
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

2-2015

Will this be quick? A case study of bug resolution times across Will this be quick? A case study of bug resolution times across

industrial projects industrial projects

Subhajit DATTA
Singapore Management University, subhajitd@smu.edu.sg

Prasanth LADE

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Numerical Analysis and Scientific Computing Commons, and the Software Engineering

Commons

Citation Citation
1

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5590&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5590&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5590&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5590&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Will this be Quick?

A Case Study of Bug Resolution Times across Industrial Projects

Subhajit Datta
∗

Singapore University of Technology and Design
Singapore

subhajit.datta@acm.org

Prasanth Lade
Arizona State University

USA
prasanthl@asu.edu

ABSTRACT
Resolution of problem tickets is a source of significant rev-
enue in the worldwide software services industry. Due to the
high volume of problem tickets in any large scale customer
engagement, automated techniques are necessary to segre-
gate related incoming tickets into groups. Existing tech-
niques focus on this classification problem. In this paper,
we present a case study1 built around the position that pre-
dicting the category of resolution times within a class of
tickets and also the actual resolution times, is strongly ben-
eficial to ticket resolution. We present an approach based
on topic analysis to predict the category of resolution times
of incoming tickets and validate it on a data-set of 49,000+
problem tickets across 14 classes from four real-life projects.
To establish the effectiveness of our approach, we compare
topic features with traditional features for both classification
and regression problems. Our results indicate the promise
of topic analysis based approaches for large scale problem
ticket management.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Life cycle

General Terms
Experimentation

Keywords
problem tickets, bugs, resolution times, service delivery, topic
analysis

1. INTRODUCTION
In the global software services industry, millions of prob-
lem tickets are generated every day. Broadly speaking, a

∗Corresponding author
1The study was conducted when the first author was work-
ing as a researcher and the second author was an intern at
IBM Research, Bangalore.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ISEC ’15 Bengaluru, Karnataka, India
Copyright 2015 ACM 978-1-4503-3432-7/15/02 ...$15.00.
http://dx.doi.org/10.1145/2723742.2723744.

“problem ticket”, or simply a “ticket” is a record of an oper-
ational difficulty faced by user(s) of an information technol-
ogy system, that requires intervention from the development
or maintenance team for its resolution. A ticket is usually
defined by a unique identifier and a brief textual description
of the problem, in addition to other optional information.

Ticket resolution drives a major part of post release mainte-
nance and is a source of significant revenue for software de-
velopment organizations. Thus timely and effective closure
of tickets is critical to profitability in the software services in-
dustry. Minimizing resolution time – the duration between
the opening and closure of a ticket – is a key parameter
linked to service level agreements (SLA) between a delivery
organization and its customers. To get a sense of the factors
influencing ticket resolution time, let us briefly outline the
typical ticket life-cycle. A ticket is opened when the end
user of a software system reports a particular concern by
either calling in to a help desk or filling out an online form.
For large accounts handling thousands of tickets every day,
the support team in charge of ticket resolution is segregated
into many sub-teams based on experience and expertise. To
enable fastest resolution of a ticket, it is imperative that the
ticket gets quickly routed to the sub-team best positioned
to resolve it. Thus an important step in the ticket resolu-
tion work-flow is an initial classification of tickets into broad
functional buckets such as “access control”, “performance is-
sues”, “printing problems” etc. Given the sheer volume of
tickets generated in large service engagements, automated
techniques are very useful for this initial classification. As
we outline in the Related Work section, there is a large body
of existing work on techniques around such classification of
tickets into broadly defined buckets.

Automatically classifying incoming tickets into buckets helps
the support team assign specific personnel to specific groups
of tickets. As mentioned earlier, minimizing resolution time
is often the most critical parameter the support team is mea-
sured against. Thus, the most skilled personnel needs to be
assigned to tickets which are likely to take the longest time
to resolve. Once incoming tickets have been classified into
broad buckets, how does the support team know which tick-
ets within a bucket will take the most time to resolve? To
address this question, we need to study the distribution of
resolution times of tickets within pre-classified buckets.

In this paper, we study a data-set of 49,811 tickets across
14 classes or buckets (marked C1 to C14) from four real

20

Table 1: Resolution times (mins) of tickets in different buckets: Descriptive Statistics
N Mean Median Std Dev Skewness Kurtosis

C1 2938 443.94 183.25 722.78 3.76 19.21
C2 1063 1671.55 1365.87 1478.77 2.19 7.33
C3 5161 147.74 40.98 340.61 6.11 57.15
C4 1253 6301.29 1576 18780.57 8.64 104.76
C5 1269 12975.29 7260 16220.45 2.84 9.97
C6 1642 1461.42 429 3264.16 6.37 61.66
C7 3716 365.43 143.85 619.62 3.92 22.31
C8 2683 313.93 74.30 600.47 3.92 22.67
C9 1032 82.85 63.00 85.81 3.01 14.17
C10 2096 630.71 321.53 809.74 2.51 8.77
C11 3374 17245.58 12596 15518.73 1.72 3.55
C12 1097 15977.46 9775.00 17967.37 2.10 5.30
C13 5792 1799.34 151.00 5938.59 7.60 78.60
C14 16695 444.02 211.17 645.49 3.43 17.40

