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Abstract. Electric Vehicles (EVs) and charging infrastructure are starting to
become commonplace in major cities around the world. For logistics providers
to adopt an EV fleet, there are many factors up for consideration, such as route
planning for EVs with limited travel range as well as long-term planning of fleet
size. In this paper, we present a genetic algorithm to perform route planning that
minimises the number of vehicles required. Specifically, we discuss the
challenges on the violations of constraints in the EV routing problem (EVRP)
arising from applying genetic algorithm operators. To overcome the challenges,
techniques specific to addressing the infeasibility of solutions are discussed. We
test our genetic algorithm against EVRP benchmarks and show that it
outperforms them for most problem instances on both the number of vehicles as
well as total time travelled.
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1 Introduction

With the rise of electric vehicles (EVs) and the charging stations’ infrastructure,
corporations may look to adopt an EV fleet as a green alternative. Traditional fuel-
powered combustion engine vehicles are less energy-efficient than battery-powered
EVs. However, one weakness of EVs is that they have a shorter driving range as
compared to fuel-powered vehicles. This is largely related to the size of the battery in
the EV. In [4], we see that in terms of cost-efficiency, EVs are only comparable to fuel-
powered vehicles if they use a small battery.

Thus, it is important for EVs to incorporate charging station visits to recharge its
battery in route planning. While charging stations are being built, they are not as
ubiquitous as petrol stations. Charging of EVs is also unlike refueling traditional
vehicles as it costs a considerable amount of time. Hence, there is a need to factor
queuing time at charging stations as well [7]. Due to the higher upfront investment cost
of acquiring an electric vehicle as compared to a fuel-powered vehicle, fleet sizing and
management becomes even more important. In that regard, being able to know the
minimum number of required EV's can help corporations plan their investment strategy.
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This paper provides a genetic algorithm (GA) approach to solve the Electric Vehicle
Routing Problem (EVRP) that minimises the number of vehicles while accounting for
charging and waiting times at charging stations. The classical Vehicle Routing Problem
(VRP) is a well-researched topic, with many different variants like Vehicle Routing
Problem with Time Windows, etc. However, as EV adoption and research are nascent,
there are opportunities to adapt or explore new methods to solve the EVRP variants. The
variant and constraints of EVRP we focus on is adopted from [7], and can be defined as
follows (detailed mathematical notations can be found in [7]):

1. A single depot

2. Set of customer nodes with varying deterministic demands and service time; all
customers have to be served

3. Set of identical charging stations, each of which can only be used sequentially, later
arrivals are to wait in queue

4. Set of identical EVs V, each starting and ending at the depot, and each having a load
capacity, an upper limit on battery capacity and a battery which cannot fall to 0, and
an upper limit on the time taken for a route.

The objective is first to minimise the number of vehicles used, and secondarily to
minimise total travel time. More precisely, our objective function is defined as follows:

min (KxM)—i—Ztk. 1)
keV

where

K (<V) is the number of vehicles used
M is a large constant representing the penalty coefficient
t* is the total travel time of vehicle k

As seen in [7], with the same constraints, finding optimal solutions for a 10-customer
problem takes longer than 3 h. Rather, our aim is to achieve good results by a genetic
algorithm. In this paper, we will discuss the challenges that arise from applying genetic
algorithm operators to obtain feasible solutions for EVRP. To overcome these challenges,
we discuss modifications to the selection, crossover, and mutation operators of the GA,
respectively. For each technique, we explain the challenge we address as well as the
reasons why the proposed approach is suitable. In addition, were sent methods to enhance
the diversity of search and improvement of runtime performance.

This paper proceeds as follows. Section 2 gives a brief literature review. In Sect. 3,
we provide the limitations of the current GA approach. Sections 4-6 give our detailed
solution approach in terms of the modified crossover, mutation, and enhancing diversity.
We discuss our experimental analysis in Sect. 7, and conclude in Sect. 8.

