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Abstract—A supervisory strategy is proposed for improving
the performance of an evolutionary-algorithm-based system-
maintenance optimizer developed in our previous work for
offshore power systems. The system-maintenance optimizer gen-
erates a set of initial maintenance plans, and exports them to an
intelligent maintenance advisor connected to it for implementa-
tion. The proposed supervisory strategy uses a set of intelligent
rules for adjusting the crossover and mutation rates of the
present evolutionary algorithm. A mechanism is developed for
refining and generalizing the supervisory rules according to the
user’s experience. The proposed supervisory strategy aims to
improve the search ability and efficiency of the present evolu-
tionary algorithm. Merits of the proposed supervisory strategy
are demonstrated in case studies using our system-maintenance
optimizer.

Index Terms—Adaptive Maintenance Advisor, Offshore Power
System, Supervisory Evolutionary Optimization Strategy, Super-
visory Rules, System Maintenance Optimizer.

I. INTRODUCTION

Condition-based maintenance is essential for extending
component life in power and energy systems [1]. Evolu-
tionary algorithms (EAs) or genetic algorithms (GAs) were
applied to maintenance-related problems [2]–[9]. Unlike tra-
ditional maintenance optimization methodologies that only
consider the equipment lifetime distribution [5]–[9], an adap-
tive condition-based maintenance scheme, which considers
all the other operation-related variations, was proposed in
our previous papers [10], [11]. This feature is particularly
useful for offshore power systems because they are remotely
located and difficult to access for data acquisition, inspec-
tion, and maintenance. Furthermore, the information collected
during operations tends to be uncertain. There are two main
parts in the proposed adaptive condition based maintenance
scheme [10], [11], intelligent maintenance advisor and system
maintenance optimizer. The intelligent maintenance advisor
receives initial maintenance plans for all equipments from
the system maintenance optimizer. It keeps track of the un-
planned operational variations arising from ageing, weather,
load factors, and uncertainties detected from key equipments,
and reports the corresponding changes of load-point reliability
and any excessive deterioration within the substation to the
system maintenance optimizer [10], [11]. The optimizer can
lead to the re-optimization of maintenance activities of all sub-
stations for balancing the reliability with costs of maintenance

Fig. 1. System maintenance optimizer

during operations. The system maintenance optimizer was
developed by using a multi-objective evolutionary algorithm
(MOEA) [10] for synthesizing the maintenance schedules of
the system to provide the best tradeoff between its reliability
and costs of maintenance.

Fig. 1 demonstrates the proposed system maintenance op-
timizer with three-blocks: component-specific level analysis,
system-specific level analysis, and a multi-objective optimiza-
tion block. In component-specific level analysis block, the
Markov model generates reliability indices for individual com-
ponents. In system-specific level analysis block, the system-
configuration-related parameters and the load demand are used
to generate the indices of the cost and availability at individual
load points. The outputs of the system-specific level analysis
block are used to calculate the two objectives (energy not
served & overall cost) [12] to be evaluated by the multi-
objective optimization block, which will guide the search
towards optimal maintenance schedule.

In this paper, a supervisory evolutionary optimization strat-
egy is proposed to improve the ability of the system main-
tenance optimizer. The proposed supervisory evolutionary
strategy improves the performance of the EAs. Crossover and
mutation rates of the EA are adjusted using a set of supervisory
rules, making the system maintenance optimizer much more
efficient.

This paper is divided into 5 sections. Section II describes
the system maintenance optimizer. Section III discusses and
analyzes existing improvements of EAs. Section IV describes
the proposed supervisory evolutionary strategy, including su-
pervisory rules, genetic operator designing and simplifying
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implementation of the supervisory evolutionary strategy. Sec-
tion V presents the performance of the proposed supervisory
evolutionary strategy. Section VI concludes the paper.

II. SYSTEM MAINTENANCE OPTIMIZER

As shown in Fig. 1 [10], [11], the system maintenance
optimizer includes three functional blocks: component-specific
level analysis, system-specific level analysis, and multi-
objective optimization module.

In component-specific level, multi-phase Markov model
is employed to analyze the deterioration process of each
component. In system-specific level, availability of cut sets
is employed to obtain the system indices [12]. The proposed
supervisory evolutionary strategy is used to implement the
maintenance optimization module.

