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Abstract 

With the rapid development of cloud computing, artificial intelligence technologies and big data 
applications, data centers have become widely deployed. High density IT equipment in data centers 
consumes a lot of electrical power, and makes data center a hungry monster of energy consumption. 
To solve this problem, renewable energy is increasingly integrated into data center power 
provisioning systems. Compared to the traditional power supply methods, renewable energy has its 
unique characteristics, such as intermittency and randomness. When renewable energy supplies 
power to the data center industrial park, this kind of power supply not only has negative effects on 
the normal operation of precision equipment, such as CPU/GPU chips and hard disk, in data center, 
but it would also impact the stability of the utility power grids operation. To solve this problem, this 
paper presents a novel tie-line power fluctuation smoothing algorithm with consideration of data 
center’s holistic demand response. The contributions of this paper are: (1) overcoming the limitations 
of treating IT load as uncontrollable workload in the traditional demand response research, we design 
a data center resource scheduling model to realize IT load demand response controllability; (2) two 
novel mechanisms are proposed: (i) the server cluster workload scheduling method with time shift 
mechanism, and (ii) the data center UPS (Uninterruptible Power Supply) energy storage dynamic 
response mechanism. (3) Combining these two mechanisms as holistic demand response of data 
center, we present a tie-line power fluctuation smoothing algorithm to improve power supply 
reliability, which is beneficial to both the high density and precision IT equipment in the data center 
and the utility power grid. In the experiments, the results show that the new algorithm can effectively 
regulate the tie-line power fluctuations under different server cluster utilization ranges and scenarios 
of large-scale penetration of distributed renewable energy scenarios. The new algorithm is hence able 
to contribute beneficially to the reliability and stability of intelligent industrial park micro-grid and 
utility power grids. 

Keywords: Controllable load, Data center, Holistic demand response, Tie-line power control 

 

1   Introduction 

With the rapid development of cloud computing, artificial intelligence technologies and the big data 

applications, Intelligent Park with data centers are increasing in number. There are often tens or 
hundreds of thousands of servers to bear complex computing tasks, which consume huge amounts of 
power. Four years before, in 2013,total energy consumption by data centers’ computing equipment 

around the world is 0.5% of total global annual electricity consumption. By 2020, the percentage will 
double to 1% [1]. According to statistics, the Microsoft Quincy data center, located in Washington. 
DC, has a peak electricity consumption of up to 48MW, which is equivalent to the sum 



of 40,000 households electrical power consumption [2]. In another
example, the US National Security Agency's giant data center located in
Utah, the electric power consumption has reached an even higher peak
of 70MW [3]. High electricity and huge carbon emission pressure result
in the suppliers having to reconsider the energy consumption of data
centers. Renewable energy, such as wind or photovoltaic power, is used
widely to realize sustainable development [4,5]. There are many stu-
dies on the optimal methods for maximizing renewable energy utili-
zation, or minimizing the electricity expenses of data center [6,7].

However, unlike the traditional power supply, renewable energy
has intermittency and randomness problems [8,9]. When such unstable
power is supplied to data centers, it will cause power fluctuations in the
tie-line between data centers and the electrical power grid. To data
centers, a classical type of sensitive power load, the poor power quality
has adverse effects on the precision equipment, such as CPU/GPU chips
and hard disk. It also breaks the stability of the power grid operation
[10]. This problem will become more serious with the increase of re-
newable energy penetration.

To the best of our knowledge, no research has been conducted on
the issue of power quality with data center load in intelligent park
micro-grid. In this paper, the intermittency and randomness of renew-
able energy and its adverse effects on data center are studied, and then
a novel tie-line power fluctuation smoothing algorithm is presented.

The major contributions of this paper can be summarized as follows.

• We overcome the limitation of treating IT load as uncontrollable
workload in the traditional demand response situation, and design a
data center resource scheduling model to realize high density IT
power load’s demand response controllability.

• Two novel mechanisms, the server cluster workload scheduling
method with time shift mechanism and data center UPS energy
storage dynamic response mechanism are proposed in the paper.
Combining these two mechanisms as holistic demand response of
data center, a tie-line power fluctuation smoothing algorithm is
presented to improve power supply reliability, which is beneficial to
both the high precision IT equipment in the data center and the
power grid.

The remainder of the paper is organized as follows: Section 2 briefly
reviews related work in the field. In Section 3, the data center demand
response model is established, and the tie-line power fluctuation
smoothing algorithm is proposed in Section 4. Section 5 presents the
experimental results of our algorithm under different power supply
scenarios, and the efficiency of demand response control with different
parameters are also evaluated. We conclude the paper in Section 6.

2. Background and related work

In recent years, there has been preliminary studies on the renewable
energy applications in data centers [11], which can be sorted mainly
into the following three categories. The first category is carrying out
data center energy allocation planning. On the premise of meeting the
demand of data centers’ energy consumption, many studies make
contributions to optimizing the different energy supply combination to
minimize the data centers’ operation overhead and carbon emission.
With the increasing requirements on computing power, such as inter-
planetary exploration, cloud diagram analysis, seismic data mapping,
and Bitcoin’s mining, the huge energy engulf cannot be ignored. In-
dependent researchers have estimated that just cryptocurrencies ap-
plication alone is consuming around 500 megawatts annually [12,13].
The research reported in [14] focuses on data center backup power
supply facility–UPS, and proposes the RE-UPS control strategy to realize
the maximization of renewable energy utilization.

The second category involves research on the tasks scheduling
mechanism in data centers to minimize the server cluster power con-
sumption or maximize the utilization of renewable energy. The method

reported in [15] proposes a maximizing data center revenue algorithm,
which calculates the real-time renewable energy output and electricity
price, and dynamically schedules tasks. The similar optimal function
with minimizing electricity costs was studied in [16]. The research
reported in [17] presents a power management scheme named iSwitch,
which redistributes load migration events among different wind power
supplies.

The third category of research is in analyzing the characteristics of
different kinds of renewable energy, building power models, and then
redistributing the renewable energy source to match computing work-
load. The research reported in [18] uses time series method to establish
the photovoltaic power models, and in [19] machine learning method is
used to establish the wind power forecasting models. Based on these
power forecasting models, optimal scheduling strategies are im-
plemented in data centers. Previous work [20] has proposed a method
for optimizing workload performance and load following efficiency in
DG-powered data centers using power demand shaping (PDS).