world software service delivery projects. Each bucket repre-
sents tickets from a particular functional area of a specific
project. Out of the four projects considered two projects
had three functional areas two others had three functional
areas, in total we considered 14 functional areas. In the re-
mainder of the paper, we will use “bucket” to denote these
14 higher level classes. In Table 1 we present the descriptive
statistics of the resolution times of tickets in each bucket. As
we notice from the skewness values, all the distributions are
positively skewed, that is, they have a relatively long right
tail. To illustrate this point further, Figure 1 shows the
histograms of the two buckets with lowest (C9) and highest
number (C14)of tickets. From the shape of the distributions
of all the buckets, it is evident that there are many tick-
ets which get resolved quickly while few take very long time.
This is a very critical observation. For minimizing resolution
times, the support team has to assign its most effective re-
sources to the tickets that are likely to take the longest time
to resolve. So, predicting which incoming ticket belongs to
which section of the resolution time distribution has signifi-
cant practical benefits. To address this problem, we present
TAACT – A Topic Analysis based Approach to Categoriza-
tion of Tickets. TAACT is validated on our aforementioned
data-set and compared with other widely used approaches.

In the next section we motivate our approach, followed by
outlines of our research contributions and related work. Sub-
sequently we outline the TAACT, and discuss the results
from its application. The paper ends with a discussion of
the threats to validity and conclusions.

2. MOTIVATION
Ideally, enough information should be extracted from users
at the time of opening a ticket, such that the ticket can be
easily classified into a bucket with similar other tickets. But
this is seldom, if ever, the case in large projects. Usually a
user raising a ticket can only give a textual description of the
problem and the circumstances in which it occurs, with few
specifics. Details which will lead to a ready identification of
the problem’s background may be deliberately hidden from
the user, such as a detailed stack trace. Even otherwise, in
most cases end users will lack the technical sophistication
to understand such details even if it was available to them,

such as identifying the most relevant part of a stack trace.
Thus most often the essential components of a ticket comes
down to a unique identifier – which is used to track its states
from opening to closure – and a textual description of the
problem.

As discussed in the preceding section, existing approaches
focus on classifying tickets into broad buckets. The right
skewed distributions of resolution times of tickets within a
bucket points to the need for finer grained categorization of
tickets within each bucket. The textual description field of a
ticket – which has to be mandatorily filled while raising the
ticket – is the richest source of information around the prob-
lem faced by the users. But it is essentially unstructured.
Thus using only this information for ticket categorization
within buckets is far from a trivial problem.

As evident from Table 1, there is wide variation in the reso-
lution times of tickets within each bucket. For the support
team, it is helpful to get a sense of whether an incoming
ticket will have low (L), medium (M), high (H) or very high
(V) resolution times. Accordingly, we divide the resolution
time distribution for each bucket into four bins – L, M, H,
V – each mapping to a quartile of the corresponding distri-
bution of resolution times. After TAACT is trained on a
historical set of tickets, it categorizes each incoming ticket
into one of these four bins. In the remainder of the paper
we will use “bin” to denote these quartile of resolution time
distributions, with L, M, H, and V bins indicating the first,
second, third, and fourth quartiles respectively.

Given a set of past tickets in buckets with their resolu-
tion times, TAACT categorizes incoming new tickets in each
bucket into bins within the buckets, using only the textual
description field of the tickets. Thus, based on the mini-
mal information available for all tickets, TAACT predicts
whether an incoming ticket is likely to require low, moder-
ate, high, or very high time for resolution.

In the next section, we highlight our research contributions.

3. RESEARCH CONTRIBUTION
We make the following research contributions in this paper:

21

Figure 1: Histograms of buckets C9 and C14

• As outlined in the Related Work section, automated
approaches to classifying problem tickets have been
studied at length. Merely classifying an incoming ticket
is of limited benefit to the development team unless
it helps in the ticket’s resolution within service level
agreements. We identify the key problem of estimat-
ing whether an incoming ticket will need low, medium,
high, or very high resolution times. To the best of our
knowledge, this problem has not been addressed yet in
existing literature.

• We propose TAACT – an approach to address the
above problem, and we validate the approach on a
very large real life data-set. In contrast to many stud-
ies that use open source data (see Related Work sec-
tion) we use data from actual service delivery engage-
ments. Unlike open source projects, delivery engage-
ments with customers have very stringent service level
agreements. Validating our approach on such real life
data-set allows us examine TAACT’s usefulness for
large industrial applications.

• As illustrated in the Results section, our approach
compares favorably across a diverse set of metrics with
other widely used approaches. Experiments have been
conducted to compare features (topics vs tf-idf), clas-
sifiers (MCF vs SVM) and regressors (SLDA vs SVR).

4. RELATED WORK
Automated approaches to the processing of problem tickets
has been an area of active research interest in recent times,
driven largely by the burgeoning demand of the software
services industry. We outline some of the work relevant to
our study.

