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ABSTRACT
The social network perspective has served as a useful frame-
work for studying scientific research collaboration in differ-
ent disciplines. Although collaboration in computer science
research has received some attention, software engineering
research collaboration has remained unexplored to a large
extent. In this paper, we examine the collaboration net-
works based on co-authorship information of papers from
ten software engineering publication venues over the 1976-
2010 time period. We compare time variations of certain
parameters of these networks with corresponding parame-
ters of collaboration networks from other disciplines. We
also explore whether software engineering collaboration net-
works manifest symptoms of the small-world phenomenon,
conform to the criteria of “social networks”, and manifest
increasing collaboration with time. In the light of these
observations, we highlight some general characteristics of
collaboration in software engineering research. The results
presented in this paper facilitate understanding of the pro-
gression of software engineering from its infancy to maturity,
and lay the foundation for developing theoretical models to
explain the evolution of its research collaboration character-
istics.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Life cycle;
H.5.3 [Information Systems]: Group and Organization
Interfaces—Collaborative computing, Computer-supported co-
operative work ; J.4 [Social and Behavioural Sciences]:
Sociology

General Terms
Experimentation
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1. INTRODUCTION
Research publications represent a significant outcome of

scientific collaborations between individual researchers. In
1976 the first dedicated venues for publishing software en-
gineering research were established – IEEE Transactions on
Software Engineering (TSE) and International Conference
on Software Engineering (ICSE). Since then several other
specialized software engineering publication venues have come
up, and the body of research literature in software engi-
neering has grown significantly. Given a body of papers, a
network can be constructed where the vertices (nodes) are
the authors, and the edges (undirected links), represent co-
authorship relations between the authors at either end of
the edge. In other words, if there exists at least one pa-
per jointly written by two authors, there will be an edge
in the network between the corresponding vertices repre-
senting the authors. This type of networks have been used
extensively to study scientific collaboration in many disci-
plines [4], [18], [6]. In this paper, we define corresponding
co-authorship networks, which we call software engineering
research collaboration networks (SRCN), based on a body
of papers published in ten software engineering publication
venues in the period 1976-2010.

Over the last few decades, software engineering research
has assumed significance – and a unique character, as we
seek to establish in this paper – in the light of the increasing
penetration of software systems in many aspects of our in-
dividual and collective lives. We believe it can be illuminat-
ing to study how the characteristics of software engineering
research collaboration have changed with time, in compari-
son with corresponding variations for other disciplines that
have been reported. This paper reports the results of such
a study carried out over a body of 11,429 papers involving
15,207 authors in the period from 1976 to 2010.

The next section discusses the contribution of the research
followed by a brief overview of related work. Next we de-
scribe the methodology of the study. The results are pre-
sented next, followed by a discussion around the results,
open issues and directions of future work, and conclusions
from the study.

2. CONTRIBUTION OF THE RESEARCH
As discussed in the Related Work section, study of the
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time variation of collaboration characteristics of co-authorship
networks have been carried out at depth for other disci-
plines; and collaboration in computer science as well as a
specific sub-area within software engineering have been stud-
ied to some extent. To the best of our knowledge, this is the
first detailed study of variations of the characteristics of co-
authorship networks of software engineering publications for
a period of time from the inception of specialized publishing
venues for software engineering research to the present. In
terms of the ten publication venues selected, we seek to cap-
ture a significant body of published literature in software
engineering in the last 34 years.

That the scope of our study starts from the very begin-
ning of organized publication of research in the discipline
has a subtle but significant implication. In many existing
studies of research collaboration in other disciplines, the so-
called problem of “missing past” [14] has influenced expla-
nations of the observed characteristics [4]. In collaboration
networks that are constructed from datasets which do not
go back to the network’s birth – that is, the very incep-
tion of recorded collaboration in the discipline – there is the
problem of “phantom” vertices and edges, which invariably
existed before the observation period started and end up
impacting observations for the period being studied.

From our study we are able to infer certain general char-
acteristics of software engineering collaboration that illumi-
nate the progression of the discipline.

