
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2020

Did our course design on software architecture meet our student’s Did our course design on software architecture meet our student’s

learning expectations? learning expectations?

Eng Lieh OUH
Singapore Management University, elouh@smu.edu.sg

Benjamin GAN
Singapore Management University, benjamingan@smu.edu.sg

Yunghans IRAWAN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Citation Citation
OUH, Eng Lieh; GAN, Benjamin; and IRAWAN, Yunghans. Did our course design on software architecture
meet our student’s learning expectations?. (2020). Proceedings of 2020 IEEE Frontiers in Education
Conference (FIE), Uppsala, Sweden, October 21-24. 1-9.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5526

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5526&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Did our Course Design on Software Architecture
meet our Student’s Learning Expectations?
Eng Lieh Ouh

School of Information Systems
 Singapore Management University

Singapore
elouh@smu.edu.sg

Benjamin Kok Siew Gan
School of Information Systems

 Singapore Management University
Singapore

benjamingan@smu.edu.sg

Yunghans Irawan
Singapore Product Development Center

Indeed Singapore
Singapore

yirawan@indeed.com

Abstract— This Innovative Practice Full Paper discusses our
course design on software architecture to meet the learning
expectations of two groups of software engineers. Software
engineers with working experiences frequently find themselves
the need to upskill in their lifelong learning journey. Their
learning expectations are shaped not just by their need to know
but also other learning characteristics such as their working
experiences. In many cases, we design courses based on the
required learning outcomes and assessment criteria. In this
paper, we wish to find out whether our course design on
software architecture has met the learning expectations of our
students over eight years. Our study data involves two groups of
software engineers to upskill in two courses (1) software
engineering practitioners taking a public software architecture
design course (2) postgraduate students taking a Master’s level
software engineering programme. We explain how we evolve
the course design based on their students’ feedback after each
run of the courses. Although the feedback of each run show
encouraging results, we discover gaps in our design when we
cumulatively analyze the trends of their learning expectations
with their qualitative comments over the years. Our design is
able to consistently meet some but not all the learning
expectations that recur over the years and we discuss the
reasons for this outcome and potential further interventions. We
hope this discussion and trend analysis process can help course
designers to improve their course design.

Keywords— software engineering, learning expectations,
software architecture, adult learner

I. INTRODUCTION

Software engineers constantly upskill to stay relevant and
up to date with technology advancement. Many of them
choose to attend courses, especially when the course is
accredited by the organization or subsidized as part of the
national initiative to promote lifelong learning. Software
engineers who have working experiences and commitments
differ in their learning expectations as compared to one
without. This group of learners can better appreciate the
constraints of software designs and expect to learn skills for
them to apply at work. On the other hand, an undergraduate
with little or no working experiences and commitments
potentially choose to focus on the assessments to assess their
level of competencies. We need to align our course design to
their expectations to better address the learners’ needs.

To understand the learning expectations of our students,
we initially conduct surveys to gather their expectations for a
course on software architecture. However, without going
through the course in many cases, we discovered only high-
level expectations of the course could be found. Typical
comments on their expectations include “able to apply at
work”, “able to design the architecture” and “able to evaluate
vendor’s proposed architecture”. These comments can guide
to set the learning objectives but not the detailed design and
delivery of the training. On the other hand, our course also

needs to fulfil the required learning outcomes and assessment
needs. In our case, participants can be subsidised by a nation-
wide initiative for lifelong learning if they satisfy the learning
outcomes based on the assessment criteria.

Along with this initiative, there is an accredited skills
framework for software engineering designed by relevant
industry experts and can be used to guide the course design of
software architecture training. We first adopt a combination of
both survey and the accredited framework to design our course
and evolve our design with their feedback after each run. In
this paper, we evaluate the effectiveness of our course design
and it’s evolution over the years to meet the learning
expectations of our software engineers. We seek to address the
following research question for the rest of the paper.

RQ - “Did our course design on software architecture meet
the learning expectations of our students?”

We implement the course design in two courses catering
to two groups of software engineers – industry practitioners
taking our public course on software architecture and
postgraduate students taking our software architecture module
as part of their software engineering master’ programme. We
termed the former as public participants, the latter as
postgraduate students and collectively termed both of them as
learners or students for the rest of the paper. To address our
RQ, we quantitatively analyse to evaluate the effectiveness of
our course design and qualitatively explain interventions
applied after each run. To further identify the trends in their
learning expectations over the years, we evaluate their course
ratings and gather over 1,000 of their feedback comments over
eight years, cluster and classify them for discussion. A key
contribution of this paper is the trend analysis process to
evaluate the learning expectations based on the frequency of
occurrences over a period. We hope this discussion and trend
analysis process provides a basis for course designers to
improve their course design in related software engineering
courses for software engineers.

The rest of the paper is organized as follows: We first
present background and related work in Section II. We give
an overview of our course design in Section III and explain
the course delivery in Section IV. We discuss the quantitative
feedback ratings and analyze the qualitative feedback
comments in Section V. We conclude this paper with a
discussion on the threats to the validity of our results in
Section VI and a conclusion in Section VII.