The importance of resolving incoming problem tickets as
early as possible is recognized by di Lucca in [8] and to ad-
dress the problem the author seeks to develop an automated
approach that can classify tickets with high accuracy. The
approach is tested on around 6,000 maintenance tickets from
a large, multi-site, software system. In comparison with

other existing classification approaches as well as human ex-
perts, the approach is able to correctly classify up to 84%
of the incoming tickets across eight areas. A classification
strategy based on the use of supervised and unsupervised
pattern classification and multivariate visualization is pre-
sented by Podgurski et al. [11]. They apply the technique
on profiles of failed executions in order to group together
failures with the same or similar causes. The resulting clas-
sification is subsequently used to assess the frequency and
severity of failures due to particular defects in three large
programs. Cubranic et al., use a supervised Bayesian learn-
ing based approach on bug reports from a large open-source
project and report that they can correctly predict 30% of the
report assignment to developers [7]. Anvik et al. present a
semi-automated approach to assign incoming bug reports to
developers [2]. They introduce a machine learning based
classifier that suggests a small set of developers who are po-
tentially suited to resolve a particular bug. The approach
is tested on Eclipse and Firefox projects. Runeson, Alexan-
dersson, and Nyholm present results from using a natural
language processing (NLP) based prototype tool to study de-
fect reports from a large telecommunications company [12].
They report that about 2/3 of the duplicate reports can
be found using NLP techniques. Wang et al. address the
problem of detecting duplicate bug reports in open source
projects in [16]. They combine natural language processing
with the analysis of execution traces to help a human triager
better detect duplicate reports. The approach is calibrated
on a subset of the Eclipse bug repository and evaluated on
a subset of the Firefox bug repository and the authors re-
port a significant improvement offered by their approach
vis-a-vis using natural language information alone. Shao et
al. present a Markov model based technique to mine ticket
resolution sequences and develop an algorithm to generate
ticket transfer recommendations on the model [13]. Incom-
ing change requests for large software systems often contain
reports of malfunction or suggestions for improvement. For
the requests to be handled effectively, it is important to dis-
tinguish between the two types at the time of arrival. Anto-
niol et al. suggest a text-based approach to classify change
requests [1]. It has been reported that a large percent of

22

Figure 2: Outline of our approach

defects end up being repeatedly reassigned amongst devel-
opment team members. To address this problem Jeong et al.
propose a “bug tossing graph” based on Markov chains and
report that their approach when tested on a large corpus, in-
creased prediction accuracy by about 23%. Somasundaram
et al. use a topic analysis based approach to match bug re-
ports with appropriate code components and compare their
approach with Support Vector Machines [14].

5. METHODOLOGY
5.1 Overview
As mentioned earlier, we seek to develop an approach that
can predict which quartile of resolution times an incoming
ticket will belong to. Apparently, it would be ideal to be
able to predict the exact resolution time of an incoming
ticket. But in this case, we are constrained by the fact that
as predictor we can only use the textual description of the
tickets. In addition to being unstructured and free-form, of-
ten the description field contains too few words to be useful
for prediction. Realistically, an indication of which level of
resolution time an incoming ticket may have – rather than
an estimation of the exact resolution time – is of significant
help to the support team. Thus resolution time estimation
is converted to a classification problem where the resolution
time quartile of a ticket is predicted.

Figure 2 outlines our approach. TAACT consists of 3 phases
to categorize tickets into respective bins. In the preprocess-
ing phase, the text description of each ticket is considered
and different features are extracted (as explained in the next
subsection). Along with feature extraction, every ticket is
assigned to a bin based on its resolution time in the follow-
ing way. The resolution times of all training tickets that be-

long to a particular bucket are considered and the 25th (q1),
50th (q2), and 75th(q3) percentiles are computed. The entire
range of resolution times is divided into four bins with ranges
[−∞, q1], [q1, q2], [q2, q3], [q3,∞] respectively where each bin
corresponds to Low (L), Medium (M), High (H) and Very
High (V) resolution times. Each ticket is annotated with L,
M, H, V depending on the bin it belongs to. In the train-
ing phase, the ticket features along with the information as
to which bin they belong are passed as input data to train
different classifiers (mentioned below). In the testing phase
the trained classifiers are used to predict the bins which
new tickets with unknown resolution times belong to. Even
though predicting the category of resolution time is essen-
tial, predicting an approximate time for resolution will be
very useful. The former problem is related to classification
whereas the latter has to dealt with statistical regression
where a real number is predicted. In this work we also pre-
dict the exact resolution time apart from the four resolution
categories.

At the heart of TAACT lie topic analysis based classifiers
and regressors, which are both explained in the next few
subsections. The topic features are extracted using Latent
Dirichlet Allocation (LDA) and Supervised LDA (SLDA)models.
To evaluate the effectiveness of topic features, we compare
them with tf-idf features using MCF, Naive Bayesian (NB)
and Support Vector Machines (SVM) classifiers. Also, we
evaluate the effectiveness of SLDA based topic features in
predicting exact resolution times by comparing to tf-idf fea-
tures with Linear Regression (LR), Support Vector Regres-
sion (SVR) and K-Nearest Neighbor (KNN) regressors. In
the training phase of TAACT, all three classifiers – MCF,
NB, and SVM, all three regressors LR, SVR and KNN – are
trained, and they are compared based on the output of the
testing phase.

