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Abstract—This paper studies the stator currents collected from
several inverter-fed laboratory induction motors and proposes
a new feature based frequency domain analysis method for
performing the detection of induction motor faults, such as the
broken rotor-bar or bearing fault. The mathematical formulation
is presented to calculate the features, which are called FFT-
ICA features in this paper. The obtained FFT-ICA features are
normalized by using healthy motor as benchmarks to establish a
feature database for fault detection. Compare with conventional
frequency-domain analysis method, no prior knowledge of the
motor parameters or other measurements are required for
calculating features. Only one phase stator current waveforms are
enough to provide consistent diagnosis of inverter-fed induction
motors at different frequencies. The proposed method also out-
performs our previous time domain analysis method.

Index Terms—Fault detection, Fast Fourier Transform, Induc-
tion motors fed from inverter, Independent Component Analysis.

I. INTRODUCTION

Stator-current monitoring is viewed as an important fault-
detection scheme without requiring special access to the mo-
tor [1]. Current signals from faulty motors can show essential
difference from those in the normal condition [1]. There is
a significant amount of research in this area, and broken
rotor-bars and bearing faults are two main fault types in
induction motors [1]–[4], where most research was performed
by decomposing and analyzing stator currents using various
methods such as Fourier analysis, wavelets, neural networks,
model-based techniques, and other statistical analysis [5]–[15].

Many of these methods are influenced by factors arising
from electric supply, noise, and fault conditions, some of which
may lead to erroneous fault detection [16]–[18].

Independent component analysis (ICA) is a powerful com-
putational algorithm for automatically separating a multivariate
signal into additive subcomponents by exploiting the mutual
statistical independence of non-Gaussian source signals [12]–
[14], [19]–[21]. It is a special case of blind source separation,
and has many practical applications such as signal process-
ing [22] and biomedical engineering [23]. ICA captures the
essential structure of the data in many applications, including
feature extraction and signal separation because of its property
of extracting statistically independent components.

ICA has been recently used for fault detection of induc-
tion motors [12], [14], [24]. One such research applies ICA

and support vector machines for fault diagnosis of induction
motors [24] using vibration signals collected at the vertical,
horizontal and axial positions and current signals over the three
phases. A total of 78 features are extracted in the time domain
for deriving 10 feature parameters. Three other parameters
are extracted from the frequency domain separately in this
research.

We propose a feature based frequency domain analysis
method that exploits the relative strengths of frequency-domain
analysis and ICA by applying ICA on frequency-domain
signals. As revealed in our previous work [12], [14], healthy or
faulty motors each exhibits unique signatures in the frequency
domain more than in the time domain. As frequency-domain
signatures are rich in information content, only a few features
need to be extracted from a moderate volume of signals for
making consistent fault detection on induction motors. Ac-
cordingly, ICA is applied to frequency-domain signatures for
identifying the dominant independent components to maintain
a simple fault classifier by removing less dominant ones. Our
proposed algorithm has also an important advantage of not
requiring any prior knowledge of motor/ bearing mechanical
and electrical parameters in any fault detection. Therefore,
ICA eliminates all human preparation and input of motor/
bearing mechanical and electrical parameters as required by
many frequency analysis techniques [1], [8], [9], [11], and
greatly enhances the accuracy and efficiency of fault detection
of induction motor.

This paper is divided into four sections. Section II pro-
vides the literature review of conventional frequency-domain
analysis method. Section III presents the setup for collect-
ing diagnostic data from laboratory induction motors. Sec-
tion IV presents our proposed FFT-ICA scheme which includes
mathematical formulation of the proposed algorithm, perfor-
mance of the proposed algorithm compared with conventional
frequency-domain analysis method and our previous time-
domain method. Section V concludes the paper.

II. CONVENTIONAL FREQUENCY-DOMAIN ANALYSIS

METHODS

A. Frequency-Domain Fault Signatures

Among the many techniques developed for motor-current
signature analysis (MCSA) [1]–[4], [8]–[15], FFT is the most
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widely used tool. FFT decomposes a time domain into com-
ponents of different frequencies. Motor stator current acts as
an excellent transducer for detecting faults in motors. During
operation, many harmonics will be present in a motor signal.
FFT spectrum will thus show many peaks, including the
inverter (fundamental) frequency and its harmonics. This is
known as the motor current signatures. Current signatures of
faulty motors differ from those of healthy motors, because
different electrical and mechanical faults generate different
harmonics.

