
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

6-2013 

Introducing programmers to pair programming: A controlled Introducing programmers to pair programming: A controlled 

experiment experiment 

A. S. M. Sajeev 

Subhajit DATTA 
Singapore Management University, subhajitd@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Numerical Analysis and Scientific Computing Commons, and the Software Engineering 

Commons 

Citation Citation 
1 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5583&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5583&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5583&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5583&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Introducing Programmers to Pair Programming:

A Controlled Experiment

A.S.M. Sajeev1 and Subhajit Datta2

1 University of New England, Australia
sajeev@une.edu.au

http://mcs.une.edu.au/~sajeev
2 IBM Research, Bangalore, India

subhajit.datta@acm.org

http://www.dattas.net

Abstract. Pair programming is a key characteristic of the Extreme Pro-
gramming (XP) method. Through a controlled experiment we investigate
pair programming behaviour of programmers without prior experience
in XP. The factors investigated are: (a) characteristics of pair program-
ming that are less favored (b) perceptions of team effectiveness and how
they relate to product quality, and (c) whether it is better to train a
pair by giving routine tasks first or by giving complex tasks first. Our
results show that: (a) the least liked aspects of pair programming were
having to share the screen, keyboard and mouse, and having to switch
between the roles of driver and navigator (b) programmers solved com-
plex problems more effectively in pairs compared to routine problems,
however, perceptions of team effectiveness was higher when solving rou-
tine problems than when solving complex problems and (c) programmers
who started pair programming with routine tasks and moved on to com-
plex tasks were more effective than those who started with complex ones
and moved on to routine ones. We discuss how these results will assist
the industry in inducting programmers without prior pair-programming
experience into XP process environments.

Keywords: pair programming, empirical software engineering, agile
methods, extreme programming, software process, controlled experiment.

1 Introduction

Pair programming is one of the key concepts in agile methods such as XP. It
involves two people working as a team to complete a programming task, usually
involving, design, coding and testing of the task. One of the pair starts acting as
the driver (who will do the keyboard activities) and the other as the navigator
(who will watch, analyze, comment and, in general, guide the driver), and the
two switch between these roles multiple times for the duration of the task.

Prior research has shown that pair programming when compared to solo pro-
gramming can produce better outcomes (e.g. [1], [2]), even though others found
the argument inconclusive (e.g. [3], [4]). Nevertheless, the popularity of agile

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 31–45, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Published in Agile Processes in Software Engineering and Extreme Programming: 14th International 
Conference, XP 2013, Vienna, Austria, June 3-7: Proceedings, pp. 31-45.
DOI: 10.1007/978-3-642-38314-4_3

http://mcs.une.edu.au/~sajeev
http://www.dattas.net


32 A.S.M. Sajeev and S. Datta

methods compared to heavy-weight processes means that increasingly more pro-
grammers and software engineers will be required to do pair programming. This
includes both professionals with work experience and fresh graduates. The ques-
tion then is what to expect when engineers without prior background in pair-
programming are brought into the XP method and how best to “prepare” them
to be effective pair programmers. Addressing such questions will assist the in-
dustry to fine tune their induction processes for new pair programmers. The
main objective of this paper is to report on an empirical study that advances
research in these directions.

We specifically address the following research questions:

– What aspects of pair programming are valued most and least by program-
mers that are new to pair programming?

– Do new pair programmers work better as a pair in routine problems or in
complex problems?

– How best to prepare a pair? Are pairs that start with routine tasks and move
on to complex tasks more effective than pairs that start with complex tasks
and move on to routine tasks?

In order to address these research questions, we conducted a randomised con-
trolled experiment. Compared to an observational study, a controlled experiment
allows us to set controls in order to measure accurately the effect of treatment
on the experimental group. It reduces the effect of confounding variables which
otherwise could be present in observational studies were the researcher has little
control over the events.

There is significant work in the literature on various aspects of pair program-
ming. This involves both experienced pair programmers and those who are new
to pair programming. However, as discussed in Section 6, the questions we in-
vestigate here have not been explored in the literature with the view of better
understanding how programmers without pair-programming experience could be
prepared for the method.

The rest of the paper is organized as follows. In the next section, we review
the related literature. In Section 3, we describe the research method. Section 4
gives the results of the analysis and in Section 5 we discuss the limitations of the
study. Finally, in Section 6 we conclude the paper by discussing the implications
of our results for the Information Technology (IT) industry.