5.2 Preprocessing Phase
The key element of the preprocessing phase is feature ex-
traction. We have already established how text description
is the only universally available field in ticket data. Hence
we need to extract features from this field. A common ap-
proach to extracting features from text is term frequency
inverse document frequency or tf-idf. As a benchmark to
compare our topic analysis based approach, we will be using
TF-IDF in the following way. From the description field of
the tickets, all the unique terms are extracted and for each
ticket, the frequencies of occurrences of each of the unique
terms in the ticket are calculated. Thus each ticket is now
represented by a vector of normalized frequencies of terms
and the size of the vector is the total number of unique terms
in the corpus. Using these term frequency (tf) vectors of all
the ticket a ticket-term matrix is constructed where each
row corresponds to a document and columns correspond to
the frequencies of each of the unique terms. But many terms
occur in almost all the tickets and to remove such “noise”,
inverse document frequencies (idf) – which gives the inverse
of the frequency of occurrence of a term in the entire corpus
of tickets – are calculated. The product (tf) ∗ (idf) is cal-
culated for each ticket and these tf-idf weights are used as
the features for each ticket. We believe in our case, there is
a more effective approach for feature selection than tf-idf.

Why do tickets have different resolution times? Resolution

23

Figure 3: Explanation for Mean Class Feature
(MCF) model. The plot shows the mean class fea-
tures in a topic simplex.

time for a ticket indicates how quickly the support team is
able to resolve and close a ticket. Other things being equal,
a ticket that reports a more involved problem will take more
time to resolve than a ticket describing a simpler problem.
Thus resolution times differ due to the nature and intensity
of the problem being addressed. This variation in problem
intensity is latent in the ticket description. We believe un-
derstanding this hidden structure in the text description can
lead us to more effective feature selection. Two probabilistic
topic models called Latent Dirichlet Allocation (LDA) and
supervised LDA (SLDA) can help us extract topic based
features.

We assume that the factors influencing the resolution times
of tickets can be modeled using the latent topics in ticket de-
scriptions. In text mining, a topic is defined as a collection
of words that can co-occur in a given corpus of documents.
Topic models are extremely popular in the domain of text
and web mining and are used for query processing and doc-
ument retrieval [4]. In probabilistic topic models each docu-
ment is modeled as a multinomial mixture of topics and each
topic as a multinomial distribution over words. In this work
we consider each ticket raised by users as a text document,
and the words in the description of the ticket as the words
of the document. From now on, we will use the terms tickets
and documents interchangeably. In the following subsection
we explain the model used for topic extraction from ticket
descriptions.

5.3 Topic Analysis using LDA and Supervised
LDA

Probabilistic Latent Semantic Indexing (pLSI) is one of the
earliest topic models where each ticket is modeled using a
unique identifier and a set of topics [10]. pLSI assigns a topic
distribution to each ticket on which it has been trained but
it is not a generative model and it can not predict the top-
ics on new documents. To overcome these flaws in pLSI,
Blei et al. proposed the Latent Dirichlet Allocation (LDA)
model which can generalize to previously unseen documents
as well [6]. Supervised LDA model [5], is a supervised exten-
sion of LDA where the predictor variable (resolution time in
our case) is also used to influence the topics extracted. We

briefly outline LDA and SLDA graphical models and the in-
ference methodology for extracting topic distributions in our
context in the Appendix section.

5.4 Training Phase
As mentioned earlier, we extract topic features using LDA
and SLDA. For tickets in the training set, topic based fea-
tures for each ticket and the corresponding resolution time
is supplied as input for training the three classifiers. Naive
Bayes is a classifier that learns the conditional probabilities
of features for each bin c from the training data, which we
denote by CPDc and prior distributions of each bin c which
we denote as Pc. SVM is a discriminative classifier that
learns a set of parameters called the support vectors and
their weights for each class c versus rest of the classes which
we denote as SVc.

MCF works with the features as normalized vectors or prob-
ability distributions. The features extracted from various
tickets are grouped according to the resolution time quar-
tile to which the tickets belong to. All features that belong
to a bin c, are used to find a mean class feature MCFc for
that bin. Unlike the LDA-KL approach outlined in [14] for
classifying bug reports to components, MCF uses symmet-
ric Kullback Leibler divergence, which we believe is more
effective distance measure between two probability vectors.
Figure 3 pictorially explains the MCF model where the mean
class topic features are plotted in green and the test topic
feature is shown in orange. In this topic simplex, using KL
divergence we assign the nearest bin as the prediction for
the test ticket.

While classifiers can predict the class of resolution time, re-
gressors can predict the exact resolution times as well. Lin-
ear regression fits a hyper plane to a set of data points and
estimates the coefficients LRcoeff one per feature whereas
Support Vector Regression finds support vectors that min-
imize the error of prediction. Since KNN is a lazy classi-
fier there is no training phase for this model. Below are
equations for each of the regressors and we avoid all the
derivations for brevity, please refer to [3] for more details.
The regression equation in Linear Regression that is used to
estimate the coefficients is given by:

LRcoeff = (FeatTtrainFeattrain)−1FeatTtrainT imetrain

where Feattrain is N×M matrix of training features with N
sample points and M features. T imetrain is the N×1 vector
of resolution times for training data. For Support vector
regression, the weights of the support vectors SV Rcoeff are
estimated using the following equation:

SV Rcoeff =

N∑
n=1

(an − ân)φ(Feattrain)

where an and ân are Lagrange multipliers which are calcu-
lated using training resolution times T imetrain. While we
train all these three regressors with tf-idf features, we use
SLDA as a topic feature based regression model to predict
resolution times. As in linear regression, for SLDA, we learn
a set a coefficients SLDAcoeff during the training phase.

