, as discussed in SmartApps
highly interacts with devices, environmental conditions, and
user. There may be multiple devices involved and the app may
respond to several environmental conditions or user inputs.

Therefore, in some cases, particular ordering of parameters
or 3- or more-way combinations of values may be necessary
to observe interactions of parameters that exhibit anomalies.
Hence, considering the trade-offs between effectiveness and
efficiency, we first use pairwise method, followed by per-
mutation ordering method, and all-combinations method. In
addition, a pinch of randomization is applied to the test
cases generated, which produces random but valid values for
randomly selected parameters. Randomization is needed to
find potential parameter values which may be adequate to
triggering certain behaviors of the app (to escape local optima).

Algorithm (1| shows the pseudocode of SmartFuzz’s test
generation procedure. The procedure takes as input a set «
of sinks — methods that SmartFuzz aims to trigger. It also
takes as input a set © of triples (param, dtype,values);
each triple characterizes a parameter — name, data type, and
possible or default values. Note that both of these inputs are
obtained from static and dynamic analysis phases.

The procedure first executes pairwise test generation method
(Algorithm [T} Line 2-9), which produces Pairs. For each
test case in Pairs, it checks whether there is any param-
eter, which is not of enumeration (enum) data type. If it
is the case, the algorithm generates a different, valid value
(according to dtype information) for the parameter with
a certain probability. The value is either selected from the
pool of values with the same data type extracted in static
analysis step (Section or randomly generated (similar
to the approach used in Section [[lI-C). For example, regarding
the timeOfDay parameter, the tester provided a default
value 11:23’ as shown in Since there is only
one value corresponding to this parameter, in any test case,
timeOfDay’s initial test value would be 7 11 :23" ; but after
randomization (Algorithm I} Line 6), its value may be changed
to another time value, e.g. the current time the test is run. Next,
the procedure executes the test case.

After all the test cases in Pairs have been executed, it
generates a new set of test cases, Perms, using permutation
ordering method (Algorithm [T} Line 10). Perms have the
same parameter values as Pairs but they reflect all possible
orderings of the parameters. The same randomization process
explained above is applied and test cases are executed. After all
the test cases in Perms have been executed, it generates a new
set of test cases using all-combinations method (Algorithm [T}
Line 18). The same randomization process explained above
is applied and test cases are executed. At any point of the
procedure, the procedure terminates when all the sinks in «
have been triggered or when a timeout period has elapsed.

Note that we are aware that there are other state-of-the-art
test generation methods such as search-based software testing.
We chose combinatorial testing because it enables systematic
and efficient generation of test cases that observe interactions
among parameters.

E. Test execution

Test execution is automated via the deployed SmartApp
on the web-based simulator IDE. SmartFuzz uses Selenium’s



Algorithm 1: SmartFuzz test generation algorithm

Input: Set « of sinks
Input: Set © of triples of format: (param,dtype,values)
Output: Sequence ® of events and actions

1 initialization

2 Pairs +— Pairwise (©)

3 foreach Pair € Pairs do

4 foreach (param,dtype,val) € Pair do

5 if dtype # enum then

6 L Pair <~ Randomize (dtype, val)

7 Execute (Pair)

8 if isAllCovered (a) or isTimeout () then
9 L terminate program

10 Perms < Permute (Pairs)

11 foreach Perm € Perms do

12 foreach (param,dtype,val) € Perm do

13 if dtype # enum then

14 | Perm « Randomize (dtype, val)

15 Execute (Perm)
16 if isAllCovered (a) or isTimeout () then
17 L terminate program

18 Combs < AllCombs (O)

19 foreach Comb € Combs do

20 foreach (param,dtype,val) € Comb do

21 if dtype # enum then

22 L Comb <« Randomize (dtype, val)

23 Execute (Comb)
24 if isAllCovered (a) or isTimeout () then
25 L terminate program

web driver to automatically launch the app and exercise the
test inputs. For endpoint-type parameters, it exercises the test
inputs via web service requests. For other types of parameters,
SmartFuzz exercises them directly on the simulator IDE. Code
instrumentation ensures that the sink information executed
by the app are sent to our backend server, running with
ngrok [29]. As output, it produces sequences of events and
actions, to be reviewed by the tester for anomalies. To assist
with the review, based on the observations of anomalous apps
in IoTBench [15], SmartFuzz highlights three types of actions
that are potentially anomalous:

i. sending a message to a phone number or via Internet
ii. sending a message that contains a hyper-reference link
iii. dynamic method invocation

