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Abs t rac t  This paper describes the routing problems in optical fiber networks, defines five constraints, induces 
and simplifies the evaluation function and fitness function, and proposes a routing approach based on the genetic 
algorithm, which includes an operator [OMO] to solve the QoS routing problem in optical fiber communication 
networks. The simulation results show that the proposed routing method by using this optimal maintain operator 
genetic algorithm (OMOGA) is superior to the common genetic algorithms (CGA). It not only is robust and 
efficient but also converges quickly and can be carried out simply, that makes it better than other complicated 
GA. 

Keywords  genetic algorithm, optimal maintain operator (OMO), optical fiber communication network, 
QoS routing 

1 I n t r o d u c t i o n  

With the development of the optical fiber tech- 
nology, data communication has been speeded up 
from 56 Kbps (ARPANET) to 1 Gbps (modern op- 
tical communication). Meanwhile, the error rate 
went down from 10 -5 per bit to almost zero [1] . In 
addition, fiber can handle much higher bandwidths 
than any other transmission media [2], with the ad- 
vantage of not being affected by power surges, elec- 
tromagnetic interference, and power failures. In the 
future, fiber will become more and more popular. 

Almost all communication networks including 
optical fiber communication networks require that  
the route should support QoS request. To sup- 
port the requirement of extensive QoS, routing al- 
gorithms need rather complicated matrix to char- 
acterize the network with several indexes, such as 
delay, bandwidth, packet loss rate, and c o s t  [3'4] . 

Thus, the routing problem based on QoS can be 
converted to the optimum-searching problem sat- 
isfying several constraints simultaneously. This 
kind of routing problem is proved to be an NP- 
problem[5]. 

Genetic algorithms have been applied to the op- 
timization of the network topology structure [6-s], 
and obtained some beneficial results. Recently, 
GA was found to be well suitable for routing 
problems [4'9'1~ And some researchers solved rout- 
ing problem with their improved genetic algorithms 
and the approach was proved to be feasible. How- 

ever, the localization of CA search, especially in 
the large-scale network with complicated topology 
structure, makes it perform badly, which may lead 
to premature convergence without optimal solu- 
tion. In this paper, the genetic algorithm with op- 
timal maintain operator (OMOGA) is applied to 
solve the QoS routing problem in optical fiber net- 
works. The simulation results show that the pro- 
posed routing method using the OMOGA is not 
only easy to execute compared with other GAs, but 
also feasible and efficient and superior to the com- 
mon genetic algorithms (CGA). Further, by select- 
ing genetic constraints it can eliminate the circulat- 
ing routing. This routing optimization method can 
be applied to arbitrary optical fiber communication 
networks with complicated topology. 

The rest of the paper is organized as follows. In 
Section 2, we introduce OMOGA based on CGA. 
In Section 3, we state the QoS routing problem 
in optical fiber communication networks formally. 
Section 4 describes coding method and the prob- 
lem of QoS in fiber networks and proposes a strat- 
egy for routing optimization based on OMOGA. In 
Section 5, we analyze the feasibility of the proposed 
OMOGA and compare it with CGA. Finally, Sec- 
tion 6 gives the conclusion of this paper. 

2 The Genet ic  A l g o r i t h m  w i t h  O p t i m a l  
M a i n t a i n  O p e r a t o r  ( O M O G A )  

Common Genetic Algorithm (CGA) is a kind of 
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random global optimization method developed re- 
cently, based on the principle of natural  selection 
and genetics. It is quite simple and robust, and 
very easy to be implemented, so that  it has been ap- 
plied to solve large-scale problems successfully [6-sl . 

OMOGA is the improvement of CGA. The com- 
mon genetic operators of OMOGA are the same as 
those of CGA. However. in OMOGA the best one 
of every generation is used in the next generation 
directly. The best one of every generation is com- 
pared with the best one of the previous generation, 
and the bet ter  one is used in the current generation. 

I t  can be seen from the above definition that  
elitist model[ n'l'~ is adopted in OMOGA as the 
selection operator. It has been proved that  eli- 
tist model based GA could finally converge to the 
global optimal solution[lit. In OMOGA, there are 
N selected mothers which cross and mutate  to pro- 
duce the new generations just as the CGA. It  makes 
OMOGA different from the sole elitist model based 
GA which selects _V - 1 mothers [12] . 

Therefore, we employ OMOGA to solve the 
routing problem in the optical fiber communica- 
tion Imtworks. The results verify that  there is no 
immature  convergence in OMOGA. 

3 QoS Routing Problem Presentation 

We model the topology network structure with 
undirected graph G = (V, E), where network nodes 
are represented by vertexes and links are repre- 
sented by edges. V is the set of network nodes and 
E is the set of links in the graph. Every edge li E 
E.  The aim of routing selection is to search for the 
opt imal  pa th  while satisflfing the QoS requirement 
between the source nodes and the end nodes. 

