
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

6-2011 

Online fault detection of induction motors using frequency Online fault detection of induction motors using frequency 

domain independent components analysis domain independent components analysis 

Zhaoxia WANG 
Singapore Management University, zxwang@smu.edu.sg 

C. S. CHANG 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Numerical Analysis and Scientific Computing Commons, and the Operations Research, 

Systems Engineering and Industrial Engineering Commons 

Citation Citation 
1 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5560&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Online Fault Detection of Induction Motors Using
Frequency Domain Independent Components

Analysis
Z. Wang

Department of Computer Science,
Institute of High Performance Computing, Singapore 138623.

Email: wangz@ihpc.a-star.edu.sg

C.S. Chang
Department of Electrical and Computer Engineering,
National University of Singapore, Singapore 117576

Email: eleccs@nus.edu.sg

Abstract—This paper proposes an online fault detection
method for induction motors using frequency-domain indepen-
dent component analysis. Frequency-domain results, which are
obtained by applying Fast Fourier Transform (FFT) to measured
stator current time-domain waveforms, are analyzed with the
aim of extracting frequency signatures of healthy and faulty
motors with broken rotor-bar or bearing problem. Independent
components analysis (ICA) is applied for such an aim to the FFT
results. The obtained independent components as well as the FFT
results are then used to obtain the combined fault signatures.
The proposed method overcomes problems occurring in many
existing FFT-based methods. Results using laboratory-collected
data demonstrate the robustness of the proposed method, as
well as its immunity against measurement noises and motor
parameters.

Index Terms—Fast Fourier Transform (FFT), Fault detection,
Features of the frequency signatures (FS features), Independent
Component Analysis (ICA), Induction Motor.

I. INTRODUCTION

Early detection of electrical or mechanical anomalies in
induction motors is very important for ensuring safe and
economic operation of industrial processes [1]–[8].

Stator-current monitoring is viewed as an important fault-
detection scheme without requiring special access to the
motor [9]. Broken rotor-bars and bearing faults are two main
fault types in induction motors [9]–[14], where most research
was performed by decomposing and analyzing stator currents
using various methods such as Fourier analysis, wavelets,
neural networks, model-based techniques, and other statistical
analysis [1]–[8], [11], [15]–[18].

Many of these methods are to find or monitor one or two
frequency components which are related to the faults of the
motor. These frequency analysis based methods are influenced
by factors arising from noise and parameters of the motor, and
are dependent on some necessary measurements [19]–[21].

In order to avoid the above drawbacks, this paper proposes a
new fault detection method based on frequency-domain inde-
pendent component analysis method. Unlike other frequency
analysis based methods which have only one or two frequency
components monitored, all the selected frequency components
are used to calculate the features of the frequency signatures
(FS features) in our proposed method. Thus, robust diagnosis

results can be obtained without considering or measuring the
motor operating speed and other parameters of the motor.

Independent component analysis (ICA) is a special case
of blind source separation, and has many practical applica-
tions such as signal processing [22] and biomedical engineer-
ing [23]. ICA can capture the essential structure of the data
in many applications, including feature extraction and signal
separation, because of its property of extracting statistically
independent components.

We had proposed online fault detection methods of induc-
tion motors by analyzing the time-domain stator currents [5],
[7]. The stator current data from motors are directly used
to obtain independent components by employing ICA and
to calculate time-domain features. Our successful attempt of
using ICA on insulation diagnosis and online source recogni-
tion of partial discharge in gas insulated substations [24] and
the stator current time-domain analysis induction motor fault
detection [5]–[7] has established the foundation for this work.

This paper is divided into five sections. Section II presents
the setup for collecting diagnostic data from laboratory in-
duction motors. Section III provides the literature review of
existing frequency-domain analysis methods and presents the
challenges of these methods. Section IV presents our proposed
frequency-domain independent component analysis method,
which includes theoretical analysis, procedure of the proposed
method, the formulation of the problem and solution, and per-
formance compared to the existing frequency analysis based
methods and our previous time-domain method. Section V
concludes the paper.

II. EXPERIMENTAL SETUP

Fig. 1 shows our experimental setup for collecting stator-
current waveforms from three identical motors of the same
technical specifications but with different conditions: one
being healthy, one having bearing fault and the other having
broken rotor bars [5], [7]. The technical specifications are
given in Table I.