II. BACKGROUND AND RELATED WORK

A. Characteristics of Adult Learners
Understanding the characteristics of adult learners is

crucial to better design the course for the learners. Extensive
work by Knowles [1, 2] and other educators in andragogy
resulted in the development of new assumptions about adult
learners. They characterize adult learners into six areas – (1)

need to know, (2) learner’s self-concept, (3) role of
experience, (4) readiness to learn, (5) orientation to learning
and (6) motivation.

Adults need to know the utility and value of the material
that they are learning before embarking on learning. In adult
learning, the first task of the teacher was to help the learner
become aware of the need to know [3]. When adults undertake
to learn something on their own, they invest considerable
energy probing into the benefits they will gain from learning
it and the negative consequences of not learning it. Self-
concept of the adult learner assumes that the adult learner is
self-directing and autonomous [4, 5]. Adults have a deep
psychological need to be seen by others and treated by others
as being capable of self-direction and resent and resist
situations in which they feel that others are imposing their
wills on them. The third characteristic is how adult learners
deal with the role of the learner’s prior experience. Adult
learning practitioners believe that prior experiences are the
richest resources available to adult learners. Adults tend to
come into adult education activities with a greater volume and
higher quality of experience than younger children. The fourth
characteristic is that of readiness to learn. In adults, readiness
to learn is dependent on an appreciation of the relevance of the
topic. Adult learners tend to become ready to learn things that
they believe they need to know or be able to do to cope
effectively with real-life situations and problems. In adult
learning theory, the view of an adult’s orientation to learning
is problem-centred, task-centred, or life-centred. Adults are
motivated to learn to the extent they perceive that the
knowledge will help them perform tasks or solve problems
that they may face in real life. Thus, adults learn best when
new knowledge, skills, and attitude are presented in the
context of real-life situations. The sixth characteristic of adult
learning addresses the motivation to learn. All normal adults
were motivated to keep learning, growing and developing [3].
While adults are responsive to extrinsic motivation, they are
mostly driven by internal pressure, motivation, and the desire
for self-esteem and goal attainment.

These characteristics need to be considered during the
course design. We emphasize the benefits of learning software
architecture and the value of designing the right software
architecture at the start of the course. We structure the course
to empower the students to be self-directed in their learning
by having activities to synthesize the software architecture
concepts and derive the possible architecture designs. It also
has to provide an opportunity for them to bring and discuss
their prior project experiences and relate the concepts and
exercises to real-life design situations so that they can apply
in their workplace. The learning environment is conducive
and adaptable to the student’s commitments which can
motivate them to learn.

B. Designing a Software Architecture Course
Interests to learn software architecture has evolved

tremendously over the years but given its level of abstraction,
remains a difficult subject for software engineers to grasp and
for educators to teach. The skillset for one to be a competent
software architect is multi-faceted, which increase the level of
difficulty to be taught in a classroom environment. The role of
a software architect typically entails one to have technical,
analytical and effective communication skills. Technical skills
that minimally include software design and programming
experiences. Analytical skills are essential for the software
architect to grasp the problem quickly, diagnose the possible

root causes and make significant decisions for the project. An
architect who is unable to make significant design decisions
(principles) where much is unknown, where there is
insufficient time to explore all alternatives, and where there is
pressure to deliver is unlikely to succeed [6]. The architect
should have effective communication skills, including
speaking, writing, and presentation abilities to address
complex problems with a seemingly simple design that are
easy to grasp.

Rupakheti and Chenoweth [7] described their experiences
and learnings in designing their software architecture course
to undergraduates. Their systematic problem in getting
architecture concepts across to undergraduates is similar to
our challenge for students, primarily those with limited design
experiences. Galster and Angelov [8] describe a framework
involving the relationship of concept (software architecture),
representation (architecture description), referent (software
architecture practice) to the learner element in the learning
space. In addition to the vagueness of the concept of software
architecture itself, architecture problems are usually
“wicked.” Asking students to create architecture is different
to, for example, asking them to write a Java program - students
have a much clearer understanding of what the expected
outcome is. Mannisto, Savolainen, and Myllarniemi [9]
discuss on the means for teaching students what it takes to face
software architecture design problems with some
characteristics of wicked problems and providing students
with some methodological tooling for coping with the
problems in their profession as software architects. The
industrial environment differs significantly from typical
exercises in software architecture teaching. Constraints often
dominate the development process. Ouh and Irawan [10]
adopt an experiential risk learning model to design their
software architecture course for undergraduates to address the
challenges of teaching abstract software architecture concepts
to undergraduates. The model comprises of activities to
simulate risks that can happen in practical scenarios, and their
role is to be able to recognise these risks, reflect on the causes
and mitigate these risks.

Our design of the software architecture courses is targeted
at adult learners with working experiences who differ in their
learning needs and characteristics from undergraduates. We
evaluate our course design in meeting our student’s learning
expectations, and we believe that our understanding of their
learning expectations over an extended period of time is more
conclusive than on specific runs.

III. DESIGN OF THE SOFTWARE ARCHITECTURE COURSE

In this section, we give an overview of the design decisions
made for our software architecture training course. The course
design is documented and submitted to the relevant authority
of the skills framework committee for validation before the
course can be launched.

