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Abstract 

The advent of Integrated Energy Systems enabled various distributed energy to access the system through 
different power electronic devices. The development of this has made the harmonic environment more complex. 
It needs low complexity and high precision of harmonic detection and analysis methods to improve power 
quality. To solve the shortages of large data storage capacities and high complexity of compression in sampling 
under the Nyquist sampling framework, this research paper presents a harmonic analysis scheme based on 
compressed sensing theory. The proposed scheme enables the performance of the functions of compressive 
sampling, signal reconstruction and harmonic detection simultaneously. In the proposed scheme, the sparsity of 
the harmonic signals in the base of the Discrete Fourier Transform (DFT) is numerically calculated first. This 
is followed by providing a proof of the matching satisfaction of the necessary conditions for compressed 
sensing. The binary sparse measurement is then leveraged to reduce the storage space in the sampling unit in 
the proposed scheme. In the recovery process, the scheme proposed a novel reconstruction algorithm called the 
Spectral Projected Gradient with Fundamental Filter (SPG-FF) algorithm to enhance the reconstruction 
precision. One of the actual microgrid systems is used as simulation example. The results of the experiment 
shows that the proposed scheme effectively enhances the precision of harmonic and inter-harmonic detection 
with low computing complexity, and has good capability of signal reconstruction. The maximum detection error 
reaches 0.0315%, and the reconstruction signals to noise ratio (SNR) is higher than 89 dB. 

Keywords: Power quality, Compressed sensing, Harmonic analysis scheme, SPG-FF algorithm 

 

1   Introduction 

In recent years, based on rising attention for environmental protection on a worldwide basis, distributed 
renewable energy gradually replaces conventional fossil fuel in many areas. When photovoltaic system, wind 
turbine and electric vehicles are connected to the grid, nonlinear power electronic devices bring serious power 
quality problems [1–3]. Lv, considering large-scale integration of renewable energy resources, researched the 
interactive energy management operation to improve the power quality [1]. Boynuegri et al. [3] studied a novel 
power conditioning unit to decreasing voltage distortion caused by electric vehicles. To solve the power quality 
problems in Integrated Energy Systems, methods with low complexity and high precision of harmonic detection 
and analysis have become the key technique of improving power quality in Integrated Energy Systems, 
especially in microgrid. Several techniques and models have been developed in recent years to address power 
quality issues. The methods based on wavelet packet transform [4], hanning window [5], minimize sidelobe 
windows [6], discrete Fourier transform (DFT) [7], as well as FFT and its improved research [8,9] have been 
studied and applied to the power quality analysis. These harmonic detection methods have their own 
characteristics, but all the typical analytic methods are based on the Nyquist/Shannon sampling theory. Their 
analytic methods are similar as they all begin with the collection of power quality data through high frequency 



FFT and its improved research [8,9] have been studied and applied
to the power quality analysis. These harmonic detection methods
have their own characteristics, but all the typical analytic methods
are based on the Nyquist/Shannon sampling theory. Their analytic
methods are similar as they all begin with the collection of power
quality data through high frequency acquisition and A/D conver-
sion, and then this is followed by compressing the data. Although
data compression can reduce the burden of transmitting mass
sample data to a certain extent, a lot of hardware resources and
storage space have been spent in the high-speed sampling stage
before data compression. Moreover, with the development of
smart grid, high frequency switch power electronic device makes
harmonic components more complex and makes sampling fre-
quencies higher, which requires more hardware resources and
storage space during the Nyquist sampling process.

As a new signal processing theory, compressed sensing (CS)
combines the compression process and the sampling process. The
completed data compression in the sampling process can effec-
tively reduce the utilization of hardware resources and storage
space. CS has been considered for many applications including
image processing [10], signal transmission [11], communication
[12], etc. Although the CS theory has been applied in image pro-
cessing and other fields, less research has focused on the power
systems. As a promising approach, CS was discussed in connection
with the application in sampling and transmitting information
from large number of sensors in the smart grid communication
networks, but there is no specific implementation process of the
compressed sensing application [13]. In another Ref. [14], Com-
pressive Sampling theory was employed to analyze the syn-
chrophasor data communication in WAMS. From the description
and its references, we find that ‘‘compressive sampling theory” in
[14] was actually the same as ‘‘compressed sensing theory”. In
the literature [15], the popular CS theory was used to classify the
fault area and reduce the WAN communication traffic. Another
data transmission method based on compressive sensing technol-
ogy was proposed in [16]. The signals were transformed into wave-
let domain coefficients by means of wavelet multi-resolution
analysis. Then these coefficients were sampled and wavelet inverse
transforms were applied to reconstruct the original signals. Differ-
ent from that in the references [15,16], this paper applies the CS
theory to harmonic and inter-harmonic signal detection and fully
considers the signal characteristics in electric power systems.

