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Abstract  

Industrial software systems are being increasingly developed by large 
and distributed teams. Tools like collaborative development 
environments (CDE) are used to facilitate interaction between 
members of such teams, with the expectation that social factors around 
the interaction would facilitate team functioning. In this paper, we first 
identify typically social characteristics of interaction in a software 
development team: reachability, connection, association, and 
clustering. We then examine how these factors relate to the quality of 
software produced by a team, in terms of the number of defects, 
through an empirical study of 70+ teams, involving 900+ developers 
in total, spread across 30+ locations and 19 time-zones, working on 
40,000+ units of work in the multi-version development of a major 
industrial product, spreading across more than five years. After 
controlling for known factors affecting large scale distributed 
development such as dependency, system age, developer expertise and 
experience, geographic dispersion, socio-technical congruence, and 
the number of files changed, we find statistically significant effects of 
connection and clustering on software quality. Higher levels of intra-
team connection are found to relate to higher defect count, whereas 
more clustering relates to fewer defects. We examine the implications 
of these results for individual developers, project managers, and 
organizations.  
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1 Introduction

Computing and its effects dominate our lives today, and the technological civilization is
deeply reliant on software (Stroustrup 2007). Many of the early software systems, especially
the ones that are most visible and impactful, were developed by small teams of programmers
(Cringely 1996). These systems were often conceived and developed by one or two individ-
uals, who then gathered around them a small group of enthusiasts sharing their vision. But
industrial software systems are built differently now. Many more developers than a select
few are involved, and usually members of large development teams are separated by dis-
tance and time-zones. This has lead to the recent recognition of social aspects that influence
software development by large teams of developers, beyond factors affecting individual
productivity that had long been identified (Weinberg 1971).

Any examination of social factors influencing large scale software development needs
to happen in the context of the myriad interactions between individual members of the
development team. The social processes around these interactions are sought to be facili-
tated by collaborative development environments (CDE) such as Jazz.1 Although the use of
CDEs in software development is relatively recent, social phenomena surrounding interact-
ing individuals in other fields has been studied for several decades (Coleman 1990). These
studies have established key parameters that characterize interaction. However, the relation-
ship between developer interaction and software quality remains far from a settled question
(Brooks 2010).

Facilitating the sharing of information in a team is recognized to be of consequence to
how the team performs (Wagstrom et al. 2010). But there are many nuances to the issue; how
much and how easily team members can transfer and absorb information, and the effects of
such interaction offers diverse evidence, often contradictory (Olson and Olson 2000; Wolf
et al. 2008). As increasingly more complex software systems are being built by larger and
more distributed teams, organizations require clearer directions on the characteristics of
developer interaction that help better functioning of teams, as well as those that hinder.

In this paper we present results from an empirical study to discern how interaction
between members of a distributed development team, relate to the quality of the software
produced by the team. Our results can inform individual developers on ways of deriving
more value from their peer interactions. To managers, our results can be useful for dele-
gating and tracking responsibilities in a team. At the organizational level, conclusions from
this study can help resource allocation and team assembly.

The research contributions from this study are:

– We identify a set of typically social characteristics of interactive human enterprise from
existing literature, and examine how these characteristics relate to outcomes in large
scale software development.

– We present results from a multi-project study analyzing how interaction between team
members are associated with software quality.

– We identify statistically significant effects of information sharing and clustering
between team members on the number of defects in the team’s work products.

– On the basis of empirical evidence, we recommend a set of best practices for the
governance of projects involving large distributed teams.

1https://jazz.net/

Empir Software Eng (2018) 23:1 – 1 7153 181154

https://jazz.net/


The paper is organized as follows: In the next few sections we present a background of
our research, motivate our research question and develop a set of hypotheses. Subsequently,
the study setting is described, statistical models developed and the results presented and
discussed. We next identify threats to the validity of our results, and outline related work.
The paper ends with a summary of our results, and conclusions.

2 Background

The premise behind facilitating interaction in large software development teams is that
better interaction will relate to higher quality of output from the team (Humphrey 1999).
Interaction can be viewed from several perspectives; we will now identify characteristics of
interaction between individuals and their relevance to our context.

One of the earliest and most well known empirical studies on a large scale social phe-
nomenon was conducted by Travers and Milgram (Travers and Milgram 1969), as they
explored the “small-world problem” formulated by Milgram (Milgram 1967). The results
reported by Travers and Milgram helped establish the widely recognized notion of six
degrees of separation. In recent times, the idea that any two randomly chosen individuals
in a large network are only few intermediaries apart has been further explored in studies
such as (Watts and Strogatz 1998; Watts 1999), and an algorithmic perspective developed in
(Kleinberg 2000). The average separation of a network indicates how many intermediaries
separate two individual vertices (or nodes) of the network, on average. Average separa-
tion reflects on the reachability of individuals in a network. In a software development
ecosystem, reachability points to how accessible developers are to one another.

While average separation indicates how far apart two randomly chosen individuals are in
a network, the average degree is a measure of the network’s interconnectedness. In a seminal
paper, Feld explored how individuals in a network perceive their positions differently with
respect to one another and how such perceptions influence their interactive responses (Feld
1991). In a software development scenario, average degree is the mean number of peers that
developers in a team are connected to. By capturing the extent of connection between team
members, the average degree points to the level of contact between developers in large and
distributed teams.

Average degree and average separation capture important social characteristics of a group
of interacting individuals. But how should we characterize “social” networks? Newman
has established that social networks differ from other networks in two important ways –
assortative mixing and non-trivial clustering (Newman and Park 2003).

Assortative mixing in networks indicates the tendency for vertices “to be connected to
other vertices that are like (or unlike) them in some way” (Newman 2002). Our intuitive
sense for homophily – the propensity of individuals to associate with similar others – is
captured in the notion of assortative mixing. A large software team usually has developers
with diverse skills, experience, and responsibilities. This diversity is also often reflected
in the number of connections to other developers. Individuals with many connections are
usually connected to individuals who have many connections themselves and vice-versa.
Assortative mixing captures this phenomenon of how team members associate with one
another, and is thus a measure of association levels in a team.

Clustering is the tendency for clusters or groups of closely connected individuals to
emerge in networks; Newman has underscored how relatively high levels of clustering is
an essential characteristic of networked individuals sharing similar interests and objectives
(Newman 2002). The presence of notable clustering is a sign that social processes rather
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than merely random linkages underpin a network (Albert and Barabasi 2002). These pro-
cesses are often driven by the dynamics of clustering of individuals towards a common
goal.

In light of the above discussion, we identify our research question as:
In distributed software development, how does interaction between team members relate

to software quality?
In the next section, we derive a set of hypotheses from this research question, which will

be empirically validated in our study setting.

3 Motivating the hypotheses

3.1 Context

The research question introduced in the previous section seeks to understand the relation
between developer interaction and software quality. As we have already seen, interac-
tion characteristics have various aspects; and each of these aspects needs to be taken into
account to fully investigate the effects of interaction. To develop our hypotheses, we use the
following social metrics, in the context they were introduced earlier:

– Average separation to reflect on reachability of individuals in a social network.
– Average degree to capture the levels of connectedness of individuals in a social network.
– Assortativity to point to the extent of association among individuals in a social network.
– Clustering coefficient to represent the scale of clustering among individuals in a social

network.

Additionally, we take the number of defects in the work products of a team to reflect on
the quality of the software produced by the team (Koru and Liu 2005; Bird et al. 2009a;
Zimmermann and Nagappan 2009) (see Section 5 for more details).

