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ABSTRACT
Existing work on software patches often use features specific to a
single task. These works often rely on manually identified features,
and human effort is required to identify these features for each
task. In this work, we propose CC2Vec, a neural network model
that learns a representation of code changes guided by their ac-
companying log messages, which represent the semantic intent of
the code changes. CC2Vec models the hierarchical structure of a
code change with the help of the attention mechanism and uses
multiple comparison functions to identify the differences between
the removed and added code.

To evaluate if CC2Vec can produce a distributed representation
of code changes that is general and useful for multiple tasks on
software patches, we use the vectors produced by CC2Vec for three
tasks: log message generation, bug fixing patch identification, and
just-in-time defect prediction. In all tasks, the models using CC2Vec
outperform the state-of-the-art techniques.

1 INTRODUCTION
Patches, used to edit source code, are often created by developers to
describe new features, fix bugs, or maintain existing functionality
(e.g., API updates, refactoring, etc.). Patches contain twomain pieces
of information, a log message and a code change. The log message,
used to describe the semantics of the code changes, is written in
natural language by the developers. The code change indicates the
lines of code to remove or add across one or multiple files. Research
has shown that the study of historical patches can be employed to
solve software engineering problems, such as just-in-time defect
prediction [21, 28], identification of bug fixing patches [22, 57],
tangled change prediction [34], recommendation of a code reviewer
for a patch [50], and many more.

Exploring patches to solve software engineering problems re-
quires choosing a representation of the patch data. Most prior
work involves manually crafting a set of features to represent a
patch and using these features for further processing [28–30, 44, 57,
60]. These features have mostly been extracted from properties of
patches, such as the modifications to source code (e.g., number of re-
moved and added lines, the number of files modified), the history of
changes (e.g., the number of prior or recent changes to the updated
files), the record of patch authors and reviewers (e.g., the number of
developers or reviewers who contributed to the patch), etc. These
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features can be used as an input to a machine learning classifier (e.g.,
Support Vector Machine, Logistic Regression, Random Forest, etc.)
to address various software engineering tasks [28, 34, 50, 57]. Ex-
tracting a suitable vector representation to represent the “meaning”
of a patch is certainly crucial. Intuitively, the quality of a patch rep-
resentation plays a major role in determining the eventual learning
outcome.

In this paper, to boost the effectiveness of existing solutions that
employ the properties of patches, we wish to learn vector repre-
sentations of the code changes in patches that can be used for a
number of tasks. We propose a new deep learning architecture
named CC2Vec that can effectively embed a code change into a
vector space where similar changes are close to each other. As log
messages, written by developers, are used to describe the semantics
of the code change, we use them to supervise the learning of code
changes’ representations from patches. Specifically, CC2Vec op-
timizes the vector representation of a code change in a patch to
predict appropriate words, extracted from the first line of the log
message. We consider only the first line, as it is the focus of many
prior works [39, 49], and is considered to carry the most semantic
meaning with the least noise.1

CC2Vec analyzes the code change, i.e., scattered fragments of re-
moved and added code across multiple files. Code removed or added
from a file follows a hierarchical structure (words form line, lines
form hunks). Recent work has suggested that the attention mecha-
nism can help in modelling structural dependencies [3, 32], thus,
we hypothesize that the attention mechanism may be effective for
modelling the structure of a code change. We propose a specialized
hierarchical attention network (HAN) to construct a vector repre-
sentation of the removed code (and another for the added code) of
each affected file in a given patch. Our HAN first builds vector rep-
resentations of lines; these vectors are then used to construct vector
representations of hunks; and we then aggregate these vectors to
construct the embedding vector of the removed or added code. Next,
we employ multiple comparison functions to capture the difference
between two embedding vectors representing removed and added
code. This produces features representing the relationship between
the removed and added code. Each comparison function produces
a vector and these vectors are then concatenated to form an em-
bedding vector for the affected file. Finally, the embedding vectors
of all the affected files are concatenated to build a vector represen-
tation of the code change in a patch. After training is completed,
CC2Vec can be used to extract representations of code changes
even from patches with empty or meaningless log messages (which
are common in practice [26, 38, 39]). CC2Vec is also programming-
language agnostic; one can use it to learn vector representations of
code changes for any language.

1https://chris.beams.io/posts/git-commit/
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The code change representation enables us to employ the power
of (potentially a large number of) unlabeled patch data to improve
the effectiveness of supervised learning tasks (also known as semi-
supervised learning [12]). We can use the code change representa-
tion to boost the effectiveness of many supervised learning tasks
(e.g., identification of bug fixing patches, just-in-time defect predic-
tion, etc.), especially on those tasks for which only a limited set of
labeled data may be available.

CC2Vec converts code changes into their distributed representa-
tions by learning from a large collection of patches. The distributed
representation captures pertinent features of the code changes by
considering the characteristics of the whole collection of patches.
Such distributed representations can be used as additional features
for other tasks. Past studies have demonstrated the value of dis-
tributed representations to improve text classification [43], action
recognition [40], image classification [13], etc. Unfortunately, prior
to our work, there is no existing solution that can produce a dis-
tributed representation of a code change.

To evaluate the effectiveness of CC2Vec, we employ the repre-
sentation learned by CC2Vec in three software engineering tasks: 1)
log message generation [39] 2) bug fixing patch identification [22]
and 3) just-in-time defect prediction [21]. In the first task of log
message generation, we generate the first line of a log message
given a code change. CC2Vec can be used to improve over the best
baseline by 24.73% in terms of BLEU score (an accuracy measure
that is widely used to evaluate machine translation systems). For the
task of identifying bug fixing patches, CC2Vec helps to improve the
best performing baseline by 5.22%, 9.18%, 4.36%, and 6.51% in terms
of accuracy, precision, F1, and Area Under the Curve (AUC). For
just-in-time defect prediction, CC2Vec helps to improve the AUC
metric by 7.03% and 7.72% on the QT and OPENSTACK datasets [42]
as compared to the best baseline.

The main contributions of this work are as follows:

• We propose a deep learning architecture, namely CC2Vec,
that learns distributed representations of code changes guided
by the semantic meaning contained in log messages. To the
best of our knowledge, our work is the first work in this
direction.
• We empirically investigate the value of integrating the code
change vectors generated by CC2Vec and feature vectors
used by state-of-the-art approaches on three tasks (i.e., log
message generation, bug fixing patch identification, and just-
in-time defect prediction) and demonstrate improvements.