5.5 Testing Phase

24

Figure 5: (a) Accuracy for each bucket averaged over all bins for MCF with tf-idf and topics features (b)
Recall for fourth quartile of resolution time averaged across all folds for each of the 14 buckets using MCF
with tf-idf and topics as features

With reference to Figure 2, after training comes the testing
phase where the bins of new incoming tickets as well the
exact resolution times are predicted. The feature vector for
the new ticket, Featurenew, is extracted as described earlier.
The SVM classifier considers the Featurenew and calculates
the output given by SVc that correspond to each bin. The
class with maximum SVM output is assigned to the ticket.
Naive Bayes takes Featurenew as input and estimates the
posterior distribution of the ticket for each of the bins c
using the CPDc and Pc distributions. The bin that gives
the maximum posterior value is assigned to the ticket.

For the MCF classifier, the bin to which a new ticket belongs
to is predicted using the following formula:

ctest = min
c
KLD(MCFc, F eaturenew)

where KLD is the symmetric Kullback Leibler Divergence,
which is a distance measure between two probability distri-
butions given by the following equation, where p̄ and q̄ are
probability distributions or normalized feature vectors:

KLD(p̄, q̄) =
∑
i

p(i)log(
p(i)

q(i)
) +

∑
i

q(i)log(
q(i)

p(i)
)

For Linear regression, the resolution time is predicted as the
product LRcoeff ∗ Featnew. SVR model uses the weights
of support vectors, SV Rcoeff to predict the resolution time
for Featnew and since KNN calculates the mean of the res-
olution times of K neighbors of Featnew. Below is the pre-
diction equation for KNN:

T imenew =
1

K

K∑
n=1

T imentrain

where T imentrain are the nearest training samples to the test
ticket. The neighbors are selected using Cosine distance
between two feature samples p̄ and q̄ is given by:

CD(p̄, q̄) = 1−
∑

i(pi × qi)√∑
i pi

2
√∑

i qi
2

To predict the resolution time for a new ticket, we use SLDA

to extract the topics feature, Featnew and then predict the
time as SLDAcoeff ∗ Featnew.

6. RESULTS AND DISCUSSION
6.1 Evaluation Data and Metrics
As mentioned, we evaluated TAACT on a data-set of 49,811
problem tickets across 14 buckets from four real-world ser-
vice delivery projects (Table 1). All the projects were large
multi-year engagements between the customer and the ser-
vice delivery organization, generating large volumes of tick-
ets. The business domains of these projects represent a di-
verse context for the application of TAACT.

With reference to our earlier discussion, we have extracted
each of the two features tf-idf and topics for each ticket,
and used them with classifiers SVM, NB and MCF and re-
gressors SLDA, LR, SVR and KNN. To compare results, we
name the classifiers as SVM-tf-idf, SVM-Topics, NB-tf-idf,
NB-Topics, MCF-tf-idf, MCF-Topics and regressors as LR-
tf-idf, SVR-tf-idf, KNN-tf-idf, SLDA-Topics. Topic features
for classification are extracted using LDA and those for re-
gression are extracted using SLDA.

All tickets belonging to each bucket are considered sepa-
rately and divided into three folds in a three-fold evaluation
strategy. While data from two folds have been used for train-
ing, the third fold is used for testing, to predict whether a
ticket belongs to the low (L), medium (M), high (H) or Very
High (V) bins. We did 3 fold cross validation to evaluate
the model performance for both classification and regres-
sion and the mean results are reported here. We have used
the following metrics for evaluating the effectiveness of each
approach – recall for 4th quartile, accuracy and weighted
accuracy for classification, mean square error and R2 for re-
gression. These metrics and reasons for choosing them are
explained in the Appendix section.

6.2 Evaluation Analysis
Based on our earlier discussion, we want to establish how
well topics vis-a-vis tf-idf are suited as features in SVM, NB,

25

Figure 6: Plots of ratio of Mean Squared Errors using tf-idf features and topic features. Ratio greater than
1 (dotted line) implies topic features have outperformed the tf-idf features

and MCF, and how effective each of these classifiers are in
predicting bins of new tickets. Similarly we evaluate topics
against tf-idf using LR, SVR and KNN in predicting exact
resolution times. For both SVM and SVR we used Radial
Basis Function Kernel (RBF Kernel) as the kernel function.
All results presented in this section are averaged using 3-
fold cross validation where two folds are used for training
and the left-out fold is used for testing. For extracting topic
features, the optimal LDA and SLDA parameters such as
number of topics and α, β and number of iterations have
been selected for using 3 fold cross validation.

Classification: To get a general sense of how well each
feature-classifier combination is functioning, let us first see
the results presented in Figure 4. As evident, topic features
give higher weighted accuracies for all the classifiers. This
indicates that irrespective of the classifier used, topics are
much more discriminative as features than the widely used
tf-idf based features. This corroborates the arguments pre-
sented earlier in favor of choosing topics as features for the
prediction problem we are addressing. As it is also clear
that MCF has higher weighted accuracy than SVM or NB,
let us analyze results from MCF in more detail.

Figure 5(a) plots the accuracies for each of the 14 buckets
averaged across all bins. We observe that for all the buck-
ets, MCF using topic features gives gives higher accuracy
than MCF using tf-idf. The error bar is the standard devia-
tion of accuracies for the three folds. The average standard
deviations across all buckets using topic features and tf-idf
features are 1.39 and 1.67 respectively, which indicate that
topic features are more stable across all folds and all bins
when compared to the tf-idf features.

