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ABSTRACT
Software Composition Analysis (SCA) has gained traction in recent
years with a number of commercial offerings from various compa-
nies. SCA involves vulnerability curation process where a group of
security researchers, using various data sources, populate a data-
base of open-source library vulnerabilities, which is used by a
scanner to inform the end users of vulnerable libraries used by their
applications. One of the data sources used is the National Vulner-
ability Database (NVD). The key challenge faced by the security
researchers here is in figuring out which libraries are related to
each of the reported vulnerability in NVD. In this article, we report
our design and implementation of a machine learning system to
help identify the libraries related to each vulnerability in NVD.

The problem is that of extrememulti-label learning (XML), and we
developed our system using the state-of-the-art FastXML algorithm.
Our system is iteratively executed, improving the performance of
the model over time. At the time of writing, it achieves F1@1 score
of 0.53 with average F1@k score for k = 1, 2, 3 of 0.51 (F1@k is the
harmonic mean of precision@k and recall@k). It has been deployed
in Veracode as part of a machine learning system that helps the
security researchers identify the likelihood of web data items to be
vulnerability-related. In addition, we present evaluation results of
our feature engineering and the FastXML tree number used. Our
work formulates for the first time library name identification from
NVD data as XML and it is also the first attempt at solving it in a
complete production system.

CCS CONCEPTS
• Security and privacy → Software security engineering; •
Software and its engineering→ Software maintenance tools.

KEYWORDS
application security, open source software, machine learning, clas-
sifiers ensemble, self training
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1 INTRODUCTION
Open-source libraries are critical to modern information infrastruc-
ture, which relies heavily on software written using open-source
dependencies, such as those in Maven central, npmjs.com, and PyPI.
As with any software, however, open-source libraries may contain
security vulnerabilities. Software Composition Analysis (SCA) auto-
matically identifies vulnerable versions of the dependencies used in
an application, so that developers can continue using open-source
libraries with peace of mind. SCA has gained traction in recent
years with a number of commercial offerings from various com-
panies [1, 9–11]. The design of a state-of-the-art SCA product is
discussed in a recent article by Foo et al. [20].

Figure 1 depicts a typical SCA workflow. SCA helps develop-
ers by discovering vulnerable libraries used by their application
by matching the detected dependencies of the application with a
database of vulnerable libraries. SCA importantly involves a vul-
nerability curation process where a group of security researchers
populate the database with data from various sources. Most rel-
evant to our work is the National Vulnerability Database (NVD)
data source. Each NVD entry includes a unique Common Vulner-
ability Enumeration (CVE) identification number. a vulnerability
description, Common Platform Enumeration (CPE) configurations,
and references (web links). Each CPE configuration is a regular
expression that identifies a set of CPE names. Each name in turn
identifies an information technology system, software, or package
related to the vulnerability. Unfortunately, these information may
not explicitly identify the vulnerable library. For example, Figure 2
shows the words that are included in the report for CVE-2015-7318,
that we extracted automatically from its web page [5]. This vul-
nerability is included in the Zope2 Python library of Plone content
management system, however, Zope2 is nowhere mentioned in the
text, as well as in the original NVD record [5]. As another example,
Figure 3 shows the text that we automatically extracted from the
web page of CVE-2011-0448 [4]. Although the Ruby on Rails Active
Record library has the vulnerability, it is neither mentioned in the
text data nor in the NVD record [4]. Within the context of SCA
vulnerability curation process, therefore, the key challenge faced by
the SCA security researchers here is in figuring out which libraries
are related to each of the reported vulnerability in the NVD from
these data.
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Figure 1: Software Composition Analysis

2015 allows responses bugzilla.redhat.com show_bug.cgi http oss
16 header lists 09 headers injection 22 www.openwall.com plone
hotfix plone.org 20150910 1264796

Figure 2: Text from CVE-2015-7318

pipermail 2 source advisories lists.fedoraproject.org package an-
nounce secunia.com function 0 attacks www.vupen.com english
securitytracker.com output releases sql argument 11 2011 4 april
injection 3 8 group values rails groups.google.com arguments
ruby rubyonrails weblog.rubyonrails.org integer limit msg dmode
gplain 057650.html 0877 4e19864cf6ad40ad 43278 1025063 new

Figure 3: Text from CVE-2011-0448

In this article, we report an automated prediction system using
machine learning to compute the related library names for any
given CVE id. It implements the function

identify : NVD → P(L) (1)
with NVD the set of CVE ids in the NVD, and P(L) the powerset
of L, the set of library names that identify the libraries. For train-
ing our machine learning models, we collect training data from
NVD and obtained thousands of NVD vulnerability records with
their library names from SCA database of library vulnerabilities,
manually curated by security researchers in years. The machine
learning task is in essence an extreme multi-label text classification
(XMTC), which is more generally known as extreme multi-label
learning (XML). For training and prediction, we use the state-of-
the-art FastXML algorithm [28]. Our work formulates for the first
time library name identification from NVD data as XML and it is
also the first attempt at solving it.

In summary, our main contribution is the application of the
FastXML [28] approach for mapping vulnerability data to library
names in the context of SCA. As demonstrated by our examples
of Figures 2 and 3, our problem here is in relating a query to a
library whose name that may not even be mentioned in the query.
Hence, the problem is different to that of information retrieval,
in particular learning-to-rank [25]. In this article, we describe our
approaches for data collection, feature engineering, and model
training and validation. We also present evaluation results of our
design choices in data preparation, and the FastXML tree number
used. In addition, we present a case study model evaluation, where

Figure 4: Recommendation System Screenshot

at the time of writing, our model achieves F1@1 score of 0.53 with
average F1@k score for k = 1, 2, 3 of 0.51 (F1@k is the harmonic
mean of precision@k and recall@k , all of which are defined in
Section 4.2).