The rest of this paper is organized as follows. Section 2 elaborates
the design of CC2Vec. Section 3 describes the experiments that
demonstrate the value of our learned code change representations
to aid in the three different tasks. Section 4 presents an ablation
study and some threats to validity. Section 5 describes related prior
studies. We conclude and mention future work in Section 6.

2 APPROACH
In this section, we first present an overview of our framework. We
then describe the details of each part of the framework. Finally, we
present an algorithm for learning effective settings of our model’s
parameters.

File!

Hierarchical attention network

Code change vector

Fully connected layer for 
mapping code change vector

A set of words extracted from 
log message

Feature 
fusion 
layers

Word 
prediction 

layer

File"

Input layer

Feature 
extraction 

layers

Preprocessing

e$𝟏 e$𝟐

Encoding

Code changes

Figure 1: The overall framework of CC2Vec. Feature extrac-
tion layers are used to construct the embedding vectors for
each affected file from a given patch (i.e., ef1 , ef2 , etc). The
embedding vectors are then concatenated to build a vector
representation for the code change in the patch (code change
vector). The code change vector is connected to the fully con-
nected layer and is learned byminimizing an objective func-
tion of the word prediction layer.

2.1 Framework Overview
Figure 1 illustrates the overall framework of CC2Vec. CC2Vec takes
the code change of a patch as input and generates its distributed
representation. CC2Vec uses the first line of the log message of
the patch to supervise learning the code change representation.
Specifically, the framework of CC2Vec includes five parts:

• Preprocessing: This part takes information from the code
change of the given patch as an input and outputs a list of
files. Each file includes a set of removed code lines and added
code lines.
• Input layer : This part encodes each changed file as a three-
dimensional matrix to be given as input to the hierarchical
attention network (HAN) for extracting features.
• Feature extraction layers: This part extracts the embedding
vector (a.k.a. features) of each changed file. The resulting
embedding vectors are then concatenated to form the vector
representation of the code change in a given patch.
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• Feature fusion layers and word prediction layer : This part
maps the vector representation of the code change to a word
vector extracted from the first line of log message; the word
vector indicates the probabilities that various words describe
the patch.

CC2Vec employs the first line of the log message of a patch to
guide the learning of a suitable vector that represents the code
change. Words, extracted from the first line of log message, can be
viewed as semantic labels provided by developers. Specifically, we
define a learning task to construct a prediction function f : 𝑃 → Y,
where 𝑦𝑖 ∈ Y indicates the set of words extracted from the first
line of the log message of the patch 𝑝𝑖 ∈ 𝑃 . The prediction function
f is learned by minimizing the differences between the predicted
and actual words chosen to describe the patch. After the prediction
function f is learned, for each patch, we can obtain its code change
vector from the intermediate output between the feature extraction
and feature fusion layers (see Figure 1). We explain the details of
each part in the following subsections.

2.2 Preprocessing
The code change of the given patch includes changes made to one
or more files. Each changed file contains a set of lines of removed
code and added code. We process the code change of each patch by
the following steps:

• Split the code change based on the affected files. We
first separate the information about the code change to each
changed file into a separate code document (i.e., File1, File2,
etc., see Figure 1).
• Tokenize the removed code and added code lines. For
the changes affecting each changed file, we employ the NLTK
library [9] for natural language processing (NLP) to parse
its removed code lines or added code lines into a sequence
of words. We ignore blank lines in the changed file.
• Construct a code vocabulary. Based on the code changes
of the patches in the training data, we build a vocabulary
VC. This vocabulary contains the set of code tokens that
appear in the code changes of the collection of patches.

At the end of this step, all the changed files of the given patch
are extracted from the code changes and they are fed to the input
layer of our framework for further processing.

2.3 Input Layer
A code change may include changes to multiple files; the changes
to each file may contain changes to different hunks; and each hunk
contains a list of removed and/or added code lines. To preserve
this structural information, in each changed file, we represent the
removed (added) code as a three-dimensional matrix, i.e., B ∈
RH×L×𝑊 , whereH is the number of hunks, L is the number of
removed (added) code lines for each hunk, and𝑊 is the number of
words in each removed (added) code line in the affected file. We use
B𝑟 and B𝑎 to denote the three-dimensional matrix of the removed
and added code respectively.

Note that each patch may contain a different number of affected
files (F ), each file may contain a different number of hunks (H ),
each hunk may contain a different number of lines (L), and each

Hierarchical 

attention 

network

e𝑎

e𝒓

Comparison 

layers

e𝒇

Feature 

extraction 

layers

Figure 2: Architecture of the feature extraction layers for
mapping the code change of the affected file in a given patch
to an embedding vector. The input of the module is the re-
moved code and added code of the affected file, denoted by
“-” and “+”, respectively.

line may contain a different number of words (𝑊 ). For paralleliza-
tion [21, 31], each input instance is padded or truncated to the same
F ,H , L, and𝑊 .

2.4 Feature Extraction Layers
The feature extraction layers are used to automatically build an
embedding vector representing the code change made to a given file
in the patch. The embedding vectors of code changes to multiple
files are then concatenated into a single vector representing the
code change made by the patch.

As shown in Figure 2, for each affected file, the feature extraction
layers take as input twomatrices (denoted by “-” and “+” in Figure 2)
representing the removed code and added code, respectively. These
two matrices are passed to the hierarchical attention network to
construct corresponding embedding vectors: e𝑟 representing the
removed code and e𝑎 representing the added code (see Figure 2).
These two embedding vectors are fed to the comparison layers to pro-
duce the vectors representing the difference between the removed
code and the added code. These vectors are then concatenated to
represent the code changes in each affected file. We present the
hierarchical attention network and the comparison layers in the
following sections.

2.4.1 Hierarchical Attention Network. The architecture of our hi-
erarchical attention network (HAN) is shown in Figure 3. A HAN
takes the removed (added) code of an affected file of a given patch
as an input and outputs the embedding vector representing the
removed (added) code. Our HAN consists of several parts: a word
sequence encoder, a word-level attention layer, a line encoder, a
line-level attention layer, a hunk sequence encoder, and a hunk
attention layer.