A. Course Objective
To align with the learner’s need to know and readiness to

learn, we set our course key objective to equip our students
with the industry-relevant skills in designing a software
architecture. To achieve this, we review the National
Infocomm Competency Framework [11] which comprises of
competencies required for a particular role developed based
on inputs of industry experts. We adopt these high-level
competencies units relevant to an architect role and design our
course based on these competencies.

• Explain how the application architecture fits into the
broader context of organizational business goals and
enterprise architecture.

• Design the architecture with an emphasis on the common
application integration components.

• Describe software architecture with views and
viewpoints.

• Analysis of software architecture designs with respect to
the quality attributes and their trade-offs.

B. Course Structure
The course structure can be designed based on two broad

categories: (1) for one in the academic community to address
research problems (2) for one in the practitioner’s community
to gain practical skills. The former generally leads one to
pursue higher education in the research community while the
latter leads to apply these skills at their workplace. In this
study, the course structure focus on the latter - professional
software engineers to obtain skills to apply back to their
workplace. This decision also aligns with the learner
characteristics for our group of students in terms of the need
to know, readiness, orientation and motivation to learn. Based
on the skills framework [11], we describe our software
architecture course design in two dimensions - underpinning
knowledge and evidence of learning.

The underpinning knowledge dimension describes the
knowledge required for the student to achieve the learning
objectives. For this dimension, the content is broken down into
two parts - architectural thinking and software qualities. By
definition, software architecture is the fundamental
organization of a system embodied in its components, their
relationships to each other, and the environment, and the
principles guiding its design and evolution [6]. For the first
part on architectural thinking, students get to understand these
architecture components and relationships among them. The
students are exposed to the architectural styles primarily based
on the work by Bass [12] and reference patterns. Examples of
architectural styles include client-server, tiered computing
data-centric, call-and-return, event-driven, layered and
reference patterns include enterprise service bus, service-
oriented architecture and cloud computing. These styles and
patterns are introduced with an explanation of real-life
industry case scenarios [13]. We seek to educate the student
on how and when to implement these styles/patterns. For
example, an enterprise service bus architecture design
provides decoupling between systems but might not be
suitable for small enterprises with limited integration needs.

For the second part on software qualities, we introduce the
list of qualities in ISO 25010 Product Quality Model [14] and
the Rational Unified Process [15, 16]. These are standardized
list and process which they can reuse in their workplace. We
seek to educate the student on each software quality, the trade-
offs of implementing these qualities and how to mitigate them.
For example, an implementation for two-factor authentication
provides better security but trade-off usability of the system.
We can mitigate this trade-off by delaying the authentication
step until needed and not always at the start.

The evidence of the learning dimension describes the
concrete artefacts and activities that can demonstrate the
student’s level of competency in the application of the
knowledge gained. For this dimension, the students are

required to produce design artefacts and we also evaluate their
competency through observations and questioning in case-
study discussions. These discussions allow sharing of their
experiences, peer learning and allow the students to practice
their analytical and communication skills. The selection of the
case studies is based on industry relevance, and we have to
decide on the domain of these case studies due to limited
course duration. We decide to focus on information systems
due to the high relevance of typical architecture designs most
organizations need to have. The selected information systems
case studies cover the front-end architecture with web, mobile
architectures; backend architecture involving enterprise
integration, cloud; and distributed architectures. These case
studies are real-life scenarios, allowing the students to
analyze, apply the concepts taught and mitigate the potential
trade-offs within a realistic context.

IV. COURSE DELIVERY

In this section, we describe the course delivery and discuss
the quantitative results. We also discuss how we evolve the
course design based on qualitative comments.

A. Course Conduct
The course duration is structured around a 32.5 hours

classroom contact time and can be delivered in 5 consecutive
days or spread out over five weeks. This schedule makes it
flexible for both the public participants and our postgraduate
students. We conduct the course once a week on weekends for
five weeks for the postgraduate students and five days in 1
week for public participants. For public participants, a
schedule longer than consecutive five days or spread across
weeks is undesirable due to work impact. For part-time
postgraduates, having the course on weekends reduce their
work impact and the need to take leave as the part-time
postgraduate programme requires them to commit their time
over 2.5 years.

Besides the differences in the delivery schedule of both
courses, we seek to maintain a consistent course design for
both our group of students. These two courses are taught by
the same two instructors with a workload evenly spread. Both
instructors have about ten years of industry working
experiences when these courses are designed.

B. Course Runs
The public course is conducted four times a year with an

average of 19 public participants per class. Each run of the
class spans over five full days and conducted by two
instructors to give the public participants additional exposure
to the experiences of different instructors. We have trained
524 public participants from the beginning of 2011 to the end
of 2017 over a total of 28 runs of the course. There is no
cancellation of the scheduled classes since the beginning.

For the postgraduate course, it is designed as part of a
software engineering master’s programme where
postgraduate students can complete it part-time for 2.5 years
or full time in 1 year. The postgraduate software architecture
course is conducted once a year with an average of 50
postgraduate students per class over eight years. Each run of
the class spans five full days conducted on either on Saturdays
or two weekday evenings over a total of 5 weeks. 399
postgraduate students have taken this course from 2010 to
2017. There is no cancellation of the classes due to low
enrolment) since the beginning.