This paper proposes a harmonic analysis scheme based on CS
technology, which can implement the function of sampling com-
pression, signal reconstruction and harmonic detection simultane-
ously. Specifically, the paper mainly provides the following
contributions:

(1) Sparseness property of electrical power system harmonic signal:
The sparseness of signal is the prerequisite of using CS the-
ory. We not only give the sparseness property of harmonic
signal in electrical power system and proportion of sparse-
ness in fundamental and harmonic components but also
prove them.

(2) Harmonics analysis scheme based on CS theory: The scheme
includes sampling process and recovery process. In the
sampling process, the scheme uses the binary sparse random
measurement matrix and gives the corresponding switching
hardware circuit. The binary sparse measurement can effec-
tively save the sampling storage space and reduce sampling
complexity. In the recovery process, the scheme implements
the function of signal reconstruction and harmonic detection
simultaneously.

(3) Spectral Projected Gradient with Fundamental Filter (SPG-FF)
algorithm: Based on the property of sparseness proportion
in fundamental and harmonic components, considering the

significant differences of harmonic signal’s energy in the
recovery process, a novel reconstruction algorithm called
the SPG-FF is proposed, which can reduce the sparsity of
the signal and enhance the detection and reconstruction
precision of harmonic components.

The article is structured as follows. We show how CS method
can be applied to harmonic analysis. Specifically, Section 2 intro-
duces the CS theory. The proposed harmonic analysis scheme is
detailed in Section 3, followed by Section 4 describing the SPG-FF
algorithm of the proposed scheme. Section 5 evaluates the pro-
posed scheme through experiments and simulation, and Section 6
concludes the paper.

2. Compressed sensing theory

The theory of CS [17] shows that if a signal is sparse on some
basis, it can be reconstructed from a small number of measure-
ments. Even through a small number of measured values are used
to solve an optimization problem, the original signal can still be
reconstructed with high probability of accuracy.

To simplify the statement, the symbol x is used to define an N-
dimensional non-sparse signal. If x can be represented as x =Ws
under sparse matrix W, x is considered sparse. Clearly, x and s
are equivalent representations of the same signal in different
spaces or domains, with x in the time domain and s in the W
domain. The M-dimensional observation vector y can be repre-
sented as y =Ux, where U is an M � N measurement matrix, with
M < N. Finally, the original signal x can be recovered accurately by
the CS reconstruction algorithm. The model of CS theory is repre-
sented as
y ¼ Ux ¼ UWs ¼ Hs ð1Þ

3. Harmonic characteristics analysis

3.1. Sparseness of harmonic signal in electrical power system

The prerequisite of using CS theory is that the original signal is
sparse (named K-sparse). If the original signal x can be represented
as x =Ws under the sparse matrixW, then values of most elements
of coefficient vector s are less than a small positive e, it is arguable
that the original signal is a K-sparse signal.

The mathematical equation of the harmonic signal is [18]:

f ðtÞ ¼
XH
h¼0

Ah cosð2pf ht þuhÞ ð2Þ

Here {A0, f0, u0} represents fundamental component parame-
ters, while {Ah, fh, uh} (hP 1) represents the parameters of the har-
monic component parameters, which includes Hth harmonic
components. The signal has the following properties:

Property 1 (Sparseness of harmonic signal in electrical power
system). With the Discrete Fourier Transform (DFT), the harmonic
signal in electrical power system satisfies the sparseness require-
ments of compressed sensing

The proof is shown in Appendix A.

Property 2 (Proportion of sparseness in fundamental and harmonic
components). In the power system, fundamental components
occupy a high proportion of signal sparseness, while harmonic
components occupy very low proportions.
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Therefore, if the fundamental components of original harmonic
signals are filtered out, the sparseness of signal K will decrease
sharply.

We firstly calculate the sparseness ratio. Let ah be the amplitude
of the hth harmonic component of (ah � 1), the fundamental
amplitude. In the general sparseness K of the original harmonic sig-
nal, the proportion of the fundamental sparsity K0 is approximately
equal to:

K0

K

� �
min

� 1

1þPH
h¼1ah

ð3Þ

The proof is shown in Appendix B.
According to standards on power quality harmonic limits GB/

T14549-1993 [19], amplitudes of odd harmonics and even har-
monics are within 4% and 2% of the fundamental amplitude respec-
tively. The components of more than 12th even harmonics and
25th odd harmonics as shown in the equation below can be
negligible:

XH
h¼1

ah 6
X

h¼f3;5;...;25g
aod þ

X
h¼f2;4;...;12g

aev ¼ 12� 4%þ 6� 2% ¼ 0:6

Then (K0/K)min P 0.625.
The fundamental component occupies over 62.5% in the signal

sparseness. That means the sparseness can be decreased greatly
if the fundamental component is filtered out from the original har-
monic signals.