Suppose that the removed (added) code of the affected file con-
tains a sequence of hunksH = [𝑡1, 𝑡2, . . . , 𝑡H], each hunk 𝑡𝑖 includes
a sequence of lines [𝑠𝑖1, 𝑠𝑖2, . . . , 𝑠𝑖L], and each line 𝑠𝑖 𝑗 contains a
sequence of words [𝑤𝑖 𝑗1,𝑤𝑖 𝑗2, . . . ,𝑤𝑖 𝑗𝑊 ]. 𝑤𝑖 𝑗𝑘 with 𝑘 ∈ [1,𝑊 ]
represents the word in the 𝑗−th line in the 𝑖−th hunk. Now, we
describe how the embedding vector of the removed (added) code is
built using the hierarchical structure.
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Figure 3: The overall framework of our hierarchical atten-
tion network (HAN). The HAN takes as input the removed
(added) code of the affected file of a given patch and outputs
the embedding vector (denoted by e) of the removed (added)
code.

Word encoder. Given a line 𝑠𝑖 𝑗 with a sequence of words 𝑤𝑖 𝑗𝑘

and a word embedding matrix W ∈ R |V𝐶 |×𝑑 , where V𝐶 is the
vocabulary containing all words extracted from the code changes
and 𝑑 is the dimension of the representation of word, we first build
the matrix representation of each word in the sequence as follows:

𝑤𝑖 𝑗𝑘 = W[𝑤𝑖 𝑗𝑘 ] (1)

where𝑤𝑖 𝑗𝑘 ∈ R𝑑 indicates the vector representation of word𝑤𝑖 𝑗𝑘

in the word embedding matrix W. We employ a bidirectional GRU
to summarize information from the context of a word in both direc-
tions [6]. To capture this contextual information, the bidirectional

GRU includes a forward GRU that reads the line 𝑠𝑖 𝑗 from 𝑤𝑖 𝑗1 to
𝑤𝑖 𝑗𝑊 and a backward GRU that reads the line 𝑠𝑖 𝑗 from 𝑤𝑖 𝑗𝑊 to
𝑤𝑖 𝑗1.

−−→
ℎ𝑖 𝑗𝑘 =

−−−→
𝐺𝑅𝑈 (𝑤𝑖 𝑗𝑘 ), 𝑘 ∈ [1,𝑊 ]

←−−
ℎ𝑖 𝑗𝑘 =

←−−−
𝐺𝑅𝑈 (𝑤𝑖 𝑗𝑘 ), 𝑘 ∈ [𝑊, 1]

(2)

We obtain an annotation of a given word𝑤𝑖 𝑗𝑘 by concatenating

the forward hidden state
−−→
ℎ𝑖 𝑗𝑘 and the backward hidden state

←−−
ℎ𝑖 𝑗𝑘 of

this word, i.e.,ℎ𝑖 𝑗𝑘 = [−−→ℎ𝑖 𝑗𝑘 ⊕
←−−
ℎ𝑖 𝑗𝑘 ] (⊕ is the concatenation operator).

ℎ𝑖 𝑗𝑘 summarizes the word𝑤𝑖 𝑗𝑘 considering its neighboring words.
Word attention. Based on the intuition that not all words con-
tribute equally to extract the “meaning” of the line, we use the
attention mechanism to highlight words important for predicting
the content of the log message. The attention mechanism was pre-
viously used in source code summarization and was shown to be
effective for encoding source code sequences [26, 36]. We also use
the attention mechanism to form an embedding vector of the line.
We first feed an annotation of a given word𝑤𝑖 𝑗𝑘 (i.e., ℎ𝑖 𝑗𝑘 ) through
a fully connnected layer (i.e.,W𝑤 ) to get a hidden representation
(i.e., 𝑢𝑖 𝑗𝑘 ) of ℎ𝑖 𝑗𝑘 as follows:

𝑢𝑖 𝑗𝑘 = ReLU(W𝑤ℎ𝑖 𝑗𝑘 + 𝑏𝑤) (3)

where ReLU is the rectified linear unit activation function [45], as
it generally provides better performance in various deep learning
tasks [4, 14]. Similar to Yang et al. [61], we define a word context
vector (𝑢𝑤 ) that can be seen as a high level representation of the
answer to the fixed query “what is the most informative word”
over the words. The word context vector 𝑢𝑤 is randomly initialized
and learned during the training process. We then measure the
importance of the word as the similarity of 𝑢𝑖 𝑗𝑘 with the word
context vector 𝑢𝑤 and get a normalized importance weight 𝛼𝑖 𝑗𝑘
through a softmax function [10]:

𝛼𝑖 𝑗𝑘 =
exp(𝑢T

𝑖 𝑗𝑘
𝑢𝑤)∑

𝑘 exp(𝑢T𝑖 𝑗𝑘𝑢𝑤)
(4)

For each line 𝑠𝑖 𝑗 , its vector is computed as a weighted sum of
the embedding vectors of the words based on their importance as
follows:

𝑠𝑖 𝑗 =
∑
𝑘

𝛼𝑖 𝑗𝑘ℎ𝑖 𝑗𝑘 (5)

Line encoder. Given a line vector (i.e., 𝑠𝑖 𝑗 ), we also use a bidirec-
tional GRU to encode the line as follows:

−→
ℎ𝑖 𝑗 =

−−−→
𝐺𝑅𝑈 (𝑠𝑖 𝑗 ), 𝑗 ∈ [1,L]

←−
ℎ𝑖 𝑗 =

←−−−
𝐺𝑅𝑈 (𝑠𝑖 𝑗 ), 𝑗 ∈ [L, 1]

(6)

Similar to the word encoder, we obtain an annotation of the line
𝑠𝑖 𝑗 by concatenating the forward hidden state

−→
ℎ𝑖 𝑗 and backward

hidden state
←−
ℎ𝑖 𝑗 of this line. The annotation of the line 𝑠𝑖 𝑗 is denoted

as ℎ𝑖 𝑗 = [
−→
ℎ𝑖 𝑗 ⊕

←−
ℎ𝑖 𝑗 ], which summarizes the line 𝑠𝑖 𝑗 considering its

neighboring lines.
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Line attention. We use an attention mechanism to learn the im-
portant lines to be used to form a hunk vector as follows:

𝑢𝑖 𝑗 = ReLU(W𝑠ℎ𝑖 𝑗 + 𝑏𝑠 ) (7)

𝛼𝑖 𝑗 =
exp(𝑢T

𝑖 𝑗
𝑢𝑠 )∑

𝑗 exp(𝑢T𝑖 𝑗𝑢𝑠 )
(8)

𝑡𝑖 =
∑
𝑗

𝛼𝑖 𝑗ℎ𝑖 𝑗 (9)

W𝑠 is the fully connected layer to which we need to feed an anno-
tation of the given line (i.e., 𝑠𝑖 𝑗 ). We define 𝑢𝑠 as the line context
vector that can be seen as a high level representation of the answer
to the fixed query “what is the informative line” over the lines. 𝑢𝑠
is randomly initialized and learned during the training process. 𝑡𝑖
is the hunk vector of the 𝑖-th hunk in the removed (added) code.
Hunk encoder.Given a hunk vector 𝑡𝑖 , we again use a bidirectional
GRU to encode the hunk as follows:

−→
ℎ𝑖 =

−−−→
𝐺𝑅𝑈 (𝑡𝑖 ), 𝑡 ∈ [1,H]

←−
ℎ𝑖 =

←−−−
𝐺𝑅𝑈 (𝑡𝑖 ), 𝑡 ∈ [H , 1]

(10)

An annotation of the hunk 𝑡𝑖 is then obtained by concatenating
the forward hidden state

−→
ℎ𝑖 and the backward hidden state

←−
ℎ𝑖 , i.e.,

ℎ𝑖 = [−→ℎ𝑖 ,
←−
ℎ𝑖 ]. ℎ𝑖 summarizes the hunk 𝑡𝑖 considering the other

hunks around it.
Hunk attention.We again use an attention mechanism to learn
important hunks used to form an embedding vector of the removed
(added) code as follows:

𝑢𝑖 = ReLU(Whℎ𝑖 + 𝑏h) (11)

𝛼𝑖 =
exp(𝑢T

𝑖
𝑢𝑡 )∑

𝑖 exp(𝑢T𝑖 𝑢𝑡 )
(12)

e =
∑
𝑖

𝛼𝑖ℎ𝑖 (13)

Wh is the fully connected layer used to feed an annotation of a
given hunk (i.e., ℎ𝑖 ). 𝑢𝑡 is the hunk context vector that can be seen
as a high level representation of the answer to the fixed query
“what is the informative hunk” over the hunks. Similar to𝑢𝑤 and𝑢𝑠 ,
𝑢𝑡 is randomly initialized and learned during the training process.
e, collected at the end of this part, is the embedding vector of
the removed (added) code. For convenience, we denote e𝑟 and e𝑎
as the embedding vectors of the removed code and added code,
respectively.

2.4.2 Comparison Layers. The goal of the comparison layers is to
build the vectors that capture the differences between the removed
code and added code of the affected file in a given patch. We use
multiple comparison functions [59] to represent different angles of
comparison. These comparison functions were previously used in
a question answering task. The comparison layers take as input the
embedding vectors of the removed code and added code (denoted
by e𝑟 and e𝑎 , respectively) and output the vectors representing the
difference between the removed code and the added code. These
vectors are then concatenated to represent an embedding vector
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(d) Element-wise 
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(e) Element-wise 

multiplication

Figure 4: A list of comparison functions in the comparison
layers.

of the affected file in the given patch. Figure 4 shows the five com-
parison functions used in the comparison layers to capture the
difference between the removed code and added code. We briefly
explain these comparison functions in the following paragraphs.
(a) Neural Tensor Network. Inspired by previous works in visual
question answering [7], we employ a neural tensor network [52]
as follows:

eNT = ReLU(eT𝑟 T[1,...,𝑛]e𝑎 + 𝑏NT) (14)

T𝑖 ∈ R𝑛×𝑛 is a tensor and 𝑏NT is the bias value. These parameters
are learned during the training process. Note that both the removed
code and added code have the same dimension (i.e., e𝑟 ∈ R𝑛 , e𝑎).
(b) Neural Network. We consider a simple feed forward neural
network [54]. The output is computed as follows:

eNN = ReLU(W[e𝑎 ⊕ e𝑟 ] + 𝑏NN) (15)

⊕ is the concatenation operator, the matrix W ∈ R𝑛×2𝑛 , and the
bias value 𝑏NN are parameters to be learned.
(c) Similarity. We employ two different similarity measures, eu-
clidean distance and cosine similarity, to capture the similarity
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Figure 5: The details of the red dashed box in Figure 1. It
takes as input a list of embedding vectors of the affected files
of a given patch (i.e., ef1 , ef2 , . . . , efF ). ep is the vector rep-
resentation of the code change and is fed to a hidden layer
to produce the word vector (i.e., the probability distribution
over words). V𝑀 is a set of words extracted from the first
line of the log messages.

between the removed code and added code as follows:
esim = EUC(e𝑟 , e𝑎) ⊕ COS(e𝑟 , e𝑎)

EUC(e𝑟 , e𝑎) = | |e𝑟 − e𝑎 | |2

COS(e𝑟 , e𝑎) =
e𝑟 e𝑎

| |e𝑟 | | | |e𝑎 | |

(16)

EUC(·) and COS(·) are the euclidean distance and cosine similarity,
respectively. Note that esim is a two-dimensional vector.
(d) Element-wise subtraction. We simply perform a subtraction
between the embedding vector of the removed code and the em-
bedding vector of the added code.

esub = e𝑟 − e𝑎 (17)

(e) Element-wisemultiplication.We perform element-wise mul-
tiplication for the embedding vectors of the removed code and added
code.

emul = e𝑟 ⊙ e𝑎 (18)

where ⊙ is the element-wise multiplication operator.
The vectors resulting from applying these five different compar-

ison functions are then concatenated to represent the embedding
vector of the affected file (denoted by efi ) in the given patch as
follows:

efi = eNT ⊕ eNN ⊕ esim ⊕ esub ⊕ emul (19)

where fi is the i-th file of the code change in the given patch.