Bearing faults take the form of outer-race, inner-race,
ball or cage defects, which are the main causes of machine
vibrations [1], [16]–[18]. Machine-inductance variations are
reflected in the stator current in terms of current harmonics,
which provide an indicator of bearing faults associated with
mechanical oscillations in the air-gap. Bearing fault current
harmonic frequencies fbearing are expressed as [1], [17], [18]:

fbearing = |fs ±mfi,v| (1)

where fs is the fundamental supply frequency, m = 1, 2, 3, . . .
are the harmonic indexes and fi,v is one of the characteristic
vibration frequency due to bearing faults.

fi,o =
n

2
fr

[
1± bd

pd
cosα

]
(2)

where
n number of bearing balls;
fr mechanical rotor speed in Hz;
bd ball diameter;
pd bearing pitch diameter;
α contact angle of the balls on the races.
Further explanation about the bearing faults can be found

in [1], [17], [18]. Information about the bearing construction,
which can be found in Table I, is required to calculate the
exact characteristic frequencies as in Eqn. 2.

A broken rotor-bar can be considered as some form of rotor
asymmetry that causes unbalanced currents, decreased average
torque and increased torque pulsations [1], [3]–[5], [7], [16],
[17]. Monitoring the sidebands fb around the fundamental
harmonic is a widely used approach for diagnosing broken
rotor-bars in induction motors in the following [1], [3], [4],
[16], [17]:

fb = fs(1± 2ks), k = 1, 2, 3, ... (3)

where
fs electrical supply frequency;
s per-unit slip.

B. Challenges for Classifying Healthy and Fault Motors

The inverter frequency, measured motor speed, and physical
parameters of the bearing are required in Eqns. 1 and 2 to
calculate the bearing fault frequency. Another parameter as
required in Eqn. 1 is the harmonic number ”m”, which is not
readily available. By applying the frequency auto search algo-
rithm [18], the estimated bearing fault signatures, fbearing can

Fig. 1. Laboratory setup for data collection from induction motors

TABLE I
PARAMETERS OF INDUCTION MOTORS FOR DATA COLLECTION

Motor Parameter Bearing Parameter
Power 1.1kW Ball diameter, bd 8.89
Voltage (�/Y) 230/400V Bearing pitch diameter pd 38.5mm
Current (�/Y) 4.5/2.6A Number of bearing balls, n 12/13
Frequency 50Hz Contact angle, α 0◦
Speed 1410rpm Bearing type NTN-6205Z
Pole pairs 2

be obtained. The bearing fault signature frequencies increase
with the inverter frequency.

Accurate values of inverter frequency and measured motor
speed are required in Eqn. 3 for calculating the broken rotor-
bar frequency.

The broken rotor-bar fault signatures (side-bands) depends
on the inverter frequency and slip as shown in Eqn. 3, which
compounds the difficulty against using sideband as a robust
means of detecting rotor-bar faults under wide ranges of slips
and inverter frequency. One significant challenge in the broken-
rotor-bar detection is to distinguish its respective sidebands
especially under low slip operation.

III. EXPERIMENTAL SETUP

Fig. 1 shows our experimental setup for collecting stator-
current waveforms from three identical motors of the same
technical specifications but with different conditions: one being
healthy, one having bearing fault and the other having broken
rotor bars [12], [14]. The technical specifications are given in
Table I.

Motor faults were artificially created with a dent on the
seal, and the deformation of the seal is connected to the inner
race of the bearing as shown in Fig. 2(a), and two holes
were drilled on the rotor bar of another motor as shown in
Fig. 2(b). All induction motors are driven by the same voltage-
fed pulse-width modulated inverter on data collection. The
healthy motor is considered as a benchmark for comparing
with faulty condition.

During data collection, the motors are loaded with a DC
generator. Stator currents are measured separately with a 4-
channel digital oscilloscope from each of the three motors.
The motors are supplied with different frequencies: 20 Hz,
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(a)

(b)

Fig. 2. Fault motors: (a) Denting the seal of the bearing to simulate bearing
fault; (b) Two holes are drilled on the rotor bar to simulate broken rotor bar.

25 Hz, 37.5 Hz, 43.5 Hz, and 50 Hz. 15 signal segments are
collected from each motor at each frequency at the sampling
rate of 50 kHz for 20 seconds.

IV. PROPOSED FEATURE BASED FAULT DETECTION

ALGORITHM FOR INDUCTION-MOTOR FAULT DETECTION

As mentioned in Section II, the fault-signature frequencies
of bearing fault and broken rotor-bar are dependent of mea-
surement or parameters of motors.

In this paper, a feature based frequency domain analysis
fault detection algorithm is presented. The proposed algorithm
does not require above operational dependent information.
The necessary information required is stator current signals.
The mathematical formula are presented to calculate features.
The paper will demonstrate the high accuracy, simplicity and
robustness of the proposed algorithm for the fault detection of
induction motors run under varying inverter frequency.