2 Literature

Prior research in EVRP focused on minimising electric consumption using a hybrid-
GA approach with Tabu Search (TS) [3]. The authors’ approach was to use GA and



TS as a local search, and a Tabu List to avoid getting stuck in a local optimum. [7]
proposes to solve EVRP by a GA with popular operators, such as tournament selection,
partially matched crossover, and also local search. Some papers discuss how infeasibility
is handled through the use of a penalty function to chromosomes that violate constraints,
while other approaches include repairing the chromosome by fixing the infeasibility
[6, 11, 13]. In [2], the authors discuss a crossover for CVRP to not even create infeasible
solutions in the first place. Also, using a crossover that is designed for their constraint
gave them superior results as compared to using the commonly good crossover operators.
When it comes to mutation operators, commonly used mutation operators like swap and
insertion are used [12]. These operators work is a way where nodes are randomly selected,
and they have their positions changed, without regards to their context or feasibility. In
[7], alocal search technique that is similar to the insertion mutation operator is used, but
it only accepts the new solution if there is an improvement. On population selection and
diversity management, there are a few methods. One is the diversity-controlling adaptive
genetic algorithm [15], which calculates the current population diversity, and increase
and decrease the rate of crossovers and mutations to achieve a targeted diversity. Other
methods include a Fitness Uniform Selection Scheme, and a Fitness Uniform Deletion
Scheme where population selection is based on their fitness value [5, 8]. The claim is
that by selecting chromosomes of differing fitness, they are able to maintain population
diversity.

3 Limitations of the Base Genetic Algorithm

A GA consists of 3 key steps: selection, crossovers as well as mutation. A solution is
encoded as a chromosome and multiple chromosomes are maintained in a population,
and each has a fitness value. The steps to a basic genetic algorithm are as follows.

Initialise the population of chromosomes and compute their fitness values.

The crossover between 2 good chromosomes to create a new chromosome.

The mutation operation is applied randomly on any chromosome.

Recalculate fitness value of chromosomes.

The selection mechanism is used to determine who makes it to the next generation.
Repeat from step 2 until we complete the stipulated number of generations.

AR e e

Our work extends the existing GA from [7]. Having a baseline algorithm to work
with, we can observe the performance of the algorithm to identify potential gaps and
address them accordingly. Specifically, the challenge is to find good feasible routes that
satisfy the vehicle load capacity, battery levels, and vehicle time taken limit. We term
the three crucial constraints as the triple constraints. Intuitively, for a route where any of
these constraints is binding, we know that it is unable to include another customer node
at any position without additional modifications (such as local search). Any algorithm
not only has to account for travel time to the charging station but also the charging time
and waiting time (if there are other vehicles in queue). A random mutation can easily
cause the resulting solution to become infeasible. In the following, we will describe the
challenges and proposed techniques to deal with the triple constraints.



4 Modified Crossover

The triple constraints tend to create an offspring solution that is infeasible. In this section,

we present our modified crossover operator which improves the one proposed in [7].
Table 1 illustrates the used chromosome representation. Depot denotes the start and

end of a single route, same as [7], Cust is a customer, and CStat is a charging station.

Table 1. Single-point crossover example

Parentl Depot | Custl CStatl | Cust2 | CStat2 | Cust3 Depot | Cust4 | Depot
Parent2 Depot | Custl Cust2 Depot | Cust3 CStat2 | Cust4 | Depot
Offspringl | Depot | Custl CStatl | Cust2 | Cust3 CStat2 | Cust4 | Depot
Offspring2 | Depot | Custl Cust2 Depot | CStat2 | Cust3 Depot | Cust4 | Depot

From the example, we observe that Offspringl which previously had 2 routes, has
become a single route. While this is an improvement to reduce the number of vehicles
by 1, from the Cust2 to Cust3, it is essential to make a stop to CStat2, like in Parentl to
recharge the battery, otherwise, it will cause a battery level violation. This is just a simple
case where constraints are violated. Others that make random crossovers challenging
are, for example, crossovers or routes which have missing customer nodes, or repeated
visits to the same customer. Additional steps are required to remedy the infeasibility
and violations. Unfortunately, randomly occurring crossovers are ineffective as they
frequently generate infeasible offspring.