Let us now turn to the most critical metric in our context –
recall for the fourth quartile. Figure 5(b) gives plots of the
recall for the V bin for tickets in each bucket, when predicted
by MCF using topics as well as tf-idf as features. We again
observe that topic features give higher recall values than
the tf-idf features for all categories except the categories
C3 and C4 where both have the same value of recall. The

mean and median recall for the fourth quartile (the V bin)
is 58.5% and 53.2% and 41.35% and 40.1% respectively for
MCF using topics and tf-idf features. The corresponding
mean and median recall for the V bin using NB and SVM
with topics as features are 34.71% and 30%, and 34.86%
and 32.5%, respectively. These results show that MCF using
topic based features are able to correctly identify on average
more than half the tickets which have very high resolution
times, which is notably higher than the outcomes from NB
and SVM.

Table 2 shows the descriptive statistics of the ratios of the
fourth quartile recall values and accuracies across all buck-
ets using MCF (Topics) and MCF(tf-idf) respectively. We
observe that on average MCF with topic features performs
1.117 times better in predicting tickets across all four quar-
tiles and 1.478 times better in predicting very high resolution
time tickets when compared to MCF with tf-idf features.

Regression: In order to predict the exact resolution times,
we have used both topic and tf-idf features. We used KNN
model with different distance metrics and found Cosine Dis-
tance to be the optimal metric with K = 10 as the number of
neighbors. These parameters are specific to the problem and
need not be optimal for every kind of data. We used SLDA
model for topic features and LR, SVR and KNN for tf-idf
features. The Mean Squared Error for each of the 14 buckets
is calculated using the error between actual and predicted
resolution times. Since predicting to the scale of minutes is
impractical and noisy, we converted resolution times to days
for buckets with longer times and to hours for buckets with
shorter times.

To evaluate the performance we have plotted the ratio of
MSEs from tf-idf vs topic features which have been aver-
aged across three folds. Figure 6 shows the plots for the
ratios for 14 buckets where y-axis is the ratio of MSE using
tf-idf and MSE using topic features. If a ratio is greater than
one then it implies the MSE using tf-idf features is higher
than topic features which indicates that the topic features
have performed better and vice versa. We observe that for

26

all categories except C1 and C3, topic features have out-
performed tf-idf features irrespective of the regression al-
gorithm. Table 3 shows the actual MSEs using different
regression algorithms validated across 3 folds across all 14
buckets. It is also interesting to note that within the re-
gressors used with tf-idf features, KNN outperformed both
SVR and LR algorithms parallel to how MCF outperformed
SVM and NB algorithms for classification. This indicates
that template-based lazy algorithms are able to generalize
better than discriminative algorithms. It is to be noted that
these topic features have been extracted using SLDA model
which implies that latent topics within ticket descriptions
that have been extracted using supervised learning do have
information that can be used to predict resolution times au-
tomatically.

7. THREATS TO VALIDITY AND FUTURE
WORK

We now outline the threats to the validity of our results,
addressing construct validity, internal validity, external va-
lidity, and reliability.

Construct validity reflects on the correct measurement
of the variables in the study. In areas with significant prior
work, it involves demonstrating that the measurements align
with existing state of the art or practice. The key variable in
this study, resolution time of tickets, is an established mea-
sure in the software services industry. As mentioned earlier,
resolution time for a ticket is taken as the elapsed time be-
tween the opening and closing of a ticket. Our calculation
of resolution time is thus dependent on the ticket opening
time and closing time as reported by the projects. Errors
if any in reporting these time-stamps can influence our re-
sults. Also, there is the implicit assumption in our study
that the resolution time for a ticket is a reliable proxy for
the corresponding resolution effort. This is a generally valid
assumption. However, if the closure time of a ticket was
recorded – inadvertently or otherwise – as being before or
after the time at which the ticket was actually resolved, reso-
lution time will no longer accurately reflect resolution effort.
Other measures relating to feature extraction using topics
and tf-idf are based on past theoretical work, as discussed
earlier. The evaluation metrics used in our study – accu-
racy, weighted accuracy, recall, and running time per ticket
– are also standard measures for similar studies. Sometimes

Figure 4: Weighted accuracy averaged across all
buckets, folds and bins for SVM, NB and MCF with
tf-idf and topics as features

while a ticket is being raised, a severity field is attached
to indicate the required level of urgency in its resolution.
In our validation we have used tickets from top two sever-
ity levels. Resolution time distribution of tickets in lower
severity levels may have different characteristics. Internal
validity ensures a study is free from systematic errors and
biases. The data we have used for validation in this study
has been sourced from several large real life service delivery
projects. Since our data is extracted from the ticket tracking
systems of these projects, issues that can affect internal va-
lidity such as mortality (that is, subjects withdrawing from
a study during data collection) and maturation (that is, sub-
jects changing their characteristics during the study outside
the parameters of the research) do not arise in our case. As
discussed earlier, the projects range across various domains.
While our selection is broad, we do not claim the sample
to be fully representative. Resolution times of tickets from
projects of other domains may show different characteris-
tics. As we have argued earlier, textual description is the
only mandatory field in ticket data. Though for some tick-
ets additional information was available (such as who raised
the ticket etc), they were ignored in our analysis for the sake
of consistency. External validity indicates that the results
from a study are generalizable. Our results are based on a
very large sample of tickets. While we do not claim that the
results are generalizable as yet, we believe they establish
that topic analysis based approach works well for predicting
bins of ticket resolution times. Reliability relates to the
reproducability of the results of a study. We arrived at our
results using an automated framework for processing and an-
alyzing ticket data. The approach has clearly defined points
where researcher judgment has to be applied – such as the
selection of parameters for the LDA model. As discussed
earlier, the LDA parameters in our case were chosen to give
the most effective topic model. The results presented in this
paper can be reproduced with the use of the framework and
the relevant parameters.