When H = 5 and N = 2048 in the formula (2), the signal f(t) was
represented by the different sparse matrices: DFT, Discrete Cosine
Transform (DCT) matrix and Discrete Wavelet Transform (DWT)
matrix. The degrees of sparseness under the different transform
matrices were KDFT = 174, KDCT = 185, KDWT = 567 respectively.
The results show that the signal has better sparseness under the
DFT and DCT matrix than under DWT, and the sparseness under
DFT is better compared to that under DCT. Therefore, this paper
employs DFT as the sparse matrix based on the theoretical analysis
and numerical calculation.

3.2. Harmonic analysis scheme

The paper proposed a novel harmonics analysis scheme based
on CS theory, which implements the functions of compressive sam-
pling, signal reconstruction and harmonic detection
simultaneously.

In the sampling process, using the binary sparse measurement
matrix, the original N-dimensional signal x undergoes a linear
reduced dimensional process to obtain an M-dimensional observa-
tion vector y (M� N). The linear reduced dimensional process
reduces the usage of storage space compared with traditional
Nyquist sampling schemes.

The harmonic analysis is completed in the same process as CS
reconstruction in the recovery process. In order to reduce the
picket fence effect and spectrum leakage problems caused by
non-synchronous sampling of the inter-harmonics, we used double
spectrum line interpolation algorithm in spectral line interpolation
analysis, and the harmonic detection can be completed in the same
process. The original reconstructed harmonics signal can be
obtained from the sparse vector s with the sparse inverse transfor-
mation. The compressed sensing harmonics analysis scheme is
shown in Fig. 1.

(1) Measurement matrix

This scheme uses the binary sparse random measurement
matrix as a form of compression measurement matrix UM�N [20].
Only randomly lM elements in each column vector are set as 1,

while others are set as 0. Here l (l� 1) represents the sparse ratio
of the measurement matrix. The extreme sparseness of the binary
sparse measurement matrix U greatly reduces the complexity of
the compression measurement in the sampling process. Compared
with traditional dense measurement methods, the complexity of
CS is reduced from O(MN) to O(lMN). At the same time, the binary
characteristic can be realized with just a simple switching hard-
ware circuit, as shown in Fig. 2.

The analog information converter in the sampling process is
shown in Fig. 2. pi(t) is the modulation signal emitted by the signal
generator, the value of which is equal to the elemental value of row
vector i in the measurement matrix. The modulation waveform
pi(t) and the original signal waveform x(t) are multiplied through
each mixer. When the measurement matrix is the binary sparse
matrix, the values of pi(t) are just 0 or 1, which means the modu-
lation waveform is the rectangular wave. So the hardware circuit
of the mixer can be easily achieved by simple analog switching
or using switch transistor.

(2) Reconstruction algorithm

The compressed sensing reconstruction algorithm will directly
affect the quality of reconstructed signals as well as the precision
of harmonic detections. Traditional reconstruction algorithms have
been well investigated, such as the Fast Iterative Shrinkage Thresh-
olding (FISTA) algorithm, Compressed Sampling Matching Pursuit
(CoSaMP) algorithm, Subspace Pursuit (SP) algorithm and Spectral
Projected Gradient (SPG) algorithm [21–24]. Based on the sparse-
ness in the fundamental and harmonic components analyzed in
Property 2, this paper proposes an improved SPG algorithm, named
SPG-FF algorithm, to further enhance the precision of harmonic
signal reconstruction, which will be described in Section 4.

(3) Interpolation correction algorithm

To solve the fence effect and spectral leakage problems caused
by simple harmonic non-synchronous sampling, this paper adopts
the double spectral lines interpolation algorithm to improve the
accuracy of harmonic detection.

The algorithm reduces the leakage effects by weighing the aver-
age of the maximum and the second amplitude of spectral lines in
double lined interpolation, and it is the best algorithm for serious
fence effects. Setting the maximum and the second spectral lines’
labels of a harmonic component as km and kn respectively, the cor-
rection formula for amplitude, frequency and phase angle of the
double spectrum line are described as follows [26]:

f ¼ ðkm � 1þ dþ 0:5Þ f s
N

A ¼ sðkmÞþsðknÞ
N gðdÞ

u ¼ angle½sðkm þ 1Þ� � ðdþ 0:5Þp

8><
>: ð4Þ

where,

gðdÞ ¼ 2:356194þ 1:155437d2 þ 0:326079d4 þ 0:078915d6

d ¼ 3ðjsðknÞj � jsðkmÞjÞ
2ðjsðknÞj þ jsðkmÞjÞ

8><
>:

ð5Þ
s(km) and s(kn) are the km and kn elements of the sparse vectors
(complex vectors), respectively. angle [s(km + 1)] is the complex
angle of s(km + 1).