2 Literature Review

The literature related to our study can be roughly classified into three themes:
those investigating models and frameworks for pair programming, those testing
the question “is pair programming better than solo programming”, and those
investigating the benefits of pair programming.

In investigating frameworks, Fronza et al. collected data non-invasively in an
industrial development team for 10 months to understand how pair program-
ming helps the integration of novices in a team [5]. Using social network analysis



Introducing Programmers to Pair Programming: A Controlled Experiment 33

techniques, the authors analyzed developer interactions and proposed a model
for novice integration in teams engaged in spontaneous pair programming. Gal-
lis et al., on the other hand, have pointed out the contradiction in the claims
around pair programming, which they attribute to the lack of theoretical foun-
dation supporting empirical research [6]. To address this situation, the authors
presented a framework for pair programming research by identifying and catego-
rizing important independent, dependent, and context variables, and exploring
their relationships. This work was extended by Ally et al.based on a study of pair
programming using the Delphi technique [7]. The authors concluded that Gallis
et al.’s framework needed to include an additional category of factors relating
to organizational matters.

A number of studies compared pair programming with solo programming. Lui
and Chan [8] investigated the research question “do pairs outperform individuals
in procedural solution tasks?” using Programming Aptitude Test [PAT] rather
than traditional programming tasks; the reasoning was that PAT is indepen-
dent of programming language proficiency and thus language proficiency would
not become a confounding variable. They used a measure called REAP (Rela-
tive Effort Afforded by Pairs) to compare sole programming productivity with
pair-programming productivity. Lui and Chan [8] also introduced the concept
of repeat programming in studying pair programming; this is where the pairs
repeated the same programming task multiple times. They used the term novice
to mean that a programmer is doing a repeated task for the first time, and the
term expert for one who has repeated the same task several times. They con-
cluded that “novice-novice pairs against novice-solos are much more productive
in terms of elapsed time and software quality than expert-expert pairs against
expert solos”. Madeyski investigated how pair programming fares vis-a-vis solo
programming for thoroughness and fault detection effectiveness of test suites and
did not find support for anecdotal evidence that the former facilitates these ac-
tivities [4]. Arisholm et al [1] conducted a one-day controlled experiment to test
the effectiveness of pair programming with respect to complex tasks. They used
junior, intermediate and senior staff from local industries as subjects. They com-
pared pair-programming with individual programming, as well as they studied
effectiveness in using pair programming in simpler tasks versus complex tasks.
Dyb̊a et al. examined the fundamental assumption behind pair programming –
that two heads are better than one – by conducting a meta-analysis of existing
studies around pair programming’s effects on quality, duration, and effort [2].
They concluded that whether two heads are indeed better than one is a nuanced
question, and the answer depends on programming exercise and task complex-
ity. They found empirical evidence that two heads can achieve higher correctness
on complex programming tasks and be able to finish simpler tasks earlier. In a
subsequent paper the authors extended their results and concluded that, higher
quality on complex tasks comes with the price of higher effort and reduced com-
pletion time is offset by lower quality [9]. The authors emphasized the need for
more attention to moderating factors while exploring the effects of pair pro-
gramming. Vanhanen and Lessenius reported results from a study of three pair



34 A.S.M. Sajeev and S. Datta

programming and two solo programming teams performing the same 400-hour
fixed effort project with a focus on understanding the aspects of productivity,
defects, design quality, knowledge transfer, and enjoyment of work [10]. They
found that pairs have an initial “learning time” that increases the development
effort upfront vis-a-vis solo programming. Although this difference tapers off
later in the development cycle, it affects the overall productivity of the pairs.
Complexity of tasks was found not to influence effort difference between pair
and solo programming. Pair programmers delivered systems with higher num-
ber of defects, but had higher knowledge transfer; they also gave weak evidence
for higher enjoyment of work. In a subsequent work, the authors studied the
perceived effects of pair programming vis-a-vis solo programming in large scale,
industrial software development [11]. They surveyed 28 developers and found
pair programming’s positive effects were maximum for learning, schedule adher-
ence, knowing other developers, and team spirit. Vanhanen and Korpi summarize
the experiences of extensive pair programming in an industrial project [12]. They
found that frequent rotation between the driver/navigator roles improved knowl-
edge transfer, and the developers perceived that pair programming was better
suited for complex tasks rather than easy tasks. Xu and Rajlich conducted a
case study with six students in a graduate software engineering course who were
assigned to work on incremental changes to an application either individually or
in pairs [13]. They found that the paired students delivered their change requests
more quickly and with a higher quality. Similarly, Sison reported results from
an experiment on the use of pair programming by undergraduate students in
a software engineering course at a Philippine university [14]. The author found
evidence that defect densities were significantly lower for programs written by
pair programming vis-a-vis those written by non pair programming teams.