In our future work we intend to expand our data-set to in-
clude a wider range of projects across different domains. We
also intend to run a comparative study where results from
our approach are matched with those from one or more hu-
man experts who manually predict the resolution time quar-
tiles for incoming tickets. In a typical project, ticket data
is accumulated over time. It will be interesting to conduct
a longitudinal study using techniques such as dynamic LDA
[4], to understand how resolution time characteristics vary
over time. Also, often tickets manifest sub-problems of a

Table 2: Comparison of the of performance of 3-
fold prediction using topics and tf-idf features with
MCF classifier across all categories. The first col-
umn is ratio of Recall (R) values for the fourth quar-
tile and the second column is the ratio of accuracies
(A) across all buckets.

R(topics)/R(tf-idf) A(topics)/A(tf-idf)

Median 1.416 1.129

Mean 1.478 1.117

Max 2.41 1.244

Min 1 0.993

Std Dev 0.363 0.0756

27

Table 3: Comparison of Mean Squared Errors (averaged across 3 folds) of predicted resolution times using
tf-idf and topic features

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

SVR-tf-idf 0.68 40.03 0.41 52.66 43.47 43.47 0.84 0.68 1.20 51.40 28.90 3.73 20.93 9.67

LR-tf-idf 0.96 20.65 0.90 20.59 35.56 35.56 1.33 1.03 1.03 23.78 18.19 2.15 25.66 11.43

KNN-tf-idf 0.93 24.00 0.44 16.32 35.09 35.09 0.92 1.05 1.05 23.76 19.08 2.72 15.91 5.67

SLDA-topics 0.75 16.05 0.75 13.43 28.05 28.05 0.65 0.55 0.68 21.77 13.82 1.46 6.12 2.16

larger problem. Techniques based on hierarchical LDA [4]
can be effective in such situations. We plan to try out ap-
proaches based on these LDA variants in our future work.

8. CONCLUSION
In this paper we have addressed the problem of predicting
the resolution times of incoming tickets in large service deliv-
ery engagements. We proposed an approach using on topic
analysis based classifier to categorize incoming tickets into
low, medium, high, and very high resolution times. We val-
idated our approach on a data-set of close to 50,000 tickets
from real world projects and compared topic features with
tf-idf features in both classification and regression problems.
We found that irrespective of the classifier and regressors
used, topics are much more discriminative as features than
the widely used tf-idf. Our approach is able to correctly
identify more than half the tickets which have very high
resolution times. In addition to predicting the discrete cat-
egory, we were able to predict the actual resolution times
using supervised topic models. Topic models outperformed
traditional methods in 12 of 14 different ticket buckets that
have been considered.

9. APPENDIX
Below are more details about Topic models and Evaluation
metrics used in this paper.

9.1 Latent Dirichlet Allocation
Latent Dirichlet Allocation is a generative model that as-
signs a topic distribution to each ticket where a topic is
defined as a distribution over ticket description words. The
difference between pLSI and LDA is that the latter assumes
Dirichlet priors over the two multinomial distributions de-
scribed earlier. These priors help in assigning much smoother
topic distributions which help to predict the topics on un-
seen tickets as well. Please see [6] and [9] for further details.

9.2 Supervised Latent Dirichlet Allocation
Supervised LDA (sLDA) is an extension to LDA and it can
be used as a supervised learning model where the response
variable is also included in the model’s structure. Please see
[5] for further details on sLDA.

9.3 Evaluation metrics
• Recall for 4th quartile: For any classification al-

gorithm the prediction output can be either of these
four types – true positive (TP), false positive (FP),
true negative (TN), and false negative (FN). In our
case for example, TP would mean that a ticket actu-
ally belongs to the bin TAACT has predicted it to be,
and similarly for FP, TN, and FN. In the classification

context, recall is defined as the true positive rate or
sensitivity and calculated as TP / (TP + FN). In our
context, recall for a bin reflects on TAACT’s ability to
identify the tickets which truly belong to that bin. For
the support team handling large volume of tickets, we
believe it is it is most important to be able to correctly
categorize tickets in the fourth quartile of resolution
time. A simple example will illustrate this point. The
magnitude of earthquakes follow a positively skewed
frequency distribution with a long right tail, imply-
ing there are many small tremors (first quartile) but
few large earthquakes (fourth quartile) [15]. But large
earthquakes wreck maximum damage. So, for an ideal
earthquake prediction system it is critical to predict a
high fraction of the large earthquakes correctly, even if
missing out on some of the smaller tremors. Similarly,
it is of maximum benefit to the support team if as
many of the tickets with the highest resolution times
(that is, in the V bin) are correctly identified. Thus
a key measure of the effectiveness of TAACT is recall
for the fourth quartile. We calculate the recall for the
fourth quartile (Recall4) using the following equation.

