
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

2-2019

Evolutionary trends in the collaborative review process of a large Evolutionary trends in the collaborative review process of a large

software system software system

Subhajit DATTA
Singapore Management University, subhajitd@smu.edu.sg

Poulami SARKAR

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Numerical Analysis and Scientific Computing Commons, and the Software Engineering

Commons

Citation Citation
1

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5577&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5577&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5577&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5577&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Evolutionary Trends in the Collaborative Review Process of a
Large Software System

Subhajit Datta
Singapore University of Technology & Design

Singapore
subhajit.datta@acm.org

Poulami Sarkar
PES Institute. of Technology

India
poulamisarkar@acm.org

ABSTRACT
In this paper, we study the evolutionary trends in the collaborative
review process of a large open source software system. As expected,
the number of reviews, the number of reviews commented on, as
well as the number of reviewers, and the interactions between them
show increasing trends over time. But unexpectedly, levels of clus-
tering between developers in their interaction networks show a
decreasing trend, even as connections between them increase. In
the context of our study, clustering is an indicator of developer
collaboration, whereas connection points to how intensely devel-
opers work together. Thus the trends we observe can inform how
developer interactions become concentrated around specific units
of work as the project progresses. The dichotomy between the si-
multaneous increase in connection and decrease in clustering also
points to the interplay between collective and individual efforts in
the review process, and the distinct nature of peer review in the
software development life cycle.

CCS CONCEPTS
• Software and its engineering → Programming teams;

KEYWORDS
Peer review, network science, connection, clustering
ACM Reference Format:
Subhajit Datta and Poulami Sarkar. 2019. Evolutionary Trends in the Col-
laborative Review Process of a Large Software System. In 12th Innovations
in Software Engineering Conference (formerly known as India Software Engi-
neering Conference) (ISEC’19), February 14–16, 2019, Pune, India. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3299771.3299792

1 INTRODUCTION AND MOTIVATION
Software development represents a confluence of diverse skills
and activities that is rare in other large scale industrial enterprises.
Across the phases of inception, elaboration, construction, and tran-
sition developers are involved in related but distinct tasks [13].
Almost all major software systems – open source, as well as pro-
prietary – are now developed by large and distributed teams of
developers. Members of such teams are located across geographies

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISEC’19, February 14–16, 2019, Pune, India
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6215-3/19/02. . . $15.00
https://doi.org/10.1145/3299771.3299792

and time-zones and have very little synchronous contact. In such sit-
uations, development processes are organized to facilitate exchange
of observations, opinions, insights towards more effective team out-
comes. Peer review is one such process that occupies a central role
in ensuring the delivery of software solutions within cost, time,
and quality constraints. We posit that studying the dynamics of
peer review over the progression of the software development life
cycle can offer helpful insights on some of the enduring concerns
of software development in the large.

In the peer review process, a code unit is reviewed by multiple
reviewers, who record and track their observations using some
review management system such as Gerrit1 or Rietveld2. These
observations are commented upon by peer reviewers, and a con-
sensus is hopefully reached through this co-commenting process,
on whether the code unit can be integrated in the main body of
code. Subsequently, the code unit is tested and then approved for
merging, or abandoned; followed by closure of the review.

In a sense, peer review is unlike any other software development
activity. As in any engineering enterprise, in software development
too, work products of individual developers or sub-teams need to
fit in to the structure of the larger system being built. This requires
such a work product, as well as the thinking and effort that goes
into its making, to conform to the interfaces defined by other work
products. And complementarily, the work product also needs to
function within the ambit of the interfaces defined for it. But con-
formance is contrary to the very spirit of review. As in the review of
scientific papers, most effective code review outcomes are reached
when reviewers offer their own points of view, unprejudiced by
others. This distinct characteristic of the review process is likely to
influence the mores of interaction between developers engaged in
peer review of code.

