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Hierarchical Fuzzy Logic System for Implementing
Maintenance Schedules of Offshore Power Systems

C. S. Chang, Zhaoxia Wang, Fan Yang, and W. W. Tan

Abstract—Smart grid provides the technology for modernizing
electricity delivery systems by using distributed and com-
puter-based remote sensing, control and automation, and two-way
communications. Potential benefits of the technology are that
the smart grid’s central control will now be able to control and
operate many remote power plant, optimize the overall asset
utilization and operational efficiently. In this paper, we propose
an innovative approach for the smart grid to handle uncertainties
arising from condition monitoring and maintenance of power
plant. The approach uses an adaptive maintenance advisor and
a system-maintenance optimizer for designing/implementing
optimized condition-based maintenance activities, and collectively
handles operational variations occurring in each substation. The
system-maintenance optimizer generates the initial maintenance
plans for each substation with multiobjective optimization by con-
sidering only the design or average operational conditions. During
operation, the substation will experience aging, control shifts,
changing weather and load factors, and uncertain measurements.
Residing on each host substation, the maintenance advisor will
assess the adequacy of initial maintenance plans; and estimate
the reliability changes caused by operational variations on the
substation using a hierarchical fuzzy system. The advisor will also
alert the maintenance optimizer on whether a reoptimization of its
maintenance activities should be initiated for meeting the overall
grid-reliability requirement. Three scenarios will be studied in
this paper, which will demonstrate the ability of the proposed
approach for handling operational variations occurring in an
offshore substation with manageable computational complexity.

Index Terms—Adaptive maintenance advisor, hierarchical fuzzy
logic, multiobjective evolutionary algorithm, offshore substation,
smart grid, system maintenance optimizer.

I. INTRODUCTION

D EEP integration of condition-based maintenance within
the smart grid is very desirable for extending component

lifetime in power and energy system and achieving high opera-
tional efficiency in the overall power system [1]. Unlike tradi-
tional maintenance optimization methodologies that only con-
sider the equipment lifetime distribution [2]–[6], an adaptive
condition-based maintenance scheme is proposed in this paper.
The key difference is that other operation-related variations are
also considered. This feature is particularly useful for offshore
power systems because they are remotely located and difficult
to access for data acquisition, inspection, and maintenance. The
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information collected for smart-grid monitor/controller during
operation contains fuzziness rather than crisp values.More pow-
erful tools are hence needed to deal with these uncertainties for
continuous monitoring.
Reliability analysis is performed regularly for condi-

tion-based maintenance [7]. Due to uncertainties arising inside
and outside the equipment, it is often difficult to obtain exact
reliability indices using conventional reliability analysis espe-
cially when conditions vary. Fuzzy sets theory was proposed
by Zadeh [8] to resemble human reasoning under uncertain-
ties by using approximate information to generate proper
decision. Known as type-1 fuzzy logic, the methodology has
been successfully used in many applications [9], [10] and for
handling uncertainties related to component reliability [1] in
power-system maintenance problems. Fuzzy Markov model
has also been employed to describe transition rates [11].
The ability of type-1 fuzzy logic to model uncertainties is

however restricted, as there is no fuzziness in type-1 member-
ships. Zadeh further proposed the type-2 fuzzy logic [12] and
demonstrated its success over type-1 fuzzy sets for handling un-
certainties in various fields [10], [12]–[14]. However, type-2 im-
plementation for large-scale problems can be limited due to its
heavy computational requirements.
Viewed as a variant of type-2 fuzzy sets, qualitative fuzzy

sets [15] and blurred membership functions [16] were proposed
by allowing a “small amount” of perturbations on each degree
of membership functions. Membership perturbations were in-
troduced in nonstationary fuzzy sets [17] for representing vari-
ations such as location, width, noise, etc., without changing the
original inference process. Such perturbations may also be in-
troduced in a hierarchical fuzzy system, which employs a set
of high-level fuzzy rules for adjusting the settings of variables
or input scaling factors of low-level rules as in a conventional
fuzzy controller for tracking set-point changes and load distur-
bances [18]. We developed a similar approach by employing an
independent set of fuzzy memberships to represent unplanned
operational variations in offshore power systems for ensuring
the quality of maintenance scheduling [19].
In this paper, we propose a hierarchical fuzzy system as one

of smart control algorithms residing at each offshore substation.
Our proposed fuzzy system has a flexible structure for easy in-
tegration with other control algorithms, and shares common ob-
jectives with them such as maximum energy delivery and min-
imum operational costs. Our proposed fuzzy system has also
a variable structure, which engages low-level fuzzy member-
ships that represent planned operational variations occurring
in each offshore substation; and high-level fuzzy memberships
that map the unplanned operational variations as perturbations
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Fig. 1. Adaptive condition-based maintenance scheme.