C. Student’s Profile
The public participants on average, have five years of IT

working experiences based on the initial course survey.
However, their variation can span from a low of 2 years to
over 15 years of software engineering experiences. Their roles
also vary from junior software engineer to accredited software
engineer.

The postgraduate students on average, have three years of
IT working experiences based on their details for postgraduate
admission. Their variation is smaller as compared to the public
participants, primarily due to the standard admission criteria
of the postgraduate programme. Their roles are mostly junior
levels in software engineering and development.

D. Course Feedback Collection and Processing
For the public course, each public participant is given a list

of feedback questions, and they are required to hand in their
answers and comments at the end of the course. The survey
questions relevant to our research questions are shown below.
The first two metric-based questions are rated on a 5-point
Likert scale ranging from 1–Poor, 2-Fair, 3-Good, 4-Very
Good and 5–Excellent and the third question is to collect their
qualitative feedback comment.

Q1. “What is the overall satisfaction level for this course?”

Q2. “How well does this course impart the knowledge and
skills needed for you to apply and practice?”

Q3. “Please provide concrete actionable feedback comments
(e.g. application of concepts taught, like best about the
course, suggestions to improve the course)”

For the postgraduate course, we track the postgraduate
students’ feedback by asking them in a survey at the end of
the semester to provide a rating on their opinions for the
course. The survey questions relevant to our research
questions are shown below. The first two metric-based
questions are rated on a 5-point Likert scale ranging from 1–
Poor, 2-Fair, 3-Good, 4-Very Good and 5–Excellent and the
third question is to collect their qualitative feedback comment.
These questions are not the same as the public participants as
these questions are controlled at the university level.

Q1. “Overall module ratings”

Q2. “Department level average ratings”

Q3. “Please comment on the strengths and weaknesses of the
 module, and suggest possible improvements.”

E. Course Review and Evolution of the Course
After each run of the course, the instructors and another

external reviewer have a closedown meeting to discuss the
gathered feedback. The response rate of the feedback is high
as the participants are given sufficient time to do this. We
agree on the needed improvements to evolve the course design
and confirm the changes are implemented when we have the
start-up meeting for the next run. The evaluation feedback is
also scrutinised by both the teaching management and
subsiding agency to ensure we are delivering a quality course
for our participants to achieve their learning outcomes.

For the qualitative comments of both courses, we first
remove empty or nil comments (e.g. “nil”) and split extensive
comments into smaller paragraphs of similar context. For
example, a comment comprising of multiple sentences
discussing the course duration and usage of tools can be split

into two comments at the sentence level. Using Azure
Machine Learning service [17], we invoke the service for each
comment and analyze the results. There can be more than one
paragraphs per student or none. As a result, the number of
comments can be different from the number of students (or
class size). The class size per course run, survey answers, and
sentiment analysis of the comments for public participants are
shown in Table I and Fig. 1 and the results for postgraduate
students are shown in Table II and Fig. 2.

TABLE I. COURSE RATINGS-PUBLIC PARTICIPANTS

Run
(class size)

Q1 Q2
Q3 Sentiment Ratings

(Number of Comments - Positive /
Neutral / Negative)

1 (11) 4 4 (26) - 69.23% / 7.69% / 23.08%

2 (10) 3.7 4 (45) – 75.56% / 13.33% / 11.11%

3 (17) 3.7 3.6 (30) – 80.00% / 3.33% / 16.67%

4 (22) 3.7 3.8 (25) – 80.00% / 16.00% / 4.00%

5 (14) 3.6 3.9 (19) – 68.42% / 10.53% / 21.05%

6 (15) 3.9 3.5 (25) – 68.00% / 16.00% / 16.00%

7 (22) 3.9 3.8 (34) – 64.71% / 17.65% / 17.65%

8 (25) 4 3.7 (28) – 89.29% / 3.57% / 7.14%

9 (23) 4.2 4 (29) – 82.76% / 13.79% / 3.45%

10 (16) 4.1 4.1 (27) – 92.59% / 7.41% / 0.00%

11 (23) 4.3 3.9 (44) – 77.27% / 11.36% / 11.36%

12 (17) 4.2 4.1 (33) – 73.53% / 14.71% / 11.76%

13 (15) 3.9 4.1 (29) – 82.76% / 17.24% / 0.00%

14 (8) 4.1 3.7 (16) – 81.25% / 18.75% / 0.00%

15 (20) 4.2 4.3 (37) – 81.08% / 8.11% / 10.81%

16 (22) 4.1 3.9 (46) – 82.61% / 15.22% / 2.17%

17 (15) 4.4 4.1 (43) – 76.74% / 9.30% / 13.95%

18 (24) 4 4.2 (63) – 76.19% / 14.29% / 9.52%

19 (20) 4.3 3.8 (47) – 89.36% / 2.13% / 8.51%

20 (22) 4.3 4.1 (51) – 82.35% / 15.69% / 1.96%

21 (24) 4.1 4.1 (63) – 82.54% / 12.70% / 4.76%

22 (16) 4.5 4 (45) – 77.78% / 11.11% / 11.11%

23 (18) 4.2 4.4 (25) – 76.00% / 20.00% / 4.00%

24 (16) 4.3 4.3 (41) – 82.93% / 7.32% / 9.76%

25 (22) 4.2 4.2 (38) – 78.95% / 18.42% / 2.63%

26 (20)
4.6
2

4.1 (24) – 75.00% / 12.50% / 12.50%

27 (23)
4.4
2

4.33 (19) – 68.42% / 21.05% / 10.5%

28 (24)
4.6
3

4.46 (14) – 92.86% / 7.14% / 0.00%

Avg (19)
4.1
3

4.02 (35) – 79.19%/ 12.22% / 8.59%

Fig. 1. Course Rating-Public Participant

TABLE II. COURSE RATINGS-POSTGRADUATE STUDENTS

Run
(class size)