A. Mathematical Formulation of the Proposed Feature Based
Fault Detection Method

The frequency-domain signal F (ω) can be obtained from a
time-domain waveform f(t) by using FFT:

f(t) → (
f(t1) f(t2) · · · f(tL)

)
(4)

F (ω) = FFT (f(t)) (5)

where f(ti)(i = 1, 2, · · · , L) is amplitude at time ti(i =
1, 2, · · · , L); L is a record length of samples; FFT represents
fast Fourier transform function. The frequency-domain signal
F (ω) generated by this transformation includes the magnitude
information about each frequency components as the follow-
ing:

F (ω) → (
a(ω1) a(ω2) · · · a(ωN )

)
(6)

where a(ωi)(i = 1, 2, · · · , N) is the magnitude of frequency
component ωi(i = 1, 2, · · · , N); �ω = ωi+1 − ωi is the
resolution selected; N is the selected number of the frequency
components.

F (ω) in Eqn. 6 represents the frequency-domain signal of
the healthy motor. From the stator current signals of two faulty
motors, fbr(t) and fbe(t), the frequency-domain signals of the
faulty motors, Fbr(ω) and Fbe(ω) are obtained similarly:

Fbr(ω) →
(
abr(ω1) abr(ω2) · · · abr(ωN )

)
(7)

Fbe(ω) →
(
abe(ω1) abe(ω2) · · · abe(ωN )

)
(8)

where abr(ωi)(i = 1, 2, · · · , N) and abe(ωi)(i = 1, 2, · · · , N)
are magnitudes of frequency components ωi(i = 1, 2, · · · , N)
of broken rotor bar motor and bearing fault motor, respectively.

According to Eqns. 3 and 1, the frequency-domain signal
of the broken rotor bar motor has the sidebands around the
fundamental harmonics, and the frequency-domain signal of
the bearing fault motor is with the signatures of the bearing
faults compared with that of the healthy motor. Therefore,
Eqns. 6, 7 and 8 can be merged into the following:

F signals =⎛
⎜⎜⎜⎜⎜⎜⎝

a(ω1) · · · a(ωn)

k︷ ︸︸ ︷
0 · · · 0

m︷ ︸︸ ︷
0 · · · 0

a(ω1) · · · a(ωn) a(ωbr1) · · · a(ωbrk)

m︷ ︸︸ ︷
0 · · · 0

a(ω1) · · · a(ωn)

k︷ ︸︸ ︷
0 · · · 0 a(ωbe1) · · · a(ωbem)

⎞
⎟⎟⎟⎟⎟⎟⎠

(9)
The first row of Eqn. 9 represents the magnitudes of dif-

ferent frequency components about the healthy motor, i.e. the
magnitudes of healthy motor frequency signatures. Because the
healthy motor is assumed to be ideal normal, the magnitudes
of faulty frequency components are zero. Similarly, the second
row of Eqn. 9 shows the magnitudes of frequency signatures
of broken rotor bar motor, and the magnitudes of bearing
fault frequency components are zero. The third row shows the
magnitudes of frequency signatures of bearing fault motor, and
the magnitudes of broken rotor bar fault frequency components
are zero as shown in Eqn. 9.

According to Eqn. 9, different faults make their frequency-
domain signals have different frequency signatures, such as
Abr and Abe. The most important observation is that frequency
characteristics of healthy or faulty motors are in fact repre-
sented by the magnitudes of the frequency components rather
than the frequency components themselves. This means that if
the frequency components are fundamental constants, only the
magnitudes of the frequency components are enough to detect
fault from healthy motors according to Eqn. 9 regardless of
other information or parameters of the motor.

Therefore, according to above theoretical analysis, this
paper proposes a new feature based frequency domain analysis
method for performing the detection of induction motor faults,
which only uses the magnitudes of the selected frequency
components in Eqn. 9.

The time-domain ICA algorithm as in [12]–[14], [19]–[21]
is modified for application to the frequency-domain signals
(Eqn. 9) as follows:

x = A · s (10)
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s = W · x (11)

where x is an observed m-dimensional vector, s is an n-
dimensional random vector whose components are assumed
to be mutually independent, and A is a constant matrix to
be estimated; W is the (pseudo) inverse of the matrix A of
Eqn. 10, which is known as transformation matrix [12]–[14],
[19]–[21].