in parameters defining each respective membership function of
the low-level system. As shown in Fig. 1, our hierarchical fuzzy
system links each offshore substation to its connected power
grid, for alternately implementing and optimizing maintenance
schedules of the offshore substation according to operational
variations during operation.
The maintenance optimizer first assumes a set of best known

or average operational conditions. The maintenance advisor
receives and implements the initial maintenance plan for all
its equipments from the system maintenance optimizer, and
manages the hierarchical fuzzy system. The advisor keeps
track of the unplanned operational variations arising from
aging, weather, load factors, measurement and human-judg-
ment uncertainties detected from key equipments. The initial
optimal solutions will become suboptimal, leading to under-
or over-maintenance during operation. The advisor reports
the corresponding changes of load-point reliability and any
excessive deterioration within the substation to the optimizer,
which may lead to reoptimization of maintenance activities
within the substation for balancing the reliabilities with costs
of maintenance during operation.
The optimizer in Fig. 1 was developed by the authors using

Pareto-based multiobjective evolutionary algorithm [19], [20]
for synthesizing the maintenance schedules of a medium-sized
power system (IEEE Reliability Test System [21]), by providing
the best trade-off between its reliability and costs of mainte-
nance.
This paper is organized into five sections. Section II describes

the structure of our proposed hierarchical fuzzy logic system,
the criteria for selecting planned and unplanned operational
variations, the steps for handling these variations, the design of
rules and assignment of computational tasks at the low and high
levels. Section III describes three scenario studies for demon-
strating the ability of our proposed hierarchical fuzzy system
for handling operational variations occurring during operation
with manageable computational complexity. Section IV and
the Appendix conclude the paper.

II. INTELLIGENT MAINTENANCE ADVISOR WITH
HIERARCHICAL FUZZY EXPERT SYSTEM

A. Updating the Reliability Parameters for Each Component

Reliability indices, such as mean time to failure (MTTF) and
failure probability , will not remain constant due to op-

erational variations [19], [20], [22]. Changes of above relia-
bility indices , which in-
clude MTTF and , are calculated
for each component using the following fuzzy logic system:

(1)

where represents the set of operational variations of each
component, and represents the mapping function of the pro-
posed fuzzy logic system from input to output. Having calcu-
lated , actual reliability indices of components are up-
dated according to operational variations by

MTTF MTTF (2)

(3)

where MTTF and are the original reliability
indices obtained from the Markov model [19], [20], [22], [23],
and MTTF and are the updated indices following the
standard steps.
A hierarchical fuzzy logic system is proposed here for han-

dling planned and unplanned operational variations of key com-
ponents in each substation. Each operational variation as in
is connected with the others by fuzzy linguistic rules, which
are derived from both the expert knowledge and mathematical
strategies [10], [12], [19].
The rules of lower-level fuzzy system (RL) and high-level

fuzzy system (RH) are illustrated by examples:
RL: if (age Variation is Younger) and (Load Factor is
lighter) and (Operating Temperature Variation is same),
then (Output is Much Worse (MW));
RH: if (Variation of Insulation Degradation is better), then
(the impact is Left Shift (LS)).

Once the rules are established, the fuzzy logic system is used as
a mapping function from the input to the output .