Developer interaction in any large software ecosystem is multi-
faceted. From the project governance point of view, the extent of
connections between developers, as well as the levels of their clus-
tering, are particularly important. The former is an indicator of how
developers are positioned to exchange information between them,
while the latter signifies how closely they are working together.
With this background, we investigate the following research ques-
tion in this paper:How does the extent of connection between
developers engaged in peer review and their level of cluster-
ing vary across time in a large development ecosystem?

In the next section we outline the study setting and methodology.
Subsequently, the results are presented along with the discussion of
their implications. We next highlight the threats to the validity of

1https://www.gerritcodereview.com/
2https://github.com/rietveld-codereview/rietveld

https://doi.org/10.1145/3299771.3299792
https://doi.org/10.1145/3299771.3299792
https://www.gerritcodereview.com/
https://github.com/rietveld-codereview/rietveld

ISEC’19, February 14–16, 2019, Pune, India Datta et al.

the results, followed by a brief overview of related work. The paper
ends with a summary of the study along with our conclusions.

2 STUDY SETTING AND METHODOLOGY
2.1 Network construction
Ecosystems of interacting individuals have been widely studied
using the network paradigm in various domains; networks offer a
range of metrics to calculate features of interest for different kinds
of studies [15]. In our context, we define a review interaction network
(RIN) whose vertices are developers, and two vertices are connected
by an undirected edge, if both the corresponding developers have
co-commented on at least one review item.

The average number of edges per vertex, that is, the average
degree is a measure of a network’s interconnectedness [2]. For
a network with V vertices and E edges, average degree can be
calculated as 2E

V . In our context, we take the average degree of
the RIN s to reflect the extent of connection between developers
participating in the peer review process. The average path length of
the networks indicate the level of separation between the developers,
and it is calculated by computing the mean of the shortes path
lengths between all pairs of vertices in a network [2].

In a network, the clustering coefficient (Cv) for a vertex v is de-
fined as follows: Ifv has a degree of kv , that is there are kv vertices
directly linked to v , the maximum number of edges between these
kv vertices is kv (kv−1)

2 . If the actual number of such edges existing
is Nv , then Cv =

2Nv
kv (kv−1) . Thus, the clustering coefficient of a

vertex is the ratio of the actual number of edges existing between
its neighbors and maximum number of such edges that can exist
[2]. For an entire network, the clustering coefficient is the average
clustering coefficient of all its vertices. For this study, we take the
clustering coefficient of RIN to represent the level of clustering be-
tween developers as they interact in the peer review process. Such
clustering can be a strong indicator of how developers collaborate.
Furthermore, we also examine the closeness between the develop-
ers using the closeness centralization of RIN . Closeness centrality
of a vertex in a network is the sum of the length of the shortest
paths between that vertex and all other vertices in the network [2].
Here, RIN ’s centralization indicates how central its most central
developer is, compared to other developers.

2.2 Accessing and filtering data
In this project we have used peer-review data from the Chromium3

project for our analysis [12]. This data was obtained from the
Chromium database which is available on the internet for public
use4. In this study, we considered 209617 reviews spanning across
approximately four years (1519 days), which have been commented
upon by 3102 distinct developers; there were 826398 such com-
ments. After extracting the raw data from its source, it is stored in
a MySQL5 database with tables organized around entities such as
developer, review, comment and approval.

For our analysis we generated review interaction networks (RIN s)
as defined earlier, for 50 time-steps, each of 30 days duration. The

3http://www.chromium.org/
4http://sdlab.naist.jp/reviewmining/data/chromium-reviews-20121030.zip
5https://www.mysql.com/

Mean Median Standard deviation Skewness
Reviews 4192.34 4281.5 1630.1 0.07

Comments 16527.96 14675 9555.52 0.6
Developers 62.04 63.5 21.5 -0.05

Table 1: Descriptive statistics of reviews, comments, and de-
velopers commenting on reviews across time-steps.

edge weights are the number of common reviews commented upon
by pairs of developers connected by the edge. The network was gen-
erated using the igraph6 library and edge weights were calculated
using the Pandas7 library in Python.