Some interesting points to note are that while a solution has multiple routes, 2
constraints, i.e. vehicle load utilisation and battery levels, are route-specific and will
not change if the route does not. While the constraint on used vehicle time is affected
by changes in other routes, it is largely only affected by a change in charging station
visits. Hence, the crossover operator would ideally be one that can pass on desirable
routes from parents to offspring, with minimal or no changes to individual routes. Also,
it should have minimal changes to charging station visits. It should also be quick to
compute because it is a common operator that would be run multiple times throughout
the course of the genetic algorithm.

A crossover operator that fulfils these requirements is the Best Route Better Adjust-
ment Recombination (BRBAX) proposed in [2]. From two parents, the operator will pass
on the top 50% of routes verbatim from one parent to the offspring, then insert the rest
of the nodes not in the offspring from the second parent, preserving the same order. The
top 50% of routes are determined by the vehicle load utilisation, and higher utilisation
is preferred. With that, BRBAX works within the triple constraints in a fitting manner,
with vehicle load utilisation and battery level remaining the same, or even reduced in the
offspring. The only possibly affected constraint is the used vehicle time as there might
be changes to charging station visit times.



5 Modified Mutation

Due to the triple constraints of our problem, random mutations tend to generate infeasible
solutions. In this section, we propose modified mutation operators.

We observe that the mutation operation in [7] exploited some form of local search.
Something noteworthy about the local search mutation operator used is the mitigation
technique employed when the mutation causes routes within the solution to become
infeasible. What was done previously to remedy the solution was that for routes that
were infeasible, their customer nodes were removed until they became feasible, and
the evicted nodes were placed into a newly created route. While this might work well
for the objective in [7] to minimise total travel, it only serves to worsen the objective
value of minimising the number of vehicles. Hence, the conventional mutation operators
with the focus of primarily improving population diversity would not be effective. In the
following, we propose a method that is more akin to the existing local search mutation
where there is a higher chance of a good mutation that improves the solution.

5.1 Route Elimination Algorithm

A desirable mutation operator is one that can effectively work within the triple con-
straints, is quick to compute, and able to improve the objective value. The Route Elimi-
nation Algorithm in [9] proposed to immediately eliminate one route by putting all nodes
into an ejection pool and then inserting them into existing routes. However, inserting
nodes into existing routes proves to be challenging. To address this, the authors intro-
duced Squeeze and Perturb operators which iteratively attempt to remove nodes from
the ejection pool and insert them into routes. In essence, the concept is to insert the cus-
tomer nodes which are hard to insert first, followed by the easier customers later. The
difficulty to insert is represented by a heuristic penalty term, which is derived through
multiple iterations. These operators are not suitable in the mutation operator because it
is an iterative process, which is computationally expensive.

5.2 Node Insertion with Triple Constraints

Even though we are unable to utilise the Squeeze and Perturb operators directly, the route
elimination algorithm can be adapted. The idea is to insert a customer into a relatively
good route and position, without having to do so iteratively. A critical problem is to insert
ejected customer nodes into existing routes that will satisfy the triple constraints. First,
ensuring vehicle capacity constraints is easy, since cumulative loads can be computed
in constant time. Second, the constraint on total vehicle time per route is the most
challenging, because it cannot be computed on a route level due to possible queuing
time caused by other vehicles waiting at charging stations. Furthermore, even if a route
has not changed, it might become infeasible due to changes on a different route. Thirdly,
we have a constraint on the battery level. Unlike the constraint on vehicle time per route,
this constraint is self-contained. However, it is not as simple as the vehicle capacity
constraint, because when a new node is inserted to the route, we must calculate whether
it is feasible in terms of battery level.