B. Overall Scheme of Hierarchical Fuzzy Logic System

The proposed fuzzy logic system has a computationally effi-
cient two-level structure for each component (see Section III-B
for case studies). The hierarchical fuzzy system in this paper
is different from Mendel’s type-2 fuzzy systems, as it is im-
plemented by using type-1 inference mathematics rather than
type-2 inference mathematics. Therefore, there is no compar-
ison between the proposed hierarchical fuzzy system and type-2
fuzzy system. Compared with type-1 fuzzy system, the pro-
posed hierarchical fuzzy system has the flexibility for accom-
modating new unplanned operational variations for any other
equipment by simply adding a new set of memberships at the
high level.
Inputs in the low level collect the amount of the planned op-

erational variations occurring in each component. Fuzzy rules
at this level then update the collective impacts of the planned
operational variations on reliability indices on each respective
component. The high level deals with the unplanned operational
variations on each component in a similar manner. Several par-
allel fuzzy logic units in the high level are engaged with each
using one unplanned operational variation as the input for eval-
uating its respective impact on the component’s reliability. The
low level also connects the planned and unplanned operational
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Fig. 2. Structure of hierarchical fuzzy logic system for each transformer.

Fig. 3. Low-level membership functions for each transformer. (a) Input: age
variation (yr). (b) Input: load factor variation (%). (c) Input: operating temper-
ature variation (oC). (d) Output due to Figs. 3(a)–(c) and 5(c)–(d).

Fig. 4. Low-level membership functions for each circuit breaker. (a) Input: age
variation (yr). (b) Output due to Figs. 4(a) and 6(b).

variations on each component for evaluating their overall im-
pacts on its reliability indices.
As a rule of thumb, input variables chosen in low-level mem-

berships are widely used for modeling planned operational vari-
ations (Figs. 3 and 4). For example the operating temperature
of a transformer is monitored closely for establishing its im-
pact and mathematical model of the transformer’s MTTF. In
contrast, input variables chosen in the high-level memberships
(Fig. 5), e.g., detected insulation degradation of the transformer
or a transformer of similar type tend to occur in a more ad hoc
manner, which is superimposed on the low-level memberships
for computational flexibility as shown in Fig. 7 [16], [24]. Both
the low- and high-level memberships must however be consid-
ered for their overall impacts on the transformer’s MTTF.
Mathematically, all planned and unplanned operational vari-

ations are considered in parallel as follows:

(4)

Fig. 5. High-level membership functions for each transformer. (a) Input: vari-
ation of insulation degradation level (%). (b) Input: ambient temperature varia-
tion . (c) Impact on functions in Fig. 3(a) due to variations in Fig. 5(a). (d)
Impact on functions in Fig. 3(c) due to variations in Fig. 5(b).

Fig. 6. High-level membership functions for each circuit breaker. (a) Input:
variation of trip-coil defects level (%). (b) Impact on functions in Fig. 4(a) due
to variations in Fig. 6(a).

Fig. 7. A simple example of high-lever membership functions superimposed
on low-level membership functions [16], [24].

where represents the input of planned operational varia-
tions to the low-level fuzzy logic system, and represents
the input of unplanned operational variation to the th high-level
fuzzy logic unit. and are the mapping functions from
inputs and to the output of the low-level fuzzy logic
system and the th high-level fuzzy logic unit respectively. is
the number of parallel fuzzy logic units in the high level, which
is equal to the number of unplanned operational variations con-
sidered for each component.
Taking for example the transformer in our study offshore sub-

station, is an input vector representing variations of age,
load, and operating temperature. Two high-level fuzzy logic
units are used in parallel, within which and repre-
sent respectively variations of insulation degradation level [25]
and ambient temperature of the transformer. As shown in Fig. 2,

and give the corresponding impacts
on reliability indices, which are considered together with the
planned operational variations (age and operating temper-
ature) in the low level for calculating the overall impacts .
For the circuit breaker, denotes the age variation from the
design age in the low level. Only one high-level fuzzy logic unit
with as the input is used for the circuit breaker for repre-
senting its defects level [26], which brings together the impact
on the reliability indices with variation of age in the low level.
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C. Fuzzy Representation of Planned and Unplanned
Operational Variations and Fuzzy Inference Process