The social networks studied in this paper are constructed from instances of develop-
ers co-commenting on units of work in a software development ecosystem. Vertices of the
networks are developers, and two developers are joined by an undirected link if both the
developers have commented on at least one common unit of work. Formal definitions of the
network and the metrics, along with explanations of how they are calculated are presented
in Sections 4 and 5. We now distill our research question into the following hypotheses,
each of which addresses a specific aspect of interaction in our context.

3.2 Distilling the research question

– Many of today’s software development teams have members who are at different loca-
tions, seldom meeting one another face to face. Functioning of such teams is largely
reliant on how easily accessible developers are to one another for defining and fulfilling
shared responsibilities. This reaching out is important for leveraging a project’s ecosys-
tem of implicit knowledge and expertise, something Booch has called “tribal memory”
(Booch 2008). As team members separated by time-zones often share small overlap of
working hours, the scope of synchronous communication – by phone calls or chat – is
limited. Members of such teams need to utilize the team’s network of interactions to
reach out to one another. In general, developers need to be able to reach one another
easily for discussion around project tasks. Lack of such access will impact knowledge
sharing and is likely to be detrimental to the quality of the team’s deliverable. For a
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distributed development team, average separation reflects on the extent of reachabil-
ity. Accordingly, our first hypothesis is framed as - H1: Higher average separation
of team members is related to lower number of defects. The corresponding null
hypothesis is that there is no relationship between average separation and number of
defects.

– How well connected team members are to one another plays an important role in
the percolation of information in a team. Developers having more information shar-
ing channels can be expected to be better grounded in the current state of the project.
In large software projects, needs of many stakeholders have to be recognized and
addressed. So a team in which information flows more easily is likely to produce bet-
ter quality software; we thus arrive at our second hypotheses - H2: Higher average
degree of team members is related to lower number of defects. The corresponding
null hypothesis is that there is no relationship between average degree and number of
defects.

– In a truly “jelled” team, members together produce more effective results than the sum
of individual contributions (DeMarco and Lister 1987). Association between members
facilitate better team integration or jelling. Thus teams whose members are more closely
associated with one another can be expected to produce better quality software, leading
to our third hypothesis - H3: Higher assortativity amongst team members is related
to lower number of defects. The corresponding null hypothesis is that there is no
relationship between assortativity and number of defects.

– In large scale software development, collective tasks and responsibilities lead devel-
opers to cluster together. Such clustering indicates areas of closer interaction in a
development team. As interaction is widely perceived to facilitate better team func-
tioning (Herbsleb and Mockus 2003; Cataldo et al. 2006) we posit that software
development teams with higher clustering can be expected to produce better quality
software. Thus we frame our fourth hypotheses as - H4: Higher average clustering
coefficient of team members is related to lower number of defects. The correspond-
ing null hypothesis is that there is no relationship between average clustering coefficient
and number of defects.

We next describe the study setting where these hypotheses will be examined.

4 Study setting

4.1 Context

To test the above hypotheses we need data from a cohort of software development teams.
The Jazz platform mentioned earlier is listed as an “... initiative for improving collabora-
tion across the software & systems lifecycle”.2 Jazz offers an integrated environment for
defining, tracking, and evaluating development activities. All information that developers
exchange are automatically recorded in the Jazz repository.

In this paper we study development data from three major releases of a major industrial
product developed on the Jazz platform. A set of iterations leads to a release, and each
release produces a version of the product. Within a release, developers are segregated into

2https://jazz.net/
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team areas. A team area on the Jazz platform represents a group of developers focused on
delivering a particular line of functionality in a particular release. Each member of a team
area has a specific role, such as contributor, component lead, tester, build master, member
of project management committee etc. Members of a team area can be based in different
geographies. Each developer in a team area owns work items – uniquely identifiable units of
work that are used to assign and track activities on the Jazz platform. Developers exchange
comments around work items; commenting is the prescribed and predominant vehicle of
work related developer communication on the Jazz platform.

In the Eclipse Way of collaboration guiding development on the Jazz platform, spon-
taneous interactions are encouraged between developers in a team area (Frost 2007). The
network of interactions within team areas are expected to facilitate the planning and exe-
cution of development activities (Herzig and Zeller 2009). Evidently, a Jazz team area
represents a useful abstraction of a software development team. In the remainder of the
paper, we use “team area” and “team” interchangeably.

In the preceding section we have identified parameters that reflect on the social traits of
developer interaction. The computation of reachability, connection, association, and clus-
tering are based on established network metrics, as described in detail in Section 5. The
assumption underlying the use of these metrics is that the ecosystem of interacting individu-
als in a team can be represented by a network, as is widely done in similar studies (Newman
2003b). For our study a team area network or simply a team network for each team area is
constructed in the following way from the data in the Jazz repository: Each work item in
a release belongs to a particular team area. For each team area all the work items are col-
lected; if two developers have commented on at least one such work item, they are joined by
an edge (undirected link) in the corresponding team network. Thus the vertices (nodes) of
the team network are developers, and the edges represent their instances of co-commenting
on work item(s). In the unlikely instance of the owner of a work item not having commented
on it, (s)he is also joined by edges to all other developers who have commented on that work
item. A similar construct for abstracting communication between developers at the release
level was used in our earlier work (Datta et al. 2012).

For our analysis, we only consider work items of the type tasks, enhancements, and
defects. These are the only types of work items linked to source code changes, as described
in change-sets. In this study, we are interested in discerning how interactions in a team relate
to the quality of the software developed by the team. As discussed in detail in Section 5,
we consider the number of defects in the software developed by each team as an indi-
cator of quality, and take it as the dependent variable in our statistical models. Thus to
ensure a separation between the influencing factors and the influenced parameter, only task
and enhancement work items are used in constructing the team networks. In the following
discussion, “defects” will denote defect work items.

We analyzed data across a total time span of five years and nine months of development.
Our data set included 116 team areas, including 982 developers in total, working on 46,009
work items. The developers were spread across 35 locations and 19 time-zones, in total.
We learned from discussion with team members that Jazz was the management mandated
collaborative development environment for the teams from the inception of development of
the product we have studied. Thus there was no development activity in our study setting
prior to the adoption of Jazz. We removed team areas with minimal interactions; our final
analysis was conducted using 71 team networks and 42,228 work items in total. The mean
number of developers in team areas was 11.41, with a standard deviation of 8.55. The dis-
tribution of team sizes had a skewness of 1.6. Figure 1 shows the distribution of team sizes.
Each team network corresponded to a team belonging to one out of the three releases of the
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Fig. 1 Distribution of team sizes

product being studied; there was no team which belonged to more than one release. Less
than 1% of the developers considered in this study worked on multiple teams, and the max-
imum number of such multiple teams was two. These developers are present in the team
networks of both the teams they worked on. As our statistical models (see Section 5) are
at the team level rather than individual developer level, these very few instances of over-
lapping team members do not influence the results. In a multi-team study as ours, teams
need to share a common development context. The teams we are studying functioned in the
same Jazz development ecosystem. Thus we believe our study setting is largely insulated
from externalities that can introduce confounding variables such as different development
methodologies, technologies and communication practices.

In Fig. 2 we outline the major components of our study setting. The project repositories
for the teams studied are accessed from the Jazz platform. Relevant project information is
extracted from these repositories, and stored in a MySQL3 database. The team networks as
defined earlier are extracted from the data. On the basis of literature survey and contextual
information, statistical models are developed to test our hypotheses. Our results are then
examined and insights derived in the context of the state of art and practice.