2.5 Feature Fusion and Word Prediction Layers
Figure 5 shows the details of the part of the architecture shown
inside the red (dashed) box in Figure 1. The inputs of this part are
the list of embedding vectors (i.e., ef1 , ef2 , . . . , efF ) representing
the features extracted from the list of affected files of a given patch.
These embedding vectors are concatenated to construct a new em-
bedding vector (ep) representing the code change in a given patch
as follows:

ep = ef1 ⊕ ef2 ⊕ · · · ⊕ efF (20)

We pass the embedding vector (ep) into a hidden layer (a fully
connected layer) to produce a vector h:

h = 𝛼 (whep + 𝑏h) (21)

where wh is the weight matrix used to connect the embedding
vector ep with the hidden layer and 𝑏h is the bias value. Finally,
the vector h is passed to a word prediction layer to produce the
following:

o = −hwo (22)

where wo is the weight matrix between the hidden layer and the
word prediction layer, and o ∈ R |V𝑀 |×1 (V𝑀 is a set of words
extracted from the first line of log messages). We then apply the
sigmoid function [10] to get the probability distribution over words
as follows:

p(𝑜𝑖 |𝑝𝑖 ) =
1

1 + exp(𝑜𝑖 )
(23)

where 𝑜𝑖 ∈ o is the probability score of the 𝑖𝑡ℎ word and 𝑝𝑖 is the
patch that we want to assign words to.

2.6 Parameter Learning
Our model involves the following parameters: the word embedding
matrix of code changes, the hidden states in the different encoders
(i.e., the word encoder, line encoder, and hunk encoder), the context
vectors of words, lines, and hunks, the weight matrices and the
bias values of the neural tensor network and the neural net in the
comparison layers, and the weight matrices and the bias values of
the hidden layer and the word prediction layer. After these param-
eters are learned, the vector representation of the code change of
each patch can be determined. These parameters are learned by
minimizing the following objective function:

O =
∑
𝑦𝑖 ∈y
(𝑦𝑖 × − log(p(𝑜𝑖 |𝑝𝑖 )) + (1 − 𝑦𝑖 )

× − log(1 − p(𝑜𝑖 |𝑝𝑖 ))) +
𝜆

2
∥𝜃 ∥22

(24)

where p(𝑜𝑖 |𝑝𝑖 ) is the predicted word probability defined in Equa-
tion 23, 𝑦𝑖 = {0, 1} indicates whether the 𝑖-th word is part of the log
message of the patch 𝑝𝑖 , and 𝜃 are all parameters of our model. The
regularization term, 𝜆

2 ∥𝜃 ∥
2
2 , is used to prevent overfitting in the

training process [11]. We employ the dropout technique [53] to im-
prove the robustness of CC2Vec. Since Adam [33] has been shown
to be computationally efficient and require low memory consump-
tion, we use it to minimize the objective function (i.e., Equation 24).
We also use backpropagation [19], a simple implementation of the
chain rule of partial derivatives, to efficiently update the parameters
during the training process.

3 EXPERIMENTS
The goal of this work is to build a representation of code changes
that can be applied to multiple tasks. To evaluate the effectiveness
of this representation, we employ our framework, namely CC2Vec,
on three different tasks, i.e., log message generation [39], bug fixing
patch identification [22] and just-in-time defect prediction [21].
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In the first task of log message generation, we use the vector
representation of code changes, extracted by CC2Vec, to find a patch
that is most similar to another. For the other two tasks, CC2Vec is
used to extract additional features that are input to the models of
bug fixing patch identification and just-in-time defect prediction.
We compare the resulting performance with and without using
our code change vector. We next elaborate on the three tasks, the
baselines, and results.

3.1 Task 1: Log Message Generation
3.1.1 Problem Formulation. While we learn representations of
code changes with the aid of log messages, we also study the task of
generating log messages from code changes. Developers do not al-
ways write high-quality log messages. Dyer et al. [16] reported that
around 14% of log messages in 23,000 Java projects on SourceForge2
were empty. Log messages are important for program comprehen-
sion and understanding the evolution of software, therefore this
motivates the need for the automatic generation of log messages. In
this task, given the code change of a given patch, we aim to produce
a brief log message summarizing it.

3.1.2 State-of-the-art Approach. The state-of-the-art approach is
NNGen [39], which takes as input a new code change with an
unknown log message and a training dataset (patches), and outputs
a log message for the new code change. NNGen first extracts code
changes from the training set. Each code change in the training
set and the new code change are represented as vectors in the
form of a “bag-of-words” [41]. NNGen then calculates the cosine
similarity between the vector of the new code change and the vector
of each code change in the training set, and selects the top-k nearest
neighbouring code changes in the training dataset. From these k
nearest neighbours, the BLEU-4 score [48] is computed between
each of the code changes in the top-k and the new code change
with an unknown log message. A log message of the code change
in the top-k with the highest BLEU-4 score is reused as the log
message of the new code change.

The BLEU-4 score is a measure used to evaluate the quality of ma-
chine translation systems, measuring the closeness of a translation
to a human translation. It is computed as follows:

𝐵𝐿𝐸𝑈 = 𝐵𝑃 · exp
(∑𝑁

𝑛=1
1
𝑁

log (𝑝𝑛)
)

𝐵𝑃 =

{
1 if 𝑐 > 𝑟

𝑒 (1−𝑟/𝑐) if 𝑐 ≤ 𝑟

𝑁 is the maximum number of N-grams. Following the previous
work [39], we select 𝑁 = 4. 𝑝𝑛 is the ratio of length 𝑛 subsequences
that are present in both the output and reference translation. 𝐵𝑃
is a brevity penalty to penalize short output sentences. Finally, 𝑐
is the length of the output translation and 𝑟 is the length of the
reference translation.

A deep learning approach was previously proposed for this task
by Jiang et al. [26], however, it underperformed the simpler base-
line NNGen. In this study, we refer to their work as NMT. Their
approach modelled this task as a neural machine translation task,
translating the code change to a target log message. Like our work,
they proposed an attention-based model, however, our work differs
from theirs as ours incorporates the structure of code changes. Liu
2https://sourceforge.net/

Table 1: Performance of each approach on the original and
cleaned dataset reported in BLEU-4

LogGen NNGen NMT
Original 43.20 38.55 31.92
Clean 20.48 16.42 14.19

et al. [39] investigated the performance of Jiang et al.’s attention
model; they found that once they remove trivial and automatically-
generated messages, the performance of the model decreased sig-
nificantly, suggesting that this model does not generalize.