A set of statistically independent components, ICs, can be
extracted from the frequency-domain signals shown as 9 by
using the following:

ICs = W · F Signals (12)

The resulting independent components ICs reflect the char-
acteristic of signals F Signals in above Eqn. 12 [12]–[14],
[21]. Both the obtained ICs and the signals F Signals are
then used to calculate FFT-ICA features as following:

F Features = F Signals • ICsT (13)

where F Features are the FFT-ICA features of signals
F Signals.

The magnitude information of the selected frequency com-
ponents of healthy and faulty motors all contribute to the FFT-
ICA features as shown in Eqn. 13. For example, F Signalm
is mth frequency domain signal in F Signals.

F Signalm =
(
am(ω1) am(ω2) . . . am(ωN)

)
(14)

where am(ω1), am(ω2), . . . , am(ωN) represents the magni-
tude information about frequency component ω1, ω2, . . . , ωN ,
respectively.

F Signalm is converted to a M -dimension feature (from
feature 1 to feature M ) by dependent components ICs and
using the following equation:

(
F Featurem1 F Featurem2 . . . F FeaturemM

)

= F Signalm ×

⎛
⎜⎜⎝

ic11 ic12 . . . ic1M
ic21 ic21 . . . ic2M
. . . . . . . . . . . .
icN1 icN1 . . . icNM

⎞
⎟⎟⎠

(15)
where
F Featurem1, F Featurem2, . . . , F FeaturemM repre-
sent feature 1, feature 2, ..., and feature M of the mth signal
F Signalm, respectively. F Signalm include the magnitude
information about each selected frequency component.

As shown in Eqn. 14 and 15, all the magnitude information
of the selected frequency components is used to compute
the M -dimension feature of the signal. All the M -dimension
features of training data from the healthy and faulty motors are
exploited for establishing healthy and faulty signature database
for detecting of their faults, such as the broken rotor-bar and
bearing faults.

TABLE II
CALCULATED FAULT FREQUENCY OF THE MOTOR WITH BEARING FAULT

BY USING THE PARAMETERS IN TABLE I

Inverter Frequency Rotor Speed fbearing

(Hz) (rpm) (Hz)

20.0 584 331.507
25.0 731 414.916
37.5 1098 623.170
43.5 1274 723.097
50.0 1464 830.890

B. Performance of our proposed Method

As mentioned in Section III, stator-current signals are
collected from the three motors each run under several inverter-
frequencies. To provide a holistic view of the fault signature
database, each FFT-ICA feature, which obtained by using
Eqn. 13, is normalized using the healthy motor as a benchmark
for comparing with faulty condition. The performance of the
proposed method is demonstrated by comparing to the existing
frequency analysis based methods and our previous time-
domain method.

1) Comparison with Conventional Frequency Analysis
Methodd: Fault frequency of the motor with bearing fault can
be obtained as shown in Table II by using the parameters in
Table I and Table II. The bearing fault frequency signatures
changes with the supply frequency as shown in Table II. We
can locate the bearing fault frequency according to Table II as
shown in Fig. 3.

Similarly, the fault frequency of the motor with broken
rotor bar can be estimated by using the obtained parameters
shown in Table III according to Eqn. 3. The broken rotor
fault signature frequency (sidebands) changes with the supply
frequency as shown in Table III. Table II and Table III also
shows that the bearing fault frequency signatures are located in
higher frequency band compared to fault signatures of broken
rotor bars.

However, without using the measurement of the slip or
parameters of the motors, our proposed method can give
perfect classification results as shown in Fig. 4(b).

2) Comparison with the Previous Time-domain Analysis
Method: Fig. 4 shows performance of our proposed method
compared with the previous time-domain ICA method. Under
each inverter frequency, our proposed frequency-domain ICA
method give better results than time-domain ICA method, and
there is no drifting (Fig. 4(a)) of the two faulty cluster with
changing inverter frequency as shown in Fig. 4(b).

The proposed algorithm involves simply partial substitution
of the new signal into Eqn. 15 for calculating the FFT-
ICA features. The features directly show the type of the
motors. Unlike our previous time-domain ICA method for fixed
frequency [12] and hybrid time-frequency domain analysis
method [14], a fuzzy neural network (FNN) or a fuzzy system
(FS) are not required for the presently proposed algorithm.
The fault detection would be 100% accurate judging from
the superior performance of the classification as shown in
Fig. 4(b).