Besides theoretical research, some well-known IT companies are
also investing in this direction and have gradually built new data cen-
ters partly or entirely powered by renewable energy with the latest
research methods. For example, a 40MW solar array is being built by
Apple for its North Carolina data center [21]; Facebook built a solar-
powered data center in Oregon, a 14MW solar array was recently
completed by McGraw-Hill for its data center [22]; 30 large scale fuel
cells is also planned by eBay [23] which will provide 6MW power to its
data center; bio-fuel based gas turbine has recently been considered by
HP [24] to be used in its Net-Zero data center; a new wind-powered
data center has been built by Green House data in Wyoming [25].

From the review above, all previous work focused on maximizing
the utilization of renewable energy sources or reducing the electricity
cost of data center. However, what is more important than the total
power consumption is the power supply quality. With the unpredictable
and intermittent distributed generation, such as in solar-wind hybrid
systems, when connecting renewable energy to data centers, power
supply quality becomes a problem that is more severe than ever before.
This paper focuses on this issue and proposes a novel demand response
tie-line power fluctuation smoothing algorithm to solve this problem.

3. Modeling of data center demand response

3.1. The micro-grid model with renewable energy generations and data
centers load

In recent years, renewable energy has gained tremendous interest as
an alternative source of power for the IT industry. An intelligent in-
dustrial park can be regarded as a micro-grid consisting of a hierarchy
of power supply/distribution elements, which includes electric power
generation, power conversion, power utilization, etc. There are issues
related to computing servers as sensitive electrical load, cooling and
lighting equipment as necessary electrical load, UPS as backup power
unit, and power supply unit from utility power grids and renewable
sources. In the following, we will discuss the main issues in three as-
pects.

Utility Power Grids: Because the conventional power grids have a
large amount of capacity inertia and high stability, it always acts as
data centers’ primary power source to satisfy the high power supplying
requirements from precision IT equipment. But the high power con-
sumption results in the large-scale date centers having to face two
serious consequences. First, high monthly electricity bills are incurred
during peak capacities demand and at times of high demands [26].
Hence, millions of dollars annually may be incurred by a large data
center. Second, in many geographical locations, much of the current
main grids are still fossil fuel dependent. Therefore, data centers are
faced with legislative or public opinion pressure to find other options
for carbon footprint reduction [27].

There is a complementary way to address these issues through
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smarter strategies of electricity sourcing: distributed generations (DG)
with renewable energy are deployed on-site at the data center facility
itself. This means the supply is no longer necessarily tied to or tied as
little as possible to the brown source from the utility power grids.

Distributed Generation: DG refers to using a number of possibly
different types of small, modular electric generators near the point of
use, which including green/renewable energy sources such as photo-
voltaic power (PV), wind power, bio-fuel based gas turbine, and so on
[28]. With the maturity of DG technology, it increasingly becomes the
favorite of the IT industry by virtue of its remarkable performance.

(1) Photovoltaic Power Characteristics: Photovoltaic power, being a
clean energy technology, does not cause environmental pollution as in
fossil-fuel-fired power generation or nuclear energy. Using photovoltaic
panels, such as monocrystalline and polycrystalline silicon, solar energy
is transformed into direct-current (DC) electricity to drive through the
electrical load. However, photovoltaic generation is closely tied to
certain weather and environmental conditions (e.g., solar irradiance,
temperature, clouds or buildings’ shade), and hence, can be highly
time-varying.

The PV cells are connected in string and/or parallel to achieve the
corresponding voltage and current. The current–voltage characteristics
of a PV cell can be described by the operating equation below [29]:
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where Iph is the photocurrent, IS is the saturation current, q is the
electronic charge, A is the ideality factor, ks is the Boltzmann’s gas
constant, T is the junction temperature (in kelvin), Rs is the series re-
sistance, and Rsh is the shunt resistance. Eq. (1) presents the fact that the
maximum output current Iom will change strongly non-linear with the
different output voltage Uom. So the maximum output power
Pm=UoṁIom varies with the output voltage. Except for the solar irra-
diance, the environmental temperature also greatly affects the output
voltage curve, as shown in Eq. (1) and the left figure in Fig. 1. For
example, when the environmental temperature changes from
[−20 °C,+40 °C], the maximum power point of the voltage can drift
up to 30% of the PV cell’s open-circuit voltage. If there is no tracking
and correction, the PV output power Pm will have losses exceeding 20%
[30].

Partial shading conditions (PSCs) due to clouds, trees, or buildings is
another problem: they weaken and vary the PV cell’s output power,
which result in multiple peaks on the P-U curve. String PV cells would
give rise to hot spot effect when they are exposed to PSCs [30]. To avoid
module-level hot spot, the output port of each PV cells is paired in
parallel with a diode in the opposite direction. These bypass diodes
change the PV array’s output voltage Uom and current Iom, which results
in the P-U curve of PV string exhibiting multiple local peaks in PSCs. In
our previous work, we studied this problem in detail and proposed a

series of optimization algorithms to achieve maximum power point
tracking (MPPT) [29,31]. The right figure of Fig. 1 presents our ex-
periments on the output voltage waveform of the PV arrays under
partially shaded condition.

(2) Wind Power Characteristics: Wind power derives electricity
from the kinetic energy of air flow produced by wind turbines, which is
also strongly related to environmental condition. Fig. 2 illustrates a
typical GE wind turbine’s output characteristics. The power curve
shown is divided into four regions based on operating wind speeds [17].

In Region-I and IV (intermittent power outage period), due the wind
speed being either too low or too high, wind power is intermittently
unavailable. The “cut-in speed” refers to the minimum speed at which
the rotor and blade starts to rotate, and the “cut-off speed” refers to the
wind speed at which the turbine shuts down for the protection of the
blade assembly. In Region-II (variable power generation period), the
mechanical power delivered to the turbine generator is given by
(p=0.5ρAv3C) [32], where ρ is the air density, A is the swept area of
the blades, v is the wind speed and C is the power coefficient factor. In
Region-III (stable power generation period), the wind turbine operates
at its designated rated power.

Even in Region-II, wind power also has the highest variability. M.
Patel, et al. studied the variations in wind speed and presented it as the
Weibull distribution [32]:
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where k is the shape parameter, and c is the scale parameter. Based on
statistics from most wind farm sites, it can be shown that the wind
speed has the Weibull distribution with k=2, which is specifically
known as the Rayleigh distribution. As a result, in Region-II, the wind
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Fig. 1. Experimental output voltage waveform of the PV arrays under different environmental temperature and partially shaded condition.
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turbine is more likely to incur time-varying wind speed. In conclusion,
the wind turbine output is a steep curve due to the cubic relation be-
tween wind power and wind speed. In this case, similar to photovoltaic
power characteristics, a small change of environmental factor such as
the wind speed can lead to large wind generation fluctuation.