3.1.3 Our Approach. To use CC2Vec for this task, we propose
LogGen. Similar to the nearest neighbours approach used by Liu
et al. [39], LogGen reuses and outputs a log message from the
training set. However, instead of treating each code change as a bag
of words, LogGen uses code change vectors produced by CC2Vec.
CC2Vec is first trained over the training dataset. Given a new code
change from the test dataset with an unknown log message, we find
the code changes with a known log message that have the closest
CC2Vec vector. Like Liu et al. [39], after identifying the closest code
changes, we reuse the log message as the output.

3.1.4 Experimental Setting. The purpose of evaluating CC2Vec on
this task is to determine if the code change representations received
from CC2Vec outperform the naive representation used by Liu et
al. [39]. Jiang et al. [26] originally collected and filtered the commits
to construct the original dataset. Another version of the dataset
was used by Liu et al. [39], who modified the original dataset.

Jiang et al. extracted a total of 2 million patches from the 1K
most starred Java projects. They collected the first line of each log
message. To normalize the dataset, patch ids and issue ids were
removed from the code changes and log messages. Patches were
filtered to remove merges, rollbacks, and patches that were too long.
The log messages that do not conform to verb-direct-object pattern,
e.g. “delete a method”, are also removed. After filtering, the dataset
contains 32K patches.

Still, even with all this cleaning, Liu et al. [39] investigated the
dataset and found that there were many patches with bot messages
and trivial messages. Bot messages refer to messages produced
automatically by other development tools, such as continuous inte-
gration bots. Trivial messages refer to messages containing only
information that can be obtained by looking at the names of the
changed files (e.g. “modify dockerfile”). Such messages are of low
quality and Liu et al. used regular expressions to locate and remove
these patches.

We used the original dataset of Jiang et al. [26] and the cleaned
dataset of Liu et al. [39] for evaluation. While the original dataset
consists of a training dataset of 30K patches and a testing dataset
of 3K patches, the cleaned dataset consists of a training dataset of
22K patches and a testing dataset of 2.5K patches. To compare the
different approaches, we use BLEU-4 to evaluate each approach
since this was used in both previous works.

3.1.5 Results. We report the performance of LogGen, NNGen and
NMT in Table 1. LogGen outperforms both NNGen and NMT. The
Clean dataset refers to the dataset which Liu et al. filtered out

524



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Thong Hoang, Hong Jin Kang, David Lo and Julia Lawall

patches with bot and trivial log messages. On this dataset, LogGen
outperforms NNGen and NMT by a BLEU-4 score of 4.06 and 6.29
respectively. LogGen improves over the performance of NNGen by
24.75%, a greater improvement than NNGen’s improvement over
NMT of 15.70% . On the original dataset collected by Jiang et al.,
LogGen outperforms NNGen and NMT by a BLEU-4 score of 4.65
and 11.28. These results indicate that LogGen can improve over the
performance of NNGen and NMT by 12.06% and 2.07% in terms of
the BLEU-4 score respectively.

Thus, we conclude that the log messages retrieved by LogGen
are closer in quality to a human translation than those retrieved by
NNGen and the log messages generated by NMT. This suggests that
CC2Vec produces vector representations of patches that correlate
to the meaning of the patch more strongly than a bag-of-words.

3.2 Task 2: Bug Fixing Patch Identification
3.2.1 Problem Formulation. Software requires continuous evolu-
tion to keep up with new requirements, but this also introduces
new bugs. Backporting bugfixes to older versions of a project may
be required when a legacy code base is supported. For example,
Linux kernel developers regularly backport bugfixes from the latest
version to older versions that are still under support. However, the
maintainers of older versions may overlook relevant patches in the
latest version. Thus, an automated method to identify bug fixing
patches may be helpful. We treat the problem as a binary classifica-
tion problem, in which each patch is labelled as a bug-fixing patch
or not. Given the code change and log message, we produce one of
the two labels as the output.

3.2.2 State-of-the-art Approach. The state-of-the-art approach is
PatchNet [22], which represents the removed (added) code as a three
dimensional matrix. The dimensions of the matrix are the number
of hunks, the number of lines in each hunk, and the number of
words in each line. PatchNet employs a 3D-CNN [25] that automati-
cally extracts features from this matrix. Unfortunately, the 3D-CNN
lacks a mechanism to identify important words, lines, and hunks.
To address this limitation, we propose a specialized hierarchical
attention neural network to quantify the importance of words, lines,
and hunks in our model (CC2Vec).

Another approach was proposed by Tian et al. [57] that combines
Learning from Positive and Unlabelled examples (LPU) [37] and
Support Vector Machine (SVM) [27] to build a patch classification
model. Unlike CC2Vec, this approach requires the use of manually
selected features. These features include word features, which is
a “bag-of-words” extracted from log messages, and 52 features,
manually extracted from the code change (e.g., the number of loops
added in a patch and if certain words appear in the log message).

3.2.3 Our Approach. CC2Vec is first used to learn a distributed
representation of code changes on the whole dataset. All patches
from the training and test dataset are used since the log messages
of the test dataset are not the target of the task. Next, we integrate
these vector representations of the code changes with the two ex-
isting approaches. To use CC2Vec in PatchNet, we concatenate the
vector representation of the code change extracted by CC2Vec with
the two embedding vectors extracted from the log message and
code change by PatchNet to form a new embedding vector. The

Table 2: Evaluation of the approaches on the bug-fixing
patch identification task

Acc. Prec. Recall F1 AUC
LPU-SVM 73.1 75.1 71.6 73.3 73.1
LPU-SVM + CC2Vec 77.1 77.2 79.8 78.5 76.2
PatchNet 86.2 83.9 90.1 87.1 86.0
PatchNet + CC2Vec 90.7 91.6 90.1 90.9 91.6

new embedding vector is fed into PatchNet’s classification mod-
ule to predict whether a given patch is a bug fixing patch. For the
approach proposed by Tian et al. [57] which uses an SVM as the
classifier, we pass the vectors produced by CC2Vec from the code
change into the SVM as features.