The first type of action could correspond to data leak; the
second type could correspond to adware; and the last type
could correspond to a malicious attackﬂ A sample test report

is shown in

When mode is Home, no motions, and switches are
off,

set mode to Away and

send SMS message "Nobody is at home!" to

22222222 (Potential data leak!)

Fig. 5: A Sample test report

4Automated anomaly detection is out of scope for this paper.

IV. EVALUATION

This section evaluates SmartFuzz in terms of the coverage
of sensitive operations that could lead to the discovery of
abnormalities in smart apps, and in terms of the number of test
cases generated. We also compare SmartFuzz with a random
fuzzing method. Further, we also provide a few case studies
to highlight the effectiveness and efficiency of SmartFuzz.
Specifically, we investigate the following research questions:

e RQI (Test coverage): Is SmartFuzz effective at exercising
sensitive operations in given SmartApps? Does it perform
better than a random fuzzing approach?

o RQ?2 (Test efficiency): Is SmartFuzz efficient at generating
test cases? Does it generate fewer test cases compared to
a random fuzzing approach?

The random fuzzing method we apply resembles the ones
adopted by state-of-the-art approachesE] that analyze security
of SmartApps [6]-[9]. It randomly generates events to trigger
event handler methods in the apps. We will refer to this method
as RandFuzz. The timeout for testing each app is set at 2 hours
for both SmartFuzz and RandFuzz. The tools are instrumented
to log the analysis time.

The experiments are conducted on a machine equipped with
an Intel Core i7 2.6 GHz processor, 16 GB RAM, running
Apple Mac OS X 10.15.2.

A. Dataset

We randomly selected SmartApps from SmartThings’ of-
ficial app market [[14] and third-party SmartApps from IoT-
Bench [15], a benchmark created for evalauting security
analysis approaches of IoT apps [3]. We found that some of
the selected apps require actual physical devices to test or
specific device handlers that are not available in SmartThings’
simulator IDE. We replaced them with other apps and made
sure that our final dataset includes 60 SmartApps in total — 30
official apps and 30 third-party apps. Some of those third-party
apps are specifically crafted by the SainT team [3]] to include
anomalous behaviors, based on observations from real Smar-
tApps. The anomalous behaviors include leaking sensitive
data via Internet and messaging APIs, sending advertisement
messages (adware) to user, and abusing privileges (e.g. battery
status monitoring app issuing door unlock commands). Hence,
we further categorise third-party apps into (a) third-party -
benign apps and (b) third-party - anomalous apps.

[Table T11] shows the statistics of the dataset. Column ‘Nr.
shows the total number of apps belonging to each app category.
Columns ‘Cap’ - ‘Loc’ show the total number of sinks corre-
sponding to each sink category (Section [[II-A2), respectively.
The last column sums the total number of sinks.

B. Result

Table TV| and [Table V]| present the summary of the results
of SmartFuzz and RandFuzz on testing the 60 SmartApps,

respectively. The tables show the total, mean, median, standard

5The implementations of the test generators used by those approaches are
not available to us.



TABLE III: Dataset Statistics

App Category Nr. Cap Int Msg Refl Loc Total Sinks

Official 30 42 0 34 0 4 80
Third Party - Benign 10 26 2 13 0 2 43
Third Party - Anomalous 20 52 7 36 2 14 111
Total 60 120 9 83 2 20 234

deviation statistics for each category of apps tested. In the
following, we compare SmartFuzz and RandFuzz based on
the overall total results (highlighted in bold) in the tables.