Data center Power Infrastructure: The data center consumed power
can be broadly categorized into two parts: energy used by IT equipment
and usage by infrastructure facilities. As the crucial part of data centers,
server clusters’ equipment (e.g., CPU, networks, hard disk, etc.) con-
sumes the most power provided to data centers, which is roughly 46%.
The other part is infrastructure facilities, including air conditioners or
chiller equipment (power consumption 31%), UPS+ lighting (12%),
and auxiliary facilities (11%) [33].

The power consumption of servers is for computation tasks, and a
lot of heat is generation from the chips. It is almost linearly related to
the CPU utilization rate [34]. In Section 3.2, the power consumption
model of a computing server will be presented.

Each air conditioner or chiller equipment removes the heat hc from
the computer chip by consuming power Pc. The performance of an air
conditioner can be expressed as hc divided by Pc and is called the
coefficient of performance (COP) [35]. COP, which represents the
performance of air conditioners, is a function of temperature set point,
volumetric airflow rate, load, outside air temperature, and other fac-
tors.

Data center facilities are considered critical infrastructures, in
which any risk of information flow interruption caused by loss of power
supply that may occur during computation or network loss of function.
Energy storage technologies can increase the infrastructure tolerance to
utility power grid failures and perturbations, and to improve reliability/
availability of the power distribution system. A typical example is that
South Australia's government utilized the Tesla battery electrical sto-
rage technique and established a 100-megawatt battery storage system
to guard against the repetition of earlier energy crises, such as the
blackouts of 28th September 2016 and February 2017 [36]. In a data
center, the energy storage technology is realized by UPS equipment, in
which a great number of redundant battery groups provides power
backup and allow data centers to intentionally under-provision the
power delivery infrastructure [37]. When load power demand surge
arises, one can temporarily release the UPS stored energy to avoid
power budget violation. Moreover, energy storage devices also facilitate
emerging renewable power integration in data centers. Therefore, in
this paper, we present a UPS energy storage model and realize the use
of UPS units as one of the tools to smoothen the variation over time of
the power output of renewable energy generation, thus provide stable
power for data center.

When renewable energy is accessed to support the use of green
power resource to solve data center’s huge energy consumption pro-
blem, the intelligent industrial park becomes a real micro-grid with
various components including complete electric power generation,
power distribution, AC/DC transformation, and different types of power
utilization. There are issues related to brown energy (generated from
fossil fuels), green energy (generated from renewable energy), UPS
energy storage, computing servers as sensitive electrical load, and other
energy exchange and support devices. The structure of this micro-grid
system is shown in Fig. 3. The power balance equation of this type of
micro-grid is shown as Eq. (3), and the meaning of the symbols in the
equation is presented in Table 1.

P P P P P P Psupply consume TL i UPS i RE i clusters i CL i, , , , ,∑ ∑= ⇒ + + = + (3)

From Eq. (3), the intermittency and randomness of renewable en-
ergy PRE,i are the cause of the data center tie-line power fluctuations.
With the increasing renewable energy penetration, the tie-line power
fluctuation becomes much more serious. It has adverse effects on the
precision IT equipment and UPS storage devices. Therefore, it is ne-
cessary to have an effective control algorithm to smooth the tie-line

power fluctuation and improve the power quality.

3.2. The model of server cluster workload scheduling

In traditional demand response research, IT equipment, especially
the high density integration of tens of thousands of server clusters and
refrigeration equipment in the data center, becomes a hungry monster
of energy consumption [27], and is typically considered to be an un-
controllable power load with full capacity running. With the develop-
ment of Virtual Machine (VM) and Software Defined Network (SDN)
techniques, more finely controlled workflows and traffic flows in data
center have been realized [38]. We proposed a data center workload
scheduling model to realize IT load demand response controllability.

Because there is a difference in the arrival time of tasks from the
user’s computing requests, the data center’s power consumption is time
variant. When a large quantity of computing tasks arrives at the data
centers, the data center’s power consumption increases; on the con-
trary, the power consumption decreases. Therefore, the data center’s
power load curve presents a huge difference between peaks and valleys.
As shown in the energy consumption statistics of a small data center in
Facebook [39], its power load peak-valley difference in half an hour can
account for 80% of its peak value of power load, and the maximum
instantaneous fluctuation reaches 87%. The wide application of virtual
machines and tasks scheduling technologies results in the data center’s
power load being flexible and adjustable [40], which means that the
server cluster’s power load can be dynamically controlled by migrating
a certain number of tasks to different time periods. Therefore, in sum-
mary, the computing and power load characteristics of cloud computing
data center have the following properties [41]: high peak value, large
peak-valley difference, and controllability, which means that the server
cluster is well suited to participate in power demand response.

Based on the above analysis, this paper proposes a server cluster
workload scheduling model with a time shift mechanism. As the core
units of data centers, server clusters are processing a large quantity of
required computing tasks at all times [42]. According to the response
time required by different user requests, the computing tasks can be
sorted into delay-sensitive tasks and delay-tolerant tasks. Delay-sensitive
tasks should be processed immediately without any delay. On the other
side, the delay-tolerant tasks are only required to be completed before
one regulation deadline. Fig. 4 shows the difference between the two
types of task.

In the model, the task is set to an integer, i.e. any task is the integral
multiple of the basic task units. The processing time of one basic task
units is ΔTb. When a delay-sensitive task arrives at Ts,Arr, the completed
time should be Ts,Deadline= Ts,Arr+ ΔTb. When a delay-tolerant task
arrives at Tt,Arr, and its tolerable delay time interval is ΔTmax_dl, it must
begin to process the task before time Tt,start= Tt,Arr+ ΔTmax_dl and the
tolerable completion deadline is:

T T T T T TΔ ( Δ ) Δt Deadline max t start b t Arr max dl b, _ , , _= + = + + (4)

In other words, a delay-tolerant task can be delayed processing at
any time point in [Tt,Arr, Tt,start] freely. This paper uses just the char-
acteristic of delay-tolerant tasks to schedule this type of tasks and
processes in different time units. This leads to the controllability of the
data centers’ computing workload and power consumption.

The power consumption of a computing server is linearly related to
the CPU utilization [33], which can be defined as:

P P P η·server server
chassis

server
unit= + (5)

where Pserver
chassis is the basic power consumption to keep memory, disks,

and I/O resources running, and holding at around two thirds of its peak-
load consumption, P η·server

unit represents the remaining one-third power
consumption, which changes almost linearly with the increase of the
CPU load. Pserver

unit is unit power consumption. η is the server’s resource
utilization, which can be calculated by Eq. (7).