4.2 Team profiles

To help us better interpret the statistical models developed in Section 5, let us try to derive
an intuitive understanding of how the teams functioned, by studying the team networks.
Degree distribution is a key parameter that characterizes a network (Jackson 2010). To get
a sense of how the team networks are oriented, we give the degree distributions of a sam-
ple of 18 networks (approximately 25% of the total 71 teams we are studying) in Figs. 3
and 4. We observe that most of the distributions are positively skewed, with a longer right

3https://www.mysql.com/
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Generate team networks 
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Extract projects  data

Fig. 2 An outline of the study setting

tail. This is a characteristic common to many social networks (Albert and Barabasi 2002)
(Newman and Park 2003). In our context, this implies that there are relatively few develop-
ers in the team who are connected to many others, whereas many developers are connected
to few. For a deeper understanding of the team dynamics, the distributions of the clustering
coefficients of these networks are also given in Figs. 5 and 6. We note that the clustering
coefficients are mainly skewed to the left. This is an interesting trend in light of the various
network models (Dorogovtsev et al. 2002; Ravasz and Barabási 2003). In our study set-
ting, the negatively skewed distributions for the clustering coefficients lead to an interesting
observation. It appears that many developers are engaged in closer clustering, whereas few
are relatively more isolated. These characteristics of developer interaction will be revisited
when we discuss our results later in Section 7.

5 Model development

In developing statistical models, our objective is to find out how interaction characteristics
relate to software quality. We consider software quality as the dependent or outcome vari-
able while interaction characteristics as expressed by reachability, connection, association,
and clustering are the independent or predictor variables. To isolate the effects of the inde-
pendent variables on the dependent variable, we need to account for other relevant effects on
the outcome as identified in existing literature – these are the control variables. Intuitively,
control variables represent the background effects in our study, in light of which we exam-
ine how the independent variables relate to the dependent variable. In Table 1 we highlight
the relevance of some of the major factors influencing the outcome of large scale software
development and then identify our model variables and discuss how they are calculated in
the following subsections.
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Fig. 3 Degree distributions of teams

5.1 Dependent variable

Software quality can be perceived and measured in a number of ways, as the notion of
“quality” has many connotations in industrial products (Datta 1998). While we recognize
that counting defects is not the only way to measure quality (Wolf et al. 2009), in many
studies the number of defects is taken as indication of the quality of a software system
(Koru and Liu 2005; Bird et al. 2009a; Zimmermann and Nagappan 2009). Additionally,
the number of defects owned by a team is an important parameter for project governance,
as it relates to key issues such as customer satisfaction. On these considerations, we take
DefectCountforTeam as the dependent variable for our models. On the Jazz platform, each
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Fig. 4 Degree distributions of teams contd.

defect work item belongs to a team area. Recalling that a team area is specific to a release,
we calculate DefectCountforTeam as the total number of defect work items for a team area.

5.2 Independent variables

On the basis of the notions developed in Section 2, we denote the independent variables
as Reachability, Connection, Association, and Clustering. The independent variables are
calculated in the following ways:

– Reachability: In a network, the ability of two vertices i and j to communicate with one
another is influenced by the length of the shortest path lij between them. The average
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Fig. 5 Clustering coefficient distributions of teams

of lij over all pairs of vertices is the average separation of the network (Barabasi et al.
2002). We use average separation to measure the Reachability of developers in each
team.

– Connection: The average number of edges per vertex, that is, the average degree is a
measure of a network’s interconnectedness (Barabasi et al. 2002). For a network with
V vertices and E edges, average degree can be calculated as 2 * E / V . We take the
average degree to represent the Connection between developers in each team.

– Association: According to Newman, “a network is said to show assortative mixing if
the nodes in the network that have many connections tend to be connected to other
nodes with many connections” (Newman 2002). The author establishes that in a social
network, the probability of a target vertex being connected to, depends on the degree
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Fig. 6 Clustering coefficient distributions of teams contd.

of the source vertex; and shows how assortative mixing can have notable influence
on the behavior of social networks (Newman 2002). As discussed in (Newman 2002)
(Newman 2003a), assortative mixing in a network can be calculated by measuring the
degree correlation of vertices. Using the method outlined in (Newman 2003b) we cal-
culated the assortativity as the Pearson correlation coefficient between the degrees of
pairs of vertices at the ends of the edges of the team network for each team area. This
is taken to capture the level of Association in a team.

– Clustering: In a network, the clustering coefficient (Cv) for a vertex v is defined as
follows: If v has a degree of kv , that is there are kv vertices directly linked to v, the
maximum number of edges between these kv vertices is kv choose 2 or kv ∗ (kv − 1)/2.
If the actual number of such edges existing is Nv , then Cv = 2 * Nv / kv ∗ (kv − 1).

Empir Software Eng (2018) 23:1 – 1 7153 181164
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Thus, the clustering coefficient of a vertex is the ratio of the actual number of
edges existing between its neighbors and maximum number of such edges that can
exist (Albert and Barabasi 2002). For an entire network, the clustering coefficient is
the average clustering coefficients across all of its vertices. We recognize there are
multiple ways of measuring the clustering coefficient (Albert and Barabasi 2002; New-
man 2003b). We have chosen the above definition due to its intuitive appeal in our
context. It has been verified that the general direction of our results based on the
statistical models remain unchanged irrespective of how the clustering coefficient is
measured.

5.3 Control variables

On the basis of existing literature and our study setting, the following categories of control
variables are considered.

– Amount of work: It has been observed that the number of defects owned by a team is
influenced by the amount of work the team is engaged in (Cataldo et al. 2006; Cataldo
et al. 2008; Wagstrom et al. 2010). As a proxy for the amount of work, we consider the
total number of task and enhancement work items for a team area – ActivitySpan – as a
control variable. The notion of work items in Jazz development ensures the division of
work into atomic units of relatively similar scope and intensity (Frost 2007). Thus we
assume that controlling for the number of work items by the ActivitySpan variable also
includes a reasonably accurate control for the complexity of development work handled
by each team. We calculate ActivitySpan as the total number of task and enhancement
work items for a team area.

– Number of developers: Whether and how the number of developers working together
influences the number of defects in the software they produce has been explored at
length (Brooks 1995; Raymond 2001). Accordingly, we consider the effects of Team-
Size, consistent with similar studies (Espinosa et al. 2007; Boh et al. 2007; Herbsleb
and Mockus 2003; Wagstrom et al. 2010; Cataldo et al. 2009; Bird et al. 2009a). The
total number of developers in a team area is taken as the TeamSize.

– Familiarity with tasks: The number of defects raised in a team’s work products is
expected to be related to the level of expertise of team members (Wagstrom et al.
2010). Expertise comes out of familiarity with the development tasks being performed
(Espinosa et al. 2007). The level of TaskFamiliarity in the members of a team is thus an
important factor that needs to be controlled for. For each developer, we count the num-
ber of releases for whose work items (s)he has posted at least one comment. The count
for all developers in a team area is averaged to give the TaskFamiliarity for the team
area. We assume that the act of commenting on work items reflects a developer’s level
of familiarity with units of work.

– Distributed development: As discussed in Section 4, the teams we are studying are dis-
tributed across a number of locations. Whether distance does or does not matter in large
scale distributed development is a topic of much analysis and little agreement (Olson
and Olson 2000; Wolf et al. 2008). The notions of spatial distribution and temporal dis-
tribution are well established in the literature on distributed development (Boh et al.
2007; Cataldo and Nambiar 2009; Herbsleb and Mockus 2003; Cataldo et al. 2008,
2009). Any analysis of the number of defects in the software produced by distributed
teams must take into account these factors. Thus we consider SpatialDistribution and
TemporalDistribution as control variables in our model.
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– SpatialDistribution: The Spatial Distribution (SD) metric defined in (Cataldo
and Nambiar 2009) can be customized in our context for team areas as:

SD =

p=(k
2)∑

p=1

(KMpij
∗ Ni ∗ Nj)

(N2 − N)/2
(1)

The notations denote:

• KMpij
= Distance between the pair of locations i and j in

kilometres.
• Ni, Nj = Number of developers in locations i and j respectively.
• k = Number of different locations the team members work from.
• N = Total number of developers in the team across all locations.
• (

k
2

)
= k(k − 1)/2 (i.e. k choose 2)

– TemporalDistribution: The Temporal Distribution (TD) metric defined in
(Cataldo and Nambiar 2009) can be customized for team areas as:

T D =

p=(k
2)∑

p=1

(T Zpij
∗ Ni ∗ Nj)

(N2 − N)/2
(2)

The notations denote:

• T Zpij
= Number of time-zones between the pair of locations i and

j in kilometres.
• Ni, Nj = Number of developers in locations i and j respectively.
• k = Number of different locations the team members work from.
• N = Total number of developers in the team across all locations.
• (

k
2

)
= k(k − 1)/2 (i.e. k choose 2)

– Socio-technical congruence: The alignment between the communication structure of
a team and the structure of dependencies in its work products has been studied for long
(Conway 1968; Colfer and Baldwin 2010). This perspective has recently been devel-
oped further in the software development context as socio-technical congruence (STC)
(Cataldo et al. 2008). STC has been found to be related to how a team performs (Cataldo
et al. 2008; Kwan et al. 2011; Wagstrom et al. 2010). Thus we consider SocioTechnical-
Congruence as a control variable. Based on the definition of socio-technical congruence
in (Cataldo et al. 2008), in the context of this study, we compute the congruence (C)
for a team area (X), CX in the following way:

We generate two n by n square matrices Mt and Mw to capture the communica-
tion and work related connections between developers respectively. If developers di

and dj have co-commented on at least one work item, the value of “1” is entered in
the cell ij of Mt (that is, the cell at the intersection of i′th column and j ′th row) –
as well as cell ji. If developers di and dj own work item(s) that are dependent on
one another, the value of “1” is entered in the cell ij of Mw as well as cell ji. (The
information whether work items share dependencies between them is available from
the Jazz repository.) This is repeated for all ij pairs of developers. All cells of Mt and
Mw which are not marked by “1” are marked with “0”. Let cw be the number of cells
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in Mw that have the the value of 1. Let us initialize another count variable cboth = 0.
For each cell pq (that is intersection of p′th column and q ′th row) that has a value
of 1 in Mw , if the corresponding pq cell in Mt also has a value of 1, we set cboth

= cboth + 1. What we are essentially calculating in cboth is the number of developers
who are connected both through communication and work dependencies. We calculate
CX = cboth / cw.

– Different releases: In an earlier study, we found that a development team’s familiarity
and utilization of Jazz’s features evolve with progressive releases of the product being
developed (Datta et al. 2012). As our data set spreads across three versions of the prod-
uct, we introduce Vx and Vy as two explanatory “dummy” variables for the varying
team dynamics between releases. The effects of different releases has been observed
in similar other studies (Cataldo et al. 2006, 2008). Consistent with similar studies,
with appropriate coding two variables can account for the three versions (Ehrlich and
Cataldo 2012).

– System age: System age is known to influence team output (Espinosa et al. 2007;
Herbsleb and Mockus 2003; Wagstrom et al. 2010; Grewal et al. 2006), and (Crowston
and Scozzi 2002). In this study, for each team area we compute the elapsed time in
days between the earliest and latest creation dates of all work items of types task
or enhancement. The mean elapsed time for a team area is taken as the Age control
variable.

– Code change: Given the importance of code change (Cataldo and Nambiar 2009) we
include it as a control variable in our models. As mentioned earlier, Jazz work items
have change-sets associated with them, which are collections of code files relating to
various modifications undergone by the work items. For each work item of the type task
or enhancement in each team area, we counted the total number of code files across all
change-sets. The mean of this count for a team area is considered as the FilesChanged
control variable.

– Dependency: Recognizing the role of dependency in team outcomes (Cataldo et al.
2006, 2008) we compute the Dependency control variable in our models in the follow-
ing way: for a particular work item, the Jazz platform allows the recording of other
work items this work item depends on. For each work item of the task or enhancement
type in each team area in our study, we calculated the number of other work items it
depends on. The mean number of other work items depended on by the work items in
a team area is considered as the Dependency control variable.

– Developer experience: As developer experience has been found to influence team out-
come (Espinosa et al. 2007; Faraj and Sproull 2000; Boh et al. 2007; Cataldo et al.
2006, 2008; Wagstrom et al. 2010), we include it as a control variable in our models.
Assuming more experienced developers own more units of work, we consider the mean
number of work items (of the task or enhancement types) owned by developers in a
team area as the Experience control variable.

Table 2 presents the descriptive statistics of the variables introduced above. On the basis
on these statistics we develop models to understand how the independent variables relate to
the dependent variable, as explained in the next section.

6 Results

We now describe the development of the statistical models.
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Table 2 Descriptive statistics of variables considered for modeling

Mean Median Standard Deviation

DefectCountforTeam 408.93 90.00 814.00

Reachability 1.37 1.33 0.26

Connection 4.77 3.60 3.77

Association −0.33 −0.36 0.30

Clustering 0.60 0.67 0.28

ActivitySpan 185.83 83.00 244.95

TeamSize 11.41 9.00 8.55

TaskFamiliarity 2.42 2.46 0.64

SpatialDistribution 1682.33 331.37 2445.47

TemporalDistribution 1.55 0.00 2.59

SocioTechnicalCongruence 0.64 0.80 0.39

FilesChanged 9.94 6.51 12.96

Dependency 0.93 0.84 0.54

Age 402.06 355.12 273.28

Experience 72.83 89.94 45.41

6.1 Choosing a modeling paradigm

In this study, the aim of developing statistical models is to understand the relationship
between the dependent variables and the independent variables, in the presence of control
variables. With that view, we outline the steps and considerations towards selecting the most
appropriate modeling paradigm.

Our dependent variable, DefectCountforTeam is a count variable. To choose a modeling
paradigm for examining the effects of the independent variables on the dependent variable,
we first considered Poisson regression. Poisson distribution is a single parameter distribu-
tion with the mean equal to variance. Overdispersion – violation of this stringent underlying
assumption of the equality of variance and mean – represents a major threat to the validity of
Poisson regression (Barron 1992). Evidently, this threat is notable in our study. Using Pois-
son regression for the interaction model (as explained below) gives a residual deviance of
9117.3 on 57 degrees of freedom and Akaike Information Criterion (AIC) = 9574 (Akaike
1974). We next tried out negative binomial regression, which is also sometimes considered
for count variables. The residual deviance for the interaction model using negative binomial
regression is 81.79 on 57 degrees of freedom and the AIC is 863.7. To make a final decision
on the choice of a modeling paradigm we also calculated the AIC of the interaction model
using a multiple linear regression (with some of the variables transformed, as explained
in Section 6.3), which came out to be 496.1, and compared it with the AIC for Poisson
regression (9574) and the AIC for negative binomial regression (863.7). As the AIC for the
multiple linear regression model is the lowest, it indicates a higher appropriateness of this
modeling paradigm in our context than the negative binomial or Poisson models (Akaike
1974). Thus we chose multiple linear regression as our modeling paradigm.