3. RELATED WORK
We consulted three detailed reviews on the science of com-

plex networks which discuss at depth the characteristics of
these systems, models proposed to describe them, the dy-
namics of their evolution, and diverse fields of their appli-
cations: The structure and function of complex networks by
Newman [19], Statistical mechanics of complex networks by
Albert and Barabasi [3], and Evolution of networks by Doro-
govtsev and Mendes [10].

A pioneering work in the study of the evolution of sci-
entific collaboration is reported by Barabasi et al. in [5].
The authors explore the co-authorship networks in mathe-
matics and neuro-science in the period 1991-1998 and infer
that the networks are scale-free and their evolution is gov-
erned by preferential attachment. They also suggest a model
to explain the networks’ evolution. We take the results of
this paper as benchmarks in comparing the characteristics of
software engineering research collaboration networks; please
refer to discussion in the Results and subsequent sections for
more details.

The structure of scientific collaborations has also been ex-
amined in detail by Newman; he established that such col-
laboration networks form small-worlds where pairs of ran-
domly selected scientists are typically short distances away
from one another and the networks show significant cluster-
ing [18]. Newman takes forward his exploration of scientific
collaboration networks in two subsequent papers, where the
statistical properties of these networks are studied, along
with the existence and size of a giant component, and other
non-local characteristics such as closeness and betweenness
[16], [17]. Newman’s work illuminates how scientific col-
laboration in different disciplines manifest subtly different
patterns. Newman and Park study the innate differences
between social networks and other types technological or bi-
ological networks in [21]; we use results from this paper to

Table 1: Inception of Venues
Venue First Published
TSE 1976
ICSE 1976
SW 1984

OOPSLA 1986
ECOOP 1987
TOSEM 1992
FSE 1993
ISSTA 1993
ASE 1997
FASE 1998

address some of our results in a subsequent section.
Evolution of research collaboration networks based on co-

authorship information for the computer science discipline
in the period 1980 to 2005 have been studied by Huang et
al. [12]. They consider characteristics specific to six sub-
categories within computer science – artificial intelligence,
applications, architecture. database, system, and theory –
to reach the conclusion that the database community is the
best connected, while the artificial intelligence community
is most assortative, and computer science as a field is more
similar to mathematics than to biology. Additionally, the
authors observe the small-world phenomenon and scale-free
degree distribution accompanying the growth of the net-
work. Interestingly, the authors have not studied software
engineering as a sub-category within computer science.

Bird et al. construct a collaboration network using a snap-
shot of DBLP bibliographic data in computer science, define
14 sub-areas (including software engineering) and use topo-
logical measures to examine behaviours of individuals and
collaboration patterns across areas in terms of how central-
ized, integrated and cohesive they are [6]. The authors con-
clude that data mining and software engineering are very
“interdisciplinary”, while cryptography and theory are not;
cryptography is highly isolated within the computer science
discipline as a whole, but densely connected internally.

Hassan and Holt study the collaboration networks based
on co-authorship data from the proceedings of the Work-
ing Conference on Reverse Engineering (WCRE) for the pe-
riod 1993-2002 and conclude that these have properties of
small-world networks, though the small worlds of software
engineering are usually bigger than in other small world net-
works [11].

The incidence of power laws in real world networks and
the generation and detection mechanisms for power law be-
haviour have been investigated in [20], [8].

4. METHODOLOGY
The software engineering publication venues from which

the papers were extracted are given in Table 1 with their
respective years of inception. In the order listed, the ab-
breviations sand for: IEEE Transactions on Software Engi-
neering (TSE), International Conference on Software Engi-
neering (ICSE), IEEE Software (SW), Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA
– recently renamed as SPLASH), European Conference on
Object-Oriented Programming (ECOOP), ACM Transac-
tions on Software Engineering and Methodology (TOSEM),
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Foundations of Software Engineering (FSE), International
Symposium on Software Testing and Analysis (ISSTA), Au-
tomated Software Engineering (ASE), and Fundamental Ap-
proaches to Software Engineering (FASE). We selected those
venues which are exclusively focussed on general software en-
gineering themes. Although we do not claim this to be an
exhaustive list, we believe it covers most of the significant
venues in software engineering. Purists may point out that
IEEE Software is a magazine and not entirely focused on
the dissemination of research results. The reason we chose
to include IEEE Software is that several articles “expound-
ing pioneering ideas that had a significant impact” [1] were
published in this magazine over the years; [13], [15], [7], [9] to
name just a few. A list of influential IEEE Software articles
is available in [1].