On the benefits of pair programming, Begel and Nagappan reported results
from a longitudinal study of pair programming at Microsoft [15]. They found
that pair-programming’s biggest benefits were perceived to be fewer bugs, wider
understanding of code, and overall higher code quality. Additionally, most of
the study’s participants were more amenable to a partner with complementary
skills, flexibility, and good communication skills. Coman et al. examined the
dynamics of the pairing process in a mature agile team of 16 developers in a
three months study and found support for the claim that pair programming is
useful for training and knowledge transfer [16].

3 Research Method

3.1 Participants

Our participants are 144 students of the two year Master of Technology (MTech)
program at the International Institute of Information Technology, Bangalore
(IIT-B); they were enrolled in a software engineering course mandatory for all
MTech students. The experiment was conducted as part of programming skills
assessments in the course for which they received credit. All students had an



Introducing Programmers to Pair Programming: A Controlled Experiment 35

undergraduate computing degree in science or engineering. Sixty nine percent
of the students had no work experience, 7% had less than a year’s experience,
and the remaining 24% had more than one year experience in the industry with
maximum four years; 89% of those with work experience worked as program-
mers or software developers. Of the 144 subjects who participated in the study,
only seven had prior experience with pair programming; these seven subjects
participated in the experiment, but were excluded from the analysis of results.
(One of them was part of the control and two formed a pair, the remaining
four formed pairs with non-experienced subjects; those four non-experienced
subjects were also excluded from the analyses in order to avoid their partners’
pair-programming experience confounding the results.)

All participants were proficient (through work experience and/or prior course-
work) in object oriented analysis, design and programming, and rated their Java
programming skills at level 3 or above, on a scale of 0 = novice, 5 = expert.
Even then, participants were allowed to complete their assigned programming
tasks in either Java or C++. (There was only one submission in C++.)

Thus consistent with our research objectives, our subjects were a collection
of fresh graduates and professionals with work experience up to four years, but
none with prior experience in pair-programming.

3.2 Method

Our research method was a randomized concurrent controlled experiment span-
ning three sessions of programming. In a controlled experiment, one group acts
as control (in our case, they consisted of solo programmers) and the other acts
as the experimental group (in our case, pair programmers). In a randomized
experiment, each participant is chosen at random to be in the control group or
in the experimental group, and in a concurrent experiment, all groups do the
activities (in technical terms, undergo the treatment) at the same time.

The subjects were randomly divided into an experimental group and a con-
trol group; this was done by drawing lots from a bowl. The experimental group
consisted of 50 pairs of programmers whereas the control group consisted of
44 solo programmers. (As mentioned in the previous section, the pairs and con-
trols that involved people with prior pair-programming experience were excluded
from analysis thus resulting in 45 pairs and 43 controls.) Both the experimental
group and the control group were further divided into two sub-groups in a two-
factorial design; for reasons explained below, one subgroup was named Routine-
to-Complex cohort, and the other, Complex-to-Routine cohort (See Figure 1).

3.3 Procedure

The experiment was organized as follows:

1. Approval to conduct the study was obtained by the second author from the
institute authorities.



36 A.S.M. Sajeev and S. Datta

Fig. 1. Formation of experimental and control groups

2. An introductory lecture was given to all participants on pair-programming
by the second author (who is an adjunct professor at the Institute) to ensure
that all participants understood, in theory, the principles and practices of
pair-programming.