30 2011 6th IEEE Conference on Industrial Electronics and Applications



310 320 330 340 350 360
−100

−50

0

Frequency(Hz)

M
ag

n
it

u
d

e 
(d

B
)

Bearing Fault
Healthy

Bearing fault 
frequency signature

(a) Supply frequency 20Hz

400 405 410 415 420 425 430 435
−100

−50

0

M
ag

n
it

u
d

e 
(d

B
)

Frequency(Hz)

Bearing Fault
Healthy

Bearing fault 
frequency signature

(b) Supply frequency 25Hz

610 620 630 640 650
−100

−50

0

Frequency (Hz)

M
ag

n
it

u
d

e 
(d

B
)

Bearing Fault
Healthy

Bearing fault 
frequency signature

(c) Supply frequency 37.5Hz

800 820 840 860 880 900
−100

−50

0

Frequency (Hz)

M
ag

n
it

it
u

d
e 

(d
B

)

Bearing Fault
Healthy

Bearing fault 
frequency signature

(d) Supply frequency 50Hz

Fig. 3. Locating bearing fault frequency signatures using the parameters in Table I.

−0.5 0 0.5 1
−1

−0.5

0

0.5

1

Time−domain Feature 1

T
im

e−
d

o
m

ai
n

F
ea

tu
re

 2

(1) Supply Frequency: 20 Hz

−1 −0.5 0 0.5
−1

−0.5

0

0.5

1

Time−domain Feature 1

T
im

e−
d

o
m

ai
n

F
ea

tu
re

 2

(2) Supply Frequency: 25 Hz

−0.5 0 0.5 1
−1

−0.5

0

0.5

1

Time−domain Feature 1

T
im

e−
d

o
m

ai
n

F
ea

tu
re

 2

(3) Supply Frequency: 37.5 Hz

−1 −0.5 0 0.5
−1

−0.5

0

0.5

1

Time−domain Feature 1

T
im

e−
d

o
m

ai
n

F
ea

tu
re

 2

(4) Supply Frequency: 43.5 Hz

−0.5 0 0.5 1
−1

−0.5

0

0.5

1

Time−domain Feature 1

T
im

e−
d

o
m

ai
n

F
ea

tu
re

 2

(5) Supply Frequency: 50 Hz

Healthy
Brearing problem
Broken rotor bars

(a)

−0.6 −0.4 −0.2 0
−0.6

−0.4

−0.2

0

FFT−ICA Feature 1

F
F

T
−I

C
A

F
ea

tu
re

 2

(1) Supply Frequency: 20 Hz

−0.6 −0.4 −0.2 0
−0.6

−0.4

−0.2

0

FFT−ICA Feature 1
F

F
T

−I
C

A
F

ea
tu

re
 2

(2) Supply Frequency: 25 Hz

−0.6 −0.4 −0.2 0
−0.6

−0.4

−0.2

0

FFT−ICA Feature 1

F
F

T
−I

C
A

F
ea

tu
re

 2

(3) Supply Frequency: 37.5Hz

−0.6 −0.4 −0.2 0
−0.6

−0.4

−0.2

0

FFT−ICA Feature 1

F
F

T
−I

C
A

F
ea

tu
re

 2
(4) Supply Frequency: 43.5 Hz

−0.6 −0.4 −0.2 0
−0.6

−0.4

−0.2

0

FFT−ICA Feature 1

F
F

T
−I

C
A

F
ea

tu
re

 2

(5) Supply Frequency: 50 Hz

Healthy

Bearing fault

Broken Rotor Bar

(b)

Fig. 4. Comparison between previous time-domain method and the proposed frequency-domain feature based method at each frequency supply: (a) Results
obtained by time-domain method under supply frequency: 20Hz, 25Hz, 37.5Hz, 43.5Hz and 50Hz; (b) Results obtained by frequency-domain feature based
method under supply frequency: 20Hz, 25Hz, 37.5Hz, 43.5Hz and 50Hz
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TABLE III
NECESSARY PARAMETERS NEEDED AND ESTIMATED FAULT FREQUENCY OF THE MOTOR WITH BROKEN ROTOR BARS

Measured/ Broken Rotor Bar
Supply Frequency Estimated Per-unit Fault Signature
(Hz) Rotor Speed slip Frequency

(rpm) fb (Hz)

20.0 582/600 0.0300 18.81/21.16
25.0 729/750 0.0280 23.60/26.40
37.5 1095/1125 0.0267 35.43/39.47
43.5 1271/1305 0.0261 41.23/45.76
50.0 1461/1500 0.0260 47.41/52.59

V. CONCLUSION

A new algorithm for the fault detection of induction motor
is presented and the mathematical formulation is developed to
utilize FFT and ICA to calculate the features of the stator-
current signals. The features obtained in the present way are
shown to have the content of the motor’s fault information.
Compared with our existing time-domain ICA method and con-
ventional frequency domain analysis techniques, our proposed
scheme provides more robust, flexible, reliable and easy-to-
implement fault detection on induction motors under varying
frequency.
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