Some of the conference venues we consider have had a
number of workshops associated with them over the years.
Bibliographic information from these co-located workshops
have been ignored in our dataset. We also do not include
peripheral tracks such as doctoral symposium etc. in the
data extracted from the conference proceedings.

Bibliographic information for these venues is available in
the public domain at Web based repositories such as ACM
Portal, IEEE Xplore, and DBLP. The BibTex files obtained
from these repositories are parsed and relevant information
is persisted in a Derby1 database for ease of retrieval. Each
Bibtex field is mapped to a field in a database table. The
database is then queried to generate an adjacency matrix M
where rows represent paper titles and the columns represent
corresponding author(s). Let the papers be numbered from
1 to i and authors from 1 to j. Then if author y is (one
of) the author(s) of paper x then the corresponding entry in
the adjacency matrix M(xy) = 1; otherwise it is 0. Using
the duly completed adjacency matrix M , the final network
is generated in a Pajek2 file format.
If the same author has chosen to be identified by different

variants of his/her name for different papers, the variants of
the names are treated as different individuals. If two differ-
ent authors happen to have the exact same name, they are
treated as the same individual. This is a common problem
in networks where vertices represent individuals [2]. From
manual checks we have performed, we have reason to believe
that though these ambiguities are present in our dataset,
they constitute a very minor portion of the 15,207 unique
author names considered.

For understanding the time variation of the software en-
gineering collaboration networks, we have chosen 11 cumu-
lative time-steps as defined in Table 2. We will have the
occasion to consider non-cumulative time steps also; these
are defined in Table 3. To denote the software engineer-
ing collaboration networks for a specific time-step, we use
the notation SRCN(start year-end year). So, for example,
SRCN(1976-1994) denotes a network based on all the pa-
pers cumulatively published between and inclusive of the
years 1976 to 1994.

We define the set S(c) = {SRCN(1976-1979), SRCN(1976-
1982), ... , SRCN(1976-2010)} to be the set of all software
engineering research collaboration networks over cumulative
time-steps, and S(nc) = {SRCN(1976-1979), SRCN(1980-
1982), ... , SRCN(2007-2010)} to be the set of all soft-

1http://db.apache.org/derby/
2http://pajek.imfm.si/doku.php

Table 2: Time-steps: Cumulative
Time-step No Period

1 1976-1979
2 1976-1982
3 1976-1985
4 1976-1988
5 1976-1991
6 1976-1994
7 1976-1997
8 1976-2000
9 1976-2003
10 1976-2006
11 1976-2010

Table 3: Time-steps: Non-cumulative
Time-step No Period

A 1976-1979
B 1980-1982
C 1983-1985
D 1986-1988
E 1989-1991
F 1992-1994
G 1995-1997
H 1998-2000
I 2001-2003
J 2004-2006
K 2007-2010

ware engineering research collaboration networks over non-
cumulative time-steps.

After generating the networks, the parameters of interest
(as reported in the Results section) are calculated using the
tools Pajek, Gephi3, and NodeXL4. Whether degree distri-
butions follow a power law was verified using the methodol-
ogy described in [8], and using programming resources avail-
able at http://tuvalu.santafe.edu/~aaronc/powerlaws/.

5. RESULTS
The entire software engineering research collaboration net-

work considered in our study consists of 15,207 authors and
11,429 papers. To understand how the characteristics of
software engineering research collaboration changes with time,
we first look at the change in the number of new authors and
papers in each non-cumulative time-step in Figure 1. This
can be seen in the context of the time line of inception of
the venues (Table 1) we have considered in building the col-
laboration networks.