3. An experiment is an event that occurs over a pre-defined time period. This
means that we need to abstract real-world entities to fit into the framework
of the experiment. In our case, we needed to model routine tasks and chal-
lenging tasks that pair programmers would encounter in the industry. We
abstracted them into a set of programming problems of three levels of com-
plexity (easy, moderately difficult and hard). The problems were selected
from end of the chapter exercises of standard Java programming textbooks
with appropriate modifications; each problem was annotated with a particu-
lar level of difficulty. In addition to that, the second author1 and each of the
four teaching assistants (TA) who assisted him solved the problems indepen-
dently to confirm their differential level of complexity. For the easy level, we
had four exercises that were interchangeable in terms of their difficulty, and
similarly for the medium level. For the challenging level, we had two exercises
that were interchangeable in terms of their difficulty. To ensure problems at
the same level are of similar difficulty, they were selected from the same
textbooks and further confirmed by ensuring they take similar amount of
time to solve.

4. We prepared a set of test cases (input and expected output) for each problem.
The subjects were given, in addition to the problem specification, a subset
of the test cases to assist them in deciding when a task is complete. The full
set of test cases were used by the researchers to give a quality score to the
program produced. The quality score to the solution given was out of 10,

1 Those interested in replicating the experiment may contact this author for the ex-
ercises.



Introducing Programmers to Pair Programming: A Controlled Experiment 37

where 0 means does not compile, 5 means means passes 50% of the tests and
10 means passes all tests.

5. The experiment was conducted in three sessions (see Figure 2). The Routine-
to-Complex cohort was given the easy problems in the first session, then
in Session 2, problems of medium complexity and finally in Session 3, a
challenging problem. The Complex-to-Routine cohort solved problems in
the other direction as shown in the figure. Since we selected a sufficient
number of problems, those given in a session were not reused in another;
this was to prevent subsequent sessions being affected by any discussions by
the participants outside the experiment of solutions and problems they have
worked on in a session.

6. At the end of each session, both a quantitative and qualitative evaluation
of the groups were conducted. For quantitative evaluation, as mentioned
above, the programs were tested for correctness; this was done by the TAs
under the second author’s supervision and a score of 0 to 10 is given. For
qualitative evaluation, each individual in the experimental groups was given
a team-effectiveness questionnaire. The questionnaire measured on a five
point Likert scale (where 1 = disagree strongly, 3 = neither agree nor disagree
and 5 = agree strongly) each programmer’s perceptions on the effectiveness
of pair programming. These perceptions were also analysed separately (as
described in Section 4.1) to identify how the subjects favoured different pair
programming practices.

Fig. 2. Organization of the cohorts

3.4 Statistical Tests

For comparison between mean values of two groups, we used the independent
samples t-tests [17]. The significance level, α was set at 0.05. Levene’s test was
used to check homogeneity of variances. The analysis were conducted using SPSS



38 A.S.M. Sajeev and S. Datta

software package. We did not adjust for the potential Type-1 error increase
from multiple tests; Bonferroni’s adjustment, for instance, lowers the alpha level
for multiple tests; however, some researchers recommend presenting the p-value
instead of adjusting the alpha-level and let the readers decide on the results (for
example, see [18]). Eta-squared was used to determine the effect size; a value of
0.01 is considered a small effect whereas 0.14 or above is a large effect [19].

4 Results

4.1 Pair Programming Characteristics

Figure 3 shows in descending order how the subjects favored different character-
istics of pair programming. The explanation for the features is given in Table 1.
The most favored ones were that pair program allowed good discussions of the
problems and solution strategies, and that it was helpful in developing teamwork
skills. The least favored characteristics were the need to regularly swap the roles
of driver and navigator and the need to share the screen, keyboard and mouse.
Also, the statement: pair programming makes programming faster was among
the least agreed items.

Fig. 3. Mean score on a 5-point Likert scale3for different pair programming character-
istics (5 is strong agreement and 0 is strong disagreement)

4.2 Routine versus Challenging Development

Routine development is where programmers are familiar with the work and gen-
erally know how to proceed to completion, whereas challenging development is
where the task that the pair has to address needs lateral thinking and exploring

3 Strictly speaking, Likert scale is ordinal, however, it is not uncommon for researchers
to use it as an interval scale (for example: see [20]).



