
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

10-2015 

The importance of being isolated: An empirical study on The importance of being isolated: An empirical study on 

Chromium reviews Chromium reviews 

Subhajit DATTA 
Singapore Management University, subhajitd@smu.edu.sg 

Devarshi BHATT 

Manish JAIN 

Proshanta SARKAR 

Santonu SARKAR 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons, Numerical Analysis and Scientific 

Computing Commons, and the Software Engineering Commons 

Citation Citation 
1 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5588&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


The Importance of being Isolated
An Empirical Study on Chromium Reviews

Subhajit Datta
Singapore University of
Technology and Design

Email: subhajit.datta@acm.org

Devarshi Bhatt
BITS-Pilani
Goa, India

Email: f2012097@goa.bits-pilani.ac.in

Manish Jain
Heritage Institute of Technology

Kolkata, India
Email: manishjain2792@gmail.com

Proshanta Sarkar
IBM Global Services

Kolkata, India
Email: proshant.cse@gmail.com

Santonu Sarkar
BITS-Pilani
Goa, India

Email: santonus@goa.bits-pilani.ac.in

Abstract—As large scale software development has become
more collaborative, and software teams more globally distributed,
several studies have explored how developer interaction influ-
ences software development outcomes. The emphasis so far has
been largely on outcomes like defect count, the time to close
modification requests etc. In the paper, we examine data from
the Chromium project to understand how different aspects of
developer discussion relate to the closure time of reviews. On
the basis of analyzing reviews discussed by 2000+ developers,
our results indicate that quicker closure of reviews owned by
a developer relates to higher reception of information and
insights from peers. However, we also find evidence that higher
engagement in collaboration by a developer is associated with
slower closure of the reviews she owns. Within the scope of our
study, these results lead us to conclude that peer review of code
may have a distinct dynamic that is facilitated by developers
working in relative isolation.

I. INTRODUCTION AND MOTIVATION

In Cathedral and the Bazaar, Raymond emphasized how
Linux development enshrined a new way of software building,
which was more interactional than instructional [1]. Canoniz-
ing his observations in the so-called Linus’s Law, Raymond
pointed out how higher developer attention seems to relate to
quicker resolution of bugs. Although the veracity and validity
of Linus’ Law has been questioned [2], it does offer an
epigrammatic insight into the benefits of engaging a large
pool of developers and users in resolving defects in complex
software systems. In the quarter century since the first release
of Linux, distributed development of large scale software has
become quite the norm. Today, open source as well as pro-
prietary software development initiatives increasingly leverage
global teams. Members of these teams are often separated by
continents and cultures, and wide difference in time zones offer
rare opportunities for synchronous communication. In such
situations, peer review of code becomes a critical mechanism
for delivering quality software, within project constraints.
While many empirical studies [3], [4] have been reported
over the years on factors influencing the number of defects
in software systems, there have been relatively few studies
on the outcome of code reviews. The increasing adoption of

collaborative code review tools such Gerrit1 and Rietveld2

facilitates a better understanding of the review process.

With reference to Figure 1, the review life cycle usually
goes through the following stages: a unit of code relating to
a work item is raised for review and verified, then reviewed
by one or more reviewers; these reviewers give their review
comments which are responded to by the developers; through
this co-commenting process a consensus is reached on the
changes to the code that needs to be implemented; the code
is accordingly changed and tested for residual or regression
defects; then approved for merging with the main code base or
abandoned; followed by closure of the review. Peer reviewing
offers a great opportunity for developers to enhance their
awareness about the development ecosystem [5]. It is in
the interest of smooth project governance that reviews are
closed quickly, and if they can not be closed due to external
dependencies, they are marked as abandoned and parked aside.

Developer interaction in collaborative software develop-
ment has many implications. While interaction among team
members is usually encouraged in the hope of fostering better
collaboration, some interactions may be helpful, while others
can be distracting. Interaction in the software development
context, such as co-commenting or co-editing work items
easily lends itself to be studied through the analysis of in-
teraction networks, whose vertices (nodes) are developers, and
two developers are connected if there is an instance of some
predefined interaction between them [6]. There is a body of
literature on how developer interaction relates to outcomes
in software development, and it is generally recognized that
different aspects of interaction affect outcomes differently [7].

We recognize the following aspects of interaction in the
peer review process: developers advising their peers by sharing
specific information or insight - we call this dissemination;
developers receiving advise from their peers - we call this
reception; and developers working together with one another
on closing the reviews - we call this collaboration. (The next
section describes how we measure these parameters in this

1https://code.google.com/p/gerrit/
2https://code.google.com/p/rietveld/



Fig. 1. Life-cycle of a review

study.) The collective aim of peer review is to complete each
unit of review as effectively as possible, within the constraints
of time. Thus disseminating and receiving relevant know-how,
as well as collaborating with peers, stand to influence the
outcome of the review process. To study these influences, we
examine the following hypotheses in this paper:

• H1: The reviews owned by a developer are closed
faster if the developer advises a large number of her
peers.

• H2: The reviews owned by a developer are closed
faster if the developer receives advice from a large
number of her peers.

• H3: The reviews owned by a developer are closed
faster if the developer collaborates more with her
peers.

In the next section we describe the study setting and
methodology, followed by a presentations of the results and
threats to validity. A brief overview of related work is given
next, followed by discussions and conclusions.

II. STUDY SETTING AND METHODOLOGY

Code review data from software projects has been made
available in the public domain, as described in [8]. We took
the dump of review data from the Chromium project3 and
parsed the data4 into a MySQL database for the ease of
querying. The entire data-set contained 826398 comments,
made by 5865 developers on 209618 review records. For
our study we selected a subset 2103 developers who own at
least one review and have peer-reviewed at least one review
owned by some other developer. We filtered the set of reviews
owned by this subset of developers by removing those reviews
with missing or absurd attributes (such as last modified date
recorded being earlier than the created date) to 159625 reviews
for our analysis, which is about 76% of the all the reviews in
the data-set.

From the filtered data, we extracted a review comment net-
work (RCN) whose vertices are developers and two developers
are connected by an arc, such that there is a link starting from
the developer who sends a comment and the link ends at the
developer who receive the comment. We do not consider the
weights of these arcs in this study. Senders and recipients of
each comment is specified in the data-set, which enables us to
the draw these arcs. To examine our hypotheses, we develop
multiple linear regression models with variables as described
below. There is a base model with only the dependent variable
and the control variables (as explained below, details in column
titled I in Table I), and a refined model with the independent
variables additionally included (column titled II in Table I).

3http://www.chromium.org/
4http://sdlab.naist.jp/reviewmining/data/chromium-reviews-20121030.zip

As RCN is a directed network, the number of incoming
edges, or in-degree of a vertex indicates the level of informa-
tion received by that vertex, whereas the corresponding out-
degree is a measure of the amount of information disseminated
by the vertex. Thus, the independent variables are calculated
as - Dissemination: A developer’s out-degree in RCN; Re-
ception: A developer’s in-degree in RCN. Collaboration: A
developer’s clustering coefficient in RCN. If a vertex v in a
network has a degree of kv , that is there are kv vertices directly
linked to v, the maximum number of edges between these kv
vertices is kv choose 2 or kv ∗(kv−1)/2. If the actual number
of such edges existing is Nv , then the clustering coefficient
is, Cv = 2∗Nv

kv(kv−1) . The clustering coefficient of a vertex as
defined above reflects on the extent to which the individual
corresponding to the vertex collaborates with her peers [9]. The
control variables for the models are calculated as - Workload:
The number of reviews owned by a developer; Interest: The
number of reviews commented upon by a developer. Reach:
The number of comments by a developer on reviews that
are not owned by the developer. Influence: The number of
peer reviews conducted by the developer. Inputs: The median
number of peer developers who have commented on each
review owned by a developer. Span: Elapsed time between first
and last comment made by a developer. Delay: Median elapsed
time of all reviews owned by a developer for which the reviews
have not been closed. The dependent variable ClosureTime
for the models is taken as median of the elapsed time of the
reviews owned by the developer. The elapsed time for each
review is calculated as the time period in days between the
review creation date and the date it is last modified. For the
set of reviews we include in our analysis, the last modified date
marks the closure of the review. The choice of our dependent
variable is based on the assumption that time taken to close a
review is a reliable proxy for the attention received by the
review, and its calculation is supported by the information
available in the data-set. We recognize that effectiveness of
the review process can also be measured by other parameters
such as review quality, not considered in this study.