We now move to the characteristics of S(c). Figure 2
shows the degree distribution on a log-log plot for SRCN(1976-
2010). As evident from the figure and the computed value of
goodness of fit p = 0.26 (p greater than 0.1 indicates power
law characteristics), the degree distribution follows a power
law; with values of the scaling parameter of α = 3.233 and
threshold value xmin = 7.5 [8]. The growth of the number of
vertices(V) and edges(E) of S(c) is shown in Figure 7. As ev-
ident, edges grow faster than vertices in the later time-steps

3http://gephi.org/
4http://nodexl.codeplex.com/
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Figure 1: New Authors and Papers Added for Non-
Cumulative Time-steps Defined in Table 3

Figure 2: Degree Distribution of SRCN(1976-2010)
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Figure 3: Average Separation and Scaling Factor
over Cumulative Time-steps Defined in Table 2

than in the earlier ones.
The facility for two vertices i and j to contact one another

depends on the length of the shortest path lij between them.
The average lij over all pair of vertices is called the average
separation of the network, and is denoted by S. Average
separation is an indication of the interconnectedness of the
network [4]. In Figure 3 we plot the variation of the average
separation and a scaling factor ln(V )/ln(Z) over time for
S(c) (Z is the average degree). The average separation goes
up and then shows a decreasing trend towards the later time-
steps. The values of the scaling factor converges closer to the
average separation in the later time-steps; the significance of
this observation will be highlighted in subsequent discussion.

The diameter (D) of a network is represented by the length
in number edges of the longest geodesic distance (that is,
shortest path) between any two vertices [19]. It indicates
the maximum distance that may need to be travelled for
one vertex to contact any other vertex. The average degree
Z of a network is the number of edges per vertex; it reflects
on the variation in the number of vertices and edges over
time. The diameters(D) and average degrees(Z) of S(c) are
depicted in Figure 4. The average degree grows monotoni-
cally with time, as is expected in view of the higher rate of
growth of the edges vis-a-vis the vertices in the network (Fig-
ure 7). However the diameter of S(c) shows an interesting
trend with the points of inflection in the latter time-steps.

A key difference between real world networks and com-
pletely random networks is the phenomenon of clustering.
It is usually observed in social networks that two vertices
that are linked to a third are more likely to be themselves
linked. Intuitively, two of one’s friends have a higher prob-
ability of being friends themselves. This is measured by the
clustering coefficient. For a vertex v with a degree kv, there
are kv neighbours of v. If all of these kv neighbours were
linked, there would be kv choose 2 or kv ∗(kv−1)/2 links be-
tween them. Let Nv be the actual number of links between
them. Then the clustering coefficient Cv of node v is defined
as the ratio of the actual number of links and the maximum
number of links between kv neighbours of v, and is given by
Cv = 2∗Nv

kv(kv−1)
. For the entire network, the clustering coeffi-

cient CC is average of Cv across all vertices [4]. For research
collaboration network based on co-authorship of papers, if
author A independently co-authored papers with authors B
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Figure 4: Diameter and Average Degree over Cu-
mulative Time-steps Defined in Table 2
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Figure 5: Clustering Coefficient over Cumulative
Time-steps Defined in Table 2

and C, CC represents the probability that authors B and C,
co-authored a paper together. The variation of the cluster-
ing coefficient with time is plotted in Figure 5; it shows a
monotonically steady increase.

Networks of scientific collaboration are usually fragmented
in many clusters. This many be due to some scientists pre-
dominantly writing single-author papers, or inadequate data
on past collaborations. With time, the clusters start getting
connected with one another. To understand this progres-
sion, examining the relative size L of the largest cluster
(also known as the giant component [18]) as a percent of
the number of vertices of the corresponding entire network
is helpful [4]. Figure 6 shows the values of L for S(c) for the
time-steps; till the fifth time-step it has a steady low value
less than 5%; beyond the sixth time-step, it exhibits steady
increase at a significantly high rate.

How do we interpret these results in the light of existing
literature on collaboration networks, as well as the specific
nature and context of software engineering research collab-
oration?

6. DISCUSSION

6.1 Degree distribution
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Figure 6: Size of Largest cluster over Cumulative
Time-steps Defined in Table 2

In the study of networks, the degree distribution P (k) –
which represents the probability that a randomly selected
vertex will have the degree of k; that is, k edges incident on
it – is an important parameter [4]. Networks having a power-
law tail for P (k) are known as scale-free networks; classical
network models for random graphs such as the Erdos-Renyi
model [3] or the Watts-Strogatz model [24], [22] have expo-
nentially decaying P (k) and are known as exponential net-
works.