Introducing Programmers to Pair Programming: A Controlled Experiment 39

Table 1. Full form of the programming characteristics in charts

Programming Char-
acteristics

Likert Item

Discussing strategies Our team was good in discussing the problems and solu-
tion strategies

Teamwork Pair programming is helpful in developing teamwork
skills

Pairing is fun I found pair programming fun

Healthy differences In our team, we sorted out differences in a healthy man-
ner

Increasing self awareness Working with a partner makes it easy to understand what
I am doing and why I am doing it

Code inspection Having a partner is beneficial for learning to read another
programmer’s code

Catching mistakes My partner and I caught each other’s mistakes

Better programs I believe, pair programming leads to better programs
than individual programming

Learning experience I have learned more working in pairs than when I have
worked individually

Trusting the partner My level of trust in my partner is very high

Rapid Debugging My team found errors more rapidly than if we were work-
ing individually

Faster completion Without pair programming I would have taken longer to
complete the programming task(s)

Sharing keyboard It was easy to share the keyboard, screen and mouse

Switching roles In my team, we changed the role of ‘driver’ and ‘naviga-
tor’ fairly regularly

of different strategies in order to come up with a good solution. Intuitively, one
could hypothesize that pair programming is more useful and effective for chal-
lenging tasks since it literally doubles the brain power. We tested this hypothesis
by taking into consideration only the tasks completed in Session 1. The first ses-
sion in our experiment is where new teams were formed. Not considering all
sessions avoids any confounding influence of growing familiarity of partnerships
on team effectiveness.

In Session 1, we had the R2C cohort (see Figure 2) solve easy problems and
the C2R cohort solve a challenging problem; both cohorts consisted of an experi-
mental group of pairs and a control group of solo programmers. In the discussion
below, the pairs of the Session-1 R2C cohort are referred as the routine-group
(that is, the group that solved easy problems) and the pairs of the Session-1 C2R
cohort as the complex-group (that is, the group that solved a complex problem).

The questions we investigated are:

a) Is there a significant difference between the mean results of the routine-group
and the complex-group?

b) Is the mean result of the routine-group significantly better than the mean
result of the corresponding control group?

c) Is the mean result of the complex-group significantly better than the mean
result of the corresponding control group?



40 A.S.M. Sajeev and S. Datta

The effectiveness of a group is measured using its (i) mean test score and (ii)
mean team-effectiveness score. The answer to Question (a) could tell us which
group has performed better, however, that answer would not be relevant unless
that group has also performed better in test results than its corresponding control
group; otherwise, we did not have to use pair programming to achieve the better
results. Thus, answers to Questions (b) and (c) together with (a) should tell us
which kinds of problems, pairing is better suited for.

With respect to mean test scores, there is significant difference between the
routine-group and the complex-group with (as should be expected) the routine-
group scoring much higher mean test scores (M = 7.06, SD = 2.5) than the
complex-group (M = 1.32, SD = 1.32), p < 0.0001, η2 = 0.678 There is also
significant difference in perceived team effectiveness, with the routine group per-
ceiving higher effectiveness (M = 4.33, SD = 0.39) than the complex group
(M = 3.99, SD = 0.5), p = 0.001. The practical significance is also large
(η2 = 0.126). It may be the case that, when the teams are able to get better test
scores (which is not unexpected with routine problems) they feel that their team
is more effective. When the routine pairs were compared with their control group
in test scores, however, there was no significant difference (M = 7.06, SD = 2.5
versus M = 6.19, SD = 3.46; p = 0.306). On the other hand, when the complex
pairs were compared with their control group, there was significant difference
albeit with a moderate effect size (M = 1.32, SD = 1.32 versus M = 0.86, SD =
0.36; p = 0.025; η2 = 0.07). This is a very interesting result. Pair programmers
achieved significantly better results than their corresponding solo programmers in
solving complex problems, however, they perceived pair programming to be less
effective. On the other hand, pairs solving routine problems did not fare any
better in test scores than solo programmers doing the same activity, even then,
the routine pairs perceived their teams to be more effective than their complex
counterparts.

4.3 Training Pairs

The main challenges in the industry generally comes not from addressing routine
tasks, but from having to solve complex tasks. Therefore, we tested what is a
better approach in preparing new pairs to solve complex tasks. We explore the
question of whether it is better to start new pairs with routine tasks and then
move on to complex tasks, or start them with complex tasks. The reasoning
behind the former approach is that with easy tasks there is likely to be less
tension between the pairs and it gives them time to know each other better
before moving on to complex ones. On the other hand, a possible reasoning
behind starting pairs with complex tasks first could be that such a problem
would force the pairs to put their heads together and work, whereas if a team is
started with easy tasks, it might be a hindrance for the individuals to engage in
teamwork thinking that “I could do this myself; having somebody sitting next
to me is a distraction”.