A. Component-Specific Level Analysis

The multi-phase Markov model for each component pro-
vides a quantitative connection between maintenance and
reliability [12]. Discrete process phases are usually used and
mostly based on regular Markov models [9]. The deterioration
process of each component is modeled in finite states. If
no maintenance actions are taken, the component at discrete
time deteriorates following a Markovian manner. Transitions
between states obey the transition matrix of the Markov chain.

Maintenance is able to extend component life, while com-
ponent aging will shorten its life. The transition matrix P is
updated at the beginning of each interval, incorporating the
effects of maintenance as well as aging of the component.
The deterioration level of the component at every interval can
be inferred from past maintenance and deterioration record.

The mathematical relationship between transition probabil-
ities and frequencies of the maintenance can be estimated by
using the following [12]:

P t(fm,t−1, fM,t−1) =∑N
i=1 P

t(fm,t−1, fM,t−1|P (St−1 = i))P (St−1 = i)
(1)

where P t(fm,t−1, fM,t−1|P (St−1 = i) is the conditional
transition probability matrix, influenced by the maintenance
actions taken in interval t − 1, the deterioration state of
the component is in the state i; P t(fm,t−1, fM,t−1) is the
probability of being in the state i at the beginning of interval
t− 1.

In decision interval t, availability is used to measure the
reliability of a component a. Availability Aa is the sum of the
probabilities of all working states.

Aa =

N∑

i=1

P (St = i) (2)

where P (St = i) is the probability of being in the state i.

B. System-specific Level Analysis

In a substation, the failure of load point occurs in different
combinations of failure events, known as cut sets. By defi-
nition, a minimum cut set is the smallest set of components
whose failure can lead to the failure of the load point [13].
Minimum cut sets method is employed in our system mainte-
nance optimizing [12]. The availability for a cut set consisting
of two components can be evaluated by using the following
equation for the parallel outage as:

Acab
= 1− (1−Aa)(1 −Ab) (3)

where Acab
is the availability of the cut set c, which consist

of two components, a and b. Since each of these overlapping
outages will cause system failure, all the overlapping outages
are effectively in series from the reliability point of view.
The system indices can therefore be evaluated by applying
the methods for series components as the following:

Asys =

n∑

s=1

As (4)

where As is the availability of the sth cut set, n is the number
of the cut sets.

C. Multi-Objective Maintenance Optimization

Power systems are expected to provide good reliability,
while operating as economically as possible with low oper-
ation cost and low failure cost. In our previous works [10],
[12], the problem is formulated as a multi-objective search,
aiming at finding a set of maintenance schedules which are
comparatively ’equally good’ for multiple objectives. The
reliability objective is the approximated average un-served
energy caused by the deterioration failure and chance failure.
It can be calculated by the following equation:

fEUE = (

T∑

t=1

m∑

p=1

((1 −Ap)× Lp))/T (5)

where T is the number of decision interval; m is the number
of load points in one substation; Ap is the availability at point
p; Lp is the loss of load at load point p in one decision interval
t [12].

The other objective is economic objective, fecoO, which
includes the overall operation cost, fsysO, and expected
failure cost, fsysF :

fecoO = fsysO + fsysF (6)

fsysO =

M∑

a=1

Co,a + CapC ×Rate (7)

fsysF =

M∑

a=1

{Cf,a ×
T∑

i=1

Pi,f } (8)

1138



where M is the number of components in the system; Co,a
is the operation cost of component a; CapC is the capital
cost in one substation; and Rate is the interest and depression
rate. The default value of Rate is chosen as a constant,
Rate = 0.12 [10], [12]. For component a, the operating cost
Co,a, which includes inspection cost and maintenance cost, is
calculated by the following equation:

Co,a =

Cin,a
∑T

t=1 fin,t + Cmi,a
∑T

t=1 fmi,t + Cma,a
∑T

t=1 fma,t
(9)

where Cin,a is the inspection cost of component a; fin,t
is the inspection frequency for component a in one decision
interval t. Cmi,a is minor maintenance cost for component a;
fmi,t is the minor maintenance frequency for component a in
one decision interval t. Cma,a is major maintenance cost for
component a; fma,t is the major maintenance frequency for
component a in one decision interval t. The cost of economic
objective will increase as the reliability improves, but the
fEUE is reduced at same time. Reliability can be improved at
expense of the high cost with more frequency maintenance. In
this study, all of the two contradictory objectives are functions
of maintenance actions. Therefore, the multi-objective problem
can be easily formulated as the following:

Minimize Fobj = Minimize {fobj1, fobj2} (10)

where fobj1 and fobj2 are reliability objective and economic
objective, respectively.