In a data center, all servers are assumed to be isomorphic. The
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server cluster power consumption PClusters,i can be represented as:

P P P P η M[ ( )· ]·Clusters i idle idle i i, max= + − (6)

where Mi represents the number of active servers in minutes i.
Because the frequent switching on and off of servers will increase en-
ergy consumption and severely reduce IT facility life, in this paper we
do not employ the strategies of dynamically adjusting the number of
active servers, i.e., Mi=M0, which is the total number of servers in the
data center. Only the resource utilization ηi is adjusted to realize the
server cluster load controllability.

The average resource utilization ηi can be calculated as follow:

η
T

T
λ im em q δ M

q TΔ
[( )· ]/( · )

·Δi
busy i

i

i i i

i

, 0= =
+ −

(7)

where Tbusy,i is the server cluster busy time, and ΔTi is the control step

size, setting ΔT1= ΔT2=⋯=ΔTi=1min in this paper. δ is the max-
imum processing capability of the signal server, i.e. the maximum
number of processed basic tasks per minute. We further split ΔT to q
even pieces. Because each piece is small enough, it can be safely as-
sumed that each task arrives at the beginning of each piece. The initial
average number of tasks in each ΔTi is λi. Due to the fact that delay-
tolerant tasks can be time shifted, the following should be considered
when calculating the actual number of tasks in the ith minute: (1) imi:
the number of tasks migrating from its arriving time to time i; (2) emi:
the number of tasks migrating from minute i to the consecutive periods.
Therefore, λ λ im emi i i i′ = + − is the actual number of processing tasks in
the interval ΔTi.
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Fig. 3. Typical micro-grid framework of the renewable energy data center.

Table 1
The representation of symbolic in the Eq. (3).

Symbolic Meaning

PTL,i The power of the utility power grids supplied for the intelligent park
data center by the tie-line in minutes i

PUPS,i The real-time UPS battery power in minutes i. In this paper we
assume that the value of discharging power is positive and charging
power is negative

PRE,i The real time output power of renewable energy in minutes i. PRE,i can
be generated from wind power or photovoltaic power, and so on

Pclusters,i The power consumed by the server clusters in data center in minutes i
PCL,i The power consumed by data centers’ cooling and lighting

infrastructures, etc., in minutes i

Ts,Arr Ts,Deadline

Tb

Tt,Arr Tt,Deadline

Tb

Tt,start

Tmax_dl

t

t

Delay-tolerant Task

Delay-sensitive Task

Fig. 4. Task processed or delay diagram.

T. Yang et al. Applied Energy 231 (2018) 277–287

281



Eqs. (5) and (6) represent the relationship between the data center’s
computing workload and power consumption. The model clearly re-
veals that the data center’s power consumption can be precisely con-
trolled by scheduling the processing tasks in each time slot ΔTi.
Therefore, based on the proposed time shift mechanism of delay-tol-
erant tasks, the server cluster workload scheduling model is established
to realize the data center computing load’s participation in demand
response.

3.3. The UPS energy storage model

In order to guarantee the power supply reliability, data centers are
often allocated a large number of UPS units, which realizes the unin-
terruptibility of power supply. One UPS unit constitutes the following
two components: the bi-directional converters and batteries. The re-
maining power of battery can be measured by the state of charge. This
paper employs the classic KiBaM (Kinetic Battery Model) [43] to for-
mulate the UPS operation, and then proposes the UPS energy storage
model:

P
φ SOC SOC ψ
φ SOC SOC ψ

[ ·( )]· , battery - charging
[ ·( )]/ , battery - dischargingi

i i

i i
UPS,

1 d

1 c
= ⎧

⎨⎩

−
−

+

+ (8)

where SOCi is the UPS battery’s state of charge (SOC) in minutes i,
which is the ratio of the battery’s remaining electric quantity to the
battery’s capacity. ψc and ψd are the charging coefficient and dischar-
ging coefficient, respectively. φ is the power factor of UPS, which can
be calculated by Eq. (9).

φ
N N V Q

TΔ
s n

B

rated ups=
(9)

where Ns and Nn are the number of the string batteries and parallel
batteries, respectively. Vrated is the rated voltage of each battery. QUPS is
the capacity of a single UPS battery (A·h), and ΔTB=1s.

Base on the proposed UPS energy storage model, we can adjust the
state of UPS battery groups dynamically by charging or discharging
power in a timely manner. This allows the UPS energy storage units to
participate in the data center demand response in the premise of en-
suring power supply reliability.

4. The tie-line power fluctuation smoothing algorithm based on
data center holistic demand response

With the server cluster workload scheduling model and UPS energy
storage model established in section III, the data center has the cap-
ability to participate in demand response. With the fine time granu-
larity and flexible workload scheduling, the high frequency fluctuation
of tie-line power can be easily smoothed, and low frequency large scale
fluctuation can be reshaped by abundant UPS energy storage. This
section presents this two-stage control strategy to realize the data
center demand response.

4.1. Demand response control signals

Two-stage low-pass filters are used to obtain the demand response
control signals. The initial tie-line power wave P0TL,i , which is the
system input, is transferred through the two-stage low-pass filters, and
the high-frequency control signal P1TL,i and the low-frequency ones
P*TL,i are obtained. In the algorithm, the classical Butterworth low-pass
filter is employed to reduce the system complexity. The time constants
of two low-pass filters are T1 and T2, respectively. Fig. 5 shows the
signal flow diagram, and the two stage control signals P1TL,i and P*TL,i
can be calculated as follows:
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Given the first stage control signal P1TL,i, the regulated power
quantity by server clusters is ΔP1TL,i= P1TL,i+ P0TL,i. Combining this
with Eq. (3), the target power consumption of server cluster P*cluster,i is
calculated as:

P P P P P PΔ ( )clusters i TL i TL i W i V i UL i, ,
0

,
1

, , ,= + + + −∗ (11)

Similarly, in the second stage, the regulated quantity by the USP
battery groups is ΔP2TL,i= P*TL,i− P1TL,i. The target power consumption
of UPS P*UPS,i can be calculated as:

P P P PΔUPS i TL i TL i TL i, ,
2

, ,
1= = −∗ ∗ (12)

4.2. Computing load time domain migration algorithm for servers' demand
response

Ensuring the computing Service-Level Agreement (SLA), the server
clusters demand response algorithm is operated to reach the control
signal P*cluster,i with dynamic time domain migration of the delay-tol-
erant tasks. This is a new type of migration based on time domain,
called “time-shift”, which is different from the traditional space migra-
tion of virtual machines among servers. The detailed control steps are
listed as follows:

(1) Assume n types of new tasks reaching in minute i, in which there are
m types of delay-sensitive tasks (numbered from 1 to m) and n-m
types of delay-tolerant tasks (numbered from m+1 to n). Because
only delay-tolerant tasks can be time shifted, the maximum delay
time tdelay k i, ,

max of task k is:

t
k m

T T k m n
0 1, 2, ...,
Δ ·Δ 1, ...,delay k i

max dl k i i
, ,

max

_ ,
= ⎧

⎨⎩

=
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where ⌊∙⌋ is the round down operation, which can ensure that the SLA is
not violated.