As explained in Section 3 and Figure 2, we had two cohorts of programming
pairs, one cohort (the R2C cohort) started with easy problems and moved on



Introducing Programmers to Pair Programming: A Controlled Experiment 41

to intermediate and complex problems whereas the other cohort (the C2R co-
hort) started with a complex problem and moved on to intermediate and easy
problems. In other words, both cohorts did exactly the same number of easy,
intermediate and complex problems, but in two different directions. For each
cohort, as given in Figure 1 there was an experimental group and a control
group.

As in the previous section, we tested whether there is a statistically significant
difference in the test scores and team effectiveness scores between the R2C and
C2R experimental groups in solving complex problems. We then compared each
cohort independently with its control to test whether the effect is in fact from
pair-programming.

Both in terms of test scores and team effectiveness scores, the cohort that
started with easy problems (R2C) performed better in complex problem solving
than the cohort that started straightaway with a complex problem (C2R) as
shown in Table 2.

Table 2. Difference in scores between R2C and C2R cohorts

Cohort Mean Std. Dev. p η2

Test scores
Routine-to-Complex 3.89 2.01

< 0.0001 0.361
Complex-to-Routine 1.36 1.35

Team effectiveness
Routine-to-Complex 4.34 0.48

0.001 0.122
Complex-to-Routine 3.97 0.51

The difference in test scores between experimental and control groups in both
R2C (p=0.03) and C2R (p=0.044) were significant indicating that pair program-
mers produced better outcomes than their solo counterparts in solving complex
problems irrespective of whether they started with a complex problem or an easy
problem.

5 Limitations

As in any empirical research there are several limitations to our study. It would
have been ideal to conduct this experiment in an industrial setting with a mix-
ture of fresh and experienced employees as participants. However, we believe, our
choice of subjects does not invalidate the findings because even though the sub-
jects come from a software engineeringMasters degree program, their background
makes them good proxies for fresh and experienced industry employees. Besides,
when Höst et al. [21] compared the use of students with industry professionals,
they found no significant differences in tasks involving software engineering judg-
ment; they concluded that students can be used instead of professional software
engineers if they are senior masters students rather than undergraduates.

Another limitation of the experiment is that we used graded Java exercises
as proxies for routine, intermediate and complex industry tasks. The pair-
programming tasks used in an industry generally will be part of a larger software



42 A.S.M. Sajeev and S. Datta

product, whereas, the tasks we gave were standalone Java exercises. Since our
aim is to identify pair programming behavior which is unlikely to be different
whether the task is a standalone program or a well defined part of a larger soft-
ware system, this abstraction is unlikely to have affected the external validity of
the results.

Another threat to external validity is that we tested pair programming in
isolation, whereas, in the industry, pair programming is likely to be only one
part of the implementation of the Extreme Programming process. Any influence
of other features of XP on pair programming is not included in our experiment.

We did not measure time of completion of tasks therefore were unable to
measure success in terms of how fast the different cohorts completed their tasks.

We did not use the same tasks for more than one session; this was deliberately
done to avoid the participants discussing the solution with other groups outside
of the experiment. Instead, we chose several tasks of similar level of difficulty
for different sessions. A threat to internal validity occurs if the level of difficulty
varied; as explained in Section 3, we reduced this threat by independently solving
each problem prior to the experiment and assessing their difficulty.

6 Discussions and Conclusion

Our study has similarities and differences with prior research discussed in Sec-
tion 2. Our finding of the appropriateness of using new pairs for complex tasks
concur with results of [1] and [2] which found experienced pair programmers also
giving better outcomes in the case of complex tasks. Our primary focus, however,
was not testing whether pair programming is “better” than solo programming;
instead we used solo programmers as controls in identifying significant differences
among cohorts of pair programmers. Additionally, we measured pair program-
ming success both in terms of test results and perceived team effectiveness of
pairs and compared the two measures, whereas prior literature largely measures
effectiveness in terms of time and test results. Further, whereas prior work such
as [15] investigated benefits of pair programming in general, we looked at the
degree of acceptance of different features of pair programming with the view of
identifying the ones that worries programmers new to the method.

As agile methods such as XP get increasingly adopted in the industry, soft-
ware engineers and programmers who have not experienced the concept of pair-
programming will need to be inducted into it. Our results, as discussed below,
provide a number of guidelines for the software industry to make the induction
smoother.