3.2.4 Experimental Setting. The goal of this task is to investigate if
CC2Vec helps existing approaches to effectively classify bug-fixing
patches. We use the dataset of Linux kernel bug-fixing patches
used in the PatchNet paper. This dataset consists of 42K bug-fixing
patches and 40K non-bug-fixing patches collected from the Linux
kernel versions v3.0 to v4.12, released in July 2011 and July 2017 re-
spectively. Patches in this dataset are limited to 100 lines of changed
code, in line with the Linux kernel stable patch guidelines. The non-
bug-fixing patches are selected such that they have a similar size,
in terms of the number of files and the number of modified lines,
as the bug-fixing patches. Following the PatchNet paper, we use
5-fold cross-validation for the evaluation.

To compare the performance of the approaches, we employ the
following metrics:
• Accuracy: The ratio of correct predictions to the total number of
predictions.
• Precision: The ratio of correct predictions of bug-fixing patches
to the total number of bug-fixing patch predictions
• Recall: The ratio of correct predictions of bug-fixing patches to
the total number of bug-fixing patches.
• F1: Harmonic mean between precision and recall.
• AUC: Area under the curve plotting the true positive rate against
the false positive rate. AUC values range from 0 to 1, with a value
of 1 indicating perfect discrimination.

These metrics were also used in previous studies on this task.

3.2.5 Results. We report the performance of the different approaches
in Table 2. We observe that the best performing approach is Patch-
Net augmented with CC2Vec. For both Tian et al.’s model (LPU-
SVM) and PatchNet, the versions augmented with CC2Vec outper-
form the original versions. Specifically, CC2Vec helps to improve
the best performing baseline (i.e, PatchNet) by 5.22%, 9.18%, 4.37%,
and 6.51% in terms of accuracy, precision, F1, and AUC. CC2Vec
also helps to improve the performance of LPU-SVM by 5.47%, 2.80%,
11.45%, 7.09%, and 4.24% in accuracy, precision, recall, F1, and AUC.
This suggests that CC2Vec can learn patch representations that are
general and useful beyond the task it was trained on.

3.3 Task 3: Just-in-Time Defect Prediction
3.3.1 Problem Formulation. The task of just-in-time (JIT) defect
prediction refers to the identification of defective patches. JIT defect
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Table 3: The AUC results of the various approaches

QT OPENSTACK
DeepJIT 76.8 75.1
DeepJIT + CC2Vec 82.2 80.9

prediction tools provide early feedback to software developers to
optimize their effort for inspection, and have been used at large
software companies [44, 51, 55]. We model the task as a binary clas-
sification task, in which each patch is labelled as a patch containing
a defect or not. Given a patch containing a code change and a log
message with unknown label, we label the patch with one of the
two labels.

3.3.2 State-of-the-art Approach. The state-of-the-art approach is
DeepJIT, proposed by Hoang et al. [21]. DeepJIT takes as input
the log message and code change of a given patch and outputs a
probability score to predict whether the patch is buggy. DeepJIT
employs a Convolutional Neural Network (CNN) [31] to automat-
ically extract features from the code change and log message of
the given patch. However, DeepJIT ignores information about the
structure of the removed code or added code, instead relying on
CNN to automatically extract such information.

3.3.3 Our Approach. Similar to the previous task (i.e., bug fixing
patch identification), CC2Vec is first used to learn distributed rep-
resentations of the code changes in the whole dataset. All patches
from the training and test dataset are used since the log messages of
the test dataset are not part of the predictions of the task. We then
integrate CC2Vec with DeepJIT. To use CC2Vec with DeepJIT, for
each patch, we concatenate the vector representation of the code
change extracted by CC2Vec with two embedding vectors extracted
from the log message and code change of the given patch extracted
by DeepJIT to form a new embedding vector. The new embedding
vector is fed into DeepJIT’s feature combination layers, to predict
whether the given patch is defective.

3.3.4 Experimental Setting. The purpose of this task is to evaluate
if CC2Vec can be used to augment existing approaches in effectively
classifying defective patches. Our evaluation is performed on two
datasets, the QT and OPENSTACK datasets, which contain patches
collected from the QT and OPENSTACK software projects respec-
tively by McIntosh and Kamei [42]. The QT dataset contains 25K
patches over 2 years and 9 months while the OPENSTACK dataset
contains 12K patches over 2 years and 3 months. 8% and 13% of
the patches are defective in the QT dataset and the OPENSTACK
datasets respectively. Like Hoang et al. [21], we use 5-fold cross
validation for the evaluation.

To compute the effectiveness of the approaches, we use the Area
Under the receiver operator characteristics Curve (AUC), similar to
the previous studies.

3.3.5 Results. The evaluation results for this task are reported
in Table 3. The use of CC2Vec with DeepJIT improves the AUCS
score of DeepJIT, from 76.8 and 75.1 to 82.2 and 80.9 on the QT
and OPENSTACK datasets respectively. Specifically, CC2Vec helps
to improve the AUC metric by 7.03% and 7.72% for the QT and
OPENSTACK datasets, respectively, as compared to DeepJIT. This

indicates that CC2Vec is effective in learning a useful representation
of patches that an existing state-of-the-art technique can utilize.

4 DISCUSSION
4.1 Ablation Study
Our approach involves five comparison functions for calculating the
difference between the removed code and added code. To estimate
the usefulness of comparison functions (see Section 2.4.2), we con-
duct an ablation study on the three tasks: log message generation,
bug fixing patch identification, and just-in-time defect prediction.
Specifically, we first remove the comparison functions entirely and
then remove these functions one-by-one. For each task, we compare
the CC2Vec model and its six reduced variants: All−all (omit all
comparison functions), All−NT (omit the neural network tensor
comparison function), All−NN (omit the neural network compari-
son function), All−sim (omit the similarity comparison function),
All−sub (omit the subtraction comparison function), and All−mul
(omit the multiplication comparison function).

Table 4 summarizes the results of our ablation test on three
different tasks. We see that CC2Vec model always performs better
than the reduced variants for all three tasks. This suggests that each
comparison function plays an important role and omitting these
comparison functions may greatly affect the overall performance.
All−all (CC2Vec model without using any comparison functions)
performs theworst. Among the five remaining variants (i.e., All−NT,
All−NN, All−sim, All−sub, and All−mul), All-NT performs the
worst. This suggests that the neural network tensor comparison
function is more important the other comparison functions (i.e.,
neural network, similarity, subtraction, and multiplication).