Reliability indices, such as mean time to failure MTTF , will
not remain constant due to operational variations. MTTF
is the original reliability index obtained from the Markov
model, and MTTF is the updated index. The change of
MTTF is the output of the fuzzy system to assess
the impacts of operational variations on component reliability.
The universe of discourse of each input and its output is quan-

tized in overlapping fuzzy sets as represented by their corre-
sponding low- or high-level fuzzy membership functions:
i) Low-level fuzzy membership functions: aging, load, and
operating temperature increases will worsen reliability.
Fig. 3(a)–(c) shows these operational variations repre-
sented in various linguistic levels. Five output linguistic
levels [MW, SW, UC, SB, MB] in Fig. 3(d) represent
the change of MTTF of each transformer as in “Much
Worse,” “Slightly Worse,” “Unchanged,” “Slightly
Better,” and “Much Better.” Similar to Figs. 3(a) and
4(a) shows the representation of age variations of circuit
breaker. In Fig. 4(b), three low-level fuzzy logic vari-
ables [MW, UC, MB] are used to represent the change of
MTTF for each circuit breaker. Each planned operational
variation and the change of MTTF, are connected by the
“IF-THEN” rules in the low-level fuzzy logic system.
For example, in Fig. 3(a)–(d), if inputs are [a) (the age
variation is “older”) and b) (the load factor variation is
“heavier”), and c) (the operating temperature variation is
“higher”)], then the output is [d) (the change of MTTF
for this transformer will be “MW”)].

ii) High-level fuzzy membership functions: unplanned oper-
ational variations selected for the high level are dynamic
and time-varying on a daily or even an hourly basis. The
set of unplanned operational variations selected in this
work is: for each transformer its insulation degradation
and ambient temperature variation, and for each circuit
breaker its defects such as those occurring in trip coils.
Degradation in transformer insulation can be detected
with dissolved gas analysis [25] with transformer-oil
samples to be collected regularly. The universe of dis-
course of insulation degradation is quantized into [better,
same, worse] as in Fig. 5(a); whereas variations of
ambient temperature are quantized into [lower, same,
higher] as shown in Fig. 5(b). The trip-coil defects in
circuit breakers can be detected by current signature
[26], which are quantized in [better, same, worse] as in
Fig. 6(a).

iii) Connecting low- and high-level fuzzy memberships: each
unplanned operational variation brings about an impact
on reliability indices by influencing respective planned
operational variation in the low level, as illustrated in
Fig. 2. Taking for example Figs. 5(a) and 3(a) as well
as Figs. 5(b) and 3(c), the degradation of transformer
insulation will speed up transformer aging; whereas the
change of ambient temperature will have an impact on
each transformer’s operating temperature. The influence
on each respective low-level input can be achieved by

Fig. 8. Configuration of bus 07 in IEEE-RTS.

shifting its corresponding membership along the universe
of discourse. The resultant shifting is quantized into [LS,
UC, RS] to represent “Left Shift,” “Unchanged,” and
“Right Shift,” as in Figs. 5(c) and (d) and 6(b). Each un-
planned operational variation and the consequent shifting
are connected by the “IF-THEN” rules in each high-level
fuzzy logic unit. For example, in Fig. 5(a) and (c), if
the input is [a) (the variation of insulation degradation
level is “worse”)], then the output is [c) (the shifting of
membership function for the age variation (represented
in Fig. 3(a)) will be “LS”]. The resultant shifting of the
low-level membership functions is represented by the
shaded area in Figs. 3(a) and (c) and 4(a).

III. RESULTS AND DISCUSSIONS

A. Description of Offshore Substation Used in Case Studies

Fig. 8 shows the ring substation of Bus 07 in IEEE-RTS [21],
whose load-point reliabilities are affected by the transformers
T1–T5 and circuit breakers CB1–CB5. Reliabilities of genera-
tors G1–G3 are assumed constant, whose variations with oper-
ational conditions are being investigated. As Bus 07 is assumed
to be an offshore substation, the transformer and circuit breaker
reliability are affected by planned as well as unplanned opera-
tional variations. The study period is set for 20 years.
The two load points in Fig. 8 are assigned different priorities

with load point 2 having a higher priority because it transfers
most of the output from generators G1–G3 to the connected grid.
Load point 1 has a lower priority because it provides a smaller
part of the output from generators G1–G3 to local consumers.
Case studies are focused upon power exports from the offshore
power system, which can be reversed by simply changing the
data. The population size for Non-dominated Sorting Genetic
Algorithm-II (NSGA II) [20], [27] is set at 80, the number of
generations is 90, and the crossover and mutation rates are set
at 0.8 and 0.05 respectively. The maintenance cost data is listed
in [20]. A review of the NSGA II developed for this work is
given in the Appendix.