(2) Based on the maximum delay time tdelay k i, ,
max and the tie-line power

control signal P*cluster,i, the delay-tolerant tasks can be precisely
scheduled to satisfy the demand response. The optimization pro-
blem of server clusters' demand response can be modeled as:

P P

s t T

em λ

min ( )

. . Δ

0

i
T

clusters i clusters i

λ im em
δ M b

i i

1 , ,
2

( )
·

k
n

i i i1
0

∑ −

⩽

⩽ ⩽

=
∗

∑ + −=

(14)

The objective function is to make the actual tie-line power wave
P*cluster,i match the power control signal P*cluster,i, i.e., the difference
between the two power waves is minimized. The first constraint guar-
antees that the delay operations do not violate the user’s SLA require-
ments; and the second constraint shows that the parameter emi is
bounded, i.e., the number of backwards migrated tasks in minute i
cannot be more than the total number of tasks.

While this optimization problem is solved, the delay-tolerant tasks
can be scheduled with the optimization results. Then the high fre-
quency fluctuation of the tie-line power can be well smoothed.

4.3. The regulation strategy of UPS battery storage

As the optimal control process of server clusters’ demand response,
when UPS battery groups receive the control signal P*UPS,i, each battery
can adjust the working state, i.e., the charging or discharging power in
real time, and then realize the tracking of target power curve. The
objective function and constraints are presented in Eq. (15):
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where Xi is the marker of battery groups’ charging or discharging

times, X
P P
P P

1, ( · ) 0
0, ( · ) 0i
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−

−
. If, in the two adjacent time slots,

P P( · ) 0UPS i UPS i, , 1 <− , Xi=1 means there is one time of charge and dis-
charge conversion. Otherwise, Xi=0 means the battery is continuously
charging or discharging in this two adjacent time slots.

In Eq. (15), the first constraint is the UPS battery’s SOC constraint,
which avoids the overcharging or discharging that may destroy the
battery. In the second constraint Nswitch

max is the maximum number of
charging and discharging times allowed in the total control period,
which can be set based on the UPS battery groups’ operating require-
ments, because an unreasonable frequency of charging or discharging
would accelerate the battery’s aging and quickly wear it out [23], This
would result in skyrocketing capital expenses and further increase the
environmental burden (i.e. recycling problem) and the downtime for
maintenance. In our demand response algorithm, we set Nswitch

max to pre-
vent this type of inappropriate operation.

Both Eqs. (14) and (15) are multi-variable nonlinear optimization
problems. The variable of the first one is the number of time shift task
units, and the variable of the second one is the batteries’ SOC. We use
the Generalized Reduced Gradient Method (GRG Algorithm) to solve
these two typical nonlinear optimization problems [44], and obtain the
optimal control scheme of data center’s demand response.

5. Experiments, results and algorithm performance evaluation
analysis

To evaluate the proposed algorithm’s performance, we established a
composite power supply system to the data center micro-grid, which
includes wind power and photovoltaic power as renewable energy
sources, UPS battery groups as energy storage units, and a micro-grid
connection with utility power grids that includes some parameters that
come from real distributed generation system.

5.1. Experiment settings and parameters

Hardware and software. We evaluate our proposed algorithm using a
30000-node server cluster, where each node consumes about 0.14 kW
functioning at idle operation state, and 0.2 kW at max operation state.
The server operation state has close relation with server resource uti-
lization. The proposed algorithm runs on an additional server named
Energy Management Master Station. With an accurate multimeter, we
can measure the real-time power in our experiments. Furthermore, we
assume 50% of the basic task units included in the experiments are
delay-tolerant. It takes 0.1 min for a single server to process a basic task

unit at full computing payloads.
Solar panel array. The experimental solar panel array model was

established based on Tianjin Avenue Photovoltaic Power Generation
Project, a subproject of the eco-city, which is capable of producing
3.3 MW of power (after DC to AC conversion). The real system is lo-
cated in Tianjin Binhai New Area (40 km from the center of Tianjin),
which is a cooperation project in Sino-Singapore Eco-City establised by
China and Singapore [45]. Taking into consideration of the maximum
load of the experimental intelligent park micro-grid, we scale the pro-
ject’s AC power production down to 2174 solar panels with a capacity
of 500 kW of power. To carry out our experiment, we picked out one
day data of solar energy output indicating that the solar panel array
generates power from 7:00 am to 17:00 pm and reaches the maximum
output power at around 13:00 pm.

Wind turbine. In our experiments, Shajingzi wind farm of Tianjin is
employed [46], which can produce 200MW of power. Using a similar
method to the above solar panel array model, we estimated the pro-
duction of a smaller wind farm installation. Taking the penetration of
distributed renewable energy (set as 16%, 24% and 32% in this paper)
into consideration, we scale the production of Shajingzi wind farm
down to 800 kW of power (corresponding to the power of solar panel
array mentioned above). To obtain the real-time wind power, we chose
the same day data for the photovoltaic power output data and accu-
rately forecasted wind power according to weather conditions.

Utility power grid. The reliability of the data center’s power supply
should be ensured by the power grid. When the renewable energy is not
available, the main grid power is assumed to have sufficient capacity to
maintain the data center’s normal operation alone. In the experimental
scenario, the intelligent park is connected to a utility power grid with a
35 kV substation. Traditionally, to reduce brown-energy costs and
electricity bill, the data center firstly consumes supplied power of re-
newable energy (solar and wind). When renewable energy is unable to
cover the data center’s total energy consumption, the power of the main
grid is supposed to compensate for the rest. However, we propose that
this rule could be broken in order to ensure that the tie-line power is
smooth.

The detailed experimental parameters, including UPS units and
filter setting, are shown in Table 2.

In the following evaluated experiments, we performed one basic
scenario experiment and a series of variable parameters’ experiments,
including different penetration of distributed renewable energy and
different server cluster average resource utilization ranges. Each result
is the average result of at least 100 independent experiments for the
elimination of instability from the experimental distribution function.