The manifestation of power law (usually with an exponen-
tial cut-off) in the degree distribution of the collaboration
networks of scientific research has been widely observed [4],
[18]. Its implication is generally construed as: there are few
individuals with many collaborators, and many individuals
with few collaborators. This seems a plausible reflection of
the reality of scientific collaboration; after all there are al-
ways the likes of Paul Erdos (the prolific mathematician who
inspired the Erdos number metric) in every field. As a gener-
ative mechanism for power law in the context of scientific col-
laboration networks the idea of preferential attachment has
been considered; it centres around the assumption that for a
vertex, the likelihood of attracting new edges increases with
the vertex’s degree [3]. So according to preferential attach-
ment, in a research collaboration network authors who have
many collaborators in the past will have more collaborators
in the future. To verify whether preferential attachment is
indeed at the root of the power law degree distribution of
SRCN(1976-2010), we decided to calculate the correlation
between the degree of a vertex in time-step (t − 1) with
the fraction of the new edges that attaches to that vertex
in time-step t; repeating for all vertices in each successive
pair of cumulative time-steps between 1976 to 2010. This
method of checking whether preferential attachment holds
is guided by the measurement of the probability that a ver-
tex attaches to another vertex being proportional to the de-
gree of the latter vertex, as outlined in [3]. The correlation
coefficients for the ten pairs of preceding-succeeding time-
steps ranged from 0.00005 to 0.11006, with a mean value of
around 0.03. The latter time-steps show a higher correlation,
with the last pair of time-steps having the largest value; but
on the whole the correlation is only weakly positive. Thus
preferential attachment being the sole driver of the power
law degree distribution of SRCN(1976-2010) seems unlikely.
The very low values of the correlation coefficients in the
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earlier pairs of time-steps, indicated it may be interesting to
check for the degree distributions for SRCN(1976-1979), ... ,
SRCN(1976-2006). We found that power law characteristics
are only being manifested in SRCN(1976-2006) – in addi-
tion to SRCN(1976-2010). All other software engineering
research collaboration networks in S(c), do not have power
law degree distribution. As the networks are cumulative, in-
cremental accretion of some trend(s) appears to be reaching
a critical point during the middle of the 2001-2010 decade,
to reflect in power law characteristics of degree distribution
in SRCN(1976-2006) and SRCN(1976-2010).

So in summary, software engineering research collabora-
tion networks show power law in their degree distributions
only in the last two cumulative time-steps. Although the
indicator for preferential attachment is increasing over the
time-steps, its low values do not justify the conclusion that
preferential attachment predominantly guides the degree dis-
tribution in these networks.

6.2 Comparison of network parameters
In a seminal paper, Barabasi et al. study the evolution

of the collaboration networks in the fields of mathematics
and neuro-science over the period 1991-1998 and highlight
the following observations: degree distribution follows power
law, average separation decreases, clustering coefficient de-
cays, size of the largest component increases, average degree
increases, and attraction of edges to vertices is governed by
preferential attachment [4]. We have already examined the
degree distribution and relevance of preferential attachment
for software engineering research collaboration context. Let
us compare the other observations of Barabasi et al. for
mathematics and neuro-science collaboration networks with
S(c).

In the networks Barabasi et al. studied, the average sep-
aration decreased over time; however for S(c) it increases
monotonically till the eighth time-step, and then starts go-
ing down. Barabasi et al., explain the decease in S for math-
ematics and neuro-science due to two probable causes: in-
creasing connectivity, leading to decreased diameter; and
problem of the missing past with the databases they used to
construct networks. For S(c), the diameter in fact grows till
the ninth time-step, after which it falls in the tenth time-
step and rises again in the eleventh. Moreover, as stated
earlier the problem of the missing past has been obviated in
S(c). So, the separation of S(c) has a different characteristic
than that of the networks studied in [4].

The decaying of clustering coefficients as reported in [4]
have been explained by the authors as being “in agreement
with the separation measurement”; they also point out that
CC converges to an asymptotic value in time – around 0.75
for neuro-science, and around 0.6 for mathematics. S(c)
shows a monotonically increasing value of C, going from
0.369 in the first time-step, to 0.578 in the last time-step.
In the networks studied by Barabasi et al., CC decreases
monotonically towards settling at an asymptotic value.