Our system has been deployed at Veracode as part of a larger
system that helps the security researchers identify the likelihood of
web data items to be vulnerability-related. The prediction facility
is packaged as a web service, where the inputs are vulnerability
description of the given CVE id, its CPE configurations, and its
references, and it responds to an input with a ranked list of library
names, with a score is attached to each library name in the list.
Based on the scores, we can select the top-k library names. The
prediction results are made available to the researchers via a web
user interface as exemplified in Figure 4.

We first provide some background in Section 2, including our
vulnerability curation system for SCA, XML, and FastXML. We
next describe our data gathering and feature engineering efforts in
Section 3. We discuss our core approach in Section 4, and present
experimental evaluations of our approach in Section 5. We then
discuss a model deployment case study in Section 6, followed by a
discussion on the threats to validity in Section 7. We present related
work in Section 8, and conclude our article in Section 9.

2 BACKGROUND
2.1 Software Composition Analysis

Vulnerability Curation System
In this article we report an enhancement to an existing machine-
learning-based vulnerability curation system already used in pro-
duction at Veracode [47]. Figure 5 shows the overall structure of the
system of the system. The core of this system is a suite of stacking
ensemble models [56] that predict whether a data item is related
to vulnerability or not. The system is executed iteratively, where
new models are trained monthly using more and updated input
data at each iteration. The data sources fed into system at each
iteration include the NVD, Jira tickets, Bugzilla reports, Github
issues, PRs, and commits, as well as emails. The data from internet
are first cleaned, and then after the feature extraction and selection
process, existing production models are used to perform prediction
on the input data to decide whether each data item is related to
vulnerability or not. The result of the prediction is given to a team
of security researchers to make the final decision, resulting in new
entries in the library vulnerability database. The new entries are
then used to train and validate new models for use in production
for the next iteration.

2
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Figure 5: Data Flow Diagram (DFD) of A Machine-Learning-
Based Vulnerability Curation System. The system itera-
tively improves the prediction models with the labeling by
the security researchers as the only manual task.

Our work enhances the system further by automatically provid-
ing recommendation to the security researchers using a machine-
learning model on the related library names for each new entry
in the NVD. The security researchers review this recommendation
and manually decide on the final set of library names for entry. The
new association is then added into the SCA database which is then
used in the subsequent iterations to train new models.

2.2 XML and FastXML
XML (or XMTC in natural language processing) is a problem to
classify input data with multiple tags or labels [14]. Our problem
can be considered as an instance of XML. XML is different from
normalmulti-label learning (ML) due to the extremely large number
of labels for XML. XML is also different from multi-class classifica-
tion [44], where the objective is to tag each data item with a single
tag [14]. Liu et al. summarizes the main challenges in XML [24]:

(1) Severe data sparsity. The majority of the labels have very
few training instances associated with them, making it diffi-
cult to learn the dependency patterns among labels reliably.

(2) Computational costs. The costs of both training and test-
ing of independent multi-class classifiers (i.e., the binary
relevance (BR) method [26]) is prohibitive due to the large
number of labels, possibly reaching millions.

There are several approaches to XML in the literature. The em-
bedding methods perform compression to reduce the dimensionality
of the label vector space. The approaches in this category include
WSABIE [41], SLEEC [14], and AnnexML [34]. SLEEC is reported
to slightly outperform FastXML [28] (the algorithm that we use)
on LSHTC4, a large-scale benchmark for text classification using
Wikipedia dataset [27]. In embedding-based approach, however,
the models can be costly to train [41] and the prediction can also
be slow even for small embedding dimensions [14], as it requires to
decompress a prediction to the labels in the original vector space.

More importantly, because of data sparsity [24, 34], the critical
assumption that the training label matrix is low-rank, is violated in
almost all real world applications [14]. This entails a heavy loss of
information in the compression.

Deep learning approaches to XMTC include that of Liu et al. [24],
You et al. [50], and Zhang et al. [53]. Shah et al. also report the
application of fastText [23], which is a deep learning approach, to
the product matching problem, demonstrating that the approach
is efficient to train [31]. Deep learning has been shown to have
competitive results compared to FastXML (the algorithm that we
use) [24, 53], but deep learning is not applicable to us since we only
have about more than 7,000 labeled data items (see Tables 1 and 7),
which is insufficient for deep learning.