2.3 Understanding the data
Before discussing the results, let us examine the nature of our
data-set in some detail. With reference to Table 1 and Figure 1, we
observe that across the time-steps, the numbers of reviews, com-
ments, and developers commenting on reviews do not have highly
skewed distributions. This implies that the intensity of development
activities was notably low or high in few time-steps, while being
moderate in most of the time-steps.

3 RESULTS AND DISCUSSION
We will now present our results and examine their implications in
the context of this study.

3.1 Observations
Figures 2 and 3 offers evidence of the growing developer attention
in review activities as the project progressed. As shown in Figure 2,
while the number of reviews increased over time, the number of
comments increased at a far faster rate. We observe that the rate of
increase of the number of reviews is fairly constant, almost linear.
However, the number of comments grows at a far faster rate in
the latter time-steps than the earlier ones. This is not unexpected,
as with the maturity of the system, the code units being reviewed
encapsulate more complex functionality, and hence entail more
intense discussions among the reviewers. This intensity of discus-
sion leads to more co-commenting on reviews, which manifests
in rapidly increasing edges in the RIN s of the latter time-steps, as
evident in Figure 3. While the rate of growth of the number of edges
is considerable, it important to note that the curve for the number
of edges in Figure 3 is far flatter than theO(n2) upper bound for the
maximal number of interactions between n vertices in a network.
This signifies that developers are segregated into smaller groups, each
working on specific sub-systems, with their interactions being largely
contained within the groups.

However, as development progresses, such interactions increase,
as is exhibited in the plot for connections, shown in Figure 4. We
note that there is more than three fold increase (from 9.7 to 31.18) in
the average number of edges per vertex across duration of the study
period. This increase is brought about by increasing instances of
co-commenting on reviews. But interestingly, we also observe from
6http://igraph.org/python/
7https://pandas.pydata.org/

Evolutionary Trends in the Collaborative Review Process of a Large Software System ISEC’19, February 14–16, 2019, Pune, India

(a) Reviews (b) Comments (c) Developers

Figure 1: Distribution of number of reviews, comments, and developers in different time steps

Figure 2: Number of reviews and comments across the time-
steps

Figure 3: Number of vertices and edged of RIN across the
time-steps

Figure 4: Developer connection and separation across the
time-steps

Figure 4 that the separation between developers remains nearly
constant (maximum being 2.78 and minimum being 2.38) over this
regime of increasing connections.

With sharply increasing number of edges as well as connections
between developers (Figures 3, 4), it is expected that the level of
clustering will also increase over time. However, Figure 5 shows a
very different trend. We observe that the level of clustering between
developers rises for a very short while in the early time-steps,
stays approximately the same (around 0.4) for the next few time-
steps, and then steadily decreases to around 0.2 towards the end
of the study period. Initially, the rate of decrease is relatively high,
which settles to a slower rate with progressing time. The closeness
centralization in Figure 5 shows a similar trend which peaks in the
early time steps and then has an even sharper fall compared to the
clustering. These observations indicate some interesting dynamics
underlying the peer review process, that is manifested in counter-
intuitive patters of developer interaction as the project moves from
inception to transition; we discuss their implications below.

ISEC’19, February 14–16, 2019, Pune, India Datta et al.

Figure 5: Developer closeness and clustering across the time-
steps

3.2 Implications
We notice that even as the extent of connection between develop-
ers increases by a factor of three over the study period, their level
of clustering decreases by a factor of two. With reference to the
network metrics for connection and clustering as defined in Sec-
tion 2.1, it appears that higher average degree is likely to contribute
to higher clustering coefficient. So, the opposite trend we observe is
unexpected. With reference to Figure 5 we additionally observe that
the closeness centralization [2] peaks towards the beginning of the
project, even as there are relatively fewer developers participating
in the review process. However it decreases notably towards the
end of the project, notwithstanding the fact that there are many
more developers participating in the review process now. This points
to a higher fragmentation of the RIN s away from a strong central
presence in the latter time-steps, and complements the observations
around reduced clustering.