Barabasi et al. report monotonic increase of the relative
size of the largest cluster for both mathematics and neuro-
science collaboration networks. For the former, L starts
close to 0 and goes up to around 0.7; while for the latter
the range is from around 0.55 to 0.99. For both of these
networks, the rate of increase of L decreases in the later
time-steps and seems to converge to some asymptotic value.
In S(c), L increases very gradually till the sixth time-step

(starting from 1.52% in the first time-step), and then goes
into a regime of very rapid and steady increase, from the
seventh time-step, ending at 42.11%, which is significantly
lower than that reported for collaboration networks reported
in other scientific disciplines [18].

The increase in average degree as reported by Barabasi
et al. is also reflected in S(c); for software engineering
research collaboration networks, Z increases from 1.545 to
3.335 across the eleven time-steps studied.

So summarizing the comparison between S(c) and the
mathematics and neuro-science collaboration networks as
reported in [4], we can say the former is different from the
latters in terms of the variation of average separation and
clustering coefficient, and somewhat similar in terms of the
variation of the relative size of the largest cluster, and the
average degree.

6.3 Emerging Small World
In his exploration of the structure of scientific collabora-

tion networks, Newman establishes that research collabora-
tion networks form “small worlds”, where pairs of randomly
selected scientists are typically short distances away from
one another and the networks show significant clustering
[18]. Watts defines a small world graph as one with clus-
tering coefficient lying between 0.5 and 0.8 and the average
separation is approximately equal to ln(N)/ln(Z) [23], [11].
With reference to Figure 5 we note that the value of the clus-
tering coefficient first crosses 0.5 in the cumulative time-step
1976-2000 and goes up to 0.578 in the cumulative time-step
1976-2010. Figure 3 presents the variation of the average
separation and the ratio ln(N)/ln(Z); the values come clos-
est to one another (less than 15% difference) in the eighth
to the eleventh time-steps. So evidently, in the last four
time-steps – from 2000 to 2010 – the software engineering
research collaboration network shows symptoms of a small-
world. It may be pointed out that the smallest separation of
7.066, recorded in the eleventh time-step is still about one
degree greater than the famed “six degrees of separation”
and close to the value of 7.1 reported for Computer Science
co-authorship networks in [12]. The average separations of
the seven scientific collaboration networks reported in [18]
range from 4.0 to 9.7.

So, software engineering research collaboration networks
appear to manifest small world characteristics in the decade
of 2000-2010.

6.4 Social Networks of Collaboration
Although collaboration networks are often causally refer-

eed to as “social networks”, Newman and Park have pointed
out that social networks differ from other types of networks
in two important ways: non-trivial clustering (or network
transitivity) and positive correlations (or assortative mix-
ing) between the degrees of adjacent vertices [21]. We have
already discussed the idea of clustering in the context of
clustering coefficient; the likelihood of B collaborating di-
rectly with C, given A collaborates with B and C inde-
pendently. Assortative mixing reflects on the tendency of
higher degree vertices connecting with other higher degree
vertices (and vice versa) in a social network. The variation
of the clustering coefficient of S(c) has been presented in
Figure 5. To understand the level of degree correlations, we
calculated the Pearson correlation coefficient between the
vertices at the ends of each of the 25,511 edges at the last
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Figure 7: Vertices and Edges over Cumulative Time-
steps Defined in Table 2

cumulative time-step of S(c), as recommended by Newman
in [19]. The Pearson correlation coefficient value is found to
be 0.283. Thus SRCN(1976-2010) is moderately assortative
as reflected by the moderate positive correlation between
the degree of vertices connected by an edge. This value of
the Pearson correlation coefficient, taken in conjunction with
the CC value of 0.578 in SRCN(1976-2010), indicates that
the software engineering research collaboration network at
the last time-step studied, displays moderate symptoms of
being a social network, as specified in [21].

In summary, the cumulative network of software engineer-
ing research collaboration at 2010 manifests symptoms of
social networks to a reasonable extent.

6.5 Towards Increasing Collaboration
Two interesting trends noted in Figure 5 and Figure 6

is the increasing values of the clustering coefficient and the
relative size of the largest cluster. On the surface of it,
both of these trends seem to point to increasing research
collaboration in software engineering with the progression
of time, which is also borne out by the faster increase in the
number of edges vis-a-vis the number of vertices (Figure 7).
However these figures are for networks over cumulative time-
steps. Are previously published authors still collaborating
in the new time-steps?