As the dependent variable is continuous rather than a
count, we chose multiple linear regression as the modeling
paradigm over Poisson or negative binomial regression. Mul-
tiple linear regression rests on the assumptions of linearity,
normality, and homoscedasticity of the residuals, and absence
of multicollinearity between the independent variables. The
residual properties were verified using histogram, P-P plot and
scatter plot of the standardized residuals. The variables are
transformed by taking square roots, whenever necessary for
a better fit (the transformed variables are denoted by “sqrt”
before their names in Table I). The correlations among the
independent variables were low, the highest being between
Collaboration and Dissemination (around 0.45). To further
verify whether multicollinearity between variables artificially
altered the significance of the overall regression and the
regression coefficients’ stability, we calculated the variance
inflation factor (VIF) for each variable. For all the variables,
the VIF was found to be below the recommended upper limit
[10]. Based on the above discussion, it can be concluded
that the assumptions of linear multiple regression hold within
permissible limits in our case, and thus it is appropriate to use
this modeling paradigm [10].



TABLE I. RESULTS OF REGRESSION FOR THE EFFECTS ON REVIEW
CLOSURE TIME.(SUPERSCRIPTS ’∗∗∗’, ’∗∗’, ’∗’, ’.’ DENOTE p ≤ 0.0001,

p ≤ 0.001, p ≤ 0.01, p ≤ 0.05, RESPECTIVELY)

I II
Base model Refined model

Intercept 118.0404∗∗∗ 102.3478∗∗∗

(11.6881) (12.9848)
Control variables
sqrt(Workload) −4.4908 6.1556.

(3.3314) (3.6659)
sqrt(Interest) −0.32 −1.0497

(0.652) (2.1495)
sqrt(Reach) 3.5146∗∗ 3.7754∗∗

(1.1434) (1.2468)
sqrt(Influence) −7.3375∗∗ −7.6015∗∗

(2.5499) (2.7586)
Inputs 9.8196. 9.8141

(5.8720) (6.5288)
Span 0.1068∗∗∗ 0.1338∗∗∗

(0.0182) (0.0193)
Delay 0.7331∗∗∗ 0.7162∗∗∗

(0.0259) (0.0256)
Independent variables
sqrt(Reception) −29.3159∗∗∗

(4.4076)
sqrt(Dissemination) 0.5138

(4.8821)
Collaboration 177.7117∗∗∗

(31.8272 )
N 2103 2103
R2 0.301 0.32
df 2095 2092
F 101 131
p < 0.001 < 0.001

III. RESULTS AND THREATS TO VALIDITY

Table I presents results of the regression models; the
numbers in parentheses give the standard errors for each of
the coefficients. We see from the corresponding p-values in
the lower portion of the table that both the base and refined
models are statistically significant overall and the R2 values
(0.301 vis-a-vis 0.32) denote that addition of the independent
variables over and above the control variables have increased
the goodness-of-fit of the model. We also observe that there is
statistically significant effect of Reception and Collaboration
on the dependent variable, whereas the effect of Dissemination
is not statistically significant. On the basis of the sign of
the coefficients, we see evidence that higher reception relates
to faster closure of reviews, whereas higher collaboration
is associated with slower closure of reviews. Thus we find
empirical evidence in favor of H2 and in opposition to H3;
whereas H1 can not be validated with statistical significance
in this study. We examine the implications of these findings in
Section V section after outlining the threats to validity in the
remainder of this section, and related work in the next section.

In this paper we report results from an observational study
rather than a controlled experiment. Thus, in the statistical
models developed, correlation does not imply causation. Also,
from the values of the R2, it is evident that the models are able
to explain only about 30-32% of the variability of the data; thus
there are some factors which we have not considered in our
models. Construct validity relates to whether the variables are
measured correctly. Our independent variables are measured
using established network metrics. The measurement of control
variables are also grounded in standard software engineering
practices. However we recognize that there may be alternative
ways to measure similar parameters [6] and the communication
networks can be constructed differently [11]. However, these
differences are unlikely to change the general direction of our

conclusions. Our independent variables do not measure the
quality or intensity of interactions between developers. In our
future work, we plan to examine how these factors affect our
results. Internal validity ensures that a study is free from
systematic errors and biases. As the Chromium repository is
our only source of data, common issues affecting internal
validity such as mortality and maturation do not arise. A
key influence on internal validity is the extent to which the
development team used the review platform; we assume the
usage was widespread. External validity is concerned with the
generalizability of results. Our study covers the review cycle of
a single product. As demonstrated in existing literature, useful
insights can be drawn from observational studies on single
subjects [12], [7]. Thus even as we do not claim our results to
be generalizable as yet, we believe our results throw interesting
light on the study objective. Reliability of a study is estab-
lished when the results are reproducible. From the discussion
in earlier sections, it is evident that there is limited human
intervention in the extraction and processing of data. Once
the data is extracted, we use standard statistical techniques for
analysis. Assuming our data source is accessible, our results
can be easily reproduced.