4. Harmonic detection and signal reconstruction with SPG-FF
algorithm

CS theory shows that the reconstruction accuracy is closely
related to the signal’s sparseness K, where, the smaller the value
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of K, the better the reconstruction effect. The characteristics of
the signals and sparse matrix are the primary influencing factors
of K [17]. Property 2 shows that if the fundamental components
are filtered out from the original harmonic signals, the sparse-
ness of signal K is sharply reduced under DFT. Therefore, this
paper proposed SPG-FF algorithm to enhance the reconstruction
effect of harmonic signals with the filtering out of the funda-
mental components.

4.1. Fundamental filter (FF) algorithm

Owing to the fact that the amplitudes in the fundamental com-
ponents are much larger than that of harmonic components, ele-
ments of fundamental components (including leaked spectral
lines) are much larger than that of harmonic components in sparse
vectors. Since the Orthogonal Matching Pursuit (OMP) reconstruc-
tion algorithm has the capability to reconstruct high energy com-
ponents of sparse vectors [27], we can reconstruct the basic
components by using OMP algorithm to separate them from the
harmonic components.

However, when OMP algorithm is adopted to complete recon-
struction of the compressed signals, the iterative terminal condi-
tion is always that the sparseness K or reconstruction error is
smaller than the threshold e (e � 0). During each iteration, the
OMP algorithm will update the support set, and the difference in
support sets that determines the value of the sparse signal will
be globally changed. Different from traditional OMP algorithm
application, FF algorithm just needs to extract fundamental com-
ponents, so it is not necessary to use the strict ‘‘threshold e” termi-
nal condition. But, it should not be ignored that there may be high-
energy harmonic components to disturb the reconstruction pro-
cess. FF algorithm is able to make improvements in iterative pro-
cesses and the terminal conditions of OMP algorithms to improve
the fundamental component extracting precision as follows:

(a) Establish the interference set U in the iterative process. The
energy of the fundamental leaked line is higher than that
of the harmonic spectral lines, and these spectral lines are
adjacent to each other, therefore when non-zero elements
of sparse estimate vectors are not adjacent to each other,
they should be put into the interference set U.

(b) The terminal condition of iteration is based on the energy of
fundamentalwaves. Theusageof theFF algorithmis to extract
and filter the fundamental components. Therefore, the termi-
nal condition of FF algorithm is set as the percentage g of the
maximum element (fundamental energy) of the estimated
sparse vector, which is a positive integer relatively close to
zero. Generally, when g equals to 0.1%, it can then be certain
that fundamental energy has been filtered.

Because of the finite-length effect of Discrete Fourier Trans-
forms, the elements on both sides of the maximum value in the
sparse vector are not zero. Instead, it displays a trend of rapid
attenuation to zero. Generally, compared with the energy of the
maximum spectral line of the component, if the energy of the dis-
crete spectrum line is very close to zero, its effect can be ignored.
Therefore, when the energy of estimated sparse vectors is less than
the threshold, the iteration can be terminated.

After the iteration, an estimate ŝbase of sparse vectors that only
contains spectral information of the fundamental components is
obtained. Its sparse inverse transform is the original reconstructed
signal of fundamental components, marked as x̂base. Filtering the
fundamental components, only harmonic components remains,
marked as yharmonic . To further elaborate on what has been dis-
cussed above, the FF algorithm is described below:

Algorithm: Fundamental Filter

Input: Sensing matrix H ¼ UW; Compressed harmonic signal
y.

Output: Estimator of sparse vector of fundamental
component ŝbase, compressed signal of harmonic
components yharmonic.

Initialization: Set the number of iterations to be t = 1,
residual r0 = y, estimator of sparse vector of fundamental
component ŝbase0 ¼ 0, support set K0 ¼ £, support matrix
X0 ¼ ½�, interference set C0 ¼ £, the number of Interference
set elements p = 0

Iteration:

1. Look for index kt ¼ argmaxjHT rt�1j.
2. Update support set and support matrix: Kt ¼ Kt�1 [ fktg,

Xt ¼ ½Xt�1Hkt �
(Hkt is the kt column vector of sensing matrix H).

3. Update estimator by generalized least squares:
ŝbaset ¼ min

z:suppðzÞ¼kt
ky�Xtzk2.

4. Update residual rt ¼ y�Xt ŝbaset .
5. If all non-zero elements of ŝbaset are adjacent to each other,

jump to step 6; else, put index of elements lp that are not
adjacent to each other into interference set
Cp ¼ Cp�1 [ flpg, p = p + 1.