5.2. Experiments in the basic scenario

In the basic experiment’s scenario, the wind power and photovoltaic
power output curves are shown in Fig. 6. The penetration of distributed
renewable energy is set at 16%. The definition of the renewable energy
penetration is described in Eq. (16) [47].
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Fig. 5. Two-stage low-pass filters in the tie-line power smoothing algorithm.
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where Pcp is the installed power capacity of one kind of renewable
energy, and the numerator is expressed as the total installed power
capacity of renewable energy sources. Sload is the power consumer’s
apparent power, and the denominator is the peak apparent power in the
whole cycle.

The initial data center utilization rate is from 30% to 50%, as shown
in Fig. 7, and the adjustable range is set to [0.2, 0.8], i.e., ηmin=20%,
ηmax=80%.

The major power consumer in the intelligent industrial park is the
server clusters of data center for dealing with the stochastic incoming
workloads. The initial tie-line power fluctuation in the intelligent park
that has not been controlled by any demand response strategy is shown
as the blue1 curve in Fig. 8. It is obvious that due to the instability of the
renewable energy output and the stochastic incoming computing
workloads, the initial tie-line power shows great volatility and has
many spikes.

Using the demand response tie-line power fluctuation smoothing
algorithm proposed in this paper, the control signal of the server cluster

can be obtained from the primary filter, shown as the yellow curve in
Fig. 8. Because the algorithm dynamically adjusts computing workload
in different time intervals in server clusters, the high-frequency power
fluctuation in the tie-line is eliminated. In Fig. 8, the red curve is
smoother than the blue one, and it also follows the target yellow curve
closely.

Using the secondary filter to deal with the tie-line power red curve,
the secondary control signal for the UPS battery groups’ control can be
obtained, shown as the yellow curve in Fig. 9. Following the control
signal, the UPS battery groups are dynamically charged and discharged
to compensate for the low-frequency power fluctuations in the micro-
grid tie-line. The final results of the tie-line power with the server
cluster and the UPS battery group responding together is shown as the
red curve in Fig. 9. It can be easily seen that, in the condition of keeping
the normal serviceability, data center micro-grid tie-line power fluc-
tuations can be effectively regulated with the demand response
strategy. In Fig. 9, the standard deviation of the tie-line power curves is
reduced from 0.286MW (blue curve) to 0.154MW (red curve).

The rate of change ΔPTL is also employed to evaluate the tie-line
power smoothing effect by the demand response strategy as shown in
the following equation:

P
dP

dt
P P

T
Δ

ΔTL i
TL i TL i TL i

,
, , 1 ,= =

−+

(17)

The probability distribution of ΔPTL is calculated and shown in
Fig. 10. It is clear that with the demand response algorithm the tie-line
power curve has obviously become smooth.

5.3. Evaluation of the adaptability of the demand response algorithm

The experiments with different scenarios are implemented to eval-
uate the adaptability of the proposed demand response algorithm in this
section.

Table 2
Settings of experiment parameters.

Parameter Value

Server cluster Number of servers M0 30,000
Idle power of single server Pidle (kW) 0.14
Max power of single server Pmax (kW) 0.2
Proportion of delay-tolerant tasks (%) 50
Service rate of single server, δ 10

Renewable energy Number of solar panel 2174
Total capacity of photovoltaic power (kW) 500
Total capacity of wind power (kW) 800

UPS units Number of batteries in series Nn 100
Number of batteries in parallel Ns 300
Rated voltage Vrated (V) 6
Single battery capacity Qups (A∙h) 100
Charging coefficient of battery Ψc 0.95
Discharging coefficient of battery Ψd 1.05
Initial SOC S0 0.75
Lower limit of SOC Smin 0.5
Upper limit of SOC Smax 1
Max charging and discharging times Switchmax 50

Filter setting The first time constant T1 (min) 20
The second time constant T2 (min) 120

Simulation time Simulation step ΔT (min) 1
Total simulation time Td (min) 1440

Fig. 6. The output of renewable energy.

Fig. 7. Server cluster initial resource utilization.

Fig. 8. Tie-line power change process.

1 For interpretation of color in Figs. 8 and 9, the reader is referred to the web
version of this article.
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(1) Experimental Scenarios with Different Renewable Energy Penetration

Two contrastive experiments with 24% and 32% penetration are
implemented to evaluate the algorithm performance in large-scale pe-
netration of distributed renewable resources scenarios. The initial tie-
line power curves and the results from the smoothing process using the
demand response algorithm are shown in Fig. 11. With the increase of
renewable energy permeability, it brings serious problems of inter-
mittent energy supply to data center micro-grid. Using the proposed
demand response algorithm, the severe fluctuate is smoothed even in
the 32% penetration scenarios. The probability distribution curves of
tie-line power fluctuations are shown in Fig. 12.

(2) Experimental Scenarios with Different Server Cluster Average Resource

Fig. 9. Tie-line power fluctuation regulation result.

Fig. 10. Distribution of tie-line power fluctuation probability.

Fig. 11. Tie-line power change process with different renewable energy pene-
tration.

Fig. 12. Distribution of power fluctuation probability of tie-line with different
renewable energy penetration.

(a) Tie-line power change process (Final response)

(b) Partial enlargement of tie-line power change process 
(Final response).

(c) Distribution of tie-line power fluctuation probability

Fig. 13. Tie-line power fluctuation stabilization comparison (Change in utili-
zation range).
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Utilization Ranges

Because higher renewable energy penetration brings greater chal-
lenges to smooth tie-line power fluctuation, as shown in the experi-
ment’s result in the last section, we use the 32% penetration scenarios
to evaluate the demand response algorithm with different ranges of
server cluster average resource utilization.

In the experiments, three types of average CPU resource utilization
ranges were set: [10%, 90%], [20%, 80%], [30%, 70%] and the
smoothed tie-line power fluctuation curves are shown in Fig. 13. The
figure shows that, under any set CPU resource utilization range, the
proposed demand response algorithm can effectively follow the target
control signal curve (the yellow curve in Fig. 13). In order to show the
difference among experimental results, we added a partial enlargement
graph shown in Fig. 13(b) and calculated the probability distribution of
each tie-line power curve’s change rate in Fig. 13(c). It can be seen
clearly that, with widening server cluster resource utilization range, the
stronger controllability of server clusters can smooth high frequency
power fluctuations.

5.4. SOC of UPS battery group

A UPS unit with a great many battery groups is very important for a
data center for providing backup power support, but it has a short life
cycle as a result of frequent charging and discharging, which results in
skyrocketing capital expenses and operating costs in the data center.