In the tree-based methods, the input or label space is arranged
in a tree hierarchy, where the root usually represents the whole
dataset. Agrawal et al. [12] show that using multi-label random
forest (MLRF ) classifier results in significantly better bid phrase rec-
ommendations than ranking-based techniques. Label partitioning
for sublinear ranking (LPSR) approach partitions the input space
and assigns labels to the partitions taking into account the rank-
ing provided by an original scorer of the label assignment. This
achieves validation time complexity sublinear in the size of the
label space [42]. Tree-based methods generally perform better than
embedding-based methods, and we thus base our work on the
state-of-the-art tree-based algorithm FastXML, which is shown
to have much less training costs than MLRF or LPSR [28], and is
often considered as state of the art for comparison with other ap-
proaches [24, 53]. The main difference of FastXML to MLRF and
LPSR is in the tree node partitioning: FastXML’s node partitioning
formulation directly optimizes a rank sensitive loss function called
normalized DCG (nDCG) over all the labels. DCG (discounted cumu-
lative gain) is a measure to quantify the quality of ranking. Given a
rank p of an item, its DCG is DCG(p) [40]. Normalized DCG (nDCG)
is DCG(p) normalized to [0, 1] using an ideal DCG (IDCG), which is
the maximum of theDCG(p). That is, nDCG(p) = DCG(p)/IDCG(p).
The use of nDCG in FastXML leads to more accurate predictions
over MLRF’s Gini index or LPSR’s clustering error. FastXML uses an
efficient alternating minimization algorithm to optimize nDCG(p)
that converges in a finite number of iterations. Jain et al. proposes
PfastXML that improves FastXML by replacing optimization of
nDCG with minimization of propensity-scored loss precision@k
or nDCG@k [22]. They also propose PfastreXML algorithm which
further re-ranks the predictions of PfastXML using classifiers that
take into account tail labels which occur infrequently. The imple-
mentation of FastXML that we use implements FastXML, as well as
PfastXML and PfastreXML [2].

There is also a newer category of XML algorithms called the
sparse model methods, such as PD-Sparse [49], with parallelized
versions by Yen et al. [48] and Babbar and Schölkopf [13], however,
even when considering these methods, FastXML’s training and
prediction times are still competitive for our purpose.

3 INPUT DATA
3.1 Data Sources
The data that we use for model training come from two sources:
the NVD and the SCA library vulnerability database. We obtain

3
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vulnerability data from NVD and library names from the vulnera-
bility database for constructing the training dataset, which maps
NVD data to the library names (Equation 1). We use this dataset
to train our models. The training input is a finite set of labeled
data dtrain, which is a set of pairs of vectors {(®xi , ®yi )Ni=1} with N the
number of all pairs, and where ®xi ∈ ®X is the feature vector of an
input data item, and ®yi ∈ ®Y is the label vector of length |L| (this
equals 4,682 for our experiments dataset of Section 5) when L is
the set of labels, and where ®yi , for a given subset D ⊆ L (where
|D | is typically orders of magnitude smaller than |L|), is defined
by an indicator function 1iD : L → {0, 1} such that ®yi j = 1iD (Lj ).
Therefore, ®yi j = 1 if and only if the input ®xi is labeled with the
library name Lj , for possibly multiple values of j (1 ≤ j ≤ |L|)1.
From the NVD data we obtain the features for ®xi s and the CVE ids,
while from the SCA vulnerability database we obtain a mapping of
the CVE ids to the library names, which we then use to obtain the
®yi s by matching the CVE ids. As an example, for CVE-2015-7318,
the ®xi part is the vectorization of the input text in Figure 2 while
the ®yi encodes the set D = {zope2, plone} of library names, with
®yi j = 1 if and only if j is the index of zope2 or plone in L.

We implement a script to automatically download JSON data
files from NVD [6] from 2002 to 2019. Each entry in the JSON file
corresponds to an NVD web page [7]. We note that the content of
each file may be different when downloaded at different times due
to updates to the NVD. The JSON files include all the features (for
®xi s) that we use to train our models. In particular, we use the CVE
ids to construct the function fNVD : NVD → ®X , where NVD, as in
Equation 1, is the set of CVE ids, and ®X is the set of all input feature
vectors. Each ®yi maps ®xi into a set of libraries identified by library
names. We obtain this mapping from SCA vulnerability database,
which has been manually curated by security researchers in years.
Each library name is a pair of coordinates of the library recorded in
the vulnerability database. The SCA vulnerability database provides
an API which, given a CVE id, returns the coordinates of all libraries
already identified to be related. The coordinates of a library consist
of a first coordinate (coordinate1), and an optional second coordinate
(coordinate2). For example, a Maven Java library such as Jackson
Databind has its group identifier com.fasterxml.jackson.core
and its artifact identifier jackson-databind as respectively the first
and second coordinates. In this case, we conjoin both coordinates
into the form “coordinate1 coordinate2” as the name for the library,
which for our Jackson Databind case is “com.fasterxml.jack-
son.core jackson-databind.” Some libraries, however, only have
the first coordinate, which is directly used as its name. One CVE id
may be mapped to a multiple of library names. When L is the set
of all library names, from the SCA vulnerability database we get
the function fSCA : NVD → P(L), which is a function that maps the
CVE ids in the NVD to the subsets of library names. We note that
the support of fSCA is a subset of NVD. This is because Veracode
SCA has a limited focus on open-source libraries and a number of
programming languages.

We finally combine fNVD and fSCA together by matching CVE ids
to build our training data. From both fNVD and fSCA we construct a
function fNVD-SCA : ®X → P(L) that directly maps the input feature

1 ®yi is not 1-hot encoded, which requires that there is exactly a single j where ®yi j = 1.

text = re.sub(r"[^A-Za-z0-9!?\']", " ", in)
text = re.sub(r"what's", "what is ", text)
text = re.sub(r"\'s", " ", text)
text = re.sub(r"\'ve", " have ", text)
text = re.sub(r"n't", " not ", text)
text = re.sub(r"i'm", "i am ", text)
text = re.sub(r"\'re", " are ", text)
text = re.sub(r"\'d", " would ", text)
text = re.sub(r"\'ll", " will ", text)
text = re.sub(r"!", " ! ", text)
text = re.sub(r"\?", " ? ", text)
text = re.sub(r"'", " ", text)
out = text.lower()

Figure 6: BasicDataCleaning inPythonConverting in to out.
Here, re.sub substitutes any substring in its third argument
text matching its first argument regular expression, with its
second argument.