6.1 Pair-Programming Practices

While programmers appreciate the general benefits of pair programming such as
the ability to discuss problem-solving strategies with the teammate, developing
teamwork skills and learning to sort out differences in a healthy manner, it is
the manual aspects of pair programming that needs attention. Aspects such as



Introducing Programmers to Pair Programming: A Controlled Experiment 43

the need to work with a shared screen, keyboard and mouse and the need to
switch roles between driver and navigator were comparatively less liked by our
participants who were new to pair programming.

There are two ways to address these issues. One is education and practice: that
is, while introducing pair programming to new programmers, it is not enough
to tell them how it works, but also there should be sufficient training sessions
for them to practice and become comfortable with its routine aspects such as
sharing of the screen. Another way which industrial engineers and researchers
could investigate is the possibility of having two screens duplicating the same
information, and perhaps also having two keyboards and mice (where the input
devices get locked and unlocked with a simple click as the pairs change roles).
Further research is needed to see whether such technical solutions will help or
hinder pair-programming outcomes.

6.2 Pair Programming Effectiveness

We found a dichotomy between team effectiveness and product quality. Per-
ception of team effectiveness increased as pairs achieved success irrespective of
whether the same success could be achieved through solo programming. Thus
the pairs who were solving easy tasks found their teams to be more effective
than the pairs who were solving complex problems. However, for managers, pair-
programming can be considered effective, not just when it achieves better test
results, but when it achieves better results than what a solo programmer could
achieve. In our results, the pairs solving complex problems were getting signifi-
cantly higher test scores than the solo programmers who were solving the same
complex tasks, whereas, there was no statistically significant difference in the
test scores between pairs and solo programmers who were solving easy tasks.

This demonstrates that, irrespective of how new pair programmers feel about
their team effectiveness, pair programming results in better product quality when
they are used for complex tasks. Thus new pairs attempting complex tasks may
not feel that their team is working as effectively as it should, however, they are
likely to produce significantly better results than solo programmers attempting
the same tasks. On the other hand, for easy tasks, pair-programmers may feel
that their team is working well, however, their performance in terms of test
results is not significantly better than solo programmers, and therefore, it may
not be worthwhile employing pairs in easy or routine tasks.

6.3 Training Pair Programmers

In the previous subsection, we mentioned that employing pairs in routine or
easy tasks may not be worthwhile. However, there is one important reason to
employ pairs in easy tasks, and that is to get them prepared for complex tasks.
Whether new pairs programmed easy tasks first before moving on to complex
tasks, or tackled complex tasks first, they performed significantly better in solv-
ing complex tasks than their solo counterparts. However, more important is the



44 A.S.M. Sajeev and S. Datta

finding that the pairs who started with easy tasks first got better test and team-
effectiveness outcomes when solving complex tasks, than the pairs which started
with a complex task straightaway. The possible reason is that the former cohort
got to work on their team-building skills while on easier tasks and therefore were
better prepared to tackle the complex tasks as a team. Thus, when programmers
are inducted into pair programming, it is likely to pay off if pairs are started
with easy problems before moving on to complex ones. Throwing pairs in at the
deep end thinking along the lines that a big challenge will encourage them to
work together would not be an effective strategy.

In conclusion, successful induction of programmers into pair-programming
depends on us understanding how programmers without prior experience would
respond in such situations. This paper contributes to that effort by addressing
a number of research questions on achieving effectiveness.

Acknowledgments. We thank the teaching assistants who helped us with the
conducting of the experiment and the anonymous referees for their valuable
reviews.

References

1. Arisholm, E., Gallis, H., Dyb̊a, T., Sjøberg, D.: Evaluating pair programming with
respect to system complexity and programmer expertise. IEEE Transactions on
Software Engineering 33(2), 65–86 (2007)

2. Dyb̊a, T., Arisholm, E., Sjøberg, D., Hannay, J., Shull, F.: Are two heads better
than one? on the effectiveness of pair programming. IEEE Software 24(6), 12–15
(2007)

3. Hulkko, H., Abrahamsson, P.: A multiple case study on the impact of pair pro-
gramming on product quality. In: Proceedings of the 27th International Conference
on Software Engineering, pp. 495–504. ACM (2005)