IV. RELATED WORK

In recent times, there is an increasing interest in various
aspects of the code review process. Rigby, German, and Storey
investigate two peer review techniques - review-then-commit,
and commit-then-review - that are used in the successful
Apache server project, and arrive at a set of general observa-
tions on how peer review is actually conducted in the project
[13]. Rigby and Storey report findings from an empirical study
that examines how developers identify code changes they can
review as well as interaction profiles of stakeholders [14].
Bacchelli and Bird report a study of review comments across a
wide range of teams at Microsoft; they find that in addition to
finding defects, reviews foster enhanced team awareness, and
knowledge transfer [15]. Baysal et al. study the code review
process of WebKit - a large, open source project and conclude
that non technical factors involving organizational and personal
dimensions significantly impact code review outcomes [16]. In
addition to other results, the authors of [5] conclude that “that
conducting peer review increases the number of distinct files
a developer knows about by 66% to 150% depending on the
project”. McIntosh et al. study the relationship between soft-
ware quality vis-a-vis code review coverage and code review
participation in Qt, VTK, and ITK projects and conclude that
poorly reviewed code negatively impacts software quality in
large systems [17]. Beller et al. found that bug-fixing tasks
lead to fewer changes and tasks with more changed files and
higher code churn have more changes [18]. Rigby et al. study
the review policies of 25 OSS projects and the archival records
of six large, mature, and successful OSS projects to conclude
that OSS peer review is “drastically” different from traditional
inspection [19]. The studies listed above - among others -
establish that peer review processes have many subtleties. Our
current work complements existing results by examining how
review closure time is related to the various ways in which
developers interact in the peer review process.



V. DISCUSSIONS AND CONCLUSION

With reference to the results presented in Section III, we
find evidence that for developers, higher Reception relates
to quicker closure of reviews. Developers who receive more
information are likely to have higher familiarity with the
project ecosystem [5]. And it is expected that this will relate
to quicker closure of reviews owned by such developers. But
surprisingly, we find higher collaboration to be associated
with developer reviews taking more time to be closed. This
confronts the conventional wisdom that collaboration is bene-
ficial for many collective enterprise [20] [21] including some
software development activities, such as bug resolution [22].

Our evidence points to the nature of the review activity
being inherently different from other software development
tasks. It is likely that reviewers need to operate in a zone
relatively free from the pressures of conformity that other
collective activities bring with it. Perhaps peer review of
code has something in common with the review of scientific
manuscripts. It is expected - if not imperative - that a compe-
tent scientific review reflects the individual perspective of the
reviewer, and not a conjoint opinion arrived through consensus.
Similarly, code review may call for the focused attention of
developers, which too much collaboration can impair.

In today’s milieu of growing emphasis on collaboration,
it is often overlooked that while collaboration brings many
essential signals, it can also carry much inessential noise.
Depending on the nature of the activity being collaborated
around, this noise can be detrimental at times. Our results
indicate that for peer review of code by developers, sharing
one’s knowledge with peers rather than closely collaborating
with them can be more helpful.

In an interview in 2002, Dijkstra had provocatively re-
marked “...thanks to the greatly improved possibility of com-
munication, we overrate its importance. Even stronger, we un-
derrate the importance of isolation. ...Thanks to my isolation,
I would do things differently than people subjected to the
standard pressures of conformity. I was a free man.”5(italics
added). In resonance with Djikstra’s perspective, our results
can inform how peer review teams are assembled and managed,
with a deeper understanding of the importance of isolation.

REFERENCES

[1] E. S. Raymond, The Cathedral and the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. O’Reilly, 2001.

[2] A. Meneely and L. Williams, “Strengthening the empirical analysis of
the relationship between linus’ law and software security,” in Proceed-
ings of the 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, ser. ESEM ’10. New York,
NY, USA: ACM, 2010, pp. 9:1–9:10.

[3] A. G. Koru and H. Liu, “Building defect prediction models in practice,”
IEEE Softw., vol. 22, no. 6, p. 2329, Nov. 2005.