Routing in optical fiber communication net- 
works is a little different from other communication 
networks because of the characters of the fibers. 
QoS routing is composed of several factors, such 
as cost, bandwidth, packet loss rate, delay and so 
on [41. In optical fiber communication networks, we 
may not consider the bandwidth constraint because 
of the unique character of optical fibers, which have 
the bandwidth wide enough to transmit  almost any 
signal [51. But the nodes (computer or server) have 
the finite bandwidth.  Therefore, if there are many  
requests at the same time some requests must wait 
till the nodes have free time to deal with. Some- 
times the delay is short enough to satisfy the re- 
quest of users. Because different operations have 
different requests of delay and loss rate, and the 
request is represented in real time, the routing al- 

gori thm nmst be dynamic. 
The routing request q of a single destination 

consists of source node, destination node and QoS 
request including error rate Lu, cost Wu, delay Du, 
and the number of nodes from end to end. In gen- 
eral, the error rate is almost zero and the delay is 
very small when the signals t ransmit  in the optical 
fibers because the speed of light is supreme. But we 
should consider the error rate and the delay of the 
nodes. So the routing algorithm should find a pa th  
that  satisfies the QoS required by routing request 
q. The foUowing conditions must be satisfied: 

Delay constraints by the mid nodes between 
source node and destination node: 

~ l l j cEuD( l i j )  <~ Du (j = mid nodes, including 

destination node). (1) 

Error rate constraints from end to end: 

l-Ii~eEu(1 -- L(li j))  >/ 1 - Lu (j  = nfid nodes, 

including destination node). (2) 

Cost constraints from end to end are limited 
within Wu: 

w(4j) (3) 
lijEEu 

where lij E Eu, Eu is the selected route, Eu C E. 
D(li j)  is the handling delay of the node j ,  L(l~j) 
is the loss rate of node j and I f ( l i j )  is the cost of 
link lij. In (1) and (2), j should represent all mid 
nodes. Here, j is set to include destination node in 
order to simplify computing. 

4 Strategy for Rout ing Optimization 
B a s e d  o n  O M O G A  

4.1 Coding and Decoding Mechanism o f  
OMOGA 

We take [vijjNxN a S  the coding mechanism 
of genetic algorithm, construct the topology net- 
work matr ix  [lijJN• and assume that  the op- 
tical fiber communication network has N nodes, 
so the topology network matr ix  model has N x N 
elements. Except diagonal elements, each element 
corresponds to the likely existing link lij, evidently, 
here liy = lyi. Then the element lij located in the 
matr ix  corresponds to the link lij from node i to 
node j ,  

1, if link lij from node i to node j exists 
lij = in the topology network; 

0, otherwise. 

The routing problem can be described by 
N-dimensional binary routing evolution matr ix  
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[v~o ] N x N, where the elements on rows represent all 
s tar t  nodes of the network, the elements on columns 
represent all dest inat ion nodes (vice versa, the row 
and column are equivalent). 

Each element of the evolution matr ix  corre- 
sponds to the link vii from node i to node j ,  located 
on row i and column j .  

1, if the opt imal  route includes link from 
vij = node i to node j ;  

0, otherwise. 

Similarly, the link elements tha t  are not located 
in the selected route  are set to constant  zero. And  
we design the value of the diagonal elements as 
zero, thus the value of vij indicates whether the 
link l i j  from i to j is selected. W h e n  vii = 1, the 
link l i j  is the selected route leading to destination. 
While vij = 0 ,  it shows tha t  the link Iij iS not in- 
cluded in the route  leading to destination, or o ther  
instances. 

It is obvious tha t  the decoding of this genetic 
a lgori thm maps  the N-dimensional  matr ix  to the 
representat ion of b inary  array. Therefore, the opti-  
mal state in the genetic evaluation routing matr ix  
straightly represents an opt imal  pa th  from the ini- 
tial source nodes to the final determinat ion nodes. 
For example, there are 6 nodes in the topology of 
the optical fiber communica t ion  networks; the ma-  
trix A can represent a route from al  to a6. The  
route is a~ --+ a2 --~ a4 -+ a3 -+ a5 ---> a6. 