With reference to Table 4, on the left we give parameters of the base model which only
considers the effects of the control variables on the dependent variable, while on the right
parameters of the interaction model - that additionally includes the independent variables
- are presented. In the presentation of the model parameters in Table 4, superscripts of the
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coefficients denote ranges of their respective p values, as we specify in the table caption.
The p value for each coefficient is calculated using the t-statistic – the ratio of each coef-
ficient to its standard error – and the Student’s t-distribution. In the table’s lower section,
overview of the models are given: N denotes the number of data points used in building
each model – in our case the number of team areas considered. R2 is the coefficient of deter-
mination – the ratio of the regression sum of squares to the total sum of squares; it indicates
the goodness-of-fit of a regression model in terms of the proportion of variability in the data
set that is accounted for by the model. df denotes the degrees of freedom. F is the Fisher
F-statistic – the ratio of the variance in the data explained by the linear model divided by
the variance unexplained by the model. The p value is calculated using the F-statistic and
the F-distribution, and it indicates the overall statistical significance of the model. For the
coefficients as well as the overall regression, if p ≤ level of significance, we conclude that
the corresponding result is statistically significant, based on null hypothesis significance
testing.

6.2 Model assumptions

Multiple linear regression rests on the assumptions of linearity, normality, and homoscedas-
ticity of the residuals, and absence of multicollinearity between the independent variables.
The residual properties were verified using histograms, Q-Q plots and scatter plots of the
standardized residuals.

Among the control variables, SpatialDistribution and TemporalDistribution had a high
correlation (Pearson correlation coefficient of 0.9) which is understandable from their def-
initions (see Section 5). Between the two, TemporalDistribution is considered to be a more
discerning factor in distributed development (Brooks 2010). Additionally, ActivitySpan and
TeamSize had Pearson correlation coefficients of 0.65 and 0.57 respectively with the con-
trol variable Age; and Pearson correlation coefficients of 0.77 and 0.83 respectively with
the independent variable Connection. Thus SpatialDistribution, ActivitySpan and TeamSize
were removed from our models to satisfy the multicollinearity assumption, and ensure par-
simonious models. To further check whether multicollinearity was posing problems for our
models, we computed the Variance Inflation Factors (VIF) of all model variables, and they
were found to be below the upper limit of 10 (Tabachnick and Fidell 2007). The correla-
tions among the independent variables were low, the highest being between Connection and
Clustering (Pearson correlation coefficient of 0.43). Table 3 presents the Pearson correlation
coefficients between all pairs of model variables.

Wemay also take this occasion to comment on some of the moderate correlations (greater
than 0.3 or less than −0.3) involving the control variables, in Table 3. At this time, these
comments are conjectural, and each relationship needs to be studied separately to conclude
why the variables are related the way they are. Such studies are beyond the scope of the
current work, which focuses on the relationship between the dependent and the independent
variables. However, we include these comments as they can illuminate interesting aspects
of the project ecosystem. As we notice, TaskFamiliarity and Experience have a Pearson cor-
relation coefficient of −0.34. The way these variables are measured (Section 5) can explain
the strength of relationship. However the directionality is interesting; developers owning
more work items (hence being better informed) seem to be less prone to post comments.
Discussions with team members offered a possible explanation: developers often use the
commenting mechanism in Jazz to pose questions to peers. Experienced developers are less
likely to pose such questions, and hence comment less in general. SocioTechnicalCongru-
ence and Connection have a correlation of 0.35: given the definition of the former, teams
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Table 3 Correlation matrix for model variables: TaskFamiliarity (TF), TemporalDistribution (TD),
SocioTechnicalCongruence (ST), FilesChanged (CH), Dependency (DP), Age (AG), Experience (EX),
Reachability (RC), Connection (CN), Association (AS), Clustering (CL)

TF TD ST CH DP AG EX RC CN AS CL

TF 1 −0.14 −0.18 −0.13 0.03 −0.08 −0.34 −0.08 −0.02 0.11 −0.07

TD 1 0.1 0.04 −0.15 −0.03 −0.05 −0.02 −0.07 0.02 −0.08

ST 1 0.11 0.05 0.27 −0.01 0.05 0.35 0.24 0.41

CH 1 −0.02 0.08 0.13 0.23 0.06 −0.05 0.09

DP 1 0.17 0.00 −0.04 0.1 −0.01 0.03

AG 1 −0.26 0.15 0.36 −0.01 0.40

EX 1 −0.04 −0.25 −0.02 −0.29

RC 1 0.17 −0.22 0.01

CN 1 −0.08 0.43

AS 1 −0.11

CL 1

with higher congruence are more likely to have higher average degree. A similar observation
may also explain the correlation of 0.41 between SocioTechnicalCongruence and Cluster-
ing. Age has correlations of 0.36 with Connection and 0.40 with Clustering; long running
projects are more likely to have higher average degrees and clustering coefficients among
team members, as they have been interacting over extended periods of time.

6.3 Variable transformations

Although a skewness of around 3 for a variable is considered acceptable for including it in
a linear regression model, we considered various established transformations for variables
with the absolute value of skewness greater than 1.5, for making their distributions closer
to normal (Tabachnick and Fidell 2007). We tried the following transformations separately
on the candidate variables: taking the natural logarithm, taking the square root, and taking
the fourth root. Out of these candidate transformations, taking the square root of the vari-
ables DefectCountforTeam, TemporalDistribution, FilesChanged, Dependency, Experience
and Connection yielded the best combination of the following criteria: nearest approxima-
tion to normality of distribution of the transformed variable, closest model fit to the data,
and most favourable cross-validation results (as reported in the next sub-section). Hence
these variables were transformed by taking square root and the transformed variables were
included in the models.

Based on the above discussion around verifying model assumptions and transforming
variables, we concluded that the assumptions of linear multiple regression hold within
permissible limits in our study (Tabachnick and Fidell 2007).

6.4 Model description and validation

From the parameters describing the base and interaction models respectively in Table 4, we
note that both the models are statistically significant overall (p < 0.001), with the base
model accounting for 62% of the variability of the data (R2 = 0.62) and the interaction
model accounting for 80% of the variability (R2 = 0.8). Thus, the goodness-of-fit increases
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Table 4 Modelling interaction characteristics. (Superscripts ’∗’, ’†’ & ‡ denote p ≤ 0.01, p ≤ 0.05 &
p ≤ 0.1 respectively)

I: Base Model II: Interaction Model

Coefficient Std error Coefficient Std error

Intercept 12.46 9.74 5.46 9.01

Control variables

TaskFimiliarity −3.08 2.46 −2.07 1.88

TemporalDistribution −2.39 1.69 −1.49 1.30

SocioTechnicalCongruence −0.22 3.44 −0.67 2.81

FilesChanged 1.09 0.80 0.58 0.62

Dependency −1.86 4.57 −2.32 3.45

Age 0.04∗ 0.01 0.02∗ 0.01

Experience −0.73‡ 0.39 −0.4 0.3

Vx 4.59 5.2 0.46 4.13

Vy −1.5 3.98 −3.07 3.13

Independent variables

Reachability −6.26 3.87

Connection 13.37∗ 1.89

Association −0.74 3.22

Clustering −10.18† 4.56

Model parameters Model parameters

N 71 71

R2 0.62 0.8

df 61 57

F 10.9 17.5

p < 0.001 < 0.001

from 62% to 80% with the introduction of the independent variable in the model, over and
above the control variables. The standard technique of 10-fold cross validation was applied
by randomly partitioning the data into 10 sub-samples, training the interaction model with 9
sub-samples and validating the model on the 10th sub-sample, and repeating this procedure
10 times. The Pearson correlation coefficient between the actual number of defects for each
team and that predicted by cross validating the interaction model was found to be 0.89
(p < 0.001 for this correlation) with a mean absolute error of 195.2. Given the fact that the
dependent variable has a range of 4198, the above mean absolute error - along with Pearson
correlation coefficient and R2 value - indicates a good fit of the regression model with the
data.