The results show that SmartFuzz was effective at triggering
sensitive operations in SmartApps. It was able to trigger most
of the sinks in the apps. In total, its coverage was 210 out of
234 sinks. Pairwise test cases covered 180 sinks; permutation
test cases covered 23 sinks and the remaining 7 sinks were
covered by all-combinations test cases. Hence, in general, we
can conclude that pairwise testing is sufficient to trigger most
of the sinks, and permutation and all-combinations testing
methods play a role in covering corner cases.

We can also observe from that SmartFuzz was
efficient in terms of the number of test cases generated.
Especially, the pairwise test generator was very efficient;
it covered 180 sinks with 433 test cases. The permutation
test generator covered 23 sinks with 403 test cases. The all
combinations test generator covered 7 sinks with 80 test cases.
Notice that there were not too many test cases generated by all
combinations test generator. This is because of the two hours
timeout threshold we set; after pairwise and permutation tests,
usually there is not much time left.

In comparison, as shown in[Table V| RandFuzz covered only
114 sinks and generated 1155 test cases overall. Therefore,
SmartFuzz improved sink coverage by 184% (210/114*100)
and generated 20% ((1155-916)/1155%100) fewer test cases
compared to RandFuzz. The number of sinks covered by
SmartFuzz was significantly more than that of RandFuzz
according to paired t-test (p value = .00005). The number of
test cases generated by SmartFuzz was significantly less than
that of RandFuzz according to paired t-test (p value = .05554).

Regarding third-party anomalous apps, SmartFuzz triggered
98 out of 111 sinks. Data leaks and other anomalous behaviors
were exhibited by our subject apps when some of those
sinks are triggered. Hence, it is essential that SmartFuzz
was effective at triggering those sinks, to assist the tester in
identifying anomalies.

Overall, the results answer our two research questions that
SmartFuzz is both effective and efficient. And it performs
significantly better than a random fuzzing approach.

C. Case Studies

In this section, we provide a few case studies that highlight
the usefulness of the combinatorial test generators applied by
SmartFuzz and its capability at exposing anomalous behaviors.
We also discuss the reasons why some of the sinks were
uncovered.

1) Usefulness of combinatorial test generators: We ob-
served that certain apps, especially anomalous ones, imple-
ment code in a way that require certain order of events to

trigger certain activities. For example, the following listing
shows part of the sequences of events and actions that were
observed during test case executions of a third-party anoma-
lous app called multiple_leakage_3.

1 Test_Case : X

event : switch[0] off
event location Away

i event : motion[0] inactive
event : motion[l] inactive

6 event : switch[1l] on
Test_Case : Y

s event : motion[l] active

9 event location Home

0 event switch[1l] off

11 event switch[0] off

2 event : motion[0] inactive

13 Test_Case : 2

14 event : location Home

15 event : motion[0] inactive

16 event : motion[l] inactive

17 event switch[0] off

18 event : switch[l] off

19 action : sendPush Goodnight! SmartThings
changed the mode to ’Away’

20 action : sendSms (111)-111-1111 The hub id:

d1295408-8cdb-49cf-a94c-e9576bed321e
»i  action : httpPost [uri:https://maliciousServer,
body: [condition:not home!!!]]
action : setLocationMode Away

This is in fact a data leak behavior, which is triggered
only after a particular sequence of events: location mode
‘Home’, all motions ‘inactive’, and all lights ‘off’. The app
legitimately sends the new location mode ‘away’ information
to the user; but it also includes additional code that leaks hub id
information to a predefined phone number (111-111-111)
and sends ‘user not home’ information to the attacker’s server.

Similarly, for  another anomalous app called
disabling-vacation-mode, only after a particular
sequence of events: vacation mode set (switch ‘on’), users
‘not present’ for a certain time threshold, location mode
‘sunrise/sunset’, then light ‘on/off” action was triggered.

For another anomalous app called drive-by-download,
only after a particular sequence of events: location mode
‘sunset’ and all users ‘not present’ for a certain time threshold,
the following adware behavior can be observed:

I action : sendPush Performing "Away" for you as
requested./nad:www.2.com

All these cases required pairwise combinations of values
and order of parameters.