The healthy motor is considered as a benchmark for com-
paring with the faulty conditions. Motor faults were artificially
created with a dent on the seal, and the deformation of the
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Fig. 1. Laboratory setup for data collection from induction motors

(a) (b)

Fig. 2. Fault motors: (a) Denting the seal of the bearing to simulate bearing
fault; (b) Two holes are drilled on the rotor bar to simulate broken rotor bar.

seal is connected to the inner race of the bearing as shown
in Fig. 2(a), and two holes were drilled on the rotor bar of
another motor as shown in Fig. 2(b).

Stator currents are measured separately with a 4-channel
digital oscilloscope from each of the three motors. For col-
lecting high noise signals, all induction motors are driven by
the same voltage-fed pulse-width modulated inverter. 15 signal
segments are collected from each motor at fixed frequency
power supply without inverter (low noises) and with inverter
(high noises). Fig. 3 illustrates the intercept parts of low noise
signal (Fig. 3(a)) and the high noise signal (Fig. 3(b)).

III. FREQUENCY BASED ANALYSIS METHOD

A. Frequency-Domain Fault Signatures

FFT is the most widely used tool among the current
frequency based analysis methods [1]–[9], [11]–[15]. FFT
decomposes a time-domain signal into components of dif-

TABLE I
PARAMETERS OF INDUCTION MOTORS FOR DATA COLLECTION

Motor Parameter Bearing Parameter
Power 1.1kW Ball diameter, bd 8.89mm
Voltage (�/Y) 230/400V Bearing pitch diameter pd 38.5mm
Current (�/Y) 4.5/2.6A Number of bearing balls, n 12/13
Frequency 50Hz Contact angle, α 0◦
Speed 1410rpm Bearing type: NTN-6205Z
Pole pairs 2
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Fig. 3. Illustration of low noise waveform (a) and high noise waveform (b)

ferent frequencies. Motor stator current acts as an excellent
transducer for detecting faults in motors. During operation,
many harmonics will be present in a motor signal. FFT spec-
trum will thus show many peaks, including the fundamental
frequency and its harmonics. This is known as the motor
current signatures. Current signatures of faulty motors differ
from those of healthy motors, because different electrical and
mechanical faults generate different harmonics. Broken rotor-
bar and bearing fault are two main fault types in induction
motors [9]–[14].

A broken rotor-bar can be considered as a form of rotor
asymmetry that causes unbalanced currents, decreased average
torque and increased torque pulsations [9]–[11], [13], [14],
[16], [18]–[20]. Monitoring the sidebands fbr around the
fundamental harmonic is a widely used approach for diag-
nosing broken rotor-bars in induction motors in the following
equation [9], [13], [14], [19], [20]:

fbr = fs(1± 2ks), k = 1, 2, 3, ... (1)

where

fs electrical supply frequency;
s per-unit slip.

Bearing faults take the form of outer-race, inner-race, ball
or cage defects, which are the main causes of machine
vibrations [9], [11], [19]–[21]. Vibrations due to bearing
faults change the air-gap symmetry and machine inductances.
Machine-inductance variations are reflected in the stator cur-
rent in terms of current harmonics, which provide an indicator
of bearing faults associated with mechanical oscillations in the
air-gap. Bearing fault current harmonic frequencies fbe are
expressed as [9], [20], [21]:

fbe = |fs ±mfi,v| (2)

where fs is the fundamental supply frequency, m = 1, 2, 3, . . .
is the harmonic indexes and fi,v is one of the characteristic
vibration frequency due to bearing faults.

fi,o =
n

2
fr

[
1± bd

pd
cosα

]
(3)

where

n number of bearing balls;
fr mechanical rotor speed in Hz;
bd ball diameter;
pd bearing pitch diameter;
α contact angle of the balls on the races.

Further explanation about the bearing faults can be found
in [9], [20], [21]. Information about the bearing construction,
which can be found in Table I, is required to calculate the
exact characteristic frequencies as in Eqn. 3.

B. Challenges of Existing Frequency Based Analysis Method

As shown in Eqn. 1, the broken rotor-bar fault signatures
(side-bands) depend on the slip. One significant challenge in
the broken-rotor-bar detection is to distinguish its respective
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sidebands especially under low slip operation. Measured motor
speed is required for calculating slip of the broken rotor-bar
motors.