To address this question, we calculated the age-degree
correlation of the vertices for SRCN(1976-2010). The ver-
tex which appeared for the first time in the first cumulative
time-step is ascribed the age of 11, and the one appearing in
the last cumulative time-step has age of 1. Age and degree
of vertices are found to have very weak positive correlation
(correlation coefficient = 0.00062). Thus the fact that an
author has been in the network for long does not necessarily
imply (s)he has many collaborations. This seems to be plau-
sible; it is unlikelythat the same authors would be active in
research over the entire period of 34 years, or even major
parts thereof.

To make a stronger case for increasing collaboration with
time we need to check whether clustering coefficient and rel-
ative size of the largest cluster show similar characteristics
of time variation across non-cumulative time-steps as they
did for cumulative time-steps. In Figure 8 and Figure 9 we
plot the time variation of clustering coefficient and relative
size of largest cluster for the non-cumulative networks S(nc).
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Figure 8: Clustering Coefficient over Non-
Cumulative Time-steps Defined in Table 3
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Figure 9: Size of Largest cluster over Non-
Cumulative Time-steps Defined in Table 3

Comparing these figures with Figure 5 and Figure 6 respec-
tively, we note that the overall trends are the same: steadily
increasing clustering coefficient and rapidly increasing rela-
tive size of the largest cluster (in the later time-steps). So
networks for individual time-steps taken in sequence show a
characteristic similar to those of cumulative networks. The
maximum clustering coefficient for S(nc) is more than 22%
higher (0.71 versus 0.578) than that of S(c). The value of
0.71 is closer to the clustering coefficient value of other scien-
tific collaboration networks as reported in [18]. The largest
value of the relative size of the largest cluster is close to one
another (42.11% versus 43.25%) for both S(c) and S(nc).
This is surprising, as the value of L has been found to be
in the range of 80%-90% in collaboration networks of other
disciplines [18]. In contrast, it appears that less than half of
the authors in software engineering collaboration networks
belong to the largest cluster.

The increasing values of CC and L reflect on the grow-
ing interconnectedness of software engineering collaboration
network. The network grows by the publication of new pa-
pers. New papers necessarily mean the addition of new ver-
tices, but not necessarily the addition of new edges. Hy-
pothetically if all new papers in a time-step are written by
single authors, then vertices will grow by the number of new
papers, but edges will not grow at all. The growth of the
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Figure 10: Percent of Singleton Authors Out of New
Authors over Non-Cumulative Time-steps Defined
in Table 3

number of edges is proportional to the square of the number
of co-authors; if n is the number of co-authors in a new pa-
per, it adds n vertices and n∗(n−1)/2 edges to the network.
Thus the extent of co-authorship is a defining characteristic
of collaboration of a discipline. In mathematics and the-
oretical sciences the number of joint authors for a paper
is usually low, whereas in empirical sciences the authorship
traditions are more “generous” – “... it is common, for exam-
ple, for a researcher to be made a coauthor (sic) of a paper
in return for synthesizing reagents used in an experimen-
tal procedure” [16]. Where is software engineering research
collaboration positioned in the spectrum of co-authorship
traditions?

To address this question we extracted the number of new
authors for each non-cumulative time-step and the num-
ber of “singletons”, that is authors with zero collaborators,
among those new authors. Figure 10 shows the variation of
the percent of singletons out of new authors in each non-
cumulative time-step; starting with 23.37% in 1976-1979,
it has come down (though non-monotonically) to 4.83% in
2007-2010. Evidently, less single author papers are being
written in the later time-steps than in the earlier ones.

When we remove the singletons from the set of new au-
thors in each non-cumulative time-step, we are left with au-
thors who have had at least one collaborator. What is the
trend of variation of the average degree of non-singleton au-
thors across the same time-steps? With reference to Fig-
ure 11 we note that the average degree of non-singleton new
authors increases (though non-monotonically) from 2.02 in
the first time-step to 3.42 in the last time-step. Thus there
is a net increase of more than one degree across the range
of non-cumulative time-steps.

The significant decrease of the percent of new singleton
authors and the notable increase in the average degree of
new non-singleton authors give strong evidence of increas-
ing collaboration in software engineering research with the
progression of time.