As evident from its definition in Section 2.1, triadic closure is
a key element in the definition of the clustering coefficient. In a
network context, triadic closure can signify collaboration between
individuals [11]. So, the evidence of lower clustering points to
developers collaborating less, even as they are getting connected to
more developers on average, as the project progresses. This reflects
on a key characteristic of the peer review activity.

As emphasized in Section 1, effective peer review of code calls for
a delicate balance between the absorption of contextual information
and sharing of individual perspectives. In early time-steps, with
the scope of the system being still defined, and a relatively smaller
number of developers actively engaged in the project, it is natural
for each developer to be collaborating more closely with others. As
the system’s functionality widens in reach and depth, individual
developers are constrained to have a narrower and deeper focus
on their immediate review items, even as they need to remain
connected to a wider pool of developers. The trends of increasing
connection, coupled with decreasing clustering, as seen in Figures 4
and 5 are manifestations of these dynamics of the peer review process.
In a large and complex system such as the one we are studying, such

interplay of connection and clustering is essential for the effectiveness
of the peer review process.

3.3 Utility
Even as we share preliminary results which we plan to investigate
further along the lines identified in Section 3.4, the observations
and implications discussed above indicate how the results can be
utilized.

State of the art collaborative development environments (CDE)
are now tuned towards facilitating closer connections among de-
velopers with a view to enabling higher clustering. While this may
be helpful in some development activities, our results indicate that
allowing developers relative isolation as they work on review items
can also be beneficial for the effectiveness of the review process.

In an earlier study, we investigated the importance of isolation
for developers as they engage in the peer review process [9]. Observ-
ing the clustering trends over time can offer insights on whether
developers are engaging too closely with one another as they re-
view code, thus raising possibilities of the detrimental influences
of groupthink in review outcomes [20].

In any large project involving developers spread across a wide
geographical area, adopting effective organization andmanagement
practices becomes crucial for ensuring timely deployment a product
or service. It has been found that high performing project teams dif-
fered from low performing teams in terms of process management,
relational development, and proactive technology use behaviors [6].
Observations from this study can be useful for managers while
organizing their teams towards making the review process more
effective.

In our study we have have found that developers tend to decrease
close collaboration while increasing in connection with their peers.
This can offer an interesting insight about the nature of knowledge
workers in the software development context; developers seem to
prefer engaging in many different problems rather than focusing
on few.

3.4 Threats to Validity and Future Work
Threats to the construct validity of our results can arise from the
way the RIN has been defined, as well as the metrics we have used
as proxies for connection and clustering. We have used the stan-
dard protocol for affiliation networks while constructing the RIN ;
however, considering the directionality of edges can yield differ-
ent results. The average degree and the clustering coefficients are
widely used indicators of connection and clustering in a network
and are unlikely to introduce notable threats. As we have accessed
our data from a publicly available source, threats to internal validity
are confined to the veracity of the data source. This study examines
only one system; thus we do not claim our results to be generaliz-
able and recognize the concomitant threat to external validity. To
mitigate the threat to reliability, we make available the source code
used to analyse the data8.

In this paper, we have reported some initial observations around
the evolutionary trends of developer interaction as they work on
peer review of code. The observations allow us to conjecture about
some of the underlying mechanisms that have given rise to the
8https://github.com/santonus/chromium_new/tree/master/Peer-Review-Analysis/

https://github.com/santonus/chromium_new/tree/master/Peer-Review-Analysis/

Evolutionary Trends in the Collaborative Review Process of a Large Software System ISEC’19, February 14–16, 2019, Pune, India

trends we notice. In our future work, we plan to examine whether
and to what extent these mechanisms have causal influences on
the observed trends, through controlled experiments and/or simu-
lations.