The physical parameters of the bearing are required in
Eqns. 2 and 3 to calculate the bearing fault frequency.
These can cause problems for detecting bearing faults if the
bearing parameters are not known. Similar problems were also
reported by other researchers [19].

IV. PROPOSED FREQUENCY INDEPENDENT COMPONENT

ANALYSIS METHOD FOR ONLINE INDUCTION-MOTOR

FAULT DETECTION

As mentioned in Section III, the fault-signature frequen-
cies of broken rotor-bar and bearing fault are dependent of
measurement or parameters of motors. If such information is
not readily available, many frequency-domain techniques face
problems in achieving reliable fault detection.

In order to overcome the above challenges, we propose a
frequency-domain independent component analysis method.
The proposed method does not require above operational
dependent information. The necessary information required
is stator current signals. The time-domain waveforms of the
stator current signals are transferred to frequency-domain
signals. All the frequency components, which include observed
frequencies and unobserved frequencies (those are difficult to
be observed, even though they exist according to Eqn. 1- 2),
are used to calculate the features of frequency signatures of
the signal. The proposed method overcomes the challenges
mentioned in Section III.

A. Theoretical Analysis of the Proposed Method

The time-domain waveform of a stator current signal, f(t),
is presented by the following:

f(t) → (
f(t1) f(t2) · · · f(tL)

)
(4)

where f(ti)(i = 1, 2, · · · , L) is amplitude at time ti(i =
1, 2, · · · , L); L is a record length of samples. By using FFT, a
frequency-domain signal F (ω) can be obtained from the time-
domain waveform and can be represented by the following.

F (ω) → (
a(ω1) a(ω2) · · · a(ωN )

)
(5)

where a(ωi)(i = 1, 2, · · · , N) is the magnitude of frequency
component ωi(i = 1, 2, · · · , N). N is the selected number of
the frequency components. We assume that Eqn. 5 represents a
frequency-domain signal of the healthy motor. From the stator
current signals of two faulty motors, fbr(t) and fbe(t), the
frequency-domain signals of the faulty motors, Fbr(ω) and
Fbe(ω) can be obtained and represented by the following:

Fbr(ω) →
(
abr(ω1) abr(ω2) · · · abr(ωN )

)
(6)

Fbe(ω) →
(
abe(ω1) abe(ω2) · · · abe(ωN )

)
(7)

where abr(ωi)(i = 1, 2, · · · , N) and abe(ωi)(i = 1, 2, · · · , N)
are magnitudes of frequency components ωi(i = 1, 2, · · · , N)
of broken rotor bar motor and bearing fault motor, respectively.

The healthy motor is assumed to be ideal normal, and do
not have any fault signatures. According to Eqns. 1 and 2,

the frequency-domain signal of the broken rotor bar motor
has the sidebands around the fundamental harmonics, and the
frequency-domain signal of the bearing fault motor is with
the signatures of the bearing faults compared with that of the
healthy motor. Therefore, Eqns. 5, 6 and 7 can be ideally
represented by the following:

F signals =⎛
⎜⎜⎜⎜⎜⎜⎝

a(ω1) · · · a(ωn)

k︷ ︸︸ ︷
0 · · · 0

m︷ ︸︸ ︷
0 · · · 0

a(ω1) · · · a(ωn) a(ωbr1) · · · a(ωbrk)

m︷ ︸︸ ︷
0 · · · 0

a(ω1) · · · a(ωn)

k︷ ︸︸ ︷
0 · · · 0 a(ωbe1) · · · a(ωbem)

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)
Eqn. 8 can be simplified as:

F signals =

⎛
⎝ Ab 0 0

Ab Abr 0
Ab 0 Abe

⎞
⎠ (9)

where
Ab =

(
a(ω1) a(ω2) · · · a(ωn)

)
represents the fre-

quency characteristics of the healthy motor, which also are the
basic characteristics of all the motors;
Abr =

(
a(ωbr1) a(ωbr2) · · · a(ωbrk)

)
represents

the frequency characteristics of the motor with broken rotor
bar;
Abe =

(
a(ωbe1) a(ωbe2) · · · a(ωbem)

)
represents

the frequency characteristics of bearing fault motor;
The first row of Eqn. 8 represents the magnitudes of

different frequency components about the healthy motor as
shown in the following:

F (ω) →
(

Ab

k︷ ︸︸ ︷
0 · · · 0

m︷ ︸︸ ︷
0 · · · 0

)
(10)

Eqn. 10 represents the magnitudes of healthy motor fre-
quency signatures. Because the healthy motor is ideal normal,
the magnitudes of faulty frequency components are zero.
Similarly, the second row of Eqn. 8 shows the magnitudes
of frequency signatures of broken rotor bar motor, and the
magnitudes of bearing fault frequency components are zero as
shown in Eqn. 11.