In our problem, we always charge the battery to full in every charging station visit;
therefore, we can calculate the battery levels starting from the depot or charging station
prior to the insertion until the depot or charging station, whichever comes first. However,
this means that the computation for battery level feasibility is always done retrospectively
after anew customer node has been inserted. To reduce the number of failed insertions due
to battery level constraints, we can precompute the minimum battery level requirement
of each node, which is the lowest battery level a vehicle can be at when visiting that
node in order to safely travel to a charging station to recharge.

5.3 Battery-Feasible Neighbours

To further improve the efficiency of deriving feasible nodes for insertion, we can make
use of the minimum battery level to derive a set of battery-feasible neighbours for every
node. A node’s battery feasible neighbour is one that a vehicle can safely visit and be
sure that the battery level constraint is not violated, i.e. we can subsequently make an
insertion of a charging station to recharge the battery prior to arriving at the neighbour,
if required. The algorithm to generate the set of battery-feasible neighbours should take
into consideration that the vehicle may have had to travel from a previous node, and
that there is a maximum battery level that a vehicle can have, once it is at that node. For
example, assuming a full battery of 100, node i to node j takes 90 units battery cost, but
node i is 20 units battery cost from its nearest charging station. Hence, the maximum
battery level at node i is 100 — 20 = 80, and a vehicle at node i will never make it to
node j. The algorithm for computing battery level feasibility is given as follows:

Algorithm for Computing Maximum Battery Level for Node i

1. Tterate through all charging station nodes to find the nearest charging station to node
i, denoted cs/

Calculate the battery cost for travelling from node i to cs, be(i, cs1)

Calculate the battery cost for travelling from node i to depot, be(i, depot)

Calculate minimumBatteryLevelRequirement = min(bc(i, cs1), be(i, depot))
Calculate maximumBatteryLevel = fullBatteryLevel — minimumBatteryLevelRe-
quirement

Nk L

For a node j to be a battery-feasible neighbour of node i, we check if it is reachable
with the maximum battery level of node i, and if it has sufficient battery to visit a charging
station afterwards. For example, assuming a full battery of 100 units, node i to node j
takes 90 units battery cost, but the nearest charging station is 20 units battery cost away.
Once a vehicle travels from node i to node j, it will have a remaining battery level of
100 — 90 = 10, which is insufficient for going to the nearest charging station. Hence,
node j should not be included in node i’s battery-feasible neighbour set.

Algorithm for Generating Battery-Feasible Neighbours for Node i
Iterate through every node j # i

a. Calculate battery cost from node i to node j, bc(i,j)



b. If maximumBatteryLevel > minimumBatteryLevelRequirement + bc(i,j) add node j
to the battery-feasible neighbour set of node i

5.4 Route Merge Local Search (RMLS) as Mutation Operator

We integrate the above two subsections to form our mutation operator. The first step of
the route elimination is to remove a route. Given a chromosome, we would compute
the total vehicle load utilisation of each route, and select the route with the lowest load
utilisation for elimination. All customer nodes of the eliminated route will be added to
an ejection pool, ignoring depot and charging stations.

For insertion, it is done one node at a time. First, a node to be inserted, node i,
is randomly selected from the ejection pool. Then, the route with the lowest vehicle
load utilisation with nodes in the node i’s battery-feasible neighbour set is selected as
a candidate route for insertion. If battery level constraint causes infeasibility, there is a
remedy in the form of charging station reallocation, explained in the next section.ote
that we might still violate the used vehicle time constraint. Then, we proceed to find the
position to insert node i that adds the shortestdistance to the route.

The algorithm will repeat node insertion until the ejection pool is empty or it is
unable to insert any nodes due to violating the constraints. If it fails to insert, we would
consider it a failed mutation and skip it entirely. One possible downside to the route
merges local search is that it can be too aggressive in hill-climbing, as it is following a
simple greedy strategy. However, the mutation is only performed on a certain percentage
of the population in the genetic algorithm, and that it would be able to pass the good
sections of the solution to the next generation. Moreover, this is just one part in the
overall genetic algorithm, we look to employ other methods to prevent convergence into
a local optimum.