B. Specification of the Base Case and the Three Scenario-Study
Cases

Three scenario-study cases are specified as below for
showing the application of our proposed approach. These
scenarios are each reoptimized during operation using the steps
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TABLE I
AVERAGE OPERATIONAL CONDITIONS FOR BASE CASE OPTIMIZATION

of Fig. 1 to reestablish the optimal maintenance schedules for
meeting the new operational variations. For comparison, a
base-case study is also carried out (Table I).
Specification of the Base Case with maintenance plans

previously optimized using the steps as shown in Fig. 1 with
assumed average operational conditions (Table I). We also
assume a linear aging process and the same age for all com-
ponents from the beginning of the maintenance period. Other
planned operational conditions (load and operating tempera-
ture) are assumed constant throughout the maintenance period.
No unplanned operational conditions are considered. In other
word, the unplanned operational variations are assumed to be
zero.
Specification of the Three Scenario-study Cases: During

operation, all components will experience different aging and/or
different operational variations. To demonstrate this, three sce-
nario study cases are listed below:

Scenario 1: Worse-than-anticipated aging and deterio-
rations where each transformer and each circuit breaker
in Fig. 8 are suffering from worse aging than the base
case from the beginning of the study period. These ele-
ments will also experience a new set of insulation degra-
dation and trip-coil defects as shown in Fig. 9. Conse-
quently, the base-case maintenance activities will not be
able to meet the required reliability leading to higher en-
ergy-not-served and failure cost. Therefore, maintenance
activities will need to be reoptimized according to the ex-
cessive aging and deteriorations for providing higher reli-
ability.
Scenario 2: Lower-than-anticipated transformer
loading where reliability indices of the respective trans-
formers have to be reestimated according to the new
loads (Fig. 10), which will necessitate reoptimization and
scale-down of maintenance activities.
Scenario 3: Worst-than-anticipated working environ-
ment& ambient temperaturewhere transformer reliabil-
ities are deteriorating excessively as in Fig. 11, which will
necessitate reoptimization and scale-up of maintenance ac-
tivities. This is similar but not exactly the same as Scenario
1, where our methodology will deal with them differently.

The remaining section will show how the proposed hierar-
chical fuzzy logic system is effective for reestablishing the op-
timal maintenance schedules for the four above study cases. We
assume the same operational conditions for all the components
of each same type in each scenario.

Fig. 9. Worse-than-anticipated aging and deteriorations.

Fig. 10. Lower-than-anticipated transformer load factor.

Fig. 11. Worst-than-anticipated working environment and ambient tempera-
ture.

C. Study Results—Impacts of Unplanned Operational
Variations on Optimal Maintenance Schedules

Scenario 1 Result: Worse-than-anticipated aging and
deteriorations Age variations of each transformer and circuit
breaker are represented by the low-level membership function
as in Figs. 3(a) and 4(a). Variations of insulation degradation
level of each transformer and the trip-coil defects level of each
circuit breaker are assessed as shown in Fig. 9 and each rep-
resented by the high-level membership functions in Figs. 5(a)
and 6(a).
Fig. 12(a) and (b) shows the variation of MTTF of the trans-

former (T1) and circuit breaker (CB1) by implementing the
base-case maintenance plan. Comparing with the base case, it is
seen that due to excessive aging and deteriorations, the MTTF’s
of each transformer and circuit breaker are lower than those
under Scenario 1. The overall energy not served (ENS) in Sce-
nario 1 is also more than the base case as shown in Fig. 13.
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Fig. 12. Variations of MTTF after implementing base-case maintenance plan.
(a) Transformer. (b) Circuit breaker.

Fig. 13. Variation of energy not served after implementing base-case mainte-
nance plan.