4.2 Threats to Validity
Threats to internal validity refer to errors in our experiments and
experimenter bias. For each task, we reuse existing implementations
of the baseline approaches whenever available. We have double
checked our code and data, but errors may remain.

Threats to external validity concern the generalizability of our
work. In our experiments, we have studied only three tasks to
evaluate the generality of CC2Vec. This may be a threat to external
validity since CC2Vec may not generalize beyond the tasks that we
have considered. However, each task involves different software
projects and different programming languages. As such, we believe
that there is minimal threat to external validity. To minimize threats
to construct validity, we have used the same evaluation metrics
that were used in previous studies.

5 RELATEDWORK
There are many studies on the representation of source code, in-
cluding recent studies proposing distributed representations for
identifiers [17], APIs [46, 47], and software libraries [56]. A com-
prehensive survey of learning the representation of source code
has been done by Allamanis et al. [1].

Some studies transform the source code into a different form,
such as control-flow graphs [15] and symbolic traces [20], or collect
runtime execution traces [58], before learning distributed represen-
tations. DeFreez et al. [15] found function synonyms by learning
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Table 4: Results of an ablation study

Log generation (BLEU-4) Bug fix identification (F1) Just-in-time defect prediction (AUC)
Clean Drops by (%) BFP Drops by (%) QT Drops by (%) OPENSTACK Drops by (%)

All−all 18.30 10.64 87.1 4.18 77.4 5.84 76.7 5.19
All−NT 19.36 5.47 88.7 2.42 79.8 2.92 79.2 2.10
All−NN 19.80 3.32 88.8 2.31 80.1 2.55 79.5 1.73
All−sim 20.41 0.34 90.2 0.77 81.9 0.36 80.5 0.49
All−sub 20.13 1.71 89.6 1.43 80.7 1.82 80.1 0.99
All−mul 20.25 1.12 89.7 1.32 81.1 1.34 80.5 0.49
All 20.48 0 90.9 0 82.2 0 80.9 0

embeddings through random walks of the interprocedural control-
flow graph of a program. These embeddings are then used in a
single downstream task of mining error-handling specifications.
Henkel et al. [20] described a toolchain to produce abstracted in-
traprocedural symbolic traces for learning word embeddings. They
experimented on a downstream task to find and repair bugs related
to incorrect error codes. Wang et al. [58] used execution traces to
learn embeddings. They integrate their embeddings into a program
repair system in order to produce fixes to correct student errors in
programming assignments. These studies differ from our work as
we leverage natural language data as well as source code.

There have been other studies using deep learning of both source
code and natural language data, for example, joint learning of em-
beddings for both text and source code to improve code search [18].
Other studies proposed approaches to learn distributed represen-
tations of source code on prediction tasks with natural language
output. Iyer et al. [24] proposed a model using LSTM networks
with attention for code summarization, and Yin et al. [62] trained
a model to align source code to natural language text from Stack-
Overflow posts. However, unlike our work, these studies do not
use structural information of the source code.

Several studies [2, 3, 23, 35] account for structural information
but differ from our work. Hu et al. [23] proposed an approach to
use Sequence-to-Sequence Neural Machine Translation to generate
method-level code comments. By prefixing the AST node type in
each token and traversing the AST of methods such that the original
AST can be unambiguously reconstructed, they convert the AST of
each method into a sequence that preserves structural information.
Alon et al. proposed code2vec [3], which represents code as paths in
an AST, learning the vector representation of each AST path. They
trained their model on the task of predicting a label, such as the
method name, of the code snippet. In a later work, they proposed
code2seq [2]. Instead of predicting a single label, they generate a
sequence of natural language words. Similar to our work, structural
information of the input source code is encoded in the model’s
architecture, however, in these studies, the input code snippet is
required to be parseable to build an AST.

As our work focuses on the representation of software patches,
we deliberately designed CC2Vec to not require parseable code
in its input. This is done for two reasons. Firstly, a small but still
significant proportion of patches may have compilation errors. A
study by Beller et al. on Travis CI build failures revealed that about
4% of Java project build failures are due to compilation errors [8].
CC2Vec is designed to be usable even for these patches. Secondly,

parsing will require the entire file with the changed code. Retrieving
this information and parsing the entire file will be time consuming.

All the studies above proposed general representations of source
code. The representations they learn, with the exception of DeFreez
et al. [15], are of source code contained in a single function. In con-
trast, we learn representations of code changes, which can contain
modifications to multiple different functions, across multiple files.

Several of the models related to code changes’ representation
were discussed in Section 3. These models often do not model
the hierarchical structure of a code change or require handcrafted
features that may be specific to a single task [5, 26, 28–30, 39, 44,
57, 60].

Two techniques using deep neural networks, PatchNet [22] and
DeepJIT [21], are most similar to our work. However, as discussed
earlier, our work differs from theirs in various ways. A fundamental
difference is in the generality of the techniques. CC2Vec is not
specific to a single task. Rather, CC2Vec can be trained for multiple
tasks, including both generative and classification tasks. In fact,
CC2Vec is orthogonal to these approaches. The objective of CC2Vec
is to produce high quality representations of code changes that
can be integrated into PatchNet, DeepJIT, and similar models. We
showed in Section 3 that the performance of these models improves
when they are augmented with the code change representation
learned by CC2Vec.

6 CONCLUSION
We propose CC2Vec, which produces distributed representations of
code changes through a hierarchical attention network. In CC2Vec,
we model the structural information of a code change and use
the attention mechanism to identify important aspects of the code
change with respect to the log message accompanying it. This
allows CC2Vec to learn high-quality vector representations that
can be used in existing state-of-the-art models on tasks involving
code changes.

We empirically evaluated CC2Vec on three tasks and demon-
strated that approaches using or augmented with CC2Vec embed-
dings outperform existing state-of-the-art approaches that do not
use the embeddings. Finally, we performed an ablation study to
evaluate the usefulness of comparison functions. The results show
that the comparison functions play an important role and omitting
them in part or in full affects the overall performance.

As future work, to reduce the threat to external validity, we will
integrate of CC2Vec into other tools and experiments on other tasks
involving software patches.
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Package. The replication package is available at https://github.
com/CC2Vec/CC2Vec.
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