In Table 4, the coefficient of each model variable is mentioned and the corresponding
standard error is given beside it under the columns titled “I: Base Model”, “II: Interaction
Model”. We note that the signs of the coefficients of the control variables remain unchanged
between the base and interaction models, indicating overall stability of the models. Among
the control variables, higher levels of TaskFimiliarity, TemporalDistribution, SocioTechni-
calCongruence, Dependency, and Experience are seen to relate to lower number of defects
whereas the effect is inverse for FilesChanged and Age.
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As presented in Table 1, control variables considered for our study were drawn from
the literature which identified their relevance to team outcomes in software development.
Among the control variables, Age and Experience are the ones which have statistically sig-
nificant effects in the models. The absence of statistical significance for the effects of other
control variables can be due to various reasons.

Our statistical models are based on data from 71 teams. A larger cohort size is likely to
enhance the effects of the control variables, leading to more instances of statistical signifi-
cance. Within this limitation of data-set size, let us examine the control variables which do
not have statistically significant effect in our models, in the light of how these are calcu-
lated (Section 5) and further analysis of the data. As TaskFimiliarity is measured in terms
of the number of releases in which developers in a team area post comments, and there
are only three releases considered in this study, TaskFimiliarity is unlikely to be a dis-
cerning factor in explaining the variability of the dependent variable. We found that many
developers of large teams worked out of various locations of a country with a single time
zone. Thus, in spite of notable spatial separation, these developers had no time difference;
this may indicate why TemporalDistribution did not have statistically significant effect. A
collaborative development environment such as Jazz strongly facilitates the alignment of
social and technical interactions in the development ecosystem, unlike other systems for
which socio-technical congruence has been studied (Cataldo et al. 2008). This alignment
facilitated by Jazz may have contributed to the lack of statistical significance for SocioTech-
nicalCongruence. By studying the data, we could not identify probable reasons why the
effects of FilesChanged and Dependency are not statistically significant. Further investiga-
tions - beyond the scope of the current study - are required to understand the lack of these
effects. The explanatory “dummy” variables Vx and Vy included in the models to reflect on
the varying team dynamics between releases did not reveal statistically significant effects,
most likely because all three releases had a closely similar development context, without
radically different environmental factors.

From the regression results, we observe the following:

– The null hypothesis corresponding to hypothesis H1, that is, there is no relation-
ship between average separation and number of defects is not rejected with statistical
significance of p = 0.05.

– The null hypothesis corresponding to hypothesis H2, that is, there is no relationship
between average degree and number of defects is rejected with statistical significance
of p = 0.05.

– The null hypothesis corresponding to hypothesis H3, that is, there is no relationship
between assortativity and number of defects is not rejected with statistical significance
of p = 0.05.

– The null hypothesis corresponding to hypothesis H4, that is, there is no relationship
between average clustering coefficient and number of defects is rejected with statistical
significance of p = 0.05.

Thus, we see that average degree (Connection) and average clustering coefficient (Clus-
tering) have statistically significant relations with the defect count (at p ≤ 0.05). Based
on the sign of the coefficients, we notice that higher Connection relates to more defects,
whereas higher Clustering is related to fewer defects.
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7 Discussion

At the inception of this study, we sought to derive insights from relationships between social
network metrics such as average separation, average degree, assortativity, and average clus-
tering coefficient and defect count of software product development teams. The usefulness
of these metrics depends on how closely the team networks reflect the interaction between
team members. Such interaction has many facets: face-to-face meetings, conference calls,
email communication, and use of a collaborative development environment such as Jazz.
With reference to Sections 4 and 9, we recognize that not every detail of developer inter-
action may have been captured in the data we analysed. Such gaps may have led to the
failures to reject the null hypotheses for H1 and H3; and these prevent us from deriving all
the insights we expected from this study. These limitations of what we learned from this
study come from the non-exhaustive nature of the data. With this background, we discuss
the implications of our results.

Before discussing the statistically significant effects of the independent variables, let us
consider the control variables. As we observe from Table 4, the influence of Age on the
dependent variable is statistically significant. As explained in Section 6, ActivitySpan and
TeamSize were found to be strongly correlated with Age and hence were removed from the
final model. TeamSize was also strongly correlated with the independent variable Connec-
tion. In the light of these relationships, H2 can be alternatively taken to imply that larger
teams or teams which have been in operation over longer periods of time, tend to generate
more defects in their work products. Larger teams handle a bigger portfolio of activities,
and it is not unexpected that these would lead to more defects. Older teams, on the other
hand, tend to be in the maintenance mode, where activities around bug fixing are prevalent.

In the preceding sections, we have examined how interaction among team members
using Jazz as their development platform relates to the number of defects in the teams’
work products. Jazz has a mission of improving collaboration in the software development
ecosystem, “Inspired by the artists who transformed musical expression, Jazz is an initiative
to transform software and systems delivery by making it more collaborative, productive and
transparent, through integration of information and tasks across the phases of the lifecy-
cle”4 (italics added). While integration of information and tasks remains a guiding principle,
it is recognized that developers communicate in different ways to coordinate their work
(Frost 2007). In the agile way of development, developers are encouraged to interact freely
with one another to leverage the “tribal memory” of the community, as they go about their
individual tasks (Booch 2008).

To better understand these dynamics, we spoke to a random sample of developers from
the teams we studied with questions on how they interacted with their peers. We found that
developers seemed committed to remain in close contact with their peers, often discussing
issues not directly related to their immediate deliverables; and there was wide variability in
the number of peers each developer could easily connect to. This variability mainly came
out of developers’ position and experience; those who have been working longer on a project
had a larger peer group they closely interacted with. Understanding this context helps put
our results in perspective.

4https://jazz.net/story/about/
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As we see from Figs. 3, 4 , 5 and 6 the degree distributions of teams are generally skewed
to the right, whereas the distribution of the clustering coefficients are generally skewed to
the left. The right skewed distributions imply that few developers are connected to many
others, while many developers are connected to few. On the other hand, the left skewed dis-
tributions indicate relatively many developers collaborate more, and few collaborate little.
So it is evident that irrespective of how many peers they are connected to, there is a gen-
eral tendency among developers to actively collaborate with their peers, which supports our
understanding from talking to developers. As we observe from Table 2, the distribution of
defects across teams is right skewed to some extent, implying that few teams have have
many defects raised on their work products, whereas many teams have few defects. It is
expected that larger teams, as well as teams that develop and maintain more complex parts
of the system, will be handling more defects. The control variables in our regression models
have accounted for such factors.

We find statistically significant evidence that average degree relates to more defects,
while average clustering coefficient relates to fewer defects. Within the limitations of this
study as identified earlier, as well as in Section 9, these results indicate that higher levels of
connections between developers may not necessarily lead to higher quality software, unless
there are concomitantly higher levels of clustering.

Being able to predict the number of defects in the system being developed by a team can
aid project governance in meeting quality control guidelines. The results from cross valida-
tion as presented in Section 6 demonstrate that the interaction model can serve as a useful
mechanism for defect prediction. There is potential for using this for quality assurance and
integrating it as a feature in future collaborative development environments.

8 Related work

While developing our models in Section 5 we had discussed existing results that informed
our choice of model variables. We now identify some general areas in literature which relate
to our work.