5.5 Charging Station Reallocation

After every node has been inserted, it is still possible that the battery level constraint is
violated. However, we can perform some reallocation of charging stations to ensure that
the constraint is satisfied. An example where battery level constraint is violated before
and after charging station reallocation is given in Table 2. Assume that it costs exactly
20 battery units to move from one customer node to another, and exactly 10 battery units
to move to a charging station.

Table 2. Reallocate charging stations

Before — Route Custl | Cust2 | Cust3
Before — Battery Level | 30 10 —10
After — Route Custl | Cust2 | CStatl | Cust3

After — Battery Level |30 10 100 80




Algorithm for Charging Station Reallocation for a Route

1. Remove all charging stations in the route.

2. Tterate through the route to calculate the battery cost for every node the vehicle visits
and find out at which node the battery is lower than 0, node i.

3. From node i, we will then iterate backwards until we identify a charging station or
depot node, node j.

4. Insert a charging station where there is the smallest increase in route travel time.

5. Repeat from Step 2 until the solution is battery-feasible.

6 Diversity Induced Population Selection

The diversity-controlling adaptive genetic algorithm [15] is only useful if an increased
rate of crossovers and mutations is able to introduce diverse offspring or solutions. Based
on our prior experiments with BRBAX and Route Merge Local Search operators, the
observed diversity is reduced as the GA continues into the later generations. In the
following, we discuss our approach for ensuring population diversity.

6.1 Fitness Function vs Objective Function

For our work, there is a distinct difference between the objective function and fitness
function. One such application of differing objective function and fitness function is
fitness sharing [10], a popular method to increase diversity in a population. The idea is
to penalise the fitness of chromosomes that are closely similar to other chromosomes in
the population, hence “sharing” their fitness with look-alikes.

Note that our objective function is to minimise the number of vehicles used. To
encourage diversity we derive the fitness value depending on how different a chromosome
is from the rest of the population, by adding a multiplier to its objective value. In doing
so0, the chromosome with the best fitness might not be one with the best objective value.

Our proposed fitness function after accounting for diversity is as follows:

fCi = nCi x ( )

average similarityScore
diversityMultiplier

where fCi is the fitness of Chromosome i and nCi is the number of vehicles in
Chromosome i

The idea is to have higher diversity in the early generations and to add selection
pressure in the later generations, a diversity multiplier is added. It is set at the start and
reduced in every iteration. In our experiments, the range is from 1.0 to 5.0.

6.2 Similarity Score: Hamming Distance

To derive the similarity scores, we study different types of measures, such as genotypic
and phenotypic. [14] proposed that the genotypic similarity between chromosomes can
be measured by the Hamming distance, and phenotypic similarity can be measured with



the difference of the objective value, e.g. A chromosome that uses 11 vehicles is more
similar to a chromosome that has 10 vehicles than a chromosome with 13 vehicles.

For example in Table 3, suppose each chromosome has a single route and the distance
is 1 for every non-match.

Table 3. Hamming distance between chromosomes

Chromsomel | Depot | Custl | Cust2 | Cust3 | Cust4 | Depot
Chromsome?2 | Depot | Cust4 | Custl | Cust2 | Cust3 | Depot
Distance 0 1 1 1 1 0

The Hamming distance between Chromosomel and Chromosome?2 will be 4, even
though they serve the same nodes, and also share a common subsequence [1-3]. Clearly,
there are some features of similarity that are not captured by Hamming distance. Ham-
ming distance would be a good measure to use for when the sequence of visits matters.
In addition, if we were to introduce more routes, there would also be the complexity
of deciding which pairs of routes would be used to calculate the Hamming distance.
Since our focus is on minimising the number of vehicles, the sequence of visits would
be less important, because no matter which sequence of visits, it is still served by 1
vehicle. Using a phenotypic measure, such as the objective value is also not desirable,
since 2 chromosomes with good, diverse solutions will be penalised purely for having
the same objective result. What is preferred is a population comprising a diverse set of
good chromosomes, instead of only 1 good chromosome with the other chromosomes
having a poor performance just for the sake of diversity.