out = ''
for word, pos in

nltk.pos_tag(nltk.word_tokenize(in)):
if pos == 'NN' or pos == 'NNP' or

pos == 'NNS' or pos == 'NNPS':
out = out + ' ' + word.lower()

Figure 7: Noun Removal in Python Converting in to out.
Here we use the NLTK [3] package, where word_tokenize
splits in into words it contains, and pos_tag tags each word
in the list. Here we include all words tagged by NLTK with
either NN, NNP, NNS, or NNPS, denoting nouns.

vectors to the subset of labels, defined as the following set:

{(®x ,D) | ∃id ∈ NVD · ®x = fNVD(id) ∧ D = fSCA(id)}

Finally, our training dataset is thus the finite function dtrain : ®X → ®Y
defined as the set

{(®x , ®y) | D = fNVD-SCA(®x) ∧ (∀1 ≤ j ≤ |L| · ®yj = 1D (Lj ))}. (2)

This dataset is passed on to FastXML [28] to train new models.

3.2 Data Cleaning
Before using collected data for model training, we need to clean
them. We perform the following three steps:

(1) The first is the basic cleaning procedure. Here, we remove
non-alphanumeric characters except exclamation and ques-
tion marks, and we expand aposthropes. Figure 6 shows the
Python procedure.

(2) We remove non-noun words that our data collection sys-
tem can recognize automatically using the NLTK Python
package [3] (Figure 7). Using only nouns have been found to
be effective for bug assignment recommendation [32]. Our
non-noun filtering actually improves model performance,
signifying the importance of the focus on nouns in prediction
quality (see the experimental results in Section 5.4).

(3) We also remove the words which appear in more than 30%
of the NVD vulnerability data, since they are common words

4
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which are likely to not help in identifying library names.
These are not only stop words, but also include words like
“security,” which appears in most of the NVD entries. Such
words reduce the performance as they are not specific to
a particular CVE or set of libraries. This is done using the
CountVectorizer API of scikit-learn 0.20 [8]. We chose the
30% frequency limit due to its more favorable results when
compared with other limits (see Section 5.4).

We show experimentally how our data cleaning approaches improve
model performance in Section 5.4.

3.3 Feature Engineering and Selection
From each NVD entry we select description, CPE configurations,
and references for our model training since the other features are
unlikely to help in identifying library names. These other features
include management data such as data format, version, timestamp,
and dates. They also encompass codified problem type including
a Common Weakness Enumeration (CWE) id, and also impact data
which include Common Vulnerability Scoring System (CVSS) infor-
mation, severity level, exploitability and impact scores. We clean
the description as explained in Section 3.2. The CPE configurations
are important features to predict the related library names, as each
is made up from vendor name and product name which are very
close to library coordinates. There are different versions of CPE
formats, but here we consider only the latest version 2.3 at the
time of writing. For a given NVD vulnerability entry, there can be
multiple CPE configurations. We extract vendor name and product
name from each configuration and treat the pair as one unit of text.
For example, for the CPE configuration

cpe:2.3:a:arastta:ecommerce:1.6.2:*:*:*:*:*:*:*

we extract arastta (vendor name) and ecommerce (product name),
and consider them as a text “arastta ecommerce.” Finally we get a
list of “vendor product” for each NVD entry without duplication.
There are also multiple reference web links for each NVD entry.
From each link, we remove the protocol part (http, https, or ftps)
and replace the characters in the set /=&? with a white space.

We note that one may be tempted to simply use the “vendor
product” pairs for matching with vulnerable libraries. However,
there are two problems with this approach:

(1) CPE configurations may not identify all relevant li-
braries. There are possibly more relevant libraries than the
“vendor product” pairs identified in the CPE configuration,
lowering the recall@k metric (see Section 4.2).

(2) CPE configurations do not identify the most relevant
libraries. Other libraries that are not specified in the CPE
configurations may have higher relevance, lowering the
precision@k metric (see Section 4.2).

The experimental results of using CPE configurations alone to iden-
tify relevant libraries have actually been discouraging, as discussed
in Section 5.3.

3.4 Matchers
Initially we use the combination of all selected NVD entry features
including description, CPE configurations, and references into a
single textual feature. Our tests show, however, that for some entries,

even though the description or the CPE configurations contain the
exact coordinate1 or coordinate2 (see Section 3.1) for the library, the
model fails to map the feature vector to the corresponding library
name when used in prediction. This led us to use the product name
in a CPE configuration to search for all of the matched library
coordinates and use these matched coordinates as another input
feature. For a library, we call coordinate2 as the module name of
the library if it has a coordinate2, or we consider coordinate1 to
be such. The product name in a CPE configuration is similar or is
sometimes the same with the module name. In order to extract more
information from the indicated product name, we search all the
library entries in the SCA vulnerability database to find those whose
module name equals the product name in a CPE configuration. We
then add the name (“coordinate1 coordinate2” pair) of this library,
called the matchers, to our input text data.

Again, a question may arise on the reason of not simply match-
ing CPE configurations with library coordinates. This has been
answered in the previous section (Section 3.3), that is, the CPE con-
figurations themselves may not include all relevant libraries, and do
not identify the most relevant ones. As we also show in Section 5.3
later, using matcher alone without the rest of the features results
in low prediction performance.

In summary, there are four features making up the input used to
train the models (®xi s of Section 3.1), including the cleaned vulnera-
bility description (nouns only), a list of “vendor product” pairs from
the CPE configurations, cleaned reference links, and the matchers.
We concatenate all features into one contiguous string for each
NVD entry. This is how we build the fNVD function of Section 3.1.