8.1 Brief overview of related works

– Organizational behavior and theory: In the context of distributed software develop-
ment teams, Perlow and Weeks have analyzed how connecting to and helping peers is
perceived differently in different geographies due to the influences of national, orga-
nizational, and occupational cultures (Perlow and Weeks 2002). Monge et al. examine
the evolution of communication networks in organizational communities, and illustrate
how evolutionary principles such as variation, retention, and selection influence the
life cycle of communication networks (Monge et al. 2008). Contractor et al., discus
how technology can be moved inside a social network for an automobile design firm;
this perspective has implications in the study of socio-technical networks of software
development (Contractor et al. 2011).

In the context of these studies, our results illuminate how intra-team informa-
tion flow can influence outcomes in software development organizations, leading to a
deeper understanding of factors relating to the quality of information technology work
products.

– Product development: In a detailed literature survey, Brown and Eisenhardt synthe-
size different streams of product development literature into a model of factors that
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influence the success of product development (Brown and Eisenhardt 1995). The model
establishes the difference between process performance and product effectiveness, and
emphasizes the impact of different stakeholders on the outcome of product develop-
ment. McDonough, Kahn, and Barczak investigate how global, virtual, and collocated
teams for new product development function differently, based on a survey across 103
firms (McDonough et al. 2001). Their results indicate that global teams face bigger
project management and behavioral challenges than collocated teams, and have poorer
performance levels.

The dilemma between collocating teams, versus distributing them across the globe
was deeply prevalent in the system we studied. On one hand the very nature of global
software development, nurtured by global organizations that produce and consume soft-
ware products, makes it imperative that software teams become distributed. While on
the other hand, there are conflicting conclusions about the effects of distance (Olson
and Olson 2000; Wolf et al. 2008; Wagstrom and Datta 2014).

– Social network analysis: Krackhhardt and Brass outline how traditional micro
organizational behaviour questions such as those around leadership, job design,
turnover/absenteeism, and work attitudes can be examined by social network analysis
(Krackhardt and Brass 1992). Borgatti and Foster analyse the increasing application
of the network paradigm in organizational research (Borgatti and Foster 2003). They
identify the dimensions along which network studies vary: causality, levels of analysis,
explanatory goals, and explanatory mechanisms. Kilduff, Tsai, and Hanke emphasize
the recognition of a set of core concepts such as primacy of relations, ubiquity of
embeddedness, social utility of connections, and structural patterning of social life to
“signal bold ideas” in the social network research as applied to organizational research
(Kilduff et al. 2006).

Interestingly, Kilduff et al. identify ubiquity of embeddedness as a core concept.
Embeddedness brings with it ubiquity of connections, and our results show how connec-
tion between team members needs to be carefully moderated. In collective enterprises,
“bold ideas” arise out of a subtle interplay of cooperation and conflict. In this context
we note the contrasting effects of connection and clustering that we see in our study.

– Socio-technical factors and the role of communication: Given the wide proliferation
of studies that use social network analysis (SNA) in the study of collaborative software
development, Meneely and Williams examine whether SNA metrics actually measure
what they are purported to measure (Meneely and Williams 2011). Their results sup-
port the perception that these metrics reflect socio-technical relationships, and offer
guidance on their interpretation. In a related work, Meneely et al. also explore whether
adding manpower affects quality, through a longitudinal analysis (Meneely et al. 2011),
finding increased team size and linear growth to be correlated with subsequently bet-
ter product quality. Crowston and Scozzi analyse 7,477 open source projects as virtual
organizations, by validating a set of hypotheses around project participants developing
necessary competencies (Crowston and Scozzi 2002). The relationship between dis-
tributed development and software quality has been studied by Bird et al., through an
empirical case study of Windows Vista; the authors find a negligible difference in the
post-release failure of components between distributed vis-a-vis collocated teams (Bird
et al. 2009a). However, there is evidence that distributed work items take more times
to be completed than co-located ones in a study by Herbsleb and Mockus (Herbsleb
and Mockus 2003). As the teams we studied were predominantly distributed, some of
this evidence may have been reflected in the detrimental effects of connection that we
found in our study. Sacchi identifies the reliance of free and open source projects on
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electronic communication media and virtual project management to coordinate globally
dispersed development (Scacchi 2004). Grewal et al. have used data from a consortium
of open source projects to show that network embeddedness significantly influences
project success (Grewal et al. 2006). As higher embeddedness essentially leads to more
connections, Grewal et al.’s conclusions point to the relevance of our results. Using
ethnographic data, de Souza and Redmiles identify various strategies used by devel-
opers to address the effects of dependencies and changes in their work (de Souza and
Redmiles 2008). Cataldo et al., introduce socio-technical congruence (STC) as a frame-
work to analyze the effects of dependencies in software development (Cataldo et al.
2008). The authors present evidence that congruence of developers’ coordination pat-
terns with their coordination needs leads to notable reduction in the resolution time of
modification requests. The relationship between successful coordination outcome and
communication structures has been studied using Jazz data by Wolf et al. (Wolf et al.
2009). The authors build a predictive model using several communication structure
measures. Wagstrom et al. extend the STC notion to differentiate between general com-
munication and communication aligned to task dependencies (Wagstrom et al. 2010).
Their key result highlights that the former does not have notable benefit, while the latter
reduces bug resolution time.

These studies around socio-technical factors and its effects on development out-
comes indicate that: Connecting with peer developers is most beneficial when peers
can offer assistance on specific tasks and challenges with these tasks often arise out of
dependencies.

– Computer supported cooperative work: Crowston demonstrates how the application
of coordination theory can aid in organizational process design, such as the software
change process (Crowston and Osborn 1998). Olson and Olson review over 10+ years
of data from collocated and non-collocated synchronous group collaborations with a
focus on socio-technical conditions that facilitate effective “distance work”; they con-
clude that “distance still matters” (Olson and Olson 2000). The same authors examine
how the effects of distance on intellectual work can be mitigated, in a subsequent paper
(Olson and Olson 2002). They conclude that while collaborative work at a distance will
always have its challenges, the wide range of available collaborative tools will notably
facilitate such work. Faraj and Sproull investigates whether and how expertise coordina-
tion is important in a study of 69 software development teams, and their analysis shows
its significant influence on team performance (Faraj and Sproull 2000). Agerfalk and
Fitzgerald recognize the challenges innate in global software development and present
a balanced view of how agile methods seek to address these challenges (Agerfalk et al.
2006). Espinosa et al., examine whether there are gradual differences across time zones
that influence team performance through a study of 42 teams (Espinosa et al. 2007).
Their results show the nuanced influence of time zones across accuracy and production
speed. Cataldo et al., study the relative performance of various dependency measures –
syntactic, logical, and workflow – as they relate to customer-reported defects (Cataldo
et al. 2009). They find that logical dependencies explained most of the variance, fol-
lowed by workflow and syntactic dependencies. Cataldo has also studied the sources
of errors in distributed projects and how that impacts the design of collaborative tools,
through an empirical analysis of 209 projects (Cataldo 2010). He finds that experience,
geographic distribution, technical properties of the product, and the project’s schedule
pressures have implications for collaborative tools. Huckman et al. analyse data from
an Indian software services organization and find that team familiarity has a signifi-
cant positive influence on performance, and the role experience of individuals in a team
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leads to better team performance (Huckman et al. 2009). Sawyer et al. study 60 soft-
ware development teams across 22 locations of 15 organizations to understand how
social interactions influence team performance, using five patterns of team-level social
interactions identified through cluster analysis (Sawyer et al. 2010). They find that no
one pattern maximizes all performance measures. This is reflective of one of the argu-
ments that has been used to motivate our study: consideration of a variety of typically
social traits is necessary for a deeper understanding of developer interactions on soft-
ware quality. Sosa proposes an affiliation matrix to relate the product architecture with
the organizational structures, and uses this to address questions like who should talk to
whom in a product development enterprise (Sosa 2008). Smite et al. conduct a system-
atic review of empirical studies in global software engineering (Smite et al. 2010) and
conclude that the number of such studies is relatively small, with most studies at the
superficial level, instead of engaging in deeper analysis. Cataldo and Herbsleb study the
relationship between socio-technical congruence and software quality and development
productivity (Cataldo and Herbsleb 2013), by analyzing data from two large projects
from two companies with different characteristics. They found that gaps between coor-
dination requirements and actual coordination activities of developers notably increased
failures.