Q1 Q2
Q3 Sentiment Ratings

 (Number of Comments -
Positive / Neutral / Negative)

1 (75) 4.25 4.22 (29) – 72.41% / 3.45% / 24.14%

2 (41) 4.22 4.147 (28) - 71.43% / 17.86%/ 10.71%

3 (51) 4.26 4.12 (23) - 73.91%/ 13.04% / 13.04%

4 (44) 3.98 4.11 (34) - 70.59% / 11.76% / 17.65%

5 (39) 4.27 4.12 (27) – 74.07% / 7.41% / 18.52%

6 (49) 4.15 4.11 (30) – 66.67% / 16.67% / 16/67%

7 (38) 4.14 4.03 (15) – 73.33% / 13.33% / 13.33%

8 (62) 3.90 4.00 (29) – 68.97% / 10.34% / 20.69%

Avg (50) 4.15 4.10 (27) – 72.06%/ 11.27% / 16.67%

Fig. 2. Course Rating-Postgraduate Students

The quantitative feedback ratings and sentiment analysis
from both groups of students are generally positive and above
average, giving us a form of encouragement that the learning
expectations of these students are met. The average ratings
also do not set off any alarms with the teaching management
or the subsiding agency over the years. As part of the
continuous improvement of our course, we review the

qualitative comments after each run, especially on the
suggestions to improve the course. Although some of these
comments are given by only one or two participants in each
run, we view these comments as potential risks to the course
in the long run and we put in actions to mitigate these risks.

One mitigation action that we put is the tool used for the
exercises and assessments. We initially design to use a
commercial tool to document software architectures but many
feedback that they might not have the chance to use the tool
back at work and it takes time to learn the tool within the
limited course duration. We end up giving an alternative
option to using pen and paper. We also receive suggestions to
enhance our contents of other software methodologies and
technologies. We view these suggestions as potential industry
needs and plan to include them in future runs. Some areas that
we include are microservices design, serverless computing
and big data architecture for machine learning.

Another common suggestion is to have more class
discussions and team exercises for peer learning. Many
participants felt that discussions and team exercises enable
them to learn from other peers and apply what they learn. On
the other hand, they feel that assessments take up too much of
the course time. We realise we need to balance the time for
these activities as compared to assessments. We still need to
formally assess them as part of their coursework grades or
competency assessments to be eligible for subsidies. Over the
years, we incorporate many of the team exercises and
discussions as part of the assessments and such feedback
become less common. However, there is a limit to these
adjustments as a certain level of individual quantitative
assessments are still required. We end up accepting this risk
in subsequent runs. Another example of a risk that we accept
is on our focus on designing software architectures for
information systems. We infrequently encounter enrolled
students who are developing embedded systems and wish the
course can be structured around those kinds of systems. In this
case, we decide to continue our focus on information systems
and ensure our course outline are updated clearly before they
enrol for the course. We also make a point to explain this
rationale at the start of the course. In subsequent runs, we still
see cases of students having background in embedded systems
attending the course but most of them understand the course
design and express their interests to learn about information
systems instead.

V. TREND ANALYSIS OF THE COURSE DESIGN

In the previous section, we evaluate the course design
based on the quantitative results of each course run. However,
we acknowledge that the quantitative analysis for each run
might not be conclusive to address the RQ. In this paper, we
continue to analyze the qualitative comments compiled over
the years to identify trends and evaluate if we did meet the
student’s learning expectations.

We consolidate a total of 966 feedback comments from the
public participants and 215 feedback comments from the
postgraduate students for a total of 1181 feedback comments.
We cluster them into ten key themes based on coding by the
two instructors. The coding process involves randomly 20%
of the total set of comments and repeats if the differences in
the themes between the instructors are more than 10%. Below
are the ten themes and their descriptions. Table III and Fig. 3-
4 summarize these themes.

(1) Number of case study discussions/demos. Students
felt the need to increase the number of discussions and
class demos to better understand the relevance of the
concepts taught.

(2) Number of practice exercises. Students felt the need
for more exercises to apply and practice the concepts
taught.

(3) Level of guidance. Students require more assistance
either in understanding the knowledge or working on
the assignments and exercises.

(4) Depth of Content. Students felt the need to go in-depth
for certain topics.

(5) Course duration. Students felt that it is not sufficient
to effectively deliver the course topics within 5 days.

(6) Workshop Duration. Students felt that the workshop
duration is too tight and suggest to reduce the number.

(7) Experiences Sharing. Students suggest more sharing
of experiences either from the instructors or from other
students.

(8) Tool usage. Students felt the need to use PC and tools
on the workshop assignments.