4 CORE APPROACH
4.1 Using FastXML
Consider a domain ®Q |L | of rational vectors of length |L| (recall that
L is the set of labels). For any ®z ∈ ®Q |L | , ®zk is called a score. The
higher the score ®zj , the more “relevant” is a label Lj given ®z. The
FastXML [28] algorithm produces amodel, which is a function with
signature ®X → ®Q |L | given a finite function with signature ®X

fin
→ ®Y ,

which is the training dataset of Equation 2 of Section 3.1. That is, it
is a function:

trainFastXML : ( ®X
fin
→ ®Y ) → ( ®X → ®Q |L |).

Given a training dataset dtrain of Equation 2, the model produced
by the FastXML algorithm is trainFastXML(dtrain).

Now, our objective is to use the FastXML algorithm for predic-
tion, which in our case is library identification. When NVD, L, and
Q are respectively the sets of CVE ids, library names, and ratio-
nal numbers, our library identification function can be formally
specified as:

identifyFastXML : NVD → (L → Q).

By virtue of the finiteness of L, L → Q is finite. We first define
a function τ : ®Q |L | → (L → Q) that transforms a finite rational
vector of length |L| into the function L → Q as follows:

τ (®r ) = {(Lj , ®r j ) | 1 ≤ j ≤ |L|}.

Using τ , we define identifyFastXML as:
identifyFastXML(id) = τ (trainFastXML(dtrain)(fNVD(id))).
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We can sort the elements of the finite S : L → Q (the output of
identifyFastXML) in descending order of their right components:

sort(S) = (l1,n1), . . . , (l |S | ,n |S |)

where ni ≥ nj whenever i < j. Now, the top-k elements of S is:

topk (S) = {(l1,n1), . . . , (lk ,nk )}

when sort(S) = (l1,n1), . . . , (lk ,nk ), (lk+1,nk+1), . . . , (l |S | ,n |S |). Gi-
ven a fixed k , we define our implementation as the function:

identifyk (id) = topk · identifyFastXML(id)

It is easy to see that using identifyk as identify satisfies Equation 1
of Section 1.

4.2 Model Evaluation
We use the prediction result to help our security researchers to
map CVE ids to library names to save their manual research ef-
fort. As usual in evaluating multi-label learning approaches, we use
precision@k , recall@k , and their harmonic mean F1@k as valida-
tion metrics. precision@k is the precision of the top-k prediction
results, where recall@k is the recall of the top-k prediction results.
These metrics focus on the positive labels only, and are therefore
suitable for use in XML due to the number of positive labels for
an input data item is very small compared to the irrelevant nega-
tive labels (less than ten vs. thousands for our typical case). This
characteristic renders other methods such as Hamming loss inap-
propriate [22, 28]. Weston et al. show for the first time the utility
of optimizing precision@k for an XML application in image recog-
nition [41]. The metrics have also found applications in machine
learning approaches for software engineering such as in library
recommendation [35, 54], in finding analogical libraries [15], and
in tag recommendation [33, 38, 39, 46, 51, 55], essentially where the
number of positive labels is magnitudes smaller than the number
of negative labels. We define the metrics in this section.

We assume that the results of a manual labeling of CVE id with
library names by the security researchers is given by the function:

identifymanual : NVD → P(L)

This is indeed the validation dataset. Given a prediction identifyk (id)
under the bound k , we define the precision@k and recall@k for a
given CVE id as follows:

precision@k(id) =
|identifyk (id) ∩ identifymanual(id)|

k

recall@k(id) =
|identifyk (id) ∩ identifymanual(id)|

|identifymanual(id)|

precision@k(id) here is therefore the proportion of the correctly-
predicted names among the maximum k of predicted names for
a given id, whereas recall@k(id) here is the proportion of the
correctly-predicted names among all correct names for a given
id. We care about maximizing precision@k(id) since we want to
save the manual effort of confirming that the CVE id is actually
related to the predicted library name. We also care about maximiz-
ing recall@k(id) since we want our results to cover as many of the
related library names as possible.

Table 1: Dataset Sizes

Dataset No. Entries
NVD 130,115

SCA Library Vulnerability Database 74,664
SCA Library Data 2,106,242
Labeled Data 7,696

Table 2: FastXML Training Parameter Values

Parameter Value
Number of Trees 64
Parallel Jobs No. of CPUs
Max. Leaf Size 10
Max. Labels per Leaf 20
Re-Split Count. The number of node re-splitting
tries using PfastreXML re-ranking classifier. 0

Subsampling Data Size. 1 = no subsampling. 1
Sparse Multiple. Constant for deciding the data
structure to use in nDCG computation. 25

Random Number Seed 2016

Given NVDv the subset of NVD CVE ids that we use for valida-
tion, the metrics precision@k and recall@k that we actually use for
validation are as follows:

precision@k =
avg

id ∈ NVDv
precision@k(id)

recall@k =
avg

id ∈ NVDv
recall@k(id)

with avg denoting arithmetic mean. We use these metrics or their
harmonic mean F1@k to evaluate our models.

5 EXPERIMENTS
5.1 Research Questions
We experimented with various aspects of our design and report the
performance results in this section. We conduct the experiments to
answer the following research questions:
RQ1 What is the performance of using matchers alone as input?
RQ2 Does adding description, CPE configurations, and references

of NVD entries improve the model performance?
RQ3 Do non-noun and frequent-words removal improve model

performance?
RQ4 What is the number of the FastXML trees that results in the

best performance?