We choose ENS instead of the loss of load probability (LOLP)
because some systems having close LOLP can have much dif-
ferent ENS and a system having lower LOLP can have higher
ENS than the others with higher LOLP [20], [22]. FLOLP is a
fuzzy description of the probability of load exceeding an avail-
able capacity [1], which was found by us having the same prob-
lems as with LOLP.
The Pareto front in Fig. 14 shows that the proposed fuzzy ex-

pert system helps to reestablish optimal maintenance schedules
and maintain the schedules “Opt1” on the pareto-optimal front.
As shown in Fig. 14, one solution on the Pareto-optimal front
for the base case, Opt-base, is chosen as the best solution with
ENS of , failure cost of ,
and operational cost of . However, Opt-base
will no longer be optimal for Scenario 1 due to new operating
conditions. Implementing Opt-base to Scenario 1 will result in
higher ENS of and higher failure cost of

, as denoted by Sub1 in Fig. 14(a) and (b). There-
fore, a new Pareto-optimal front is obtained by reoptimizing
the maintenance schedules. A new optimal schedule Opt1 is
obtained as a result of the collaborative effort of the mainte-
nance optimizer and the maintenance advisor (Fig. 1), providing
a higher reliability than Sub1 with the same operational cost.

Fig. 14. Pareto fronts of base-case and scenario-1 studies. (a) Operational cost
vs. energy not served. (b) Operational cost vs. failure cost.

The maintenance gains and costs of Sub1 and Opt1 are listed in
Table II.
Scenario 2 Result: Lower-than-anticipated transformer

loading The load factor variation of each transformer is rep-
resented by the low-level membership functions in Fig. 3(b).
In this scenario, maintenance activities will become excessive
if the base-case schedules are implemented directly. Sub2 and
Opt2 in Table II show the reliability gains and costs of directly
implementing Opt-base to this scenario and reoptimizing the
schedules, respectively. Comparing Sub2 with Opt2, it is seen
that Opt2 provides lower ENS and failure cost than Sub2 with
the same operational cost. The result here demonstrates the ne-
cessity of reestablishing optimal schedules for this scenario.
Scenario 3 Result: Higher-than-anticipated temperature

The operating temperature and ambient temperature of each
transformer are each represented by the low- and high-level
membership functions in Figs. 3(c) and 5(b). Our proposed hi-
erarchical fuzzy logic indicates correctly that higher-than-antic-
ipated operating temperature and ambient temperature degrade
reliability. As a result, it is necessary to reestablish maintenance
schedules. Sub3 in Table II shows the reliability and costs from
directly implementing Opt-base to this scenario, and Opt3 is one
reestablished solution. It is obvious that Sub3 is not optimal be-
cause it causes worse reliability with the same operational cost
than Opt3.
In contrast to onshore power systems, offshore power sys-

tems are often remotely located, and are therefore more exposed
to unplanned uncertainties especially during adverse weather
conditions. This paper proposes a hierarchical fuzzy system
which overcomes the limitation of conventional fuzzy systems
in coping with such uncertainties. The conventional and the
proposed hierarchical fuzzy system are compared in Table III,
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TABLE II
RELIABILITY GAINS AND MAINTENANCE COSTS

TABLE III
RELATIVE CAPABILITY FOR COPING WITH PLANNED AND UNPLANNED UNCERTAINTIES BETWEEN THE CONVENTIONAL AND THE PROPOSED HIERARCHICAL

FUZZY SYSTEMS

which favors our proposed system for coping more effectively
and efficiently with unplanned uncertainties.

IV. CONCLUSION

This paper proposes a modular and flexible architecture for
updating the change of load-point reliability resulting from
unplanned operational variations during operation of a system
optimized maintenance plan. As an essential component of
smart grid, the proposed maintenance advisor will report any
excessive deterioration of load-point reliability within each
substation, and require the maintenance optimizer to dynami-
cally reestablish the substation’s optimal maintenance activities
for meeting the desired reliability with lowest cost during
operation.
Operational variations arise continually due to unplanned or

unforeseen weather changes and condition-degradation of trans-
formers and circuit breakers, which are shown in this paper
to have significant impacts on the maintenance scheduling of
offshore substations. Our hierarchical fuzzy logic is demon-
strated to be computationally efficient and flexible for handling
these unplanned operational variations in a medium sized power
system, which should therefore have a good potential for large-
system applications.
One main contribution of this paper is on development of an

online platform residing on each offshore substation for pro-
viding users with a library of automatic, robust, flexible, mod-
ular, expandable, and intelligent algorithms for optimizing and
implementing condition-based maintenance on offshore power
systems, while responding promptly and efficiently to unpre-
dictable operational and weather variations frequently encoun-
tered during offshore operations. Due to its flexible structure,
our platform should integrate well with other control algorithms
of grid management system at each substation, which are de-
signed with the common objectives of maximum energy de-
livery as well as maximum operational efficiency.