6. If all non-zero elements in ŝbaset meet the condition
ĵsbaset;i j P e � max

j¼1;2���N
ĵsbaset�1;jj ði ¼ 1;2 � � � kŝbaset;i k

0
Þ, the next cycle

will continue, t = t + 1; else, the cycle is over.
Filter:
1. Set elements of interference set index in sparse estimator

ŝbaset to zero, that is ŝbaset;li
¼ 0ði ¼ 1;2 � � � pÞ, get ŝbase estimator

of fundamental sparse vector.
2. Calculate the reconstruction fundamental components

x̂base ¼ Wŝbase and the compressed signal of harmonic
components with fundamental components which are
filtered out according to yharmonic ¼ y�Ux̂base.

Because the FF algorithm only needs to obtain the fundamental com-
ponent, as compared with the OMP algorithms to accurately recon-
struct signals, the iteration numbers of the FF algorithms can be
greatly reduced. The recovered fundamental sparse vector ŝbase,
extracted by FF algorithms, contains the spectral information. Hence
the fundamental signal detection of frequency, amplitude and phase
can be easily completed with ŝbase interpolation correction. In this
paper, double spectral line interpolation algorithm is used.

4.2. Spectral Projected Gradient (SPG) algorithm

SPG is a convex optimizationmethod to solve the problemsof BP/
BPDN (Basis Pursuit/Basis Pursuit Denoise). In the algorithm, the
non-monotone linear search strategy is used and spectral projected
gradientsandspectral steps lengthare set as thesearchdirectionand
step length respectively. SPG has the advantages of low complexity,
high reconstructed accuracy as well as good global convergence. In
[25], Wang proved that SPG algorithm without any bound con-
straints has global convergence andfinite termination,which is suit-
able for sparse randommeasurements used in this paper. Reference
[23] presented the projected operator of SPG algorithm, as shown in
formula (6). The searched projected gradient paths of iterations are
computed by the operator in SPG algorithms.

PsðcÞ ¼ argmin
s:t jxj jj16s

kc � xk2 ð6Þ
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The process of SPG algorithm is described as follows:

Algorithm: Spectral Projected Gradient

Initialization: Sparse estimator ŝharmonic
0 ¼ 0, residual r0 ¼ y,

the initial gradient g0 ¼ �HTr0; the initial step length
a0 2 ½amin;amax�; the number of iterations t = 1.

Iteration:
1. Update the current iteration estimators with linear iterative

search algorithm.
(1) Update the sparse estimators and residuals
ŝharmonic
t ¼ Psðŝharmonic

t�1 � at�1gt�1Þ; rt ¼ y�Hŝharmonic
t

(2) If krtk22 6 max
16j6minftþ1;Lg

krt�jk22 þ ŝt � ŝt�1ð ÞTgt�1, jump to

step(3); else, at�1 ¼ at�1=2, repeat step (1).

(3) Update the gradient gt ¼ �HT rt
2. Update spectral step length of the next iteration
(1) Ds ¼ ŝt � ŝt�1, Dg ¼ gt � gt�1

(2) at ¼ min amax;max amin;
DsTDs
DsTDg

h in o
3. If krtk2 � ðyTrt � skgtk1Þ=krtk2 > d, t = t + 1, repeat step2;

else, circulation is over, sparse estimators of harmonic
component ŝharmonic ¼ ŝharmonic

t .

The whole process of compressed sensing harmonic analysis based
on SPG-FF algorithm is shown in Fig. 3.

The hardware block diagram to realize the reconstruction pro-
cessing is presented in the Fig. 4. It mainly includes the FF unit,
matrix inversion unit, SPG unit, double spectrum line interpolation,
using DSP TMS320F28335 to realize the high-speed computing. FF
unit extracts fundamental component, SPG unit reconstructs har-
monic and inter-harmonic components, and the real time output
of harmonic detection will appear in the display device. The double
spectrum line interpolation calculates the amplitude, frequency
and phase angle of fundamental and harmonic components. Based
on its powerful control capability, one ARM Cortex-A8 is used to
manage the whole system, including the display, communication

function, and other peripheral extended circuits. Through dual-
access RAM, the DSP and ARM communicate with each other and
realize the fast data exchange.

5. Experiment results

We performed a range of simulation experiments to test the
performances of the novel harmonic analysis scheme. In order to
fit the real application of integrated energy systems, in the exper-
iment, the test power system used in this paper is the Siemens
Benchmark 0.4 kV. The structure is shown in Fig. 5, which is the
microgrid in connected operation mode. Fundamental frequencies
of distribution networks fluctuate within 50 ± 0.2 Hz. The system
contain one wind turbine (WT) which is a permanent magnet

Fig. 3. Flow chart of harmonic analysis based on SPG-FF algorithm.