(9) Content Coverage. Students felt the need to increase
the breadth of content coverage by reducing the
assignments and make the materials more concise

(10) Theoretical Level. Students felt the need to reduce the
theoretical concepts and more on the practical aspects
of a solution.

Each comment is evaluated to be in none, one or more than
one theme. For example, “Can introduce more tools and
examples on the subject” can be related to two themes –
“Number of sample practice exercises” and “Tool Usage”. We
identified a total of 372 relevant comments, 300 from the
public participants and 72 from the postgraduate students.
About 69% (809 out of 1181) of the total comments are either
positive comments (e.g. “Course content very good”) or
neutral comments (e.g. “apply methodology learned to
design.”) and these comments are discarded from this
analysis. For each set of comments in each theme, we analysis
their occurrences yearly over the years. There are at least five
runs of the courses in total each year and involve at least 120
of public participants and postgraduate students yearly.

We group these themes into the following three categories of
expectations based on their frequency of occurrences:

a. Recurring Expectations - Recurring expectations are
comments that occurred at least once within a year after
applying interventions.

b. Sporadic Expectations - Sporadic expectations are
comments that occurred at least once within a two year
period after applying interventions.

c. Managed Expectations - Managed expectations refer to
comments that occurred before but due to interventions
ceased to occur in subsequent years.

The expectations for themes (1), (2), (3) and (4) (more case
study discussions/class demos, more practice exercises, a
higher level of guidance and more content depth) are
constantly recurring throughout the years. We grouped these
expectations under the type of recurring expectations due to
the occurrences within a year after interventions are applied.
We did increase the number of discussions and demos over
the years, but this type of comments persists throughout the
years. It is a challenge to create or find relevant content in
software architecture with the right level of detail based on the
student’s profile. Our students have a large variation in terms
of their years of experiences and work domains. This profile
variation is generally wider among the public participants as
compared to postgraduate students. This is because our
postgraduate students are admitted into the programme based
on a common set of admission criteria. The expected level of
guidance and content depth also varies with the student’s
profile. While students who have less number of years in
software designs require a higher level of guidance with less
content depth so that they are not overwhelmed, students with
more years of experiences expect more in-depth content and
require less level of guidance.

The expectations for the themes (5), (6) and (7) (longer
course and workshop duration, more experience sharing) are
sporadically recurring throughout the years. We grouped these
expectations under the type of sporadic expectations as they
infrequently occur over the years. We attribute the recurrence
of (5) and (6) to the student’s ability to do the assignments
within the workshop duration. We encountered course runs
when all participants finished their workshop earlier than
expected and also otherwise. Students attribute the reason of
work commitments as the cause for being unable to complete
their assignments on time and ask to extend the deadline. For
(7), we do encourage experiences and increase the
opportunities for sharing, but it is still subject to the student’s
openness to share their experiences. On the other hand, it is a
design challenge to balance the time between experiences
sharing and coverage of content within the limited five days
course. We partially mitigate this challenge with pre-course
readings materials. However, students may not have time or
motivation before class to digest these readings. Based on
these sporadic occurrences, we have yet to find the right
balance.

The expectations to the themes (8), (9) and (10) (using
tools for assignments, coverage of contents in more domains
and reducing the level of theoretical contents) occur in the
earlier years but cease to occur after. We grouped these
expectations under the type of managed expectations. Several
participants suggest using tools to work on the assignments.
We tried this out and many participants took more time to
learn the tool instead. We eventually decide to leave the choice
to the learners and they can use either pen and paper or their
preferred tools. To address comments relating to contents
being overly theoretical, we identified and modified them
between course runs over the years. For course coverage, we
send pre-course surveys to identify potential students who
might not be our intended audience early and manage their
expectations in the course coverage. Based on the data, we
seem to have managed their expectations in these aspects.

TABLE III. 10 THEMES FROM THE FEEDBACK COMMENTS

No Theme
(Type of
Expectation)

Selected Comments Number of
Public
Participants
(%)

Number of
Postgraduate
Students
(%)

1 Number of
case study
discussions/
demos
(Recurring)

“Bringing in more of real-life project examples would be a lot more helpful.”
“Propose to have more industry related workshops which can guide and make participants
go through the thought processes of a junior architect. Maybe can include a small portion on
what a solution architect goes through in an actual job environment”
“Please give us more examples, will be helpful for those with limited tech background.”

104
(34.67%)

2
(2.78%)

2 Number of
practice
exercises
(Recurring)

“More personal exercise to ensure participants are able to apply software/solution architect”
“Practical exercises after each chapter, to industries needed”
“Include more practical exercises”

21
(7.00%)

9
(12.50%)

3 Level of
guidance
(Recurring)

“More 'hand-holding' for the workshop in groups. Perhaps, one before individual.”
“Although this is meant to be a technical course, some participants may not have sufficient
background knowledge. Hence, some ideas can be simplified or use of some products may
be helpful”
“Go through exercises with participants, some may not have any foundation knowledge”

38
(12.67%)

26
(36.11%)

4 Depth of
Content
(Recurring)

“More in-depth workshops”
“Could have spent more time going through course materials or in greater depth.”
“the architecture design portion should probably go into more depth with examples”