In an anomalous app called call-by-reflection-2,
to observe a messaging activity that leaks the status of door
locks, user must be ‘present’, two user inputs — unlock and
spam — must be set to ‘Yes’, and one of the doors must be
at ‘locked’ state. This case required all-combination testing.

2) Uncovered Sinks: The reasons why some of the sinks
were not triggered by SmartFuzz or RandFuzz can be catego-
rized as follows:

i. Bug: deprecated API is used or there is logic error in the
app.



TABLE IV: Experimental results of SmartFuzz on testing 60 SmartApps

App Category Stats Params Pairs Perm Comb TotalTCs PairsCov PermCov CombCov TotalCov Uncov  Dur
Official Total 227 243 169 68 480 55 8 6 69 11 25.27
Mean 7.57 8.10 5.63 227 16.00 1.83 0.27 0.20 2.30 0.37 0.84
Median 7.00 4.00 0.00 0.00 5.00 1.50 0.00 0.00 2.00 0.00 0.56
Std Dev 3.81 10.76  11.78 12.04 21.44 1.46 0.83 0.55 1.51 0.67 0.78
Third Party Total 67 41 0 0 41 43 0 0 43 0 276
- Benign Mean 6.70 4.10 0.00 0.00 4.10 4.30 0.00 0.00 4.30 0.00 0.28
Median 5.50 4.00 0.00 0.00 4.00 2.50 0.00 0.00 2.50 0.00 0.12
Std Dev 442 2.96 0.00 0.00 2.96 4.55 0.00 0.00 4.55 0.00 0.38
Third Party Total 157 149 234 12 395 82 I5 I 98 13 24.06
- Anomalous Mean 7.85 7.45 11.70 0.60 19.75 4.10 0.75 0.05 4.90 0.65 1.20
Median 7.50 6.50 1.00 0.00 10.50 3.00 0.00 0.00 4.00 1.00 2.00
Std Dev 4.06 3.15 20.50 1.96 22.69 3.26 1.65 0.22 2.85 0.67 0.91
Overall Total 451 433 403 80 916 180 23 7 210 24 52.09
Mean 7.52 7.22 6.72 1.33 15.27 3.00 0.38 0.12 3.50 0.40 0.87
Median 7.00 6.00 0.00 0.00 8.50 3.00 0.00 0.00 3.00 0.00 0.79
Std Dev 3.95 7.97 14.84 8.57 20.53 3.00 1.14 0.42 2.90 0.64 0.83

Params refers to number of parameters; Pairs refers to number

of pairwise test cases; Perms refers to number of permutation

test cases; Comb refers to number of all-combinations test cases; TotalTCs refers to total number of test cases; PairsCov
refers to number of sinks covered by pairwise test cases; PermCov refers to number of sinks covered by permutation test cases;
Comb Cov refers to number of sinks covered by all-combinations test cases; TotalCov refers to number of sinks covered by
all the test cases; Uncov refers to number of sinks that are not covered; Dur refers to the test execution duration in hour.

TABLE V: Experimental results of RandFuzz on testing 60
SmartApps

App Category  Stats TotalTCs  TotalCov Uncov  Dur
Official Total 563 48 32 39.37
Mean 18.77 1.60 1.07 1.31
Median 13.00 1.50 1.00 2.00
Std Dev 20.01 1.54 1.68 0.86
Third Party Total 93 24 19 4.76
- Benign Mean 9.30 2.40 1.90 0.48
Median 2.00 2.00 0.00 0.10
Std Dev 22.11 2.17 5.04 0.81
Third Party Total 499 42 65 32.93
- Anomalous Mean 24.95 2.10 3.25 1.65
Median 16.50 1.00 3.00 2.00
Std Dev 21.67 2.61 2.65 0.73
Overall Total 1155 114 116 77.06
Mean 19.25 1.90 1.93 1.28
Median 12.00 2.00 1.00 2.00
Std Dev 21.23 2.05 2.92 0.89

ii. Incorrect Inputs: the test generator generates user inputs
that have invalid data types causing errors or it is unable
to generate correct (combination of) events required to
trigger the sink.