4 RELATEDWORK
Over the past few decades, peer review has come to be recognized
as an important activity in software development [1, 10]. Review
of software by a group of people is not only an essential part of
software quality assurance [14], it also fosters sharing and dissimi-
nation of knowledge in the organization [5, 8, 16].We broadly divide
the state of the art in this area into i) the role of the peer review in
the software development methodology of industrial as well as OSS
software projects and ii) social aspects of an OSS project. The work
by Rigby et al.on the open source Apache project [18] analyzed two
review techniques, namely review followed by commit and commit
followed by review. Subsequently more investigations towards vari-
ous mechanisms of peer-reviews have been made [17, 19] on a large
number of software projects. Researchers have revisited Linus laws
in the context of peer reviews and investigated the impact of the
skills possessed by participants during collaborative analysis and
bug findings of the Mozilla software [21]. The work by Baccheli et
al [4] reports the review mechanisms in a wide range of Microsoft
products. An early work by Bird et al. [7] studied formation of com-
munities among the participants in an OSS project. Social network
analysis has been used in categorizing bugs in OSS projects [23].
The work by Yang et al. [22] proposed a peer review network to
understand the importance of roles such as contributor, author,
reviewer, committer etc., in the peer review process. Our current
work focuses on the study of network characteristics among the
OSS reviewers. Our previous study [9] in this area revealed that –
contrary to the common belief [3, 21] – reviewers who collaborate
more with others, take more time to close a review.

5 SUMMARY AND CONCLUSIONS
In this paper, we have studied how connection between developers
and their clustering vary over time when they are working on
peer review of code in a large open source software development
ecosystem. Contrary to conventional wisdom, we find evidence that
separation between developers remains nearly constant over time,
while connection increases, and clustering and closeness decrease.
These characteristics point to the distinct nature of the review
activity, vis-a-vis other activities of the software development life
cycle.

REFERENCES
[1] A.F. Ackerman, L.S. Buchwald, and F.H. Lewski. 1989. Software inspections: an

effective verification process. IEEE Software 6 (1989), 31–36.
[2] Reka Albert and Albert-Laszlo Barabasi. 2001. Statistical mechanics of complex

networks. cond-mat/0106096 (June 2001). Reviews of Modern Physics 74, 47

(2002).
[3] John Anvik, Lyndon Hiew, and Gail C. Murphy. 2006. Who should fix this bug?.

In Proc. 28th Intl. Conference on Software engineering. 361–370.
[4] Alberto Bacchelli and Christian Bird. 2013. Expectations, Outcomes, and Chal-

lenges of Modern Code Review. In Proc. Intl. Conference on Software Engineering.
712–721.

[5] O. Baysal, O. Kononenko, R. Holmes, and M.W. Godfrey. 2013. The influence of
non-technical factors on code review. In Reverse Engineering (WCRE), 2013 20th
Working Conference on. 122–131. https://doi.org/10.1109/WCRE.2013.6671287

[6] Catherine Beise, Traci Carte, Chelley Vician, and Laku Chidambaram. 2010. A
Case Study of Project Management Practices in Virtual Settings: Lessons from
Working in andManaging Virtual Teams. ACM SIGMIS Database 41 (2010), 75–97.

[7] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu. 2008. Latent social
structure in open source projects. In Proc. FSE. 24–35.

[8] Amiangshu Bosu, Jeffrey C. Carver, Christian Bird, Jonathan Orbeck, and Christo-
pher Chockley. 2017. Process Aspects and Social Dynamics of Contemporary
Code Review: Insights from Open Source Development and Industrial Practice
at Microsoft. IEEE Transactions on Software Engineering 43, 1 (2017), 56–75.
https://doi.org/10.1109/tse.2016.2576451

[9] S. Datta, D. Bhatt, M. Jain, P. Sarkar, and S. Sarkar. 2015. The Importance of
Being Isolated: An Empirical Study on Chromium Reviews. In Intl. Symp. on
Empirical Software Engg. and Measurement. 1–4. https://doi.org/10.1109/ESEM.
2015.7321215

[10] M.E. Fagan. 1986. Advances in software inspections. IEEE Transactions on Software
Engineering 12 (1986), 744–751.