6.3 Jaccard Index for Chromosomes

The key feature to capture is which customers are visited by the same vehicle. Here,
we can utilise the features of an unordered collection of unique elements. For a given
chromosome, it contains a set of routes, and within each route, contains a set of nodes
to visit. A simple measure for set similarity is the Jaccard Index:

|A N B
|AU B

J(A,B) = 3)

In Table 4, since the two chromosomes share 1 common route, Chromosome3 N
Chromosome4 = 1, and since the number of unique routes combined is 3, Chromosome3
U Chromosome4 = 3. Hence, J(Chromosome3, Chromosome4) = 1/3.

Table 4. Chromosomes for Jaccard Index example

Chromosome3 | Depot | Custl | Cust2 | Cust3 | Depot | Cust4 | Cust5 | Cust6 | Depot

Chromosome4 | Depot | Cust3 | Custl |Cust2 |Depot |Cust7 | Cust8 | Cust9 | Depot




6.4 Double Jaccard Index

We now introduce the Double Jaccard Index as our similarity measure, as it can han-
dle sets of routes that are highly similar even though they are not exact matches.
The idea is that the Jaccard Index on chromosome-level is calculated with the Jac-
card Index on route-level, with set membership determined by a pre-defined threshold
(routeMatchThreshold).

As shown in Table 5, even though RouteA and RouteB are similar (out of 7 nodes,
first 5 are the same), the routes are not an exact match and will not be considered as a
match in the Jaccard Index calculation above.

Table 5. Routes for Double Jaccard Index example

RouteA |Dpot |Custl |Cust2 |Cust3 |Cust4d |CustS |Cust6 |Cust7 |Dpot
RouteB |Dpot |Cust5 |Custl |Cust2 |Cust3 |Cust4 |Cust8 |Cust9 |Dpot

To account for such cases, when determining if routes match, we would also use
the route Jaccard Index, and consider it a match when the Jaccard index is greater than
a predefined route matching threshold. For simplicity, we will only calculate the route
Jaccard Index based on customer nodes only. In the above, Cust1 to Cust5 are common
in both RouteA and RouteB, hence RouteA N RouteB = 5. The number of unique routes
in RouteA U RouteB = 9. Hence, J(RouteA, RouteB) = 5/9.

Then, to calculate the Jaccard Index between Chromosomes i and j, we iterate every
route in Chromosome i, and compare with every route in Chromosome j to calculate the
Jaccard Index between each route pair given above. If this Jaccard Index exceeds the
routeMatchThreshold, we increment the size of the intersection size (i.e. numerator) by
1. A similar calculation is performed on the denominator.

Finally, to calculate the similarity score of a chromosome with respect to the
population, we apply the following algorithm:

Naive Algorithm to Calculate Similarity Score for a Chromosome i:

1. Initialise sumJaccardIndex to 0

2. Iterate through all chromosomes in population except for chromosome i to com-
pute Jaccard Index with these chromosomes and add the computed value to
sumJaccardIndex

3. similarityScore = sumJaccardIndex/(population size — 1)

The Double Jaccard Index calculation, if performed naively, is computationally
expensive. In essence, the above algorithm exhaustively iterates through all combina-
tions. Let R denote the number of routes, and N denote the number of customer nodes.
Since every pair of nodes of a given pair of routes must be considered, and every possible
route pair is compared, the time complexity is O(R2N?) to calculate one Double Jaccard
Index. Since the calculation of similarity score has to be done in every generation and



for every chromosome, the resulting complexity is high. From our experiments, when
we included the Double Jaccard Index calculation, the runtime of the GA increases
tremendously. As such, this algorithm must be made more efficient.