In our previous works, a system maintenance optimizer
based on EAs had been designed to solve this problem [10],
[12]. This paper improves the efficiency of the system main-
tenance optimizer by proposing a supervisory evolutionary
optimization strategy.

III. ANALYSIS OF EXISTING IMPROVEMENTS OF

EVOLUTIONARY ALGORITHMS

Due to their inherent parallelism, multi-objective evolution-
ary algorithms (MOEAs) are able to generate a set of optimal
solutions in a single optimization run. Pareto-based MOEAs
treat all the objectives equally in a search for the optima
where none of the objectives can be further improved without
degrading the others. More details about the Pareto optimality
are given in [10], [12], [14], [15].

Genetic operators are key factors in improving the perfor-
mance of many of such algorithms. Many improvement ideas
have been proposed [16]–[24].

An EA, which keeps memory of every position that it had
searched before, was reported in [16]. An archive was used
to store all the solutions that had been explored before, and
the EA was designed by using an adaptive mutation operator
to void a revisit. Leonardo et al. [17] proposed an adaptive
hybrid EA for technical loss reduction in distribution networks
under variable demands and demonstrated the benefit of it by
using case studies. Our previous works proposed an improved
EA for quality of service (QoS) routing problems in optical
fiber communication networks [18] and other previous work

introduced supervised rules into the algorithm to propose a su-
pervised EA for solving QoS routing problems [19]. However,
it aimed at routing optimization problems, and supervised the
algorithm procedure by using the routing information. This
limits the application to other problems of the algorithm.
Ye et al. [20] described some improvements on adaptive
EAs and demonstrated the effectiveness of the improvements
for reliability-relation applications. Jumping gene genetic al-
gorithm (JGGA) was proposed and the simulation results
demonstrated that JGGA was an effective scheme for some
optimization problems [21], [22].

Among many techniques developed to improve the perfor-
mance of EAs, the genetic operator adjusting methods are
the most widely used approaches and the significance of pc
and pm in controlling the performance of EAs had long been
demonstrated by both empirical and theoretical studies [23],
[24]. Typical values of pc are in the interval [0.5, 1.0]. The
higher the value of pc, the quicker the new solutions are
introduced into the population. The mutation pm is another
critical operator of EAs. Typical values of pm are in the
interval [0.001, 0.05] [24]. Large values of pm will transform
the EAs into a pure random search algorithm.

According to the adjusting methods, improved EAs can be
classified into three categories: Mutation-first, Crossover-first,
and Uncertain-order [20]. Mutation-first emphasizes on using
higher mutation rates and lower crossover rates at beginning
and lower mutation rates and higher crossover rates at the end.

Crossover-first approaches are opposite to the mutation-first
approaches [20], [24]. Higher crossover rates are adapted at the
beginning and higher mutation rates at the end. In [20], a new
crossover-first approach and a new mutation-first approach
in which the parameters were adjusted by using mean and
variance of each generation were proposed in order to compare
the two conflicting adaptive GA methods. The simulation
result indicated that both of the two conflicting adaptive GA
methods yielded better results than plain GA, and the new
mutation-first GA was more efficient than the new crossover-
first GA.

Except for Mutation-first and Crossover-first, other ap-
proaches are classified as uncertain-order schemes. Some of
them adjust mutation or crossover rate in accordance with the
fitness value, some of them varied mutation or crossover rate
according to iterations of the algorithms.

It is established in all proposed strategies that large values of
pc ∈ [0.5, 1.0], and small value of pm ∈ [0, 0.5] are ideal and
essential for the success of algorithms [24]. Low value of pc
and high values of pm will lead to the premature convergence
of the algorithms.

IV. PROPOSED SUPERVISORY EVOLUTIONARY

OPTIMIZATION STRATEGY

It is necessary that the designed genetic operator should
have the ability to preserve the best solution of every popu-
lation, and at the same time, it should be able to generate as
many new models as possible to avoid getting trapped at local
optimum.
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This paper proposes a supervisory evolutionary strategy to
improve the performance of EAs and the present system main-
tenance optimizer. The supervisory rules, which are refined
and generalized from the experience of the improved EAs, are
directly incorporated into the algorithms to supervise crossover
and mutation steps of the algorithms to implement the system
maintenance optimizer.