APPENDIX
MAINTENANCE OPTIMIZER

The task of system maintenance optimizer is to optimize the
maintenance schedules for an offshore substation and its con-
nected grid for providing the best trade-off between multiobjec-
tive functions such as its reliability and costs of maintenance.
Having the main advantage of computing the entire Pareto

Front in one single rather than many algorithm runs, evo-
lutionary algorithms have been widely used for solving
multiobjective optimization. Their other advantage is sim-
plicity in terms of formulation and implementation for solving
problems especially with noncontinuous objective functions
in a large-scale search space. Comparing with many conven-
tional optimization approaches, evolutionary algorithms do
not require any gradient information of their objective and
other functions during computation. Non-dominated Sorting
Genetic Algorithm-II (NSGA-II) is one of standard approaches
of evolutionary algorithms, which have been reported by the
authors [20], [28] and other researchers [27] to attain better
spread of solutions and convergence near the final Pareto
front with favorable comparisons over many other well-known
algorithms. The authors have also developed and investigated
several variants of the NSGA II, e.g., NSGA DE (Differential
Evolution) for demonstrating the robustness of the nondomi-
nated sorting methodology [28].
As shown in Fig. 1, the system maintenance optimizer

includes three functional blocks: component-specific model,
system-specific model, and multiobjective maintenance opti-
mization.

A. Markov Model for Each Component

Similar to [20], the underlying deterioration of each com-
ponent during maintenance is modeled in 4 states. , ,
2, 3, 4. denotes the “as good as new” state, and are



10 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 1, MARCH 2012

the states with different levels of deteriorations, and S4 repre-
sents the failed state. Transitions between states obey the tran-
sition matrix of the Markov process. Normally, maintenance is
estimated to speed up the restoration rates and thereby extend
component lifetime. The reliability indices, mean time to failure
(MTTF) and failure probability of each component, can be
calculated easily following the standard steps for the Markov
model [20], [22], [23], [28].
In decision interval , availability is used to measure the re-

liability of a component . Availability is the sum of the
probabilities of all working states :

(5)

where is the probability of being in the state .

B. System-Specific Model for Overall System

The configuration of a power system directly affects the load-
point reliability. Minimum cut-sets method is used in this study
to analyze the impacts of complex configuration on system re-
liability in terms of energy not served (ENS).
For a substation with more than one load point, different pri-

orities will be assigned to each load point in order to ensure the
load can be first transferred to the more important load point.
After satisfying the load demand of higher priority, the extra
load will then be transferred to the other load points. Interested
readers are encouraged to refer to our work [20], [22], and [23]
for more details.

C. Multiobjective Maintenance Optimization

The operational cost of overall substation usually increases
as the reliability is improved, but the energy not served (ENS)
and failure cost can be reduced. Similar to our early work [20],
maintenance actions (no maintenance, minor maintenance, and
major maintenance) in each interval are adopted as the variables
of the three objectives functions. The three objectives (opera-
tional cost, ENS, and failure cost) can thus be handled as non-
commensurable and contradictory objectives of the multiobjec-
tive problem:

(6)

where , , and are the operational cost, ,
and failure cost of overall substation; is the decision vector
containing the potential maintenance schedules and extents
over the scheduling horizon. Pareto-based multiobjective evo-
lutionary algorithm NSGA II [29] is applied in the maintenance
optimizer to optimize the maintenance schedules for this off-
shore power system. Pareto fronts give equal treatment to all
objectives, which reach optima where none of the objectives
can be further improved without degrading the others. A holistic
view of the relationship among multiple objectives can be seen
from the Pareto front. More details about the calculation of
operational cost and failure cost, and implementation of NSGA
II are given in [20], [28], [29].
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