Here 

0 112 "'" l lN] 

[lij]NxN = /21 0 "'" /2N 
. . . . . .  0 ' ' "  ' 

L1N1 lN2 .. .  0 

a li ~176176176 
a 0000'00 ~ 

A =  aa 0 0 0 1 
a4 0 1 0 0 " 
a5 0 0 0 0 
a 6 0 0 0 0 

Evidently, we can get the constraints  of the op- 
t imal  pa th  as follows: 

(i) only if it includes link lij in the network topology 
structure, i.e., l~j = 1, the element v~j in the evaluation 
routing matrix may take 1, i.e., vii = lij X vii; 

(ii) every element in the evaluation routing matrix 
can but take 0 or 1; 

(iii) in the binary coding evaluation routing ma- 
trix, no more than one element in each row takes 1, 
i.e., (E,N__, v i y -  1) ~ O; 

(iv) in the binary coding evaluation routing matrix, 
no more than one element in each column takes 1, i.e., 
(E i~ l  vld- 1) ~< O; 

(v) intermediate elements (except source and desti- 
nation nodes) of the binary coding evaluation routing 
matrix will be the inceptive node of the next link, if it 
is the arriving node, i.e., Y~ff=l vo - ~ = 1  vyi = 0 (j 
represents all the intermediate nodes along the optimal 
path). 

Obviously, if the route includes the circulating 
links, one of the nodes belonging to the route  must  
be the dest inat ion node twice. And in evaluation 
rout ing matr ix,  there must  be more than one el- 
ement in each column taking 1. Then  the route 
cannot  satisfy the constraints  (iii), (iv) and (v). 
Therefore, the constraints (iii), (iv) and (v) avoid 
circulating links. 

4.2  E v a l u a t i o n  F u n c t i o n  E s t a b l i s h m e n t  

According to the above mechanism of coding, 
decoding and several constraints ,  we design the 
evaluation function as follows: 

N N N N 
A B 

j = l  i = 1  i = 1  j = l  

+ T X  E v',-' v,,-, 
j = l  i = 1  i = l  j = l  

N - 1  N N E 2 ,) 
j = 2  i = 1  i = 1  

N N 

i = 1  j = l  

N N G 2 

i = 1  j = l  

N N 

i = 1  j = l  

Here tij, ~ij and wij denote  the delay, signal 
error rate and cost respectively, tha t  can be ob- 
tained by measuring network as the vital index of 
routing. Du, Lu, Wu, do, and bo are designated 
by QoS. Every  i tem in (4) corresponds to an i tem 
of constraints (i) to (v) ment ioned  above and QoS 
requests (1) to (3) respectively. 

Consider tha t  the first five constraints  (i) to  (v) 
of the elimination function are s t rong constraints ,  
and a route cannot  be opt imal  if not  satisfying any 
of them. Therefore, in the realization of par t icular  
algorithm, we define the five constraints  as chro- 
mosome constraints,  and only the filial generat ion 
satisfying genetic constraints can exist. 

Five genetic constraints r r  ga3, r and ga5: 
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~1 ~ v i i  -- l i j  X v i j  -~ O, 

( i = 1 , 2 , . . . , N ,  j = I , 2 , . . . , N  
r = v~j (1 - v~j) = O, 

( i = l , 2 , . . . , N ,  j =  1 ,2 , . . . ,N  

= - 1 < o ,  

(i = 1 ,2 , . . . ,N,  j = 1 ,2 , . . . ,N)  
N 

r  = ~ j = z  v ~  - 1 ~< 0, 

( i = 1 , 2  . . . .  ,N, j = I , 2 , . . . , N )  
v j , -  o, i : 1 , 2  . . . . .  N : j  

represents all the intermediate nodes along 
the optimal path. 

Only three optimization targets are involved 
when choosing elimination function El .  

N N 

E1 = 
i=1 j = l  

N N 
G 2 

i=1 j = l  
N N 

+ 

i=l. j = l  

The selected fitness function is 
1 

E = - -  (6) 
E 1 + 1  

When E1 tends to 0, E comes to 1 approxi- 
mately. The optimal route is the matrix or two- 
dimensional array that corresponds to the one with 
fitness 1. 

4.3 R e a l i z a t i o n  o f  O M O G A  

running times is set to 50. 

Figs.1 and 2 show the topology of network sys- 
tems. Fig.1 consists of six nodes and eight edges. 
Fig.2 consists of thirteen nodes and several edges 
connecting the nodes. Each of the nodes and edges 
is denoted by the parameters. The elements in the 
parentheses are error rate and delay, respectively. 
Cost is marked on the side of edges. 

a2 ( l Z 0 " l ) 0 .  3 ( ~ 4  (10--3,0.5) 

(~a l  (10_6,2) N ~  - '-  "~) 

a3 (10-'5,0.3) a5 (t0-5,0.1) 

Fig.1. Network topology structure and its parameters of 
Example 1. 

03(10 -~, 0.2) 
5 , ~  09(i0 -5 o.I)  

07(10- , 0 . ~ -  ' 

0.5 Ck-] X04(I0-% 0.7) \0.8 _5,0.3 ) 
t 3 ( m - 5 , 1 ~ ~  0 

0 5 ( 1 0 - ~ , 0 . 2 ) 0 . 3 ~ _ ~ _ 7 F - 6 5  ~ . 
~ ~ , . ~  . . . .  o8(to--,, o 2) 
01(10 -3, 0.7) 02(10 -~ 0.5) 

Perform specific routing algorithm as follows. 