Three supervised rules are refined as follows:
(1) The supervisory rule about range of the genetic

operators:
Mutation rate pm and crossover rate pc must satisfy pc ∈

[0.0, 1.0] and pm ∈ [0.0, 0.5].
(2) The supervisory rule about the relationship between

fitness and genetic operators:
The individuals of the population with a higher fitness

usually have a higher probability of producing good models.
Therefore, they should have a lower mutation rate and a
crossover rate to avoid destroying the good mode by high
mutation rate or crossover rate. The individuals with low
fitness usually have a lower probability of being good models,
so these individuals should have lower mutation rate and
crossover rate too. In order to explore the good models, the
individuals with relatively mean fitness should have a higher
mutation rate and a higher crossover rate since they may
contain potential good models. After analyzing the supervisory
rule of fitness, relationship between genetic operators and
fitness are illustrated in Fig. 2.

(3) The supervisory rule about the relationship between
generation and genetic operators:

In the early stage, in order to maintain the diversity of the
individuals and prevent algorithms from prematurity. EAs need
to generate as many new models as possible. In final stages,
avoiding destroying good models and ensuring the converging
of the algorithms are the most important.

According to the supervisory rule about generation, the
genetic operators should be higher in the lower stage of
evolution generation and lower in the higher stage of evolution
generation. The trend of the curve in Fig. 3 shows the relation-
ship between genetic operators and evolution generation. Both
crossover rate and mutation rate decrease with the generation.

A. Implementation of the three supervisory rules

Crossover and mutation rates of the EA are adjusted accord-
ing to the three above supervisory rules in connection with
the process of the algorithms. Based on the first and second
supervised rules, the following equation is designed by using
the population size and the value of fitness as parameters.

x1 = e−|pf∗psize−1| (11)

where psize is the value of the population size, pf is the
percentage of an individual’s fitness, which can be calculated
by using the following equation.

pf(i) =
fitness(i)

∑
j=1

psizefitness(j)
(12)
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Fig. 2. Relationship between genetic operators and the fitness of the
individuals
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Fig. 3. Relationship between genetic operators and evolution generation of
the algorithms

where fitness(i) is the obtained fitness value of ith individ-
ual, pf(i) is the percentage of ith individual.

As shown in Eqn. 12, when the value of pf is near to
1/psize, the fitness of the individual is near to the mean value
of the fitness. The higher value of | pf ∗psize−1 | , the lower
value of x1 will be obtained. x1 satisfies x1 ∈ (0, 1] according
to the above analysis.

According to the first and third supervisory rule, another
equation is designed by using the current evolution generation
as a parameter.

x2 = cos(
(gen− 1)

Maxgen
· π
2
) (13)

gen is the current evolution generation, Maxgen is the
maximum number of the evolution generation. The higher the
number of evolution generation, the lower the value of x2 will
be obtained. x2 satisfies x2 ∈ (0, 1] according to Eqn. 13.

We combine the two designed Eqns. 11 and 13, and the
following equation is obtained.

x = x1 · x2
= cos(

(gen−1)
Maxgen · π2 ) · e−|pf∗psize−1| (14)

The parameters of the designed Eqn. 14 include evolution
generation, fitness of the individuals and population size of the
EAs. The crossover and mutation rate are designed by using
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Eqn. 14 as the following:

pc = 1
1+e−x

= 1

1+e
− cos(

(gen−1)
Maxgen ·

π
2 )·e−|pf∗psize−1|

(15)

pm = 1
1+e−x − ε

= 1

1+e
− cos(

(gen−1)
Maxgen ·

π
2 )·e−|pf∗psize−1| − ε

(16)
where ε is a adjusting parameter, which confirms pm to be
an ideal mutation rate. In this paper, the value of ε is set to
a constant ε = 0.5. According to Eqn. 15 and Eqn. 16, the
designed crossover and mutation rates satisfy the following
equation:

pm+ pc <= 1 (17)

Eqn. 15 and Eqn. 16 describe the relationship between evolu-
tion generation, individuals’ fitness, and genetic operators. The
above designed equations satisfy the three supervisory rules.