Fig. 1. Harmonic analysis scheme based on compressed sensing.

Fig. 2. Implementation of compressed sensing sampling.

T. Yang et al. / Applied Energy 165 (2016) 583–591 587



direct-drive wind turbine using dual PWM back-to-back converters
[28]. The load in microgrid is constant power load. We measured
the current signals from the Point of Common Coupling (PCC),
including the fundamental waves, high harmonics and inter-
harmonics. The parameters are shown in Table 1.

Traditional evaluation index of harmonic analysis uses the
detection precision of harmonic frequencies, amplitudes and

phases. Besides the above three parameters in the experiments,
two performance metrics were employed to evaluate the precision
of compressed sampling and reconstruction algorithms: (1) Mean
Squared Error (MSE) between the original signals and the recon-
struction ones, (2) reconstruction signals to noise ratio (SNR), rep-
resented by

SNR ¼ 10 � lgðkx̂k22=MSEÞðdBÞ ð7Þ

where MSE ¼ kx� x̂k22=ðM � NÞ.

5.1. Harmonic detection precision

The harmonic detection precision of frequencies, amplitudes
and phases are computed to evaluate the performance of SPG-FF
algorithm, in comparison with CoSaMP, SP and SPG algorithms.
The results are shown in Figs. 6–8. Through the analysis of the

Fig. 4. Hardware block diagram of SPG-FF algorithm.

Fig. 5. Model of Microgrid.

Table 1
Original harmonic signal.

Harmonic order Frequency (Hz) Amplitude (A) Phase (�)

0.5 (Inter-harmonic) 24.9000 0.2258 17.9232
1 49.8000 39.1554 39.4610
4.8 (Inter-harmonic) 239.0400 0.1091 25.7891
5 249.0000 0.8147 27.4878
6.6 (Inter-harmonic) 328.6800 0.0808 51.3986
7 348.6000 0.4330 97.4573

588 T. Yang et al. / Applied Energy 165 (2016) 583–591



results, SPG-FF algorithm is superior to other algorithms in terms
of precision. The maximum error of the frequency, amplitude and
phase are 3.04 � 10�5%, 0.0315% and 0.0395�, respectively. This
fully meets the detection precision requirements of harmonic
monitoring systems. For the other three algorithms, the detection
precision is very poor, especially for the CoSaMP and SP algorithms.
The good performance of SPG-FF algorithm lies in decreasing the
harmonic signal’s sparsity K through filtering out fundamental
components from the original signal.

5.2. Reconstruction precision of different reconstruction algorithm

Figs. 9 and 10 present SNR and reconstruction precision with
different compression ratios. The results show that the reconstruc-
tion signals to noise ratio from SPG-FF algorithms are significantly
higher than that of the other algorithms, and the reconstruction
error is much lower compared to that of the other algorithms. Even
in the heavy compression ratio (M/N = 0.1) condition, the SNR from

the SPG-FF algorithm can be higher than 89 dB, which can fully
meet the power quality standard, such as the Chinese national
standard ‘‘GB/T14549-1993 Power Quality: Public Power Network
Harmonic”, and the reconstruction errors are obviously lower than
that of the other algorithms.

5.3. Reconstruction precision affected by different measurement
matrices

Reconstruction precision affected by different measurement
matrix U was also studied in the experiments. The reconstruction
process using the same SPG-FF algorithm and the compressing
sampling process using the Binary Sparse Matrix (Bi-Spa) had been
studied in comparison with Gaussian RandomMeasurement (GSR),
Parts of Hadamard Measurement (PHDM), Parts of the Fourier
Measurements (PFFT), Parts of the Cosine Transform Measurement
(PDCT), and Toeplitz measurement. Signal-to-noise ratio with dif-
ferent measurement matrices are presented in Fig. 11. The results
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Fig. 6. Detection error of frequency.
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Fig. 7. Detection error of amplitude.
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Fig. 8. Detection error of phase.
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Fig. 9. SNR of different reconstruction algorithms.
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Fig. 10. Reconstruction precision of different reconstruction algorithms.
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Fig. 11. SNR of different measurement matrices.
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show that the SNR of the Gaussian random matrix and sparse bin-
ary measurement matrix are higher by 20–50 dB than that of the
other measurement matrices.