Fbr(ω) →
(

Ab a(ωbr1) · · · a(ωbrk)

m︷ ︸︸ ︷
0 · · · 0

)
(11)

The third row shows the magnitudes of frequency signatures
of bearing fault motor, and the magnitudes of broken rotor bar
fault frequency components are zero as shown in Eqn. 12.

Fbe(ω) →
(

Ab

k︷ ︸︸ ︷
0 · · · 0 a(ωbe1) · · · a(ωbem)

)
(12)

According to Eqns. 10, 11 and 12, different faults make their
frequency-domain signals have different frequency signatures,
and produce a series of different frequency components, such
as Abr and Abe. According to above theoretical analysis,
this paper proposes a new frequency-domain independent
component analysis method. The proposed method solves the
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Fig. 4. The procedure of the proposed frequency-domain independent
component analysis scheme

problems of the existing frequency analysis based methods.
The robust results can be obtained regardless of the noises and
other parameters or measurements of the motors. This makes
the proposed method superior to our previous time-domain
independent component analysis method.

B. Procedure of the proposed method

The procedure of the proposed frequency-domain indepen-
dent component analysis scheme is shown in Fig. 4. The
time-domain waveforms from healthy and faulty motors are
converted into frequency-domain signals by using FFT in the
first block.

In the second block, ICA algorithm is adopted to extract
all the independent components from a chosen set of training
data. After performing ICA on the chosen sets of training data,
several obtained independent components are selected, and
the FS features are calculated in the second block by using
both frequency-domain signals and the selected independent
components. To overcome the curse-of-dimensionality, it is
always feasible to have low-dimensional data. For example, in
this paper, two independent components are used to calculate
the FS features. For other complex problems, more than two
independent components can be used. As shown in Fig. 4, the
second block has two step functions: 1st, extracting all the
independent components and 2nd, calculating the FS features.
The two step functions are employed for training data one
by one. For testing data, only calculating the FS features is
employed and the independent components used are obtained
from training data.

The third block also has two functions: A and B. Function A
is to establish Faulty FS feature Database with the healthy FS
features as benchmarks by using the training data. Function B
is to compare the FS features of test data with the established
Database and giving the diagnosis results. The FS features
of any new-time domain stator current waveforms can be
obtained by using our proposed method, and compared with
the Signature Database to arrive at the final fault diagnosis
decision.

C. Formulation of the Proposed Frequency-Domain Indepen-
dent Component Analysis

As shown in Fig. 4, time-domain stator current waveforms
collected from healthy and faulty motors are transferred to the
frequency-domain signals. ICA [5]–[7], [24], [25] is employed
on the obtained frequency-domain signals for extracting the
independent components by using the following:

IC = W · F Signals (13)

As mentioned in the above section, the features of the
frequency signatures (FS features) are calculated by using the
extracted IC as well as the frequency-domain signals by using
the following:

FS = F Signals • ICT (14)

Healthy and faulty frequency components in the frequency
signatures shown in Eqns. 10, 11 and 12 all contribute to the
FS features as shown in Eqn. 14. For example, any frequency
domain signal F (ω) is converted to a M -dimension feature
(from FS feature 1 to FS feature M ) by using the independent
components IC:

(
FS1 FS2 . . . FSM

)

=
(
a(ω1) · · · a(ωN )

)×
⎛
⎜⎜⎝

ic11 . . . ic1M
ic21 . . . ic2M
. . . . . . . . .
icN1 . . . icNM

⎞
⎟⎟⎠
(15)

where FS1, FS2, . . . , FSM , represent FS feature 1, FS
feature 2, ..., and FS feature M respectively. F (ω) =(
a(ω1) · · · a(ωN )

)
is a frequency-domain signal. It is

transferred to a low-dimension FS feature (F1, F2, . . . , FM ).
In this paper, three independent components are extracted, and
two independent components are selected for this problem,
M = 3. The length of the frequency-domain signal is
N = 20000. That means a higher dimension signal is mapped
into a low dimension feature since M � N .