5.2 Dataset and Setup
Table 1 shows the sizes of our input data. Other than the NVD and
SCA library vulnerability database, we also retrieve SCA library
data, containing data on libraries that may not currently be asso-
ciated with any CVE id. We use the SCA library data to build the
matchers. Our final labeled dataset contains 7,696 records, which is
only about 6% of the total number of NVD entries. This is because
our SCA databases have a limited focus on open-source projects
and a number of supported languages.

Table 3 shows the average and distribution of the number of
labels in the labeled dataset. The distribution is skewed, where
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Table 3: Label Number Average and Distribution
Arith. Avg. 1 2 3 4 ≥ 5

4.90 60.58% 20.60% 5.21% 3.99% 9.63%

Table 4: Matchers-Only Performance
k precision@k recall@k F1@k

1 0.52 0.37 0.43
2 0.39 0.48 0.43
3 0.30 0.52 0.38

Avg. 0.39 0.45 0.41

more than 60% of the entries only have one label. This agrees with
the sparsity characteristic of the XML problems. We conduct all
experiments on Amazon EC2 instance running Ubuntu 18.04 with
32 GB RAM and 16-core 3 GHz Intel(R) Xeon(R) Platinum 8124M
CPU. We use the default parameters for FastXML excluding two:

• We changed the number of trees from the default 1 to 64.
• We changed the number of parallel jobs to the number of
detected CPUs (16).

Table 2 summarizes the FastXML parameter values for parameters
that affect our experiments. The FastXML implementation that we
use has other parameters (see the constructor of Trainer class in
the source code [2]). They are for training classifiers for PfastreXML
node re-splitting, however, since we do not use this feature (in Table
2 we set the re-split count to 0), we do not list them in Table 2. We
also exclude parameters that are not actually used and those that
are only used for reporting purposes.

Our standard approach, unless indicated otherwise, is to ran-
domly select 75% of our labeled dataset to train the models and the
remaining 25% for testing. When presenting performance results,
we use geometric average unless indicated otherwise [19]. Geomet-
ric average is important to present the performance improvements
in Section 6. We note that our problem is time-agnostic, where
the identification of libraries are not affected by the timestamps
of the NVD entries. Our dataset is therefore not sorted based on
time, and this removes the necessity of using sliding window-based
validation techniques.

5.3 Using Matchers Only
We note that matchers (see Section 3.4) alone can be used for pre-
diction. We perform an experiment to determine the performance
when onlymatchers are included in the input. The results are shown
in Table 4. It is easy to see the answer to RQ1, that the predic-
tion performances are lowwhen onlymatchers are included
in the input, with average F1@k of only 0.41.

5.4 Experiments with Data Cleaning
We perform experiments to measure the effect of our data prepa-
ration approaches to the model performance. Table 5 shows the
the precision@k , recall@k , F1@k results for k = 1 and 3, and the
training and validation times (using the 75% and 25% labeled data).
When we compare Table 5, with Table 4, we can answer RQ2
in the affirmative, that the addition of description, CPE con-
figurations, and references of NVD entries does improve the
model performance. Comparing theminimum 0.50 average F1@k

Table 5: Precision@k , Recall@k , and F1@k Results (k = 1, 2,
and 3). T = training time, V = validation time. The configura-
tion that we use in production is of the shaded column.

Basic Cleaning
Non-Noun Removal
Frequent-Words Removal

k 30% 60% 90%

pre.@
k

1 0.64 0.65 0.65 0.65 0.65
2 0.48 0.48 0.48 0.48 0.48
3 0.37 0.37 0.37 0.37 0.37

Avg. 0.48 0.49 0.49 0.49 0.49

rec.@
k

1 0.44 0.45 0.45 0.45 0.45
2 0.57 0.58 0.58 0.58 0.58
3 0.61 0.61 0.62 0.61 0.61

Avg. 0.53 0.54 0.54 0.54 0.54

F1 @
k

1 0.52 0.53 0.53 0.53 0.53
2 0.52 0.53 0.53 0.53 0.53
3 0.46 0.46 0.46 0.46 0.46

Avg. 0.50 0.50 0.51 0.50 0.50
T (S) 175 161 159 160 160
V (S) 219 200 197 199 200

Table 6: Precision@k , Recall@k , F1@k (k = 1,2,3) and Train-
ing (T) and Validation (V) Times with Various Tree Numbers.
The tree number that we use is 64 (shaded columns).

No. Trees No. Trees
k 32 64 128 32 64 128

pre.@
k

1 0.64 0.65 0.66 rec.@
k

0.45 0.45 0.46
2 0.47 0.48 0.48 0.57 0.58 0.58
3 0.36 0.37 0.37 0.61 0.62 0.62

Avg. 0.48 0.49 0.49 0.54 0.54 0.55

F1 @
k

1 0.53 0.53 0.54 T (S) 80 219 317
2 0.52 0.53 0.53 V (S) 108 227 375
3 0.45 0.46 0.46

Avg. 0.50 0.51 0.51

of Table 5 and the average F1@k of 0.41 of Table 4, we get the min-
imum improvement in average F1@k to be 21.95%. The best perfor-
mance in Table 5 is for the configuration with non-noun and 30%
frequent words removal. We use this configuration in production.
Here we answer RQ3 in the affirmative: non-noun removal
and frequent-words removal improve the prediction perfor-
mance. Although we can observe that the difference in average
F1@k score for our production configuration compared to others
is not much, non-noun and frequent-words removal still reduce
training and validation times.