I. Select matrix colony {vo} from current matrices, 
and evaluate its evolution matrix (chromosome) which 
creates the initial of evolution routing matrix accord- 
ing to the preceding four strong constraints. Simulta- 
neously, present route delay matrix {to} , cost matrix 
{w O } and loss rate matrix {~t,j } as the information of 
delay, cost and loss rate of the current link, respectively. 

II. By using fitness function E, evaluate the fitness 
of all solutions in the colony, label the best one and 
compare it with the former best one if there is a former 
generation, then select the better one as the best one 
of the current generation. 

III. According to five genetic constraints, process 
the new colony using CGA. 

IV. Rule of stopping testing. If it is satisfied, then 
stop; otherwise turn to II. 

5 S i m u l a t i o n  A n a l y s i s  

Carry out computer simulation experiment with 
Matlab 6.1 on a PC Pentium III 1G. The number of 

Fig.2. Topology structure and its parameters of Example 2. 

Example 1. Employing the network topology 
structure shown in Fig.1. Perform routing from 
source node al to destination node a 6. Popu- 
lation dimension is set to 10, Per . . . . .  cr = 0.95, 
/:'mutation = 0.03, coefficient F = G = H -- 100. 
To conduct simulation by employing the OMOGA 
proposed above, the mean genetic era is 4. We 
can obtain the global optimal solution when pass- 
ing down to the third generation. While simulation 
with CGA the mean genetic era to obtain the op- 
timal path is 62. 

Example 2. Employing the network topology 
structure shown in Fig.2. According to above algo- 
ri thm flow, draw up procedure to perform routing 
from node 01 to node 10, and the size of popula- 
tion is set to 40. PCrossover = 0.95, Pmutation = 0.03, 
coefficient F = G = H = 100. By simulating with 
this OMOGA, we can obtain the optimal path, and 
through several simulations the mean number of 
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generations to gain optimal solution is 15. While 
simulating with CGA, the mean number of gener- 
ations to gain optimal solution is 627. Compare 
with CGA, OMOGA requires less retries. 

Table 1 shows some experimental results ob- 
tained with CGA and OMOGA. The data  clearly 
indicate that  the mean genetic era of OMOGA is 
less than that  of CGA. 

Table  1. Simulation Results of CGA and OMOGA 
Example 1 2 

Population 10 40 
Running times 50 50 

Mean genetic era (OMOGA) 4 15 
Mean genetic era (CGA) 62 627 

The shortconfing of GA is the extra use of 
computational  resources; more time and coinput- 
ing power are required to executc CA. But given 
a reasonably powerful processor, t ime requirement 
for even thousands of GA iterations can be only a 
few milliseconds, thus making it suitable for real 
time scenario. Alternatively, the execution of GA 
can be carried out off-line and the results can be 
used to on-line execution. 

The results of simulation validate that  this 
model can always converge to a stable state. There- 
fore, the opt imal  state in the genetic evaluation 
routing matr ix  represents an optimal pa th  from 
initial source nodes to final determination nodes. 
And from the two cases, it is obvious that  OMOGA 
is not only easy to carry out but also superior to 
CGA. 

To make an in-depth analysis, the simulation 
experiments of OMOGA are also implemented in 
large-scale network having more than 100 nodes. 
This algorithm can find the optimal routing un- 
der limited time. The simulation results demon- 
strate that  the t ime complexity function polynomi- 
ally changes along with the increasing of the input 
loading of examples. I t  shows that  this algorithm 
is a polynomial t ime algorithm. It  is proved that  
the polynomial t ime algorithm is a practical and 
valid algorithm[ la]. The fact that  the time com- 
plexity function of OMOGA is a polynomial t ime 
algorithm proves its efficiency. 

6 C o n c l u s i o n  

By using OMOGA, we can obtain the opti- 
mal solution of single-destination routing problem 
through simulation. This method is of low compu- 
tat ional complexity, and can be realized with soft- 
ware. Compared with the CGA, it reduces cal- 
culation time, and eliminates premature  conver- 

gence. This algorithm can also be applied to multi- 
destination routing in the optical fiber communi- 
cation networks. Alternatively, the execution of 
OMOGA can be carried out off-line and the results 
can be used to on-line execution. 

The proposed method in this paper solves the 
routing problem in optical fiber communication 
networks that  have several QoS constraints. The 
results of simulation verify its superiority. This al- 
gori thm covers QoS parameters  entirely, and it can 
be carried out simply and converges quickly. This 
algorithm is independent, that  is, it does not rely 
on any specific network, which endows it with ex- 
tensive applicability in network systems. 
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