[11] Roger Guimer, Brian Uzzi, Jarrett Spiro, and Luis A Nunes Amaral. 2005. Team
assembly mechanisms determine collaboration network structure and team per-
formance. Science 308, 5722 (2005), 697–702.

[12] Kazuki Hamasaki, Raula Gaikovina Kula, Norihiro Yoshida, A. E. Camargo Cruz,
Kenji Fujiwara, and Hajimu Iida. 2013. Who Does What During a Code Review?
Datasets of OSS Peer Review Repositories. In Proceedings of the 10th Working
Conference on Mining Software Repositories (MSR ’13). IEEE Press, Piscataway, NJ,
USA, 49–52. http://dl.acm.org/citation.cfm?id=2487085.2487096

[13] Ivar Jacobson, Grady Booch, and James Rumbaugh. 1999. The Unified Software
Development Process. Addison-Wesley.

[14] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. 2014. The
Impact of Code Review Coverage and Code Review Participation on Software
Quality: A Case Study of the Qt, VTK, and ITK Projects. In Proc. 11th Working
Conference on Mining Software Repositories. 192–201.

[15] M. E. J Newman. 2003. The structure and function of complex networks. cond-
mat/0303516 (March 2003). SIAM Review 45, 167-256 (2003).

[16] Peter C. Rigby and Christian Bird. 2013. Convergent Contemporary Software
Peer Review Practices. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering. 202–212.

[17] Peter C. Rigby, Daniel M. German, Laura Cowen, and Margaret-Anne Storey.
2014. Peer Review on Open-Source Software Projects: Parameters, Statistical
Models, and Theory. ACM Trans. Softw. Eng. Methodol. 23, 4, Article 35 (2014),
33 pages.

[18] Peter C. Rigby, Daniel M. German, and Margaret-Anne Storey. 2008. Open Source
Software Peer Review Practices: A Case Study of the Apache Server. In Proc. 30th
Intl. Conference on Software Engineering. 541–550.

[19] Peter C. Rigby and Margaret-Anne Storey. 2011. Understanding Broadcast Based
Peer Review on Open Source Software Projects. In Proc. 33rd Intl. Conference on
Software Engineering. 541–550.

[20] Marlene E Turner and Anthony R Pratkanis. 1998. Twenty-Five Years of Group-
think Theory and Research: Lessons from the Evaluation of a Theory. Orga-
nizational Behavior and Human Decision Processes 73, 2 (Feb. 1998), 105–115.
https://doi.org/10.1006/obhd.1998.2756

[21] Jing Wang, Patrick C.Shih, and John M.Carroll. 2015. Revisiting Linus’s law:
Benefits and challenges of open source software peer review. International Journal
of Human-Computer Studies 77 (2015), 52–65.

[22] Xin YANG, N. YOSHIDA, R GAIKOVINA KULA, and H. Iida. 2016. Peer Review
Social Network (PeRSoN) in Open Source Projects. IEICE Trans. Inf. & Syst. E99-D
(2016), 661–670.

[23] M.S. Zanetti, I. Scholtes, C.J. Tessone, and F. Schweitzer. 2013. Categorizing bugs
with social networks: a case study on four open source software communities. In
Proc. ICSE. 1032–1041.

https://doi.org/10.1109/WCRE.2013.6671287
https://doi.org/10.1109/tse.2016.2576451
https://doi.org/10.1109/ESEM.2015.7321215
https://doi.org/10.1109/ESEM.2015.7321215
http://dl.acm.org/citation.cfm?id=2487085.2487096
https://doi.org/10.1006/obhd.1998.2756

	Evolutionary trends in the collaborative review process of a large software system
	Citation

	Abstract
	1 Introduction and Motivation
	2 Study Setting and Methodology
	2.1 Network construction
	2.2 Accessing and filtering data
	2.3 Understanding the data

	3 Results and Discussion
	3.1 Observations
	3.2 Implications
	3.3 Utility
	3.4 Threats to Validity and Future Work

	4 Related Work
	5 Summary and Conclusions
	References