One way to achieve that is to use a lookup table that maps which nodes are on which
route. The algorithm is given as follows:

Efficient Double Jaccard Index Algorithm between Chromosomes(i, ;)

1. [Initialise numUniqueRoutes to be number of routes in Chromosome i
Initialise numRoutesIntersectBothChromosome = 0

3. Tterate through every customer node in Chromosome i, and create a lookup table of
node to route mapping for Chromosome i, nodeldToRouteCiMapping

4. Tterate through every route r in Chromosome j

a. Initialise set of customer nodes from r, c2RouteNodes

b. Initialise minNumNodeMatchesForC2Route = [size of c2RouteNodes * routeM-
atchThreshold

c. [Iterate through every customer node in route r, and get their corresponding route
in Chromosome 1 by looking up nodeldToRouteCiMapping, then keep a count
of how many occurrences on each route into a separate table, routeToCountTable

d. Using the largest count from the routeToCountTable, if it is smaller than
minNumNodeMatchesForC2Route, increment numUniqueRoutes

e. Otherwise, union route r and route with the largest count from Chromosomel,
and get the size of the union set.

f. If the size of the union set * routeMatchThreshold is greater than the largest
count, increment numUniqueRoutes, else increment numRoutesIntersectBoth-
Chromosome

5. Set Jaccard Index = numRoutesIntersectBothChromosome/numUniqueRoutes

With the above algorithm, we have reduced the complexity from the naive algorithm
of O(R2N?) to O(N), which greatly improves the run time complexity of GA.

7 Experimental Analysis

7.1 Experimental Setup

To evaluate the effectiveness of our algorithm, we performed experiments on the same
problem instances as those provided in [7], which is a set of modified Solomon instances
with charging stations as well as battery capacity. We will omit instance c101_21 as there
is no feasible solution. The instances are divided into 3 categories: clustered (C) random
(R) and randomly clustered (RC).

We first obtained a set of EVRP benchmark results by running the GA proposed in
[7] with the modified objective function defined in Sect. 1 (to ensure fairness in com-
parison) with the value of M set as 100,000. We used a population size of 100, and 5000
generations. Crossover occurs once per generation, with parents selected using binary



tournament selection. The mutation occurs twice per generation, one is for the chromo-
some with the best fitness, another is selected using uniform-random. All experiments
were performed for 5 times, and the best results were presented. We then tested the effec-
tiveness of our proposed crossover and mutation operators individually to evaluate their
performance. Finally, we applied them together with the diversity population selection
technique, with the route matching Jaccard index thresholds at 1.0 and 0.25. This way,
we evaluated how well the operators work together, as well as the impact of different
route matching thresholds.

Table 6 shows the benchmark instances and results obtained on all 100-customer
modified Solomon instances presented in [7]. The numbers in brackets () represent the
results published in [7] with their original objective function (that minimises total travel
duration). It can be seen that the modified objective achieves a smaller number of vehicles
in 20 out of 28 instances, equal numbers in 4 instances, and more vehicles in 4 instances.

Table 6. EVRP benchmarks

Instances | # of Vehicles Instances # of Vehicles
c102 11 (13) r107 12 (14)
c103 13 (12) r108 13 (14)
c104 12 (15) r109 15 (15)
c105 12 (13) r110 15 (14)
c106 14 (11) r111 12 (14)
c107 14 (17) ri12 14 (12)
c108 11 (13) rc101 13 (15)
c109 10 (19) rc102 14 (17)
r101 14 (14) rc103 15 (18)
r102 13 (16) rc104 15 (15)
r103 13 (13) rc105 14 (17)
104 13 (14) rc106 14 (18)
r105 14 (17) rc107 15 (15)
106 15 (12) rc108 14 (15)

7.2 Minimum Number of Vehicles Comparison

Figure 1 shows the comparison of results of best solutions obtained by each combination
of our proposed approaches against the EVRP benchmarks.