[4] T. Zimmermann and N. Nagappan, “Predicting defects with program
dependencies,” in Empirical Software Engineering and Measurement,
2009. ESEM 2009. 3rd International Symposium on, Oct. 2009, pp.
435 –438.

[5] P. C. Rigby and C. Bird, “Convergent contemporary software peer
review practices,” in Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2013. New York,
NY, USA: ACM, 2013, pp. 202–212.

5http://cacm.acm.org/magazines/2010/8/96632-an-interview-with-edsger-w-dijkstra/
fulltext

[6] M. Cataldo and J. D. Herbsleb, “Communication networks in geograph-
ically distributed software development,” in Proceedings of the 2008
ACM conference on Computer supported cooperative work, ser. CSCW
’08. New York, NY, USA: ACM, 2008, p. 579588.

[7] T. Wolf, A. Schroter, D. Damian, and T. Nguyen, “Predicting build
failures using social network analysis on developer communication,” in
Proceedings of the 31st International Conference on Software Engineer-
ing, ser. ICSE ’09. Washington, DC, USA: IEEE Computer Society,
2009, p. 111.

[8] K. Hamasaki, R. G. Kula, N. Yoshida, A. E. C. Cruz, K. Fujiwara, and
H. Iida, “Who does what during a code review? datasets of oss peer
review repositories,” in Proceedings of the 10th Working Conference on
Mining Software Repositories, ser. MSR ’13. Piscataway, NJ, USA:
IEEE Press, 2013, pp. 49–52.

[9] R. Albert and A. Barabasi, “Statistical mechanics of complex networks,”
cond-mat/0106096, Jun. 2001, reviews of Modern Physics 74, 47
(2002).

[10] B. Tabachnick and L. Fidell, Using Multivariate Statistics. Boston:
Pearson Education, 2007.

[11] K. Ehrlich and M. Cataldo, “All-for-one and one-for-all?: a multi-
level analysis of communication patterns and individual performance
in geographically distributed software development,” in Proceedings of
the ACM 2012 conference on Computer Supported Cooperative Work,
ser. CSCW ’12. New York, NY, USA: ACM, 2012, pp. 945–954.

[12] T. Wolf, T. Nguyen, and D. Damian, “Does distance still matter?” Softw.
Process, vol. 13, no. 6, pp. 493–510, 2008.

[13] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software
peer review practices: A case study of the apache server,” in Proceedings
of the 30th International Conference on Software Engineering, ser. ICSE
’08. New York, NY, USA: ACM, 2008, pp. 541–550.

[14] P. C. Rigby and M.-A. Storey, “Understanding broadcast based peer
review on open source software projects,” in Proceedings of the 33rd
International Conference on Software Engineering, ser. ICSE ’11. New
York, NY, USA: ACM, 2011, pp. 541–550.

[15] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 712–721.

[16] O. Baysal, O. Kononenko, R. Holmes, and M. Godfrey, “The influence
of non-technical factors on code review,” in Reverse Engineering
(WCRE), 2013 20th Working Conference on, Oct 2013, pp. 122–131.

[17] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of
code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, ser. MSR 2014.
New York, NY, USA: ACM, 2014, pp. 192–201.

[18] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: Which problems do they fix?” in
Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014. New York, NY, USA: ACM, 2014,
pp. 202–211.

[19] P. C. Rigby, D. M. German, L. Cowen, and M.-A. Storey, “Peer review
on open-source software projects: Parameters, statistical models, and
theory,” ACM Trans. Softw. Eng. Methodol., vol. 23, no. 4, pp. 35:1–
35:33, Sep. 2014.

[20] K. Ehrlich, G. Valetto, and M. Helander, “Seeing inside: Using social
network analysis to understand patterns of collaboration and coordi-
nation in global software teams,” in Proceedings of the International
Conference on Global Software Engineering, ser. ICGSE ’07. Wash-
ington, DC, USA: IEEE Computer Society, 2007, pp. 297–298.

[21] R. Guimer, B. Uzzi, J. Spiro, and L. A. N. Amaral, “Team assembly
mechanisms determine collaboration network structure and team per-
formance,” Science (New York, N.Y.), vol. 308, no. 5722, pp. 697–702,
Apr. 2005, PMID: 15860629.

[22] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proceedings of the 28th international conference on Software engineer-
ing. Shanghai, China: ACM, 2006, pp. 361–370.


	The importance of being isolated: An empirical study on Chromium reviews
	Citation

	tmp.1610028154.pdf.WZqEZ