Why is there evidence of increasing collaboration in soft-
ware engineering research? Increasing researcher connec-
tivity, led by the advent of the World Wide Web in the
early 1990s is surely influential in facilitating more collab-
oration. But this is nothing unique to software engineer-
ing research; every collaborative enterprise should ideally
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Figure 11: Average Degree of Non-singleton Au-
thors over Non-Cumulative Time-steps Defined in
Table 3

be positively impacted by this facilitating factor. Is there
something unique to software engineering research interests
that has encouraged progressive increase of collaboration?

To address these questions we parsed the titles of all the
11,429 papers in our database and tokenized them into bag
of words after stop words removal for each non-cumulative
time-step. Figure 12 presents a word cloud of the tokenized
titles. (The word cloud has been created using Wordle5)
Expectedly, we see words of high import in software engi-
neering research in commensurate boldness. However, the
changing importance of certain words with time is not ap-
parent from the word cloud. When we examine the frequen-
cies of tokens in the bag of words for each time-step, we find
that “object” has featured among the top four most frequent
words in all five non-cumulative time-steps between 1984 to
2003 (barring common words like “software” etc); “object”
has been the most frequent in two of those time-steps, 88-91
and 92-95. This only reflects the widely recognized spurt in
the interest in object-orientation from the second half of the
1980s.

Acknowledging the risk of over-generalization, it may be
said that a key theme of object-orientation is interaction; ob-
jects with streamlined responsibilities collaborate amongst
themselves to collectively fulfil a system’s functionality. Per-
haps the interactive paradigm of object-orientation also in-
fluenced research around this paradigm to be more interac-
tive, leading to heightened collaboration amongst software
engineering researchers. We recognize this as a conjecture
at this point of time; we intend to examine with more rigour
in our future work.

In summary, symptoms of increasing collaboration with
progression of time is evident in software engineering re-
search.

7. OPEN ISSUES AND FUTURE WORK
Some of the factors which can pose as threats to the va-

lidity of our conclusions are:

• Non inclusion of publication venues which may not be
fully dedicated to software engineering, but none the

5http://www.wordle.net/
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Figure 12: Word Cloud of Tokens from Paper Titles over Non-Cumulative Time-steps Defined in Table 3

less publish significant software engineering research
results.

• Ambiguity in the names of authors (confusing one in-
dividual into several or several individuals) if they hap-
pen to be authors with high degree of collaboration.

• Taking the time-steps as approximately around three
years, which may mask micro-trends within the time-
steps.

• Not considering the weights of collaborations in terms
of the number of times two authors may have collabo-
rated.

In our future work, we plan to address these threats to
validity. The empirical data presented in this paper has led
us to a number of observations on how collaboration char-
acteristics of software engineering research vary over time.
What we observed are symptoms of the underlying dynam-
ics of software engineering research collaboration. Based on
these, we plan to develop a model that would offer theoret-
ical underpinnings to the empirical results presented in this
paper.

8. CONCLUSIONS
In this paper we have extracted software engineering re-

search collaboration networks from publicly available bib-
liographic information on co-authorship of papers in ten
venues over 11 time-steps from 1976-2010. By exploring
the time variations of various networks parameters we have

made the following observations: power law characteristics
in degree distribution only manifest in the last two cumula-
tive time-steps and preferential attachment can not be said
to predominantly influence this behaviour; software engi-
neering research collaboration networks are different from
corresponding networks in mathematics and neuro-science
in terms of the time variation of average separation and
clustering coefficient, and somewhat similar in terms of the
variation of the relative size of the largest cluster and the
average degree; software engineering research collaboration
networks appear to manifest small world characteristics in
the decade of 2000-2010 with a degree of separation around
7; the cumulative network of software engineering research
collaboration at 2010 manifests symptoms of social networks
to moderate extent in terms of non-trivial clustering and as-
sortativity. There is also evidence of increasing collabora-
tion in software engineering research with the progression of
time. These characteristics as revealed in our study point
to the distinct nature of research collaboration in software
engineering vis-a-vis other disciplines. The empirical results
presented in this paper establish a foundation for developing
a theoretical model for the evolution of software engineering.
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