As shown in Eqn. 15, all the frequency components of
a signal are used to compute the M -dimension FS features
of the signal. For training data, all the M -dimension FS
features of the signals from the healthy and faulty motors are
exploited for establishing healthy and faulty signature database
as shown in Fig. 4. To provide a holistic view of the fault
signature database, each FS feature, which is obtained by using
Eqn. 14, is normalized using the healthy motor as a benchmark
for comparing with faulty conditions. After establishing the
healthy and faulty signature database, each new signal of stator
currents can be classified by using our proposed method.

D. Performance of our proposed Method

The performance of the proposed method is demonstrated
by comparing to the existing frequency analysis based methods
and our previous time-domain method.

As shown in Table II, the fault frequency of the motor with
broken rotor bar can be estimated by using the parameters
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TABLE II
NECESSARY PARAMETERS NEEDED AND ESTIMATED FAULT FREQUENCY

OF THE MOTOR WITH BROKEN ROTOR BARS

Fundamental Measured/Estimated Per-unit Fault Signature
frequency (Hz) Rotor Speed slip Frequency

(rpm) fb (Hz)

50 1461/1500 0.026 47.410/52.590

TABLE III
CALCULATED FAULT FREQUENCY OF THE MOTOR WITH BEARING FAULT

BY USING THE PARAMETERS IN TABLE I

Fundamental frequency (Hz) fbearing (Hz)

50 830.890

according to Eqn. 1. By using the parameters in Table I and
Table III, fault frequency of the motor with bearing fault can
be obtained as shown in Table III. The bearing fault frequency
signatures compared with healthy frequency signatures using
the existing frequency analysis methods are shown in Fig 5(a)
and 5(b). Fig. 5(a) shows that it is difficult to locate bearing
fault frequency without knowing the parameters of the motor.
By using the parameters of the motor, we can locate the
bearing fault frequency according to the Eqn. 2 and 3 as
shown in Fig. 5(b). However, without using the parameters or
measurement of the slip of the motors, our proposed method
can give perfect classification results as shown in Fig. 6(a) and
6(b) under fixed frequency power supply without inverter (low
noises) and with inverter (high noises). Fig. 6(c) and 6(d)
show the results of our previous time-domain method under
high noise condition.

Before de-noising the time-domain signals, the features
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Fig. 5. Bearing fault frequency signatures by using existing frequency
analysis method. (a) Difficult to locate bearing fault frequency without
knowing the parameters; (b) Locating bearing fault frequency using the
parameters of the motor

of the healthy and that of the bearing problems overlap
each other. It is difficult to separate the signatures of the
healthy motor from that of the bearing motor. The perfect
results obtained by using our proposed method shows that
the proposed method is independent of noises. This makes it
superior to the time-domain ICA method. Moreover, Fig. 6(a)
and Fig. 6(b) show that the two FS features have the same
discriminative power, which implies that only one FS feature
will be adequate via the use of a level detector for capturing
the fault FS features of the three motors in this problems.
According to Sections I and III, many presently available
motor fault-detection techniques require the user some level
of expertise about fault, operation and design-dependent in-
formation; which collectively make them difficult for online
applications.

Using the scheme proposed in this paper, one however
requires only a new signal of stator currents after establishing
the Fault Signature Database. The subsequent online fault
detection will be fully automatic. The proposed scheme is
thus an ideal candidate for online monitoring of induction
motors at remote locations, where manual inspections are
expensive or even unavailable. Unlike our previous time-
domain ICA [5] and hybrid time-frequency domain analysis
method [7], a fuzzy neural network (FNN) or a fuzzy system
are not required for the presently proposed scheme. The
online fault detection would be 100% accurate judging from
the superior performance of the classification as shown in
Figs. 6(a) and 6(b).

V. CONCLUSION

A new scheme for online fault detection of induction motors
is presented, which utilizes FFT to obtain frequency-domain
signals, and then ICA to extract the independent components
of the frequency signatures of stator-current signals. The
extracted independent components as well as the frequency
signals are then used to obtain features of the stator current.
The proposed method overcomes challenges faced by many
existing frequency analysis methods. It is demonstrated that
our proposed frequency-domain independent component anal-
ysis provides robust, flexible, reliable and easy-to-implement
fault detection on induction motors irrespective of measure-
ment noises and motor parameters.
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