16
(5.33%)

9
(12.50%)

5 Course
duration
(Sporadic)

“Pace of the course. There are too much to cover within the 5-days.”
“The course probably covers too much in just 5 days but it is probably because SA covers a
lot of scopes. Probably it can zoom into 1 or more modules in depth”
“Reduce the number of participants per class, seems that instructor gets a lot of questions,
some may not have chance to ask. Or increase the length of course”

12
(4.00%)

19
(26.39%)

6 Workshop
Duration
(Sporadic)

“There are too many assignments. Reduce the number of assignments.”
“The workshops might be too lengthy and not suitable for participants new to IT”
“Workshops are too stressful, within a short timeframe”

23
(7.67%)

4
(5.56%)

7 Experience
Sharing
(Sporadic)

“Ask participants to share their architecture to know the application of concepts in real life”
“2 instructors to engage in panel like discussion in conducting classes”
“Encourage more participation of classmate to share what challenges and issues they have
faced as SA and how they handle this situation.”

27
(9.00%)

0
(0.00%)

8 Tool usage
(Managed)

“Using computers to do the exercises, to reduce the time taken to re-draw diagrams.”
“The workshop can be done using pc with tools rather than have to draw diagrams by hand”
“Appreciate if exercise is done using computer system instead of paper”

9
(3.00%)

1
(1.39%)

9 Content
Coverage
(Managed)

“More non-Java/c# examples like on c++ or other languages”
“Relation to other systems? Real-time , Embedded & C/C++, SOA techniques”
“I think that it would be useful to include how to evaluating software or libraries”

39
(13.00%)

0
(0.00%)

10 Theoretical
Level
(Managed)

“Certain computations are maybe slightly low level.”
“Some parts on performance are a bit too theoretical, need more intuitions”
“Lesser calculations, more on concept and architect mindset.”

11
(3.76%)

2
(2.78%)

FIG. 3 NUMBER OF COMMENTS PER THEME, OCCURRENCES AND

PERCENTAGE (POSTGRADUATE STUDENTS)

FIG. 4 NUMBER OF COMMENTS PER THEME, OCCURRENCES AND

PERCENTAGE (PUBLIC PARTICIPANTS)

We also analyse the differences in expectations between
public participants and postgraduate students with two key
observations. 34.67% of the public participants felt the need
to have more case study discussions and class demos (theme
1) to assist them in applying in their workplace as compared
to only 2.78% of postgraduate students. On the other hand,
36.11% of the postgraduate students’ significant feel the need
to have more guidance (theme 3) as compared to 12.67% of
the public participants. Since both courses are designed with
the same contents and delivered by the same instructors, we
attribute these observations to student’s profile variation in
terms of their years of experiences and work domains. Our
profile of postgraduate students on average has fewer years of
working experiences as compared to the public participants.
The lack of sufficient working experiences might have limited
their understanding, require more guidance and also lead to
their high proportion of comments on the course duration
being too short to cover the wide scope of the content.

Based on the above results to address RQ, we conclude
that we meet the managed expectations. However, we still
have work on addressing recurring and sporadic expectations.
Two key design challenges are identified leading to the unmet
sporadic and recurring expectations. These are the challenge
to cover the extensive content within the limited duration and
the challenge to adapt to the variation of student’s profile, such
as years of experiences and work domains. These challenges
are likely inter-related - Students with fewer experiences or
having unrelated work domains might require more time for
guidance and vice versa.

One possible intervention to address these challenges is to
divide the course into two levels - introductory and advanced.
This approach increases the overall duration to cover more
content and allow more experiences sharing. The level of
guidance can also be higher in the introductory course.
However, the downside to this approach is that the participants
are away from work longer if they choose to attend both
courses. Another possible intervention is to design the course
for public participants and postgraduate students separately.
Two different methods proposed are the problem-based and
case-based methods. While case-based learning (CBL) uses a
guided inquiry method and provides more structure during
small-group sessions, problem-based learning (PBL) uses a
more unguided approach [18]. CBL with a higher level of
guidance is suitable for postgraduate students while PBL with
a lower level of guidance is suitable for public participants
who have working experiences. Both interventions attempt to
address the challenges by minimizing the dependency of the
course adaptation against the variation of the students’ profile.
However, more work has to be done to evaluate further if these
interventions or a combination of interventions can address
the challenges.

VI. THREATS TO VALIDITY

As the design of software architecture is confined within
the context and environment, our findings are also confined
by the profile of our adult learners. Although these results are
accumulated over many years and our students’ profile vary
to a certain extent, these results will require further validation
when the profile of students changes significantly. In this
paper, we studied the course design for two groups of software
engineers who have a certain degree of industry experiences.
These results might not be conclusive for other participants,
such as undergraduates with little or no working experiences.

The course is designed for software engineers who are
developing information systems architectures. Even though
these architectural thinking concepts are also applicable in
other types of system such as embedded systems, the results
in this paper require further validation if the course design has
to be adapted significantly for a learner who is working on
other types of systems.

We also acknowledge that this evaluation of only a
software architecture course limits the generalization to other
courses. Although many of the analysis results are due to the
variation of student’s profile, we still need to validate these
results in other courses in our future work.