5.5 Experiments with Tree Sizes
FastXML uses trees, where each one represents a distinct hierarchy
over the feature space. We perform an experiment which varies the
number of trees among 32, 64, and 128, and summarize the results
in Table 6. We also include the time measurement results, both for
training and validation, on respectively the 75% and 25% of the
labeled data. For RQ4, we confirm that the number of FastXML
trees that result in the best performance is 128. However, the
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Table 7: Dataset Sizes for Production Model Training and
Validation

Dataset No. Entries
NVD 126,219

SCA Library Vulnerability Database 73,224
SCA Library Data 2,030,578
Labeled Data 7,153

Table 8: Label Number Average and Distribution for Produc-
tion Model Training and Validation Labeled Dataset

Arith. Avg. 1 2 3 4 ≥ 5
5.09 59.95% 20.58% 5.77% 3.96% 9.74%

difference in average F1@k between 64 and 128 is very small, and
since the 64 trees configuration requires only half the training time,
we use it for our production system.

6 DEPLOYMENT CASE STUDY
We want to confirm that a newly-trained model has a better perfor-
mance than themodel in production before replacing the production
model. In this section we discuss the two steps of validation that
we perform for this purpose via a case study. In this case study,
for the data preparation we use basic cleaning, non-noun removal,
and with 30% frequent words removal. We add matchers into the
input. For the number of FastXML trees, we use 64. We use the
same system setup as the one mentioned in Section 5.2.

6.1 Evaluation Using Training-Time Datasets
The first step is to ensure that the new model has a better per-
formance than the production model, at the moment each one is
trained. For our case study, the production model is trained on 18
July 2019 and the new model is trained on 27 September 2019 (70
days difference). In training and validating the production model,
the sizes of the datasets that we use are shown in Table 7. For
the new model, the sizes of the datasets that we use are presented
in Table 1. We note that each dataset of Table 7 is a subset of its
counterpart in Table 1. We show the label number average and
distribution for the labeled dataset of Table 7 in Table 8. We observe
that the numbers are characteristically similar to that of Table 3.

For this step, we use 75% of the data for training and 25% for
testing, for both the production and the new models. As most of the
NVD entries are associated with one or two labels, we evaluate the
top-k labels from the prediction results, for k = 1, 2, or 3. Columns
3–5 of Table 9 show the results for the production and new models.
Although the new model shows a decrease in precision, the average
F1@k still improves by 1.09%, hence by this evaluation step, deploy-
ing the new model as a replacement for the production model is
still acceptable.

6.2 Evaluation Using the Same Dataset
For the second evaluation, we randomly select 50% of the labeled
data from the labeled dataset of the time we train the new model.
We build this dataset from 25% labeled data used for testing the
new model and a third of the remaining 75% labeled data used for

Table 9: Precision@k , Recall@k , and F1@k Results (k = 1, 2,
and 3) for the Deployment Case Study. I% = percent improve-
ment of the new model vs. the production.

Training-Time Same
Datasets Dataset

k Prod. New I% Prod. New I%

pre.@
k

1 0.63 0.65 3.17 0.75 0.94 25.33
2 0.49 0.48 -2.04 0.56 0.68 21.42
3 0.38 0.37 -2.63 0.44 0.52 18.18

Avg. 0.49 0.49 -0.53 0.57 0.69 21.61

rec.@
k

1 0.43 0.45 4.65 0.52 0.68 30.77
2 0.57 0.58 1.75 0.67 0.85 26.87
3 0.60 0.62 3.33 0.72 0.89 23.61

Avg. 0.53 0.54 3.24 0.63 0.80 27.05

F1 @
k

1 0.51 0.53 4.05 0.61 0.79 28.49
2 0.53 0.53 -0.32 0.61 0.76 23.85
3 0.47 0.46 -0.40 0.55 0.66 20.18

Avg. 0.50 0.51 1.09 0.59 0.73 24.13

Table 10: Training and Prediction Times in Seconds. The pre-
diction time is on the same dataset, which encompasses 50%
of the labeled data for training and validation.

Prod. New Arithmetic Average
Training 147 159 153
Prediction 62 64 63

training the new model. We test the new model and the produc-
tion model on this same dataset. Columns 6–7 of Table 9 show
the performance comparison between the production and the new
models. All metrics precision@k , recall@k , and F1@k show signif-
icant improvements by the new model, providing us with more
confidence in deploying the new model. We note that in this second
evaluation, the performance numbers are higher when compared
to the evaluating using training-time datasets. This is because half
of the data in the dataset for the same-dataset evaluation are used
in the training of the new model as well.

6.3 Training and Prediction Times
Table 10 shows the training and prediction times of our production
and new models and their averages. The prediction times are from
the evaluation using the same dataset (see Section 6.2), which is 50%
of all the labeled dataset used in the training and validation of the
new model. Table 10 shows that both the training and prediction
times are fast, roughly about 2.5 minutes and 1 minute, respectively.
This means that prediction finishes on each data item on average
in 8.17 ms. This demonstrates that our approach is highly practical.

7 THREATS TO VALIDITY
7.1 Internal Threats to Validity
We identify two kinds of internal threats of validity. Firstly, our
results are exposed to human error from our manually-built data
sources, including NVD and our SCA vulnerable library database.
It is possible that the SCA vulnerability library identifies more or
less library as related to an NVD entry than it should. This threat

8



1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

Automated Identification of Libraries from Vulnerability Data Conference’17, July 2017, Washington, DC, USA

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

is mitigated by the updates to the NVD by the security community
and the proven commercial usage of the SCA vulnerable library
database. Secondly, our results may also be affected by the possible
bugs and errors in our implementation. This is partly mitigated by
using widely-used standard library packages for machine learning,
including pandas 0.23.4, scikit-learn 0.20, and FastXML 2.0.