B. Simplifying Implementation of the Supervisory Evolution-
ary Strategy

It is important to reduce the computational time of EAs.
Full inclusion of Eqns. 11, 12, 13, 14, 15 and 16 will add to
computational resources. Their partial inclusion is proposed
as follows without considering fitness for describing the rela-
tionship between evolution generation and genetic operators:

pc = 1
1+e−x2

= 1

1+e
− cos(

(gen−1)
Maxgen ·

π
2 )

(18)

pm = 1
1+e−x2 − ε

= 1

1+e
− cos(

(gen−1)
Maxgen ·

π
2 )

− ε (19)

To further simplify the partial inclusion, the trend of the
obtained curve from the proposed supervisory strategy can be
simplified according to Fig. 3 by using simple linear function
as the following:

pm = pmo(1 −Gen/MaxGen) (20)

pc = pco(1− Gen

MaxGen
) + pcf · Gen

MaxGen
(21)

where pmo and pco are chosen maximum mutation rate and
crossover rate of the algorithm. pcf is the minimum crossover
rate of the algorithm.

The trend of the curve in Fig. 3 can also be simplified by
using a parabolic curve as the following:

pm = pmo(1−Gen2/MaxGen2) (22)

pc = pco(1 − Gen2

MaxGen2
) + pcf · Gen2

MaxGen2
(23)

Other functions or equations may be designed to satisfy
above three supervisory rules according to different applica-
tions.

Fig. 4. Configuration of bus 07 in IEEE-RTS

V. MERITS OF THE PROPOSED SUPERVISORY

EVOLUTIONARY OPTIMIZATION STRATEGY

A. Parameter settings

All algorithms are coded in Matlab, and ran on a Pentium
4 PC, 3.16GHz, with 3.25 GB of RAM under Windows.

Fig. 4 shows the ring substation of Bus 07 in IEEE-
RTS [1]. As Bus 07 is assumed to be the configuration of
an offshore substation, the transformer and circuit breaker
reliability are affected by planned as well as unplanned oper-
ational variations. Load-point reliabilities are affected by the
transformers T1-T5 and circuit breakers B1-B5. Availabilities
of transmission lines feeding the substations are assumed to
be 100%.

Transformers and circuit breakers are modeled with three-
deteriorated-state Markov chain model and system reliability
model [12]. Initial parameters of the transformers and breakers
(pi,j(i, j <= N)) for Markov model and cost-related pa-
rameters (Capital cost (CapC), Maintenance cost (Cmi,a and
Cma,a) and inspection cost (Cin,a)) are given in our previous
paper [12].

NSGA II, a Pareto-based MOEA, as employed by us [12] is
used in this paper for benchmarking. Crossover and mutation
rate are set as pc = 0.9 and pm = 0.05 [12] for the
benchmark MOEA. pc and pm are determined by Eqn. 18
to Eqn. 23 according to the corresponding supervisory rules
for the proposed method.

B. Results and Discussion

Many experiments by using different parameters of popu-
lation size and maximum generation are carried out to test
the performance of the simplifying strategies of the proposed
methods. The perfect Pareto fronts are obtained by both three
simplifying strategies as well as the benchmark MOEA when
population size is set at 200 and maximum iteration number is
at 600. However, as shown in Table I, the proposed supervisory
evolutionary optimizing strategy improves the performance
of the algorithm by reducing the computational resources.
Table I shows the performance of our proposed supervisory
evolutionary optimizing strategy compared with the bench-
mark MOEA. At any pair of parameter settings, the proposed
strategy requires less computational resources.
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TABLE I
COMPARISON OF TIME CONSUMING BY USING DIFFERENT PARAMETER SETTINGS

Time Consuming (s)
Parameter Settings Benchmark Using supervisory rule Using linear Using parabolic

Population/Generation MOEA about Generation simplified strategy simplified strategy

100 / 100 181.945 131.884 93.804 119.871
100 / 200 361.094 260.569 186.647 241.776
100 / 600 1124.981 790.698 563.427 675.853
200 / 100 390.220 301.966 226.141 273.060
200 / 200 777.085 614.034 450.086 551.126
200 / 600 2441.058 1826.150 1416.674 1702.315

As shown in Table I, among the three simplifying strategies,
the computational time of the linear-function simplification
is the least, and almost half of the computational time has
been saved from the original MOEA. The performances of
the original algorithm are also improved by the other two
simplifying strategies. In order to satisfy individual problem
requirements, slightly different strategies for solving different
problems are expected.