When the server scheduling participates in the demand response, it

not only smoothes the high frequency power fluctuations, but can also
reduce the UPS charging and discharging frequency. Fig. 14 shows the
charging and discharging times as a function of time. It is clear that
with the server clusters participating in the demand response, the
battery’s charging and discharging times are reduced significantly,
which is greatly beneficial in extending the lifetime of UPS units.
Therefore, establishing the IT load demand response controllable model
and making the server clusters participate in demand response not only
can smooth high frequency power fluctuations, but also reduce the
capital expenses and operating costs for data center operator. The
smoothing effect of UPS’s SOC curves is presented in Fig. 15.

6. Conclusion

The intelligent industrial park powered by renewable energy has
provided an effective way to realize sustainable development. However,
the intermittency and instability of clean energy is a major concern.
Considering the stability of energy supply for precision IT facility, this
paper proposes a holistic demand response control algorithm to smooth
the tie-line power fluctuations of data center with high density IT
equipment. Based on the characteristics of data processing require-
ments and the infrastructure of power supply units in data center, the
workload scheduling model and the UPS energy storage model are
proposed to innovatively involve data centers in demand response. On
the premise of computing service quality assurance and backup power
reliability, the proposed novel algorithm successfully schedules the
delay-tolerant tasks and controls the UPS battery groups’ SOC to
smooth the data center tie-line power fluctuations.

Extensive experimental results show that (1) with the two-stage
low-pass filters, data center micro-grid tie-line power fluctuations can
be effectively regulated, in which the high-frequency power fluctuation
is eliminated by computing workload time-shift control and the low-
frequency ones is smoothened by UPS battery group dynamical man-
agement. (Section 5.2); (2) the proposed algorithm has good adapt-
ability in different renewable energy penetration scenarios (Part 1,
Section 5.3) and with different server cluster computing load (Part 2,
Section 5.3); (3) the SOC control strategy used in our proposed algo-
rithm has significantly reduced the frequency of UPS battery's charging
and discharging conversion, which is beneficial in protecting the UPS
and reducing the capital expenses for data center operator (Section
5.4).

Based on the model and prototype built and tested in our data
center, we will enhance our approach to be applied to a real-life

Fig. 14. UPS battery group charging and discharging statistics.

Fig. 15. UPS Battery group operating status.
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intelligent industrial park with large-scale data center and fine tune its
performance in the future.

Acknowledgments

This paper is supported by the National Key Research and
Development Program of China (2017YFB0903000); National Natural
Science Foundation of China (61571324); Natural Science Foundation
of Tianjin (16JCZDJC30900); and National Program of International S&
T Cooperation (2013DFA11040).

References

[1] Sun D-W, Chang G-R, Chen D, Xing-Wei W. Profiling, quantifying, modeling and
evaluating green service level objectives in cloud computing environments. Chinese
J Comput 2013;36(7):1509–29.

[2] Drozdowski M, Marsza J. Time and energy performance of parallel systems with
hierarchical memory. J Grid Comput 2016;14(1):153–70.

[3] Mohsenian-Rad AH, Leon-Garcia A. Coordination of cloud computing and smart
power grids. Smart grid communications (SmartGridComm). First IEEE interna-
tional conference on. 2010. p. 368–72.

[4] Zhou Z, Liu F, Zou R, Liu J, Xu H, Jin H. Carbon-aware online control of geo-
distributed cloud services. IEEE Trans Parallel Distrib Syst 2016;27(9):2506–19.

[5] Quan H, Srinivasan D, Khambadkone AM, et al. A computational framework for
uncertainty integration in stochastic unit commitment with intermittent renewable
energy sources. Appl Energy 2015;152:71–82.

[6] Li Z, Qiu F, Wang J. Data-driven real-time power dispatch for maximizing variable
renewable generation. Appl Energy 2016;170(1):304–13.

[7] Islam MA, Ren S, Mahmud AH, Quan G. Online energy budgeting for cost mini-
mization in virtualized data center. IEEE Trans Serv Comput 2016;9(3):421–32.

[8] Vithayasrichareon P, Riesz J, Macgill I. Operational fl exibility of future generation
portfolios with high renewables. Appl Energy 2017;206(8):32–41.

[9] Amini MH, Nabi B, Haghifam M-R. Load management using multi-agent systems in
smart distribution network. IEEE, 2013. 2013. p. 1–5.

[10] Nguyen N, Member S, Mitra J, Member S. An analysis of the effects and dependency
of wind power penetration on system frequency regulation. IEEE Trans Sustain
Energy 2016;7(1):354–63.

[11] Deng X, Wu D, Shen J, He J. Eco-aware online power management and load
scheduling for green cloud datacenters. IEEE Syst J 2016;10(1):78–87.

[12] Fairley P. Blockchain world-Feeding the blockchain beast if bitcoin ever does go
mainstream, the electricity needed to sustain it will be enormous. IEEE Spectr
2017;54(10):36–59.

[13] Lee J, Vegas L. An analysis of energy and hardware impacts on the bitcoin mining
network. ACM Trans Econ Comput 2015;1(1):1–20.

[14] Liu L, Sun H, Li C, Hu Y, Xin J, Zheng N, et al. RE-UPS: an adaptive distributed
energy storage system for dynamically managing solar energy in green datacenters.
J Supercomput 2016;72(1):295–316.

[15] Ghamkhari M, Mohsenian-rad H. Energy and performance management of green
data centers: a profit maximization approach. IEEE Trans Smart Grid
2013;4(2):1017–25.

[16] Guo Y, Gong Y, Fang Y, Khargonekar PP, Geng X. Energy and network aware
workload management for sustainable data centers with thermal storage. IEEE
Trans Parallel Distrib Syst 2014;25(8):2030–42.

[17] Li C, Qouneh A, Li T. iSwitch: coordinating and optimizing renewable energy
powered server clusters. In: Computer architecture (ISCA), 2012 39th annual in-
ternational symposium on, vol. 00; 2012. p. 512–23.

[18] Aksanli B, Venkatesh J, Zhang L, Rosing T. Utilizing green energy prediction to
schedule mixed batch and service jobs in data centers. ACM SIGOPS Oper Syst Rev
2011;455(3):53–7.

[19] Sharma N, Sharma P, Irwin D, Shenoy P. Predicting solar generation from weather
forecasts using machine learning. Smart grid communications (SmartGridComm).
IEEE international conference on. 2011. p. 528–33.

[20] Li C, Zhou R, Li T. Enabling distributed generation powered sustainable high-per-
formance data center. In: High performance computer architecture (HPCA2013).
2013 IEEE 19th international symposium on; 2013. p. 35–46.

[21] Apple and the Environment. <https://www.apple.com/environment/> [cite on
Dec. 2016].