From Fig. 1, we observe improvement over the EVRP benchmarks (as shown in
Table 6). Interestingly, our proposed approach could outperform both the old and new
results given in Table 6, for both the old and new results. In fact, for the clustered
instances, we managed to achieve the minimum number of vehicles possible. For these
clustered instances the total demand of all customers is 1810, and the load capacity per
vehicle is 200. Hence, the minimum number of vehicles required = [1810/200] = 10.

Another interesting point is that RMLS yields slightly better results compared with
BRBAX+RMLS+Diversity(1.0). However, using BRBAX+RMLS+Diversity(0.25), we
can obtain the same average performance as RMLS for the best result. We suspect that
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Fig. 1. Best minimum number of vehicles

a route matching threshold of 1.0 might be too conservative, leading to high population
similarity. In other words, allowing partial matching between routes can potentially yield
an improvement in results.

BRBAX+RMLS+Diversity(0.25) runtime performance across all instances averages
to around 50 min per run.

7.3 Average Minimum Number of Vehicles Comparison

9
P F PO LTSNy PSS
A A SR VR VR VIR VIR VR A O O R 0y

«=@==[\/RP Benchmark «=@==BRBAX
RMLS —@— BRBAX+RMLS+Diversity(1.0)

—=@=— BRBAX+RMLS+Diversity(0.25)

Fig. 2. Average minimum number of vehicles

Figure 2 shows the average (instead of best) performance over the 5 runs. Apart from 4
outlier instances, both BRBAX and RMLS showed improved performance against the
benchmark.

We observe that regardless of route matching threshold value,
BRBAX+RMLS+Diversity outperformed RMLS. We believe this phenomenon is
observed because RMLS is highly exploitative and can easily be stuck in a local optimum.

In summary, BRBAX+RMLS+Diversity would be the preferred algorithm if consis-
tent results are preferred. For best results, use a low route matching threshold like 0.25
as a threshold of 1.0 can be too conservative.



7.4 Total Travel Duration Comparison
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Fig. 3. Total route duration, BRBAX+RMLS+Diversity(0.25) vs [7]

Figure 3 compares BRBAX+RMLS+Diversity(0.25) against [7] on the total route dura-
tion measure based on percentage change. We observe that there is a significant reduction
in the total route duration across all (C) and (RC) instances. However, for (R) instances,
there is a small handful where our algorithm performs worse. This might be because
there is a correlation between the number of used vehicles and the total route duration
for each category of problem instances. The reason that our algorithm tends to perform
better in clustered than uniform-random instances is that its focus is to reduce the num-
ber of used vehicles. With fewer vehicles, individual vehicles would have to serve more
customers, and if customers are part of a cluster, travel time and battery usage will be
reduced if the cluster is served by the same vehicle. On the contrary, random instances
of customer nodes are unable to take advantage of cluster characteristics.

On average, we observe an 11% reduction in total route duration for both best and
average measures. This further validates the efficacy of the algorithm; not only were we
able to achieve reductions in the number of vehicles, but also in the total travel duration.

8 Conclusion and Future Works

In this paper, we proposed an efficient GA that solves EVRP which minimises the total
number of vehicles. While the experimental results look very promising, we believe
there are many opportunities to improve both solution efficiency and effectiveness. One
possibility to explore is to find another heuristic to remove nodes for RMLS instead
of the greedy heuristic on vehicle load utilization. Removal of nodes into the ejection
pool does not need to be strictly from one route. GA will come to a point where it is
challenging to reduce the number of routes, where it might be good to start improving
on the secondary objective, to reduce the total of the needed time. GA seems to perform
well for clustered instances; this would probably be because the BRBAX and RMLS
were using vehicle load utilisation as a heuristic measure. One possibility to explore is
using different heuristic measures to select good routes for BRBAX.
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