VII. CONCLUSION

We believe that with the technology revolution and
advancements in this rapidly changing IT industry, more
software engineers are attending courses to upskill in their
lifelong learning journey and enable them to perform better in
their workplaces. There are challenges in designing the course
to meet their expectations given the level of abstraction of
software architecture concepts and learning characteristics of
the adult learners. Can we effectively meet the learning
expectations of these students in our architecture course?

In this paper, we first describe our software architecture
course design based on established industry skills framework
and understanding the characteristics of our adult learners. We
conduct this course to two groups of adult learners – industry
practitioners taking a public course and postgraduate students
taking the course for their software engineering master’s
programme. Based on the quantitative analysis of the ratings
and feedback comments for the course runs over eight years,
the results show the effectiveness of our course design to meet
the learning expectations of our students to learn software
architecture. We also explain key interventions we put in as
we evolve the course over the years based on the qualitative
feedback comments in each run.

However, when we further analyze the qualitative
feedback comments across the runs and over the years, we
discover many areas of improvements, suggesting potentially
unmet expectations. We cluster these comments into ten
unique themes and classify these themes into three categories
of expectations based on the frequency of occurrences of these
comments. These three categories are recurring, sporadic and
managed expectations. We analyze the themes and comments
in these three categories and realise we can meet the managed
expectations but not the recurring or sporadic expectations
despite interventions. Recurring expectations refer to
comments occur every year, sporadic expectations refer to
comments occur within a two year period and managed
expectations refer to comments occur before but ceased after
that. We identified two key design challenges leading to the
unmet sporadic and recurring expectations coverage of the
extensive content within the limited duration and adapting to
the variation of student’s profile such as years of experiences
and work domains. We also propose possible further
interventions to address these challenges in the future.

We hope this discussion and trend analysis can help course
designers to improve or evaluate a course design in related
software engineering courses for software engineers.

REFERENCES
[1] S. O'Toole, and B., Essex, "The adult learner may really be a neglected species."

Australian Journal of Adult Learning 52, no. 1: 183-191, 2012.
[2] M. S. Knowles, E. F. Holton III, and R. A. Swanson, The adult learner. Routledge,

2014.
[3] A. Tough, The adult's learning projects: A fresh approach to theory and practice

in adult learning. Ontario Inst. for Studies in Education, 1971.
[4] J. S. Bruner, "The act of discovery.” Harvard Educational Review.31: 21-32, 1961.
[5] R. W. White, "Motivation reconsidered: The concept of competence."

Psychological review 66, no. 5, 297, 1959.
[6] P. Kruchten, "Mommy, where do software architectures come from." In

Proceedings of the 1st Intl. Workshop on Architectures for Software Systems, pp.
198-205, 1995.

[7] C. R. Rupakheti, and S. Chenoweth, "Teaching software architecture to
undergraduate students: an experience report." In Proceedings of the 37th
International Conference on Software Engineering-Volume 2, pp. 445-454, IEEE,
2015.

[8] M. Galster, and S. Angelov, "What makes teaching software architecture
difficult?." In 2016 IEEE/ACM 38th International Conference on Software
Engineering Companion (ICSE-C), pp. 356-359. IEEE, 2016.

[9] T. Mannisto, J. Savolainen, and V. Myllarniemi. "Teaching software architecture
design." In Seventh Working IEEE/IFIP Conference on Software Architecture
(WICSA 2008), pp. 117-124. IEEE, 2008.

[10] E. L. Ouh, and Y. Irawan, "Exploring Experiential Learning Model and Risk
Management Process for an Undergraduate Software Architecture Course." In
2018 IEEE Frontiers in Education Conference (FIE), pp. 1-9. IEEE, 2018.

[11] “National Infocomm Competency Framework.” [Online]. Available:
http://www.ssg.gov.sg/wsq/Industry-and-Occupational-Skills/National-
Infocomm-Competency-WSQ.html

[12] L. Bass, P. Clements, and R. Kazman, Software architecture in practice. Addison-
Wesley Professional, 2003.

[13] E, L. Ouh, and S. Jarzabek, "An adaptability-driven model and tool for analysis of
service profitability." In International Conference on Advanced Information
Systems Engineering, pp. 393-408. Springer, Cham, 2016.

[14] "ISO/IEC 25010:2011 Systems and software engineering -- Systems and software
Quality Requirements and Evaluation (SQuaRE) -- System and software quality
models." 2011. [Online]. Available: https://www.iso.org/standard/35733.html.

[15] P. Kruchten, The rational unified process: an introduction. Addison-Wesley
Professional, 2004.

[16] P. Kruchten, "The software architect." In Working Conference on Software
Architecture, pp. 565-583. Springer, Boston, MA, 1999.

[17] Azure Text Analytics API - Detect sentiment, key phrases and language from your
text [Online]. Available: https://azure.microsoft.com/en-in/services/cognitive-
services/text-analytics/

[18] M. Srinivasan, M. Wilkes, F. Stevenson, T. Nguyen, and S. Slavin, "Comparing
problem-based learning with case-based learning: effects of a major curricular
shift at two institutions." Academic Medicine 82, no. 1, 74-82, 2007.

	Did our course design on software architecture meet our student’s learning expectations?
	Citation

	untitled