Recall4 = (

3∑
f=1

N+
if4

Nif4
)

where Nif4 is the number of tickets in the ith bucket,
fold f and fourth quartile (bin V) and N+

if4 is the num-

ber of correctly classified tickets in ith bucket, f th fold
and fourth quartile. Recall4 is calculated separately
for each class across all folds and only for the bin cor-
responding to the fourth quartile.

• Accuracy: To get a sense of how well TAACT is cat-
egorizing tickets across the four bins in each bucket,
we measure accuracy as (TP + TN) / (TP + FN +
FP + TN). Accuracy is calculated separately for each
class across all folds and bins by the following formula:

Accuracy = (
1

3

3∑
f=1

1

Nif
(

4∑
c=1

N+
ifc))

where i indicates the bucket of the ticket, f is the fold,
Nif is the number of tickets in bucket i and fold f , c is
the bin, and N+

ifc is the number of correctly predicted

tickets in ith bucket, f th fold and bin c.

• Weighted Accuracy: For an understanding of the
overall accuracy of our approach, weighted accuracy
is calculated which takes into account the number of
tickets in each bucket. Weighted accuracy is calculated
across all classes, folds and bins, using the following

28

formula and the above notation:

WeightedAccuracy =
1

14
(

14∑
i=1

(
1

3

3∑
f=1

1

Nif
(

4∑
c=1

N+
ifc)))

• Mean Squared Error: In regression problems, where
a real number is predicted, the performance of a model
is evaluated by calculating the error between the ac-
tual and predicted values. Specifically Mean Squared
Error (MSE) is calculated as:

MeanSquaredError =
1

N

N∑
i=1

(yi − ŷi)2

where yi and ŷi are actual and predicted values.

10. REFERENCES
[1] Giuliano Antoniol, Kamel Ayari, Massimiliano Di

Penta, Foutse Khomh, and Yann-Gail. Is it a bug or
an enhancement?: a text-based approach to classify
change requests. In Proceedings of the 2008 conference
of the center for advanced studies on collaborative
research: meeting of minds, pages 304–318, Ontario,
Canada, 2008. ACM.

[2] John Anvik, Lyndon Hiew, and Gail C. Murphy. Who
should fix this bug? In Proceedings of the 28th
international conference on Software engineering,
pages 361–370, Shanghai, China, 2006. ACM.

[3] Christopher M. Bishop. Pattern Recognition and
Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

[4] David M. Blei. Probabilistic topic models. Commun.
ACM, 55(4):77–84, April 2012.

[5] David M Blei and Jon D McAuliffe. Supervised topic
models. arXiv:1003.0783, March 2010.

[6] David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
Latent dirichlet allocation. J. M. L. R., March 2003.

[7] Davor Cubranic, Gail Murphy, Frank Maurer, and
Ginther Ruhe. Automatic bug triage using text
categorization. In Proceedings of the Sixteenth
International Conference on Software Engineering &
Knowledge Engineering, pages 97, 92, June 2004.

[8] G. di Lucca. An approach to classify software
maintenance requests. In Proceedings of the
International Conference on Software Maintenance
(ICSM’02), page 93. IEEE Computer Society, 2002.

[9] T.L. Griffiths and M. Steyvers. Finding scientific
topics. National Academy of Sciences, U S A, 2004.

[10] Thomas Hofmann. Probabilistic latent semantic
indexing. In Procs of 22nd ACM SIGIR Conf on
Research and Development in Information Retrieval,
New York, NY, USA, 1999.

[11] Andy Podgurski, David Leon, Patrick Francis, Wes
Masri, Melinda Minch, Jiayang Sun, and Bin Wang.
Automated support for classifying software failure
reports. In Proceedings of the 25th International
Conference on Software Engineering, pages 465–475,
Portland, Oregon, 2003. IEEE Computer Society.

[12] Per Runeson, Magnus Alexandersson, and Oskar
Nyholm. Detection of duplicate defect reports using
natural language processing. In Proceedings of the 29th

international conference on Software Engineering,
pages 499–510. IEEE Computer Society, 2007.

[13] Qihong Shao, Yi Chen, Shu Tao, Xifeng Yan, and
Nikos Anerousis. Efficient ticket routing by resolution
sequence mining. In KDD ’08: Proceeding of the 14th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 605–613, New York,
NY, USA, 2008. ACM.

[14] Kalyanasundaram Somasundaram and Gail C.
Murphy. Automatic categorization of bug reports
using latent dirichlet allocation. In Proceedings of the
5th India Software Engineering Conference, ISEC ’12,
pages 125–130, New York, NY, USA, 2012. ACM.

[15] Seth Stein and Michael Wysession. An Introduction to
Seismology, Earthquakes and Earth Structure.
Wiley-Blackwell, 1 edition, September 2002.

[16] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and
Jiasu Sun. An approach to detecting duplicate bug
reports using natural language and execution
information. In Proceedings of the 30th international
conference on Software engineering, pages 461–470,
Leipzig, Germany, 2008. ACM.

29

	Will this be quick? A case study of bug resolution times across industrial projects
	Citation

	tmp.1610028095.pdf.YfF8U