Incorrect Order of Events: the test generator was unable
to generate correct order of events required to trigger the
sink, within the timeout threshold.

iii.

shows the number of uncovered sinks correspond-
ing to each of these categories.

TABLE VI: Cases of uncovered sinks

Approach Bug Incorrect Inputs Incorrect Order of Events
SmartFuzz 17 7 0
RandFuzz 17 73 24

Bug. We found that 13 sinks were guarded by a condition
called location.contactEnabled, which has been dis-

abled by SmartThings at the time of our experimentﬂ There
are also 2 sinks guarded by a condition shown below:

if (phonel)

sendSms (phonel, msg)

Only if phonel is specified, SendSms sink will be triggered.
But we found that phonel was neither defined in the program
nor defined as an input parameter. The remaining two sinks
were guarded by the returned result from a call to weather
service API, which was inactive at the time we experimented.
As a result, those sinks were not triggered by both SmartFuzz
and RandFuzz. Examples of the apps containing those sinks
are elder-care-daily-routine, smart-windows,
and ready-for-rain. Such cases in fact reveal potential
issue with the current implementation of the app (i.e. using a
deprecated/inactive API or logic error).

Incorrect Inputs. Some apps interact with many parameters
with several possible values such as various events or device
commands that set various device states. Specific (combination
of) events or device states are required to trigger sinks in those
apps. But the test generator was unable to generate correct
(combination of) values within the timeout threshold. Smart-
Fuzz produced seven such cases. An example can be found
in the app called hello-home-phrase-director which
has 14 parameters. RandFuzz produced 73 such cases. In
addition to the above-mentioned problem, RandFuzz also gen-
erated several test inputs that were of invalid data types. For
example, for humidity-alert app, RandFuzz generated
string values for decimal-type input parameter humidity in
many of the test cases and caused exceptions.

Incorrect Order of Events. RandFuzz was not able to
generate the correct order of events to trigger 24 sinks. On

Shttps://docs.smartthings.com/en/latest/smartapp-developers- guide/
sending-notifications.html
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the other hand, SmartFuzz managed to generate correct order
of events for all the cases. The use of combinatorial testing
methods enabled SmartFuzz to cover those sinks.

D. Limitations

Our approach relies more on pairwise testing method.
Therefore, it may miss certain cases that require systematic
testing of interactions between 3 or more parameters. But this
is our design decision taking into consideration the trade-off
between effectiveness and efficiency. It is up to the tester
to increase the timeout threshold, if interactions of more
parameters need to be tested.

Our approach focuses only on addressing automated test
generation problem. It does not detect bugs, security vulner-
abilities, or malicious code automatically. In future, we plan
to enhance our approach to detect them based on known-bad
and known-good event-action patterns.

Our experiments were only conducted in simulator environ-
ment. Thus, we were not able to test those apps that require
actual physical devices to function. Further, we were also
unable to test those apps that require custom device handlers,
which are not available in the simulator. In future, we aim
to address this by experimenting with actual physical devices
and implementing required device handlers.

V. CONCLUSION

In this paper, we proposed a novel approach for automated
testing of SmartThings apps, or IoT apps in general. The
approach combines combinatorial test generation with light-
weight program analysis to systematically generate test cases
that trigger sensitive operations in a given IoT app. This would
be beneficial to the tester as she/he can then observe how
the app interacts with IoT entities (devices, external and user
events) and if it contains anomalous behaviors. We evaluated
the tool that implements our approach based on 30 official apps
and 30 third-party apps. In the experiments, the tool triggered
210 out of 234 sensitive operations, by executing 916 test
cases in 52.09 hours in total, and exposed several anomalous
behaviors and bugs in the apps. The tool was effective and
efficient. In our future work, we plan to enhance our fuzzing
algorithm by incorporating feedback of test execution traces
(such as sink coverage).
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