7.2 External Threats to Validity
There are two threats to the generalizability of our study. Firstly, as
mentioned, SCA vulnerable library database is curated manually,
from which we build our input feature vector. This manual cura-
tion is highly dependent on the skills of the security researchers.
Secondly, we are only interested in the NVD entries that are related
with open source projects and whose languages are supported by
the Veracode SCA, so the final size of the labeled dataset for pro-
ducing the models is only about 6% of the total number of NVD
entries (see Tables 1 and 7).

8 RELATEDWORK
8.1 Machine Learning for SCA
Our work is part of a framework [47] for software composition
analysis (SCA), which has gained widespread industrial acceptance.
Machine learning is extensively used in SCA to identify vulnerable
libraries, which are vulnerabilities that are known by some (e.g.,
developers making the vulnerability fix), yet not explicitly declared,
such as via the NVD. Wijayasekara et al. [43] point to the critical-
ity of such vulnerabilities, whose number has increased in Linux
kernel and MySQL by 53% and 10% respectively from 2006 to 2011.
Zhou and Sharma [56] explore the identification of vulnerabilities
in commit messages and issue reports/PRs using machine learn-
ing. Their approach discovers hidden vulnerabilities in more than
5,000 projects spanning over six programming languages. Sabetta
and Bezzi propose feature extraction also from commit patches
in addition to commit messages [30]. Wan considers vulnerabil-
ity identification from commit messages using deep learning [37].
Compared to these, our work solves a different problem, that of the
vulnerable library identification from NVD data.

8.2 Library Recommendation
Close to our work is the area of library recommendation. Thung
et al. propose an approach that recommends other third-party li-
braries to use, given the set of third-party libraries currently used
by the application or similar applications [35]. The approach uses a
combination of association rule mining and collaborative filtering.
Zhao et al. propose an improvement using the application’s descrip-
tion text features and the text features obtained from the libraries
themselves, using NLP technique and collaborative filtering [54].
Compared to Thung et al. which relies on the Maven dependency
information, this makes Zhao et al.’s approach language agnostic.
Chen et al. considers a related problem, which is that of finding
analogical libraries [15, 16]. Here, the problem is in discovering
libraries that are related to a target library. To build this relation,
they treat the tags of StackOverflow question (which may include
library names) as a sentence and apply word embedding. The so-
lutions to library recommendation problem take advantage of the

intuition that applications can be categorized according to the li-
braries they use. Both the library recommendation and analogous
libraries problems can be considered as XML instances. However,
the library recommendation problem is amenable to methods that
narrow down the possible recommendations. This is less applicable
in our setting since the correlation between vulnerabilities and the
set of libraries having them is weaker, or even possibly nonexis-
tent. Compared to the analogous libraries problem, in our case CPE
configurations can be considered as tags, however, we cannot take
them at face value to identify libraries: We need to also identify
libraries not mentioned in the CPE configurations.

8.3 Multi-Label Classification for Software
Engineering

Multi-label (ML) classification has found many uses in the area of
software engineering. Prana et al. proposes eight-label classifier to
categorize the sections of Github README files [29]. The solution
combines BR with support-vector machine (SVM) as the base classi-
fier. It achieves F1 score of 0.746. Feng and Chen maps execution
traces to types of faults using ML-KNN [52] ML algorithm [17].
Xia et al. improves Feng and Chen’s results using MLL-GA [21]
algorithm instead [45]. Feng et al. provide a comparison of var-
ious ML algorithms [18]. Xia et al. propose TagCombine, which
models tag recommendation in software information sites such
as StackOverflow as ML classification problem [46]. Short et al.
confirm that by adding information about the network of the Stack-
Overflow posts, results can be improved [33]. EnTagRec [38] and
subsequently EnTagRec++ [39] improve TagCombine by using a
mixture model that considers all tags together instead of build-
ing one classifier for each tag (BR). Zhou et al. propose a scalable
solution that considers only a subset of posts data to build the rec-
ommendation [55]. Their approach also improves F1@10 score by
8.05% when compared to EnTagRec. Zavou applies deep learning to
the tag recommendation problem and demonstrates improvements
over TagCombine for AskUbuntu data [51]. SOTagger approach con-
siders the related problem of tagging the posts using intent rather
than the technology [36]. Our problem cannot be categorized as
multi-label classification problem, as we consider thousands of li-
braries (labels) in total. In particular, the usual ML approach using
BR is not applicable.

9 CONCLUSION AND FUTUREWORK
Predicting related libraries for NVD CVE entries is an important
step in SCA product to save manual research effort in the identifica-
tion of vulnerable libraries. In this article, we present the design and
implementation of a system that performs data collection, feature
engineering, model training, validation and prediction automati-
cally, and its experimental evaluations. At the time of writing, our
system achieves F1@1 score of 0.53 with average F1@k score for
k = 1, 2, 3 of 0.51 (F1@k is the harmonic mean of precision@k and
recall@k , all of which are defined in Section 4.2). Our problem,
which is that of mapping NVD entries to library names is an in-
stance of XML. We base our system on the tree-based FastXML [28]
approach, which solves XML. At present, we do not employ deep
learning as our labeled data size is currently not big enough. As
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a future work, one can try deep learning methods if more data
available.
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