
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2020

Lightning-fast and privacy-preserving outsourced computation in Lightning-fast and privacy-preserving outsourced computation in

the cloud the cloud

Ximeng LIU
Singapore Management University, xmliu@smu.edu.sg

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Pengfei WU
Peking University

Yang YANG
Fuzhou University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
LIU, Ximeng; DENG, Robert H.; WU, Pengfei; and YANG, Yang. Lightning-fast and privacy-preserving
outsourced computation in the cloud. (2020). Cybersecurity. 3, (1), 1-21.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5490

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5490&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

CybersecurityLiu et al. Cybersecurity (2020) 3:17
https://doi.org/10.1186/s42400-020-00057-3

RESEARCH Open Access

Lightning-fast and privacy-preserving
outsourced computation in the cloud
Ximeng Liu1,2* , Robert H. Deng1, Pengfei Wu3 and Yang Yang1,2

Abstract

In this paper, we propose a framework for lightning-fast privacy-preserving outsourced computation framework in
the cloud, which we refer to as LightCom. Using LightCom, a user can securely achieve the outsource data storage and
fast, secure data processing in a single cloud server different from the existing multi-server outsourced computation
model. Specifically, we first present a general secure computation framework for LightCom under the cloud server
equipped with multiple Trusted Processing Units (TPUs), which face the side-channel attack. Under the LightCom, we
design two specified fast processing toolkits, which allow the user to achieve the commonly-used secure integer
computation and secure floating-point computation against the side-channel information leakage of TPUs,
respectively. Furthermore, our LightCom can also guarantee access pattern protection during the data processing and
achieve private user information retrieve after the computation. We prove that the proposed LightCom can
successfully achieve the goal of single cloud outsourced data processing to avoid the extra computation server and
trusted computation server, and demonstrate the utility and the efficiency of LightCom using simulations.

Keywords: Privacy-preserving, Secure outsourced computation, Homomorphic encryption, Secret sharing
technique, Against side-channel attack

Introduction
THE internet of things (IoT), embedded with electronics,
Internet connectivity, and other forms of hardware (such
as sensors), is a computing concept that describes the idea
of everyday physical objects being connected to the inter-
net and being able to identify themselves to other devices.
With large numbers of IoT devices, a colossal amount of
data is generated for usage. According to IDC1, the con-
nected IoT devices will reach 80 billion in 2025, and help
to generate 180 trillion gigabytes of new data that year.
A quarter of the data will create in real-time, and 95% is
to come from IoT real-time data. With such a large vol-
ume, real-time data are generated; it is impossible for the

*Correspondence: snbnix@gmail.com
1College of Mathematics and Computer Science, Fuzhou University, Fuzhou,
China
2School of Information Systems, Singapore Management University,
Singapore, Singapore
Full list of author information is available at the end of the article
1http://www.vebuso.com/2018/02/idc-80-billion-connected-devices-2025-
generating-180-trillion-gb-data-iot-opportunities/

resource-limited IoT devices to store and do the data ana-
lytics in time. Cloud computing (Ali et al. 2015; Wei et al.
2014; Wazid et al. 2020; Challa et al. 2020), equipped the
almost unlimited power of storage and computing pro-
vides the diversity of services on demand, such as storage,
databases, networking, software, analytics, intelligence.
With the help of cloud computing, 49 percent of data will
be stored in public cloud environments by 20252. Unsur-
prisingly, the massive volume of data generated by IoT
devices is outsourced to the cloud for long-term storage
and achieve real-time online processing.
Despite the advantages provided by IoT-cloud data out-

sourcing architecture, the individual IoT users hesitate
to use the system for data storage and processing with-
out any protection method. On the Internet of Medi-
cal Things example (Dimitrov 2016), patients wearable
mHealth devices that always equipped with biometric
measurement sensors (such as heart rate, perspiration

2https://economictimes.indiatimes.com/tech/internet/global-data-to-
increase-10x-by-2025-data-age-2025/articleshow/58004862.cms?from=mdr