With this background of how our work relates to existing literature, let us now put our
results in perspective.

8.2 Positioning our study

In the above discussion, we have identified how our results relate to specific conclusions
available from existing studies. We now discern the following themes in literature that
underpin our study.

– Mores of intra-organizational interaction between individuals can be effectively studied
using the social network paradigm.

– Success of industrial product development is associated with several factors related to
the location and interaction of team members.

– Socio-technical factors relate to the outcomes of large scale software development.
– Dynamics of communication between team members influence the quality of work

products.

Our work complements existing studies by examining many teams working on the same
organizational and development platform on a set of projects in a large product ecosys-
tem. We extract typically social characteristics of developer interaction using the network
paradigm, and analyze how they relate to the quality of team output. As tools and processes
are being increasingly tuned for closer developer interaction in the hope that social factors
will benefit team outcome, our results help in arriving at clear conclusions on which of such
factors can help, and which may hinder.

9 Threats to validity

In this paper we report results from an observational study rather than a controlled experi-
ment. Thus correlation does not necessarily imply causation in our statistical models. With
this background, let us identify the limitations of our results.
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9.1 Construct validity

Threats around construct validity relate to whether the variables are measured correctly.
As highlighted in earlier discussion, the network paradigm has been widely used for

studying team dynamics. Our independent variables are measured using established net-
work metrics. The measurement of control variables are also grounded in standard software
engineering practices and existing literature.

The way we have constructed the team network is one among several approaches to
building communication networks of software developers (Bird et al. 2009b; Ehrlich and
Cataldo 2012). Although, our approach is consistent with similar studies (Wolf et al. 2009;
Kwan et al. 2011), building the networks in a different way is likely to influence the results.
In our networks, the links between developers are non-directional and un-weighted, as many
of the enduring results of network theory pertain to this class networks (Newman and Park
2003). Directionality and weights of links may offer a wider context for a similar study and
we plan to explore this in our future work.

On the basis of our discussion with team members, we understood work items to be
similar in scope and granularity, leading to the assumption that work items tend to be of
equal size. We recognize this assumption as a threat and have sought to mitigate its effects
by some related variables in our models as mentioned in Table 1.

Usually, churn is measured as the number of lines of code added or removed in a given
change-set. In our study, the FilesChanged control variable (as defined in Section 5) reflects
the extent of change in terms of the number of files. Thus, even as we do not measure churn
in the conventional sense, FilesChanged captures some aspect of how much the code base
is changing.

In any project, teams are subject to attrition as existing members leave and new members
join. Effects of attrition are significant over longer periods of time. In this study, each team
network is constructed for a particular release, as specified in Section 4. As a release is
a time-boxed set of iterations of limited duration, we assumed the rate of attrition to be
minimal. However, as the identity of an erstwhile member of a team and his/her replacement
can not be reconciled, such individuals exist as separate vertices in our team networks. We
recognize the effects of attrition as a threat to construct validity.

Depending on their size, some teams may have been internally organized into sub-teams,
with each sub-team working relatively independently on a particular piece of functionality.
In such situations, interactions across sub-teams may have been limited. As sub-team infor-
mation was not available in the repository, we recognize this as another threat to construct
validity.

9.2 Internal validity

Internal validity ensures that a study is free from systematic errors and biases.
As the Jazz repository is our only source of data, common issues affecting internal valid-

ity such as mortality and maturation do not arise in this case. A key influence on internal
validity is the extent to which the development team used the Jazz platform. Even as Jazz
was the mandated collaborative development environment for the system’s development,
developer comments on work items (as captured in Jazz) were sometimes clarified by tele-
phonic or face-to-face conversations. From our discussion with developers we understood
that summaries of such conversations were recorded as comments on the Jazz platform as a
standard practice.
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We also learned from these discussions that allocation of units of functionality to work
items were done during the design workflow, and the reasons behind allocating a particu-
lar task to a work item were not documented on the Jazz platform. We gathered from the
developers that dependencies between work items were recorded in the Jazz platform on the
basis of discussions between owners of the work items, and they were verified during inter-
nal reviews. As this is an essentially manual process for recording work item dependencies,
few dependencies may have been inadvertently missed. However, since we found very few
work items without dependencies recorded in Jazz, we have reason to believe that manual
recording of work item dependencies was largely consistent and adequate.

We also found that priority was not mentioned for a large number of work items across
different teams. We understood from our discussions with developers that open work items
at any point in the development life cycle were addressed with similar levels of attention.
Thus, even as our assumptions around the work items as outlined in Section 5 are based on
discussions with developers, we recognize them as threats to internal validity.

As explained in Section 5, control variables considered in this study such as ActivityS-
pan reflect on the level of complexity of the work products of each team. In Table 2, we
observe that the number of defects across teams’ had a high variance. This is expected,
given the wide variety of team sizes. However, as all teams were developing parts of the
same product, we assume their development contexts were comparable, with similar goals
and expectations. We recognize this assumption as a threat to internal validity.

9.3 External validity

External validity is concerned with the generalizability of results.
Our study ranges across many teams working on multiple versions of a single product

developed on the Jazz platform. As demonstrated in existing literature, useful insights can
be drawn from observational studies on single subjects (Wolf et al. 2008, 2009; Bird et al.
2009b). Thus even as we do not claim our results to be generalizable as yet, we believe our
results present insights that can inform similar studies.

9.4 Reliability

A study’s reliability is established when the results are reproducible.
From the discussion in Section 4, evidently there is no human intervention in the extrac-

tion and processing of data. Once the data is extracted, we use standard statistical techniques
for analyzing the data and interpreting the results. Given access to the Jazz repository, our
results can be reproduced by following the steps outlined in this study.

10 Future work

The evidence we found about more connections between team members relating to more
defects, warrants further investigation. In our future work, we plan to conduct observational
studies on larger data-sets as well as controlled experiments to establish whether unbridled
connection between team members indeed causes lower quality of work products. We also
find evidence that while too much connection is detrimental, enhanced intra-team clustering
relates to higher quality of the team’s work products. This leads to an intriguing ques-
tion whether splitting a large team into smaller and more cohesive units can help in some
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situations. We plan to explore this in our future work, by developing a set of guidelines for
such splitting, and testing whether the teams after splitting indeed function better.

11 Summary and conclusions

In this paper, we examined how various aspects of developer interaction in distributed software
development teams relate to the quality of software produced by the teams. Based on an empir-
ical study of many teams working across multiple versions of a major industrial product,
we found statistically significant evidence that a higher level of connection between team
members relates to more defects, while higher clustering is associated with fewer defects.
These results can guide individual developers, project managers, as well as organizations in
the planning and positioning of resources in large scale distributed software development.
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