4. Madeyski, L.: On the effects of pair programming on thoroughness and fault-finding
effectiveness of unit tests. In: Münch, J., Abrahamsson, P. (eds.) PROFES 2007.
LNCS, vol. 4589, pp. 207–221. Springer, Heidelberg (2007)

5. Fronza, I., Sillitti, A., Succi, G.: An interpretation of the results of the analysis of
pair programming during novices integration in a team. In: Proceedings of the 3rd
International Symposium on Empirical Software Engineering and Measurement,
pp. 225–235. IEEE Computer Society (2009)

6. Gallis, H., Arisholm, E., Dyba, T.: An initial framework for research on pair pro-
gramming. In: Proceedings of International Symposium on Empirical Software En-
gineering, pp. 132–142. IEEE (2003)

7. Ally, M., Darroch, F., Toleman, M.: A framework for understanding the factors
influencing pair programming success. In: Baumeister, H., Marchesi, M., Holcombe,
M. (eds.) XP 2005. LNCS, vol. 3556, pp. 82–91. Springer, Heidelberg (2005)

8. Lui, K., Chan, K.: Pair programming productivity: Novice–novice vs. expert–
expert. International Journal of Human-Computer Studies 64(9), 915–925 (2006)

9. Hannay, J., Dyb̊a, T., Arisholm, E., Sjøberg, D.: The effectiveness of pair program-
ming: A meta-analysis. Information and Software Technology 51(7), 1110–1122
(2009)



Introducing Programmers to Pair Programming: A Controlled Experiment 45

10. Vanhanen, J., Lassenius, C.: Effects of pair programming at the development team
level: an experiment. In: International Symposium on Empirical Software Engi-
neering, 10 pages. IEEE (2005)

11. Vanhanen, J., Lassenius, C.: Perceived effects of pair programming in an industrial
context. In: 33rd EUROMICROConference on Software Engineering and Advanced
Applications, pp. 211–218. IEEE (2007)

12. Vanhanen, J., Korpi, H.: Experiences of using pair programming in an agile
project. In: 40th Annual Hawaii International Conference on System Sciences, pp.
274b–274b. IEEE (2007)

13. Xu, S., Rajlich, V.: Pair programming in graduate software engineering course
projects. In: Proceedings of the 35th Annual Conference on Frontiers in Education,
pp. F1G–F1G. IEEE (2005)

14. Sison, R.: Investigating pair programming in a software engineering course in an
asian setting. In: Proceedings of the 15th Asia-Pacific Software Engineering Con-
ference, pp. 325–331. IEEE (2008)

15. Begel, A., Nagappan, N.: Pair programming: what’s in it for me? In: Proceed-
ings of the Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, pp. 120–128. ACM (2008)

16. Coman, I.D., Sillitti, A., Succi, G.: Investigating the usefulness of pair-
programming in a mature agile team. In: Abrahamsson, P., Baskerville, R., Con-
boy, K., Fitzgerald, B., Morgan, L., Wang, X. (eds.) XP 2008. LNBIP, vol. 9, pp.
127–136. Springer, Heidelberg (2008)

17. Moore, D.S., McCabe, G.P.: Introduction to the Practice of Statistics. W. H. Free-
man & Co., New York (2006)

18. Perneger, T.: What’s wrong with bonferroni adjustments. BMJ (British Medical
Journal) 316(7139), 1236–1238 (1998)

19. Cohen, J.: Statistical power analysis for the behavioral sciences. Lawrence Erlbaum
(1988)

20. Haag, S., Raja, M., Schkade, L.: Quality function deployment usage in software
development. Communications of the ACM 39(1), 41–49 (1996)

21. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects: a comparative study
of students and professionals in lead-time impact assessment. Empirical Software
Engineering 5(3), 201–214 (2000)


	Introducing programmers to pair programming: A controlled experiment
	Citation

	Introducing Programmers to Pair Programming: A Controlled Experiment

	1 Introduction
	2 Literature Review
	3 Research Method
	3.1 Participants
	3.2 Method
	3.3 Procedure
	3.4 Statistical Tests

	4 Results
	4.1 Pair Programming Characteristics
	4.2 Routine versus Challenging Development
	4.3 Training Pairs

	5 Limitations
	6 Discussions and Conclusion
	6.1 Pair-Programming Practices
	6.2 Pair Programming Effectiveness
	6.3 Training Pair Programmers

	References