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-020-00057-3&domain=pdf
http://orcid.org/0000-0002-4238-3295
mailto: snbnix@gmail.com
http://www.vebuso.com/2018/02/idc-80-billion-connected-devices-2025-generating-180-trillion-gb-data-iot-opportunities/
http://www.vebuso.com/2018/02/idc-80-billion-connected-devices-2025-generating-180-trillion-gb-data-iot-opportunities/
https://economictimes.indiatimes.com/tech/internet/global-data-to-increase-10x-by-2025-data-age-2025/articleshow/58004862. cms?from=mdr
https://economictimes.indiatimes.com/tech/internet/global-data-to-increase-10x-by-2025-data-age-2025/articleshow/58004862. cms?from=mdr
http://creativecommons.org/licenses/by/4.0/

Liu et al. Cybersecurity (2020) 3:17 Page 2 of 21

levels, oxygen levels) to record the physical sign of the
patient. The hospital can use clients PHI decision-making
model to automatically check a patients health status.
According to a new report by Grand View Research, The
global IoT in healthcare market size is projected to reach
USD 534.3 billion by 2025 expanding at a Compound
Annual Growth Rate (CAGR) 19.9% over the forecast
period3. If no protection method is adopted, patients
physical signs can be capture by an adversary. Moreover,
the hospital model can be got by other third-party com-
panies to make a profit. Use the traditional encryption
technique can protect the data from leakage; however, the
ciphertext lost the originalmeaning of the plaintext, which
cannot do any computations.
Protecting the data and achieve the secure outsource

computation simultaneously is an eye-catching field to
solve the above problems. Currently, there are typically
two aspects of techniques to achieve secure outsourced
computation: theoretical cryptography solution and sys-
tem security solution. For the cryptography point of view,
homomorphic encryption (Naehrig et al. 2011) is con-
sidered as a super-excellent solution for the outsourced
computation, which allows the third-party to perform the
computation on the encrypted data without revealing the
content of the plaintext. Fully homomorphic encryption
(Van Dijk et al. 2010) can achieve arbitrary computation
on the plaintext corresponding to the complex operations
on the ciphertext. However, the computation overhead is
still tremendous, which is not fit for the piratical usage
(e.g., it requires 29.5 s to run secure integer multiplication
computation with a standard PC (Liu et al. 2018b)). Semi-
homomorphic encryption (Bendlin et al. 2011; Farokhi et
al. 2016; Ma et al. 2020) only supports one type of homo-
morphic (e.g., additive homomorphic), can achieve com-
plex data computation on the encrypted data with the help
of other honest-but-curious servers. However, the extra
computation server will increase the possibility of infor-
mation leakage. Recently, for the industrial community,
trusted execution environment (TEE, such as Intel� Soft-
ware Guard Extensions (SGX)4 and ARM TrustZone5)
is developed to achieve the secure computation which
allows user-level or operating system code to define pri-
vate regions of memory, also called enclaves. The data in
the enclave are protected and unable to be either read
or saved by any process outside the enclave itself. The
performance of the TEE is equivalent to the plaintext
computation overhead. Unfortunately, TEE easily faces
the side-channel attack, and the information inside the

3https://www.grandviewresearch.com/press-release/global-iot-in-healthcare-
market
4https://software.intel.com/en-us/sgx
5https://developer.arm.com/ip-products/security-ip/trustzone

enclave can be leaked to the adversary6 7. Thus, a fasci-
nating problem appears for creating a system to balance
the usage of practical outsourced computation system
and eliminate the extra information leakage risk: how can
a single cloud securely perform the arbitrary outsourced
computation without the help of extra third-party com-
putation server or trusted authority, which interactions
between the user and the cloud kept to a minimum.
In this paper, we seek to address the challenges as men-

tioned above by presenting a framework for lightning-fast
and privacy-preserving outsourced computation Frame-
work in a Cloud (LightCom). We regard the contributions
of this paper to be six-fold, namely:

• Secure Data Outsourced Storage. The LightCom
allows each user to outsource his/her data to a cloud
data center for secure storage without compromising
the privacy of his/her data to the other unauthorized
storage.

• Lightning-fast and Secure Data Processing in Single
Cloud. The LightCom can allow in a single cloud
equipped with multiple Trusted Processing Units
(TPUs), which provides a TEE to achieve the
user-centric outsourced computation on the user’s
encrypted data. Moreover, the data in untrusted
outside storage are secure against chosen-ciphertext
attacks for the long-term, while data insider TPUs
can be protected against side-channel attacks.

• Outsourced Computation Primitive Combinable.
Currently, the outsourced computation methods
focus on a special computation task, such as
outsourced exponential computation. Different
specific outsourced tasks are constructed with
different crypto preliminary. Thus, the previous
computation result cannot be directly used for the
input of the next computation. Our LightCom can
directly solve the problem with a uniform design
method which can achieve computation combinable.

• No Trusted Authority Involved. In most of the
existing cryptosystems, trusted authority is fully
trusted, which is an essential party in charge of
distributing the public/private keys for all the other
parties in the system. Our LightCom does not involve
an extra fully trusted party in the system, which
makes the system more efficient and practical.

• Dynamic Key/Ciphertext Shares Update. To reduce
the user’s private key and data leakage risk during the
processing, we randomly split the key and data into
different shares which are processed in different
TPUs, cooperatively. To avoid long-term shares
leaking for recovering the original secrets, our
LightCom allows TPUs updating user’s “old”

6https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
7https://www.arm.com/products/silicon-ip-security/side-channel-mitigation

https://www.grandviewresearch.com/press-release/global-iot-in-healthcare-market
https://www.grandviewresearch.com/press-release/global-iot-in-healthcare-market
https://software.intel.com/en-us/sgx
https://developer.arm.com/ip-products/security-ip/trustzone
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://www.arm.com/products/silicon-ip-security/side-channel-mitigation

Liu et al. Cybersecurity (2020) 3:17 Page 3 of 21

data/private-key shares into the “new” shares
on-the-fly dynamically without the participation of
the data user.

• High User Experience. Most existing
privacy-preserving computation technique requires a
user to perform different pre-processing technique
according to the function type before data
outsourcing. The LightCom does not need the data
owner to perform any pre-processing procedure -
only needs to encrypt and outsource the data to the
cloud for storage. Thus, interactions between the
user and the cloud kept to a minimum - send the
encrypted data to the cloud, and received outsourced
computed results in a single round.

Motivation and Technique Overview. As the sensi-
tive information contained inside TPU can be attacked,
our primary motivation of the LightCom framework is to
achieve secure computation in a single cloud without the
help of an additional party. Also, as most of the devices
are mobile devices with battery restriction, we need to
guarantee users experience to make sure that the interac-
tions between the user and the cloud kept to one round.
The design idea of LightCom is to let the data store in the
outside storage, and achieve privacy-preserving computa-
tion insider TPU. The main challenges are how to achieve
both practical secure data storage and outsourced data
processing against side-channel attacks, simultaneously.
To solve the secure data storage challenge, we use a new

Paillier Cryptosystem Distributed Decryption (PCDD),
which can achieve semantic secure data storage. To pre-
vent information leakage inside TPU, our LightCom uses
one-time pad by adding some random numbers on the
plaintext of the PCDD ciphertext. Even the “padded”
ciphertext for the TPU enclave for decryption and pro-
cess, the attacker still cannot get the original message of
the plaintext. To achieve ciphertext decryption, our Light-
Com uses multiple TPUs, and each TPU only stores a
share of the private key to prevent the user’s key leak-
age risk. Even some partial private key/data shares may
leak to the adversary; our framework can successfully
update these shares dynamically inside the TPU to make
the leaked shares useless. More importantly, all the secure
execution environment (called TPU enclaves) in TPUs are
dynamically building and release for the secure compu-
tation in our LightCom framework, which can further
decrease the information leak risk in the enclave.
Applications with LightCom. The LightCom is a fun-

damental secure data computation framework which can
be used for the following four types of applications – see
Fig. 1.
1. Artificial Intelligence (AI) System. AI is the simulation

of human intelligence processes by machines, especially
computer systems, which can be used in expert systems,

natural language processing (NLP), speech recognition
and machine vision. However, in most of the AI appli-
cations, the data for AI model training and decision are
sensitive which need to be protected before sending into
the AI model. Also, the AI model is considered as the
core asset of the company which requires a staggering
cost for training. With the help of LightCom, both data
and AI models can be protected, and all the basic secure
operations can be used for building the secure AI sys-
tem without leaking any information about the model
parameters.
2. E-Healthcare System. E-healthcare is a field in the

intersection of public health, and medical informatics,
referring to health services and information delivered
or enhanced through the Internet and related technolo-
gies. An Electronic Health Record (EHR) is considered
as the key to the e-healthcare system which provides
real-time, patient-centric records that make information
available instantly to the users. To ensure the privacy of
the record, some researchers provide secure techniques
to encrypt the EHR (Xu et al. 2020a, b; 2018). However,
encrypted EHR cannot do any operations without decryp-
tion. Thanks to the LightCom, the third-party company
can use the encrypted EHR in the e-healthcare system for
practical secure data analytics without any information
leakage. The patient can use his/her own private key to
decrypt and get the real-time analytic e-healthcare result.
3.Connected and Automated Vehicles (CAV).The trans-

portation system is rapidly evolving with new CAV tech-
nologies that integrate CAVs with other vehicles and road-
side infrastructure in a cyber-physical system (CPS). For
the vehicle to be truly capable of driving without user
control, an extensive amount of training must be initially
undertaken for the AI system to make the right decisions
in any imaginable traffic situation. However, the compro-
mised vehicle can capture data packet information, thus
acquiring sensitive and confidential data. Cryptography-
based solutions include encryption that can be used to
detect eavesdropping and secure vehicle privacy. How-
ever, the automated vehicle cannot make any operations
on the encrypted training data packets. In order to train
the self-divining model in a privacy-preserving way, the
LightCom can be used for constructing the model without
the training data leakage.
4. Social Network (SN). A social network is a social

structure made up of a set of social actors (such as individ-
uals or organizations), sets of dyadic ties, and other social
interactions between actors. Social network user’s private
information including messages, invitations, photos, are
often the venues for other adversaries to gain access. How-
ever, these data are valuable for the service provider that
can be extracted useful knowledge from them. The tradi-
tional encryption technologies can successfully deal with
the user’s private information, but make the social media

Liu et al. Cybersecurity (2020) 3:17 Page 4 of 21

Fig. 1 LightCom with the Applications

data unusable. With the LightCom, the service provider
can achieve secure data analytics without getting any
social actors’ private information.

Preliminary
Notations
Throughout the paper, we use ‖x‖ to denote bit-length of
x, while L(x) denotes the number of element in x. More-
over, we use pka and ska to denote the public and private
keys of a Request User (RU) a, sk(1)

a , sk(2)
a to denote the

partial private keys that form ska, [[x]]pka to denote the
encrypted data of x using pka in public-key cryptosys-
tem. For simplicity, if all ciphertexts belong to a specific
RU, say a, we simply use [[x]] instead of [[x]]pka . We use
notion 〈m〉 to denote the data share ofm, i.e., each party i
(i = 1, · · · ,P) holdsmi, such that

∑P
i=1mi = m.

Additive secret sharing scheme (ASS)
Give m ∈ G (G is a finite abelian group under addition),
the additive secret sharing scheme (a.k.a. P-out-of-P

secret sharing scheme) can be classified into the follow-
ing two algorithms – Data Share Algorithm (Share) and
Data Recovery Algorithm (Rec):
Share(m) : Randomly generate X1, · · · ,XP−1 ∈ G, the

algorithm computes XP = m − (X1 + · · · + XP−1), and
outputs X1, · · · ,XP .
Rec(X1, · · · ,XP) : With the shares X1, · · · ,XP , the

algorithm can recover the message m by computing with
m = X1 + · · · + XP under group G.

Additive homomorphic encryption scheme
To reduce the communication cost of the LightCom,
we used an Additive Homomorphic Encryption (AHE)
scheme as the basis. Specifically, we use one of the
AHE support threshold decryption called Paillier Cryp-
tosystem Distributed Decryption (PCDD) in our previous
work which contains six algorithms called Key Genera-
tion (KeyGen), Data Encryption (Enc), Data Decryption
(Dec), Private Key Splitting (KeyS), Partially decryption
(PDec), Threshold decryption (TDec). The plaintext

Liu et al. Cybersecurity (2020) 3:17 Page 5 of 21

belongs to ZN and the ciphertext belongs to ZN2 . The
construction of the above algorithms can be found in Sup-
plementary Materials Section C. Here, we introduce the
two properties of the PCDD as follows: 1) Additive Homo-
morphism: Given ciphertexts [[m1]] and [[m2]] under a
same public key pk, the additive homomorphism can
be computed by ciphertext multiplication, i.e., compute
[[m1]] ·[[m2]]=[[m1+m2]]. 2) Scalar-multiplicative Homo-
morphism: Given ciphertext [[m]] and a constant number
c ∈ ZN , it has ([[m]])c =[[cm]] .
With the two properties given above, we show that our

PCDