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ABSTRACT
In the three and half decades since the inception of or-
ganized research publication in software engineering,
the discipline has gained a significant maturity. This
journey to maturity has been guided by the synergy
of ideas, individuals and interactions. In this journey
software engineering has evolved into an increasingly
empirical discipline. Empirical sciences involve signif-
icant collaboration, leading to large teams working on
research problems. In this paper we analyze a cor-
pus of 19,000+ papers, written by 21,000+ authors
from 16 publication venues between 1975 to 2010, to
understand what is the ideal team size that has pro-
duced maximum impact in software engineering re-
search, and whether researchers in software engineer-
ing have maintained the same co-authorship relations
over long periods of time as a means of achieving re-
search impact.

Categories and Subject Descriptors
H.3.4 [Information System]: Information network-
Social Information Mining; D.2.9 [Software Engi-
neering]: Collaboration

General Terms
Benchmarking,Virtualization

Keywords
software engineering research, DBLP, topic analysis,
T Test, Annova, Collaboration

1. INTRODUCTION
Empirical research is significantly more collaborative
than the theoretical. The very nature of empirical
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sciences makes it necessary for numerous individuals
to work together on research problems that involve
planning, executing and evaluating experiments. This
wider collaboration is reflected in the co-authorship
trends of papers. While it is usual for papers in math-
ematics and theoretical sciences to have few authors,
papers in the empirical sciences have many authors,
in recognition of their varied contributions to the re-
search process [1].
It is widely believed that the phrase “software engi-
neering” (SE) was used in public discourse for the first
time at a NATO conference in 1968 [2]. In 1975, the
first dedicated venue for publishing software engineer-
ing research was introduced– the IEEE Transactions
on Software Engineering (TSE). Subsequently, several
other specialized publication venues came up. In the
three and a half decades since 1975, software engineer-
ing has accumulated a significant body of research.
This has also been the time of deepening penetration
of software engineering- software artefacts dominate
almost every aspect of our lives today. Software engi-
neering as a sub-discipline of computer science, stands
at the crossroads of formalism and empiricism. Ac-
cording to Shaw, software engineering started as ad-
hoc craftsmanship, and gradually evolved into an em-
pirical science [3]. Anecdotal evidence seems to sup-
port the increasingly empirical nature of SE; over the
last decade premier publication venues have started
expecting considerable experimental validation of re-
search results [4].
In view of this we want to study how highly contribut-
ing SE researchers collaborate and whether collabora-
tion facilitates the research impact. By collecting the
publicly available data related to SE publication, con-
tent (abstract), author, and citation we built a model
to understand the collaboration among researchers. In
this paper report we report results from an empirical
study involving 19,000+ papers written by 21,000+
authors from 16 software engineering research publi-
cation venues, over a 35 year time period from 1975 to
2010. We examine the following two questions involv-
ing the relation between team dimension and impact
in software engineering research:



• What is the team size that has produced the max-
imum impact?

• Have team members collaborated together for long
to maximize impact?

We assume that the members of research teams get
represented in paper authorship, so that the number
of a co-authors of a paper indicate the size of the
team which conducted the research. In the second
question’s context, collaboration is assumed to result
in co-authorship relations between the individual re-
searchers. Finally, we measure impact of a paper in
terms of the number of citations it receives. We recog-
nize some of the valid concerns that are raised against
“counting” citations by way of judging a paper’s im-
pact [5]. However, there is little consensus on what
constitutes a more valid measure of impact, and much
of research evaluation in the academia and industry
continues to rely on citation counts. So we believe our
way of measuring impact – though not the only way
– is largely consistent with the praxis.
The paper has been organized as follows. In the next
section we describe the data that is necessary for our
study. In Section 3 we describe our study setting. We
explain our analysis method in Section 4. We have
proposed two measures to analyze the nature of collab-
oration, namely the congruence of affinity and optimal
team-size for maximum impact. These two measures
have been explained in Section 5 and 6 respectively.
Next we describe the impact and the instinct for col-
laboration over time in Section 7. We describe limita-
tions of our analysis method in Section 8 and describe
practical usage of this approach in Section 9. Finally
we conclude the paper.

2. DATA IDENTIFICATION
To understand SE research discipline’s characteristics
along the three dimensions described in the previous
section, we first need to identify the required data that
can reflect on parameters of our interest.

1. First and foremost, we require the details of soft-
ware engineering research papers that have been pub-
lished in various venues, right from their inception.
Alongwith this, we require the list of all authors (in-
terchangeably called as researchers) of these papers.

2. In a research context, it is evident that an idea,
or a topic of interest, is associated with a collection
of papers. The question we need to answer is the
mechanism to obtain a set of appropriate “SE-ideas”
and associate them with the research papers. Trying
to manually map a set of papers to a particular idea is
not useful since it will be highly laborious, and prone
to subjectivity and errors.

3. For measuring the contribution of a researcher, we
consider two basic measures – publication count and
citation count. We assume that the former reflects the
amount of research published by a researcher, while
the latter indicates the extent to which the researcher’s
work has been recognized. Though such count based

Figure 1: Schematic diagram of the SERC Tool
metrics are not without controversy [?], much of aca-
demic and industrial research evaluation continues to
rely on these measures.

4. In order to measure interactions among highly con-
tributing researchers, we consider their co-authorship
information (which can be derived from a paper and
its co-authors). Even though researchers can interact
among themselves in other ways, we assume their in-
teraction over research results in co-authored papers.

3. STUDY SETTING
The framework for our study is called the software
engineering research corpus (SERC). We have imple-
mented a tool as shown in Figure 1 that illustrates
our approach to instantiate the SERC framework. We
have chosen 16 major publication venues (alongwith
their companion conferences) that focus on software
engineering research as shown in Table 1.

3.1 Data Source
Our primary data source for papers and authors is
from the DBLP site1 that maintains the computer
science bibliographic data for most of the conferences
and journals with more than 2 million records. We
have collected this database in MySQL format. The
structure of DBLP data has been explained in [?]. The
database dump dated April 23, 20112 was used for our
study. In addition, we have considered publicly avail-
able information from ACM Digital Library3, IEEE
Xplore4, Springer LNCS and other sites.
Our data-set is summarized in Table 1. Information
around papers published in these venues is available
at DBLP5. The database dump dated April 23, 20116

was used for our study. The citation cross indexing
between papers and the citation count for authors was
constructed using information available in the public

91http://www.informatik.uni-trier.de/ ley/db/
92http://dblp.l3s.de/dblp++.php
93http://dl.acm.org
94http://ieeexplore.ieee.org
95http://www.informatik.uni-trier.de/ ley/db/
96http://dblp.l3s.de/dblp++.php



Table 1: Publication Venues and Other Details
TSE - IEEE Transactions on Software Engineering
TOSEM - ACM Transactions on Software Engg. & Methodology
JSS - Journal of Systems and Software
IEEE SW - IEEE Software
ICSE - Intl. Conference on Software Engineering
OOPSLA/SPLASH - Object-Oriented Progg, Systems, Lang. & App.
FSE - Intl. Symposium on the Foundations of Software Engg.
ECOOP - European Conference on Object-Oriented Programming
FASE - Intl. Conf on Fundamental Approaches to Software Engg.
ASE - Intl. Conference on Automated Software Engineering
APSEC - Asia-Pacific Software Engineering Conference
ISSTA - Intl. Conference on Software Testing and Analysis
KBSE - Knowledge-Based Software Engineering Conference
WICSA - Working Conference on Software Architecture
CBSE - Component-Based Software Engineering
ISSRE - Intl. Symposium on Software Reliability Engineering

Total number of years (1975 to 2010, both inclusive) - 36
Total number of venues - 16
Total number of papers - 19,731
Total number of authors - 21,282

domain at ACM Digital Library7, IEEE Xplore8, and
Microsoft Academic Search9.
Paper abstracts were also extracted from these bib-
liographic repositories. We implemented specialized
web crawlers to search each source in turn and store
the data in a MySQL database10. A set of Java based
components was developed to further process and anal-
yse the data. Latent Dirichlet Allocation (see Sidebar-
2) based topic analysis was performed using Mallet11,
while SPSS Statistics12 was used for all statistical anal-
ysis.

3.2 Data Collection Process
We have collected and uploaded DBLP data in our
SERC database in MySQL13, shown in the topmost
part of Figure 2. We show two main tables namely
dblp_author_ref_new and dblp_pub_new that come
from the DBLP site. For SE specific analysis, we have
created a view of dblp_pub_new that contains only
software engineering related publications based on the
venues shown in Table1.

3.2.1 Paper Abstract
It is not sufficient to have the DBLP data only, as
it does not contain information related to paper cita-
tion, author’s H index information, topics of a paper,
and how a topic evolves over time. To understand a
research topic, we decided to use the abstract of a pa-
per as the primary source since other means such as
keywords or category descriptors are often not found.
For the abstract of the software engineering related

97http://dl.acm.org
98http://ieeexplore.ieee.org
99http://academic.research.microsoft.com
910htp://www.mysql.com
911http://mallet.cs.umass.edu
912http://www-01.ibm.com/software/analytics/spss/products/statistics/
913htp://www.mysql.com

Figure 2: SERC Database schema overview



Figure 3: SERC metamodel overview
paper, we implemented specialized crawler (as shown
in Figure 1) that searches each source in turn and store
the data into additional database table dblp_pub_abstracts_se,
as shown in the middle part of Figure 2. Each paper
has a unique internal id generated by DBLP. From the
crawled data we take the paper title and then search in
the DBLP table to obtain the unique id and establish
the referential integrity with dblp_pub_se.

3.2.2 Citation
The citation cross indexing module, shown in Figure 1,
builds a citation cross reference database between pa-
pers in SERC using Once the this cross referencing
for all papers whose citation information could be ac-
cessed is constructed, the citation count for authors
is computed. Citation data collection for each paper
happens in the following manner.

1. Use the cited paper title and doi to crawl from
ACM, IEEE Xplore and other sites. We have
developed site specific web scrapping methods
for this purpose to get the citation link of this
paper. This link is first stored in a file.

2. Next, for each link corresponding to the citing
paper, the paper title is obtained

3. The cited paper title, id, the citing paper title
are stored in dblp_citation_se

3.3 Data Representation
The metamodel for SERC has been shown in Figure 3.
The metamodel

SERC =< V,P,A, Cref,Γ >

has five main elements. The central element is the set
P of papers related to software engineering published
in different venues from the inception 1975, till 2010.
Each paper has attributes such as the year of publi-
cation, paper title, abstract, doi and so on. The com-
plete set of attributes are defined in the DBLP schema
[?]. In addition to the DBLP defined attributes, we
introduce an additional attribute called abstract that
contains the abstract of the paper. We have described
the process of collecting the abstract in Sec. 3.2.1.
The next element is the set software engineering publi-
cation venues denoted by V. The list of all the venues

has been shown in Table 1). As shown in the meta-
model (Figure 3), a venue publishes one or more pa-
pers whereas one paper is published in one venue.
Next, A denotes the set of authors of these papers.
Like P, attributes of the author is defined in the DBLP
schema. Additionally, we define a new attribute called
H-index for an author. The process of collecting the
H-index has been highlighted in Sec. 3.2.1. As shown
in the metamodel, an author can write one or more
papers and one paper is written by one or more au-
thors.
The next relation of the metamodel is the relation
Cref ⊂ P × P captures citation information between
the publications.
The element Γ denotes the set of topics, represented
as a set of probability distributions over documents.
These topics are generated using a well-known topic
discovery algorithm known as Latent Dirichlet Allo-
cation (LDA)[6]. The input to this algorithm is a col-
lection of documents where a document is treated as a
bag-of-words, created from a paper by selecting a set
of meaningful keywords from its title and abstract.
Obviously, a paper has one-one relationship with a
document as shown in Figure 3.

4. ANALYSIS METHOD
Following are the statistical tests – along with the un-
derlying assumptions – we have used for our analysis
in this paper.

4.1 T-Test
We wanted to test whether there is a statistically sig-
nificant difference between citation counts of single-
author papers and multiple-author papers. An in-
dependent samples t-test [7] can determine whether
there is a statistically significant difference in the mean
value of a variable between two groups of data. From
the SERC corpus, we have considered the set of sin-
gle author papers (P1 ⊆ P) form the first group and
multi-author papers (P1+ ⊆ P and P1+ ∪ P1 = P)
form the second group. For our test we set the alpha-
value to be 0.05 which is standard. In a t-test, if the
resultant p-value is less than or equal to the alpha
value, the difference between the two groups will be
considered as statistically significant.

4.2 ANOVA
We also wanted to test whether there is a statistically
significant difference between citation counts of differ-
ent groups of data; that is between single author pa-
pers, two-author papers, three-author papers etc. A
one-way analysis of variance (ANOVA) test was used
to check for this difference. Unlike the t-test where
we had two groups of data, here we divided the data-
set for the ANOVA into seven groups, the first six
groups contained papers of one to six authors respec-
tively and the last group with papers of more than
seven authors. As in the previous test, alpha was set
at 0.05. An ANOVA would give a p-value less than or
equal to alpha-value if it found statistically significant
differences between the groups’ citation counts, how-
ever, it will not identify the particular groups that are
significantly different from others. To identify this, a



post-hoc test such as Tukey’s HSD [8] is needed to
find out which of the groups are actually showing the
significant differences.

4.3 Assumptions
The above tests are called parametric statistical tests
for which the data need to satisfy certain assumptions.
For these tests, normality of the data is not critical
if the dataset is large enough [9], as in our case. The
tests also assume similarity of variances in the different
groups of the dependent variable which can be deter-
mined using Levene’s test of homogeneity of variances.
For our data, the Levene’s test showed that this as-
sumption was not met; when the size of samples in the
different groups are vastly different, as in our case, it is
quite possible for the variances to be different. SPSS’s
t-test handles such situations. For one way ANOVA,
however, we used the Welch’s F statistic to deal with
this situation [8].

5. CONGRUENCE OF AFFINITY
For a given researcher we can compute his/her propen-
sity or affinity towards one or more research topic(s)
based on past publications. Discerning research “top-
ics” from our corpus of 19,000+ papers is far from a
trivial problem. Any manual process, in addition to
being very tedious, is also prone to subjective bias and
errors. In view of this situation, we decided to use a
Latent Dirichlet Allocation (LDA) based technique to
discover a set of topics from the corpus of all the pa-
pers [6]. LDA has been widely used to identify topics
from large text corpora, specially in the context of
research publications [10], [11].
Briefly, LDA considers a document to be a mixture of
a limited number of topics and each word in the doc-
ument can be attributed to one of these topics. Given
a corpus of documents, LDA discovers a set of topics,
keywords associated with each of the topics and the
specific mixture of these topics for each document in
the corpus. In our case, the set of papers P has been
used as the text corpus (each document in this cor-
pus is a stemmed set of keywords obtained from the
paper title and abstract) from which LDA discovers a
set of topics Γ = {τ1 · · · τk}. From a text corpus LDA
creates two sets of probability distributions. One of
these sets models topic mixture over documents (de-
noted as Θ = {θp|p ∈ P}) and the other set models
keyword mixture over topics. For a paper p, we get a
probability distribution θp over topics, and for a given
topic, we get a probability distribution of keywords.
In LDA, these two are taken to be Dirichlet distribu-
tions with parameters α and β respectively. Arriving
at the optimal number of topics for a given corpus is
an empirical process. We need to vary α, β, the num-
ber of iterations (N) and the number of topics (K) to
get the log likelihood value for the model which indi-
cates its highest level of effectiveness [12]. Iterating
over these parameters several thousand times, we se-
lected 80 topics for our study. Beyond this number,
we noticed that instances of repetitions in the key-
words across the topics increased substantially, thus
indicating a low possibility of identifying further dis-
tinguishable topics.

Having obtained the topic mixture model Θ over pa-
pers P using LDA. we now define the congruence of
affinity for authors in our data-set as follows:

Definition: As mentioned earlier, let Θ = {θp|p ∈
P}, where for a paper p, θp is the probability distri-
bution over topics. Let a.P be the set of all papers
published by the author a, and PaperTopic(τ) for a
topic τ is the set of all papers p whose topic mixture
probability θ(p) is above certain threshold.
Now we define the affinity of the author a on a topic
τ denoted as aff(a, τ), as:

aff(a, τ) =
∑

p∈(a.P∩PaperTopic(τ)

θp(τ)

Having defined affa(τ) we can now define a k-dimensional
affinity vector for an author, considering all the k top-
ics as:

̂affvec(a) =< aff(a, τ1), · · · , aff(a, τk) >

.
The congruence of past research interests between two
authors a1 and a2 – Congr(a1, a2) – is defined as
the Euclidean distance between their affinity vectors.
Thus:

Congr(a1, a2) =

√√√√ k∑
i=1

(aff(a1, τi)− aff(a2, τi))
2.

6. TEAM SIZE FOR MAXIMUM IMPACT
The conventional wisdom is that working in teams is
more effective than working individually. From this
point of view, team assembly mechanisms have been
studied in creative enterprises [13], and corporate man-
agement is deeply engaged with the idea of effective
teaming [14]. Even popular self-help books talk about
“synergy”being“1+1>2” [15]. There is also significant
literature on the benefits and challenges of collabora-
tion in software development [16], [17]. In the context
of software engineering research, we examined if there
is indeed empirical evidence that multi-author papers
(indicating teamwork) achieve higher impact than sin-
gle author papers.
As mentioned earlier, we take the citation count of
a paper as a proxy for its impact. The mean citation
count (± standard error of the mean) for single-author
papers was 14.95± 0.77 and that for multi-author pa-
pers was 16.35 ± 0.37. An independent samples t-
test showed that the difference between the two was
not statistically significant (t(11452)=-1.76, p=0.078).
This indicates that there has not been significant bene-
fit for multiple authorships compared to single author-
ships in terms of research impact in software engineer-
ing, which is contrary to the conventional wisdom.
As we observe, there are many more multi-author pa-
pers than single author ones (Table 2). Accordingly,
for a deeper understanding of how team size relates
to research impact, we divided the data-set into seven
groups, the first six groups contained papers of one
to six authors respectively; since the number of pa-
pers with more than seven authors was relatively small
(see Table 2), we decided to put them together with



Number of authors Frequency

1 2684
2 4093
3 2637
4 1222
5 451
6 189
7 85
8 48
9 24
10 13
11 3
12 1
13 1
14 2
20 1

Table 2: Number of papers in the data set with
different number of authorships

those of seven authors as the last group. Figure 4
shows the mean citation counts for papers with dif-
ferent number of authors. ANOVA demonstrated sig-
nificance (Welch’s F(6, 1142.87)=2.4, p-value=0.026).
The post-hoc analysis showed that only the difference
in mean citations between papers of four authors and
seven or more authors was statistically significant.
As can be seen in Figure 4, papers with four authors
had the least mean citation count and papers with
seven or more authors had the highest mean number
of citations. Thus, even though the two-group analysis
showed that there is no significant difference between
single author and multiple author papers, the results
here demonstrates that within multiple author papers,
team work with seven or more authors pays off in im-
pact compared to team work of four authors.

7. IMPACT AND THE INSTINCT FOR
COLLABORATING OVER TIME

In software engineering, as in some other disciplines,
it is not uncommon for groups of like minded people
to work together and publish jointly for a considerable
period of time. Using our data-set, we are able to val-
idate whether such a close relationship have been nec-
essary to produce high impact outcomes in software
engineering research. In order to test this question,
we defined the following variables between each col-
laborative pair – that is, pairs of researchers who have
co-authored at least one paper together:

• Number of joint papers published

• Number of overlapping years in publishing

• Number of common venues published in

• Number of common co-authors

• Congruence of affinity based on past publica-
tions

Intuitively, we see congruence of affinity, defined in
Section 5 as the level of commonality between the re-
search interests of two researchers based on past pub-
lications.

Correl coeff p-value

No of years of overlap -0.011 0.011
No of common co-authors 0.012 0.004

Congruence of affinity 0.034 <0.001

Table 3: Impact of Closely Working Groups

Figure 4: Mean citations versus number of au-
thors (Mean and standard error are shown in
the graph)

To understand whether and how collaborating over
time relates to impact, we checked the Pearson corre-
lation between the five variables identified above for
each collaborative pair and the citation count of the
papers for which the pair collaborated. Table 3 shows
the correlations that are statistically significant.
The very weak correlations indicate that the impact
a paper achieves is affected very little by the his-
tory of the collaborators in terms of common prior
co-authorships, number of years they have published
together or even congruence of their past research in-
terests. Thus to achieve impact, collaborators in gen-
eral did not have worked together for long periods of
time.
In order to further confirm this result, we selected 100
papers with the highest citation counts in the data-set
and determined their correlations. We found that in
this case, only congruence of affinity was statistically
significant (p-value=0.001) and its correlation with ci-
tation count was 0.129. That means, only 1.66% (i.e.,
0.1292) of the impact is explained by affinity, which
being a very weak relationship, further confirms our
result.

8. LIMITATIONS
Let us outline the following threats to the validity that
limit the scope of our results:

Construct validity. implies that variables are mea-
sured correctly. In areas where there is considerable
theoretical work, it usually involves establishing that
the measurements are constructed in accordance with



theoretical foundations in the area. In our case, we
have not been able to identify in the literature a met-
ric which captures the extent to which two researchers
can be said to share common research interests based
on past publications. Hence the congruence of affin-
ity metric (Sidebar-2) was defined. Measuring impact
of a publication by counting the number of citations
is widely practiced though not without controversy as
we mentioned earlier [5]. Our results are bound by the
limitation of the citation count measure.

Internal validity. addresses whether a study is free
from systematic errors and biases. Since our data set
is derived from all accessible publications in a prede-
fined set of venues, issues that can affect internal va-
lidity such as mortality and maturation do not arise in
our case. However, selection bias can occur from the
manner in which venues of publications are selected
for the study. Based on the established bibliographic
sources considered, we believe we have accessed the
maximal amount of data in our scope that is avail-
able in the public domain. The citation counts were
based on citation cross indexing between papers that
we constructed across several of our data sources. Pa-
pers in our corpus for which citation information is
not available in the public domain, could not naturally
be included in our analysis. Removal of self citations
and disambiguation of author names are critical data
cleansing activities for studies of this kind [18].

External validity. indicates the generalizability of the
results of the study. The population for our study is
all software engineering publications from the venues
considered. Our sample size and the sampling method
are unlikely to be a threat to external validity.

Reliability. of a study is related to reproducibility of
the results. As we have minimized subjective bias in
our analysis, and used automated approached when-
ever possible, our results can be easily reproduced.

9. BENEFITS AND TAKE-AWAYS
For an empirical study such as this one, it is important
to establish the practical significance of our results. It
is widely perceived that software engineering research
is increasingly becoming empirical in nature [3]. In the
empirical disciplines, research activity is largely driven
by teams of researchers. How many researchers make
the “optimal” team is question that is widely debated,
with little consensus. In this paper, we examine this
and related questions from a statistical viewpoint us-
ing a large data-set. We bring in a level of objective
analysis to questions which are commonly confronted
by opinions and subjectivity.
Our results have strong implications for the nurtur-
ing of software engineering research teams. In the
academia, graduate students often collaborate with
their advisers as well as other graduate students as
they pursue their thesis completion. They are often
faced with a dilemma as to whether it would be ben-
eficial to work on a problem alone or seek out ideas
and inspiration from others. While there is no one-

size-fits-all answer to this question, our results would
help discern some of the trade-offs inherent in going
alone vis-a-vis working in a team. In the industry,
research problems are often calibrated by their poten-
tial business impact. How many researchers to put on
a problem is thus a question of much tactical impor-
tance. The findings from our study will inform the
choices research managers in the industry frequently
need to make.
One of the most widely cited conjectures in software
engineering – canonized as Brooks’ Law – states that
adding more developers to an already delayed project
makes it more delayed. This is taken as a reflection
on how the overheads of interaction between increas-
ing number of team members negatively impacts the
team’s deliverable. While on the development side of
software engineering Brooks Law holds nearly univer-
sal sway, on the research side effects of the number
of people working together on a problem is far more
nuanced. Our results reveal this dichotomy; this is an
interesting insight on the dynamics of SE research.
All researchers seek impact. Research impact comes
out of a chemistry – often unknown – of a number
of factors. In this paper we have systematically an-
alyzed the impact of some such factors. We believe
the insights gained on the influence of the number
of researchers and co-authorship relationships lay the
foundation for deeper analysis in future.

10. CONCLUSION
We observed no significant difference in impact be-
tween single-author and team based multi-author pa-
pers. However, when publications were grouped based
on the difference in the number of authors, the work
produced by large teams showed significantly higher
impact. So in answer to the title question we can
say, it needed at least seven researchers to work as a
team to produce papers of significantly higher impact
in software engineering. As we remarked earlier, pa-
pers in empirical sciences usually have higher number
of co-authors than those in mathematics or theoreti-
cal sciences [1]. The fact that SE papers are found to
achieve highest impact when there are seven or more
collaborators seems to corroborate one aspect of the
trend towards increasing empiricism in software en-
gineering, as has been asserted by Shaw [3]. Addi-
tionally, we found that collaborators in software engi-
neering do not maintain co-authorship relations with
same individuals over long periods of time as a means
of achieving research impact.
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