VI. CONCLUSION

This paper proposes a set of supervisory rules for our system
maintenance optimizer. These rules adjust genetic operators
and parameters for improving the convergence of EAs. For off
line applications, a full set of supervisory rules can be used for
adjusting the mutation and crossover rates according to all the
variations of population, fitness and generation during conver-
gence. For online applications, partial implementation of the
supervisory rules is preferred for lesser computational time.
Compared with the original MOEA, the present supervisory
evolutionary strategy is more flexible, efficient and easy-to-
implement.
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[9] A. Grall, L. Dieulle, C. Bérenguer, and M. Roussignol, “Continuous-
time predictive-maintenance scheduling for adeteriorating system,” IEEE
Transactions on Reliability, vol. 51, no. 2, pp. 141–150, 2002.

[10] Z. Wang, C. S. Chang, F. Yang, and W. W. Tan, “Adaptive type-2
fuzzy maintenance advisor for offshore power systems,” in Conference
Proceedings - IEEE International Conference on Systems, Man and
Cybernetics, 2009, pp. 4520–4526.

[11] C. S. Chang, Z. Wang, F. Yang, and W. Tan, “Hierarchical fuzzy
logic system for implementing maintenance schedules of offshore power
systems,” in has been submitted to IEEE Transactions on Smart Grid,
2010.

[12] F. Yang, C. Kwan, and C. Chang, “Multiobjective evolutionary optimiza-
tion of substation maintenance using decision-varying Markov model,”
Power Systems, IEEE Transactions on, vol. 23, no. 3, pp. 1328–1335,
2008.

[13] J. Lu, W. Li, and W. Yan, “State enumeration technique combined
with a labeling bus set approach for reliability evaluation of substation
configuration in power systems,” Electric Power Systems Research,
vol. 77, no. 5-6, pp. 401–406, 2007.

[14] H. Li and Q. Zhang, “Multiobjective optimization problems with com-
plicated Pareto sets, MOEA/D and NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 2, pp. 284–302, 2009.

[15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE transactions on evo-
lutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[16] S. Yuen and C. Chow, “A genetic algorithm that adaptively mutates
and never revisits,” Evolutionary Computation, IEEE Transactions on,
vol. 13, no. 2, pp. 454–472, 2009.

[17] L. Queiroz and C. Lyra, “ Adaptive Hybrid Genetic Algorithm for
Technical Loss Reduction in Distribution Networks Under Variable
Demands,” Power Systems, IEEE Transactions on, vol. 24, no. 1, pp.
445–453, 2009.

[18] Z. Wang, Z. Chen, and Z. Yuan, “QoS Routing optimization strategy
using genetic algorithm in optical fiber communication network,” Jour-
nal of Computer Science and Technology, vol. 19, no. 2, pp. 213–217,
2004.

[19] Z. Wang, Y. Sun, Z. Wang, and H. Shen, “Quality of service routing
strategy using supervised genetic algorithm,” Transactions of Tianjin
University, vol. 13, no. 1, pp. 48 – 52, 2007.

[20] Z. Ye, Z. Li, and M. Xie, “Some improvements on adaptive genetic
algorithms for reliability-related applications,” Reliability Engineering
& System Safety, vol. 95, no. 2, pp. 120–126, 2010.

[21] T. Chan, K. Man, K. Tang, and S. Kwong, “A jumping-genes paradigm
for optimizing factory WLAN network,” Industrial Informatics, IEEE
Transactions on, vol. 3, no. 1, pp. 33–43, 2007.

[22] J. Yin, W. Tang, and K. Man, “A comparison of optimization algorithms
for biological neural network identification,” Industrial Electronics,
IEEE Transactions on, vol. 57, no. 3, pp. 1127 – 1131, 2010.

[23] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
Evolutionary Computation, IEEE Transactions on, vol. 3, no. 2, pp. 82–
102, 2002.

[24] M. Srinivas and L. Patnaik, “Adaptive probabilities of crossover and
mutation in genetic algorithms,” Systems, Man and Cybernetics, IEEE
Transactions on, vol. 24, no. 4, pp. 656–667, 2002.

1142


	Supervisory evolutionary optimization strategy for adaptive maintenance schedules
	Citation

	tmp.1610028946.pdf.BrlCb