Although GSR measurement is better than Bi-Spa measurement,
and the gap is only 1 dB, it is an important observation that the Bi-
Spa measurement matrix only has lMN number of nonzero ele-
ments, which greatly reduces the computing complexity in the
compassing sampling process. The observation complexity is ana-
lyzed. In the sampling process, compressed sensing uses the ran-
dom linear projection method to realize the compressed
observation. The process can be mathematically expressed as an
M � N matrix multiplied by a N column vector. Therefore, each of
the observed values is computed from N times multiplication and
addition operations. The observation complexity of the density
matrix is O(MN). However, there are only lMN non-zero elements
in the binary sparse measurement matrix. The observation com-
plexity greatly reduces to O(lMN), l� 1. Therefore, the complex-
ity for the Bi-Spa measurement is only 1/l of that for the GSR
measurement.

Moreover, the hardware circuit to realize the binary transform
is simpler than the non-binary ones, as shown in Section 3.2.
Therefore, Bi-Spa measurement, used in this paper, is a better har-
monic measurement method.

5.4. Storage burden analysis

The storage burden was evaluated in the application of the sam-
pling framework. The CS scheme also effectively saves a large
amount of hardware resources and storage space during the pro-
cess of high speed sampling.

In microgrid, the monitoring system should detect not less than
25 times harmonic parameters to achieve the harmonic pollution
control. The actual power quality monitoring devices can record
the 50th harmonic, therefore, based on the Nyquist sampling
framework, it should sample more than 100 points in one cycle.
According to the standard of IEC (International Electrotechnical
Commission), the detection window length takes not less than 10
cycles and each data is stored in double data types. There will be
1000 data available and it will use 8 KB of storage space for each
sampling window.

For the new sampling method presented in this paper, in which
the compression ratio is set to 0.1, the collected data in one cycle is
1/10 of that of the Nyquist framework. A total of only 0.8 KB stor-
age space will be used during each sampling window. It saves a lot
of storage space, and greatly reduces the transmitting load for the
remote control.

6. Conclusion

This paper presented a harmonic analysis scheme based on the
compressed sensing theorem, which can carry out sampling com-
pression, signal reconstruction and harmonic detection simultane-
ously. As compared to the traditional harmonic detection methods
based on the Nyquist sampling theorem, the proposed scheme can
effectively save a large amount of hardware resources and storage
space during the process of high speed sampling. The scheme
selects the binary sparse measurement method to further com-
press the storage space, and the sampling complexity is reduced
to 1/l of that of the density measurement matrix. Furthermore,
this paper proposed two properties: one is the sparseness of har-
monic signal in electrical power system, and the other is the pro-
portion of sparseness in fundamental and harmonic components.
Based on the property of sparseness proportion in fundamental
and harmonic components, a novel SPG-FF algorithm is proposed.
The results show that the SPG-FF algorithm enhances the precision

of harmonic detection and signal reconstruction, compared with
that of the other four traditional algorithms.
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Appendix A. The proof of the sparseness of harmonic signal in
electrical power system

From formula (2), we extract any one harmonic component in
the power system and discretize it under the DFT base. The sparse
coefficients are:

FhðkÞ ¼
XN�1

n¼0

Ah cos
2pf h
f s

nþuh

� �
� e�j2pN nk

¼ Ah

2
e
�j N�1

2ð Þ 2p
k �

2pf h
f s

� �
þjuh

sin pk� Npf h
f s

� �

sin pk
N � pf h

f s

� �

þAh

2
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�j N�1

2ð Þ 2p
k þ

2pf h
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�juh
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f s

� �

sin pk
N þ pf h

f s

� � ¼ Fð1Þ
h ðkÞþ Fð2Þ

h ðkÞ ðA:1Þ

In the formula (A.1), Fð1Þ
h ðkÞ and Fð2Þ

h ðkÞ represents two symmet-
ric spectral lines and leaked spectral line respectively. The ampli-
tude spectra are:

Fð1Þ
h ðkÞ

��� ��� ¼ Ah
2

sinðpk�Npf h=f sÞ
sinðpk=N�pf h=f sÞ

��� ���
Fð2Þ
h ðkÞ

��� ��� ¼ Ah
2

sinðpkþNpf h=f sÞ
sinðpk=Nþpf h=f sÞ

��� ���

8><
>: ðA:2Þ

Among them, k = 0, 1. . .N � 1, we can see that when k ¼ N fh
f s

h i
or

k ¼ N 1� f h
f s

� �h i
, Fð1Þ

h ðkÞ
��� ��� and Fð2Þ

h ðkÞ
��� ��� reach maximum values,

which are the two main spectral lines. Here, [∙] is the rounding
operation. Consider analyzing the amplitude spectrum of the first

item Fð1Þ
h ðkÞ

��� ���, spectral line label can be set as:

k ¼ N
f h
f s

þ k0 þ iði ¼ 0;	1;	2 � � �Þ ðA:3Þ

N
f h
f s

� �
¼ N

f h
f s

þ k0ð�0:5 6 k0 6 0:5Þ ðA:4Þ

When i = 0, k represents the main line label; otherwise |i| > 0, k
represents the leaked line label which has a distance of |i| from the

main line. Amplitude spectrum Fð1Þ
h ðkÞ

��� ��� can be simplified as:

Fð1Þ
h ðkÞ

��� ��� ¼ Ah

2
sin pk� Npf h

f s

� �
sin
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N

� pf h
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� �	����
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�����
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AhC
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1
j sin½pðk0 þ iÞ=N�j ðA:5Þ

Among them C ¼ sinðpk0Þ. In the same way, set label of spectral

line as k ¼ N 1� f h
f s

� �
þ k0 þ iði ¼ 0;	1;	2 � � �Þ, jFð2Þ

h ðkÞj can be sim-

plified as:

jFð2Þ
h ðkÞj ¼ AhC

2
1

j sin½pðk0 þ iÞ=N�j ðA:6Þ

It can be seen that jFð2Þ
h ðkÞj is the same as jFð1Þ

h ðkÞj. If the sampling
point N contains the exact integer cycles of fh(t), k0 equals to zero,
that is C = 0, and amplitude of leaked spectral line is zero; if the
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sampling points N contain non-integer cycles of fh(t), k0 – 0, ampli-
tude of the leaked spectral line attenuates are in the form of

sin½pðk0þiÞ�
sin½pðk0þiÞ=N�

��� ���, which follows the sinc(�) function.
Signal processing theory points out that the sinc(�) function has

a good attenuation when N > 100, the energy of leaked spectral
lines decay and decrease to zero rapidly. In actual harmonic mon-
itoring systems used in power systems, the durations of data
observation windows are generally 0.5–1 s, i.e., 20–100 points
are acquired with each cycle to detect higher harmonic. The total
sampling point NP 1000, which is far greater than 100. So the
DFT sparse coefficients of each harmonic component fh(t) is sparse
enough to satisfy the computational requirement of the com-
pressed sensing theorem.

Appendix B. Computing the ratio formula of fundamental
component sparsity K0

In the amplitude spectrum of microgrid harmonic signals, any
component’s leaked spectral lines decays to zero rapidly. It can
assume that when a sparse coefficient is smaller than positive e
(e is substantially small), it is equal to 0, which means the sparse-
ness K is decreased. Therefore, for any harmonic components fh(t),
its sparseness, Kh, is the summation of i elements, which meet

jFð1Þ
h ðkÞj P e and jFð2Þ

h ðkÞj P e. The result is:

Kh ¼ 2� card i AhC
2

1
j sin½pðk0þiÞ=N�j P e

���n o� �

¼ 2� card i jij 6 N
p arc sin

AhC
2e � k0

���n o� �

¼ 4� bNp arc sin AhC
2e � k0c þ 2

ðB:1Þ

where bac is rounding down a. It can be seen that the sparsity of
each component is closely related to its amplitude Ah under the
DFT base. In the actual power harmonic signal, the energy of the
fundamental component is far higher than the energy of the har-
monic components. We can assume that the amplitude of one har-
monic component is ah time of the fundamental amplitude
(ah � 1). Then the sparseness Kh of harmonic component and the
sparseness K0 of fundamental component have the following
relationship:

Kh

K0
¼ 4� bNp arc sin ahA0C

2e � k0c þ 2

4� bNp arc sin A0C
2e � k0c þ 2

� arc sinðahA0C=2eÞ
arc sinðA0C=2eÞ ðh ¼ 1;2 � � �HÞ

ðB:2Þ
The sparseness, K0 of fundamental components is much greater

than sparseness, Kh of the harmonic component. Furthermore, the
ratio of sparseness K0 of fundamental components in the total sig-
nal’s sparseness can be calculated as follows:

K0

K
� K0

K0 þ
PH

h¼1Kh

¼ arc sinðA0C=2eÞ
arc sinðA0C=2eÞ þ

PH
h¼1arc sinðahA0C=2eÞ

ðB:3Þ

where h = 1, 2. . .H and ah � 1, ahA0C/2e � 0. Therefore, arc sin(ahA0-
C/2e) � ahA0C/2e, formula (B.3) can be simplified as:

K0
K � arcsinðA0C=2eÞ

arcsinðA0C=2eÞþ
PH

h¼1ah
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¼ 1

1þ PH
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As x
arc sinx 2 2

p ;1

 �

, when x/arc sinx equals to 1, the ratio of sparse-
ness K0 of fundamental component in the total signal’s sparseness
reaches the smallest value:

K0

K

� �
min

� 1

1þPH
h¼1ah

ðB:5Þ
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