[22] Data Center Knowledge. <http://www.datacenterknowledge.com/> [cite on Dec.
2017].

[23] eBay plans data center. <https://www.lvgea.org/ebay-plans-data-center-
expansion-in-las-vegas/> [cite on Nov. 2016].

[24] Arlitt M, Bash C, Blagodurov S, Chen Y, Christian T, Gmach D, et al. Towards the
design and operation of net-zero energy data centers. In: Thermal and thermo-
mechanical phenomena in electronic systems (ITherm). 2012 13th IEEE intersociety
conference on; 2012. p. 552–61.

[25] Ren C, Wang D, Urgaonkar B, Sivasubramaniam A. Carbon-aware energy capacity
planning for datacenters. In: Modeling, analysis & simulation of computer and
telecommunication systems (MASCOTS). 2012 IEEE 20th international symposium
on; 2012. p. 391–400.

[26] Xia Y, Zhou M, Luo X, Pang S, Zhu Q. A stochastic approach to analysis of energy-
aware DVS-enabled cloud datacenters. IEEE Trans Syst Man Cybern Syst
2015;45(1):73–83.

[27] Cho J, Kim Y. Improving energy efficiency of dedicated cooling system and its
contribution towards meeting an energy-optimized data center. Appl Energy
2016;165(1):967–82.

[28] Adefarati T, Bansal RC. Reliability and economic assessment of a microgrid power
system with the integration of renewable energy resources. Appl Energy
2017;206(8):911–33.

[29] Shi J, Xue F, Ling L, Li X, Qin Z, Li Y, et al. Combining model-based and heuristic
techniques for fast tracking the global maximum power point of a photovoltaic
string. J Power Electron 2017;17(2):476–89.

[30] Zhang F, Maddy J, Premier G, Guwy A. Novel current sensing photovoltaic max-
imum power point tracking based on sliding mode control strategy. Sol Energy
2015;118(8):80–6.

[31] Shi J, Ling L, Xue F, Qin Z, Li Y, Lai Z, et al. Combining incremental conductance
and firefly algorithm for tracking the global MPP of PV arrays. J Renew Sustain
Energy 2017;9(2):023501.

[32] Patel MR. Wind and solar power systems. CRC Press; 2006.
[33] Kliazovich D, Bouvry P, Ullah S. DENS: data center energy-efficient network-aware

scheduling. Cluster Comput 2013;16(1):65–75.
[34] Li T, Ren Y, Yu D, Jin S. RAMSYS: resource-aware asynchronous data transfer with

multicore systems. IEEE Trans Parallel Distrib Syst 2017;28(5):1430–44.
[35] Christy Sujatha D, Abimannan S. Energy efficient free cooling system for data

centers. In: Cloud computing technology and science (CloudCom). 2011 IEEE third
international conference on; 2011. p. 646–51.

[36] Saddler H. South Australia makes a fresh power play in its bid to end the blackouts.
Chain React 2017;129(4):14–5.

[37] Liu L, Sun H, Li C, Li T, Xin J, Zheng N. Managing battery aging for high energy
availability in green datacenters. IEEE Trans Parallel Distrib Syst
2017;28(12):3521–36.

[38] Ghamkhari M, Wierman A, Mohsenian-Rad H. Energy portfolio optimization of data
centers. IEEE Trans Smart Grid 2017;8(4):1898–910.

[39] Goiri Í, Le K, Nguyen TD, Guitart J, Torres J, Bianchini R. Greenhadoop_Leveraging
green energy in data-processing frame-works. In: Proceedings of the 7th ACM
European conference on computer systems; 2012. p. 57–70.

[40] Wang D, Liu X. A resource scheduling strategy for cloud computing platform of
power system simulation based on dynamic migration of virtual machine. Autom
Electr Power Syst 2015;39(12):97–105.

[41] Kumar S, Nadjaran A, Gopalaiyengar SK, Buyya R. SLA-based virtual machine
management for heterogeneous workloads in a cloud datacenter. J Netw Comput
Appl 2014;45(1):108–20.

[42] Xu L, Xu K, Jiang Y, Ren F, Wang H. Throughput optimization of TCP incast con-
gestion control in large-scale datacenter networks. Comput Netw
2017;124(1):46–60.

[43] Manwell JF, McGowan JG. Lead acid battery storage model for hybrid energy
systems. Sol. Energy 1993;50(5).

[44] Yang T. Optimization design. Tianjin, China: China Machine Press; 2014. p. 133–43.
[45] Sino-Singapore Tianjin eco-city. <http://www.tianjineco-city.com/> [cite on Jan.

2018].
[46] Shajingzi wind farm. <http://www.gov.cn/jrzg/2011-02/15/content_1803906.

htm> [cite on Dec. 2017].
[47] Zhang Y, Guo L, Jia H, Li Z, Lu Z. An energy storage control method based on state

of charge and variable filter time constant. Autom Electr Power Syst
2012;36(6):34–8.

T. Yang et al. Applied Energy 231 (2018) 277–287

287

http://refhub.elsevier.com/S0306-2619(18)31404-1/h0005
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0005
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0005
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0010
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0010
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0015
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0015
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0015
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0020
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0020
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0025
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0025
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0025
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0030
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0030
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0035
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0035
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0040
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0040
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0045
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0045
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0050
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0050
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0050
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0055
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0055
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0060
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0060
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0060
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0065
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0065
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0070
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0070
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0070
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0075
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0075
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0075
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0080
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0080
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0080
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0090
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0090
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0090
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0095
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0095
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0095
https://www.apple.com/environment/
http://www.datacenterknowledge.com/
https://www.lvgea.org/ebay-plans-data-center-expansion-in-las-vegas/
https://www.lvgea.org/ebay-plans-data-center-expansion-in-las-vegas/
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0130
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0130
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0130
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0135
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0135
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0135
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0140
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0140
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0140
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0145
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0145
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0145
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0150
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0150
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0150
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0155
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0155
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0155
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0160
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0165
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0165
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0170
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0170
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0180
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0180
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0185
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0185
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0185
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0190
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0190
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0200
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0200
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0200
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0205
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0205
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0205
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0210
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0210
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0210
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0215
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0215
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0220
http://www.tianjineco-city.com/
http://www.gov.cn/jrzg/2011-02/15/content_1803906.htm
http://www.gov.cn/jrzg/2011-02/15/content_1803906.htm
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0235
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0235
http://refhub.elsevier.com/S0306-2619(18)31404-1/h0235

	Data center holistic demand response algorithm to smooth microgrid tie-line power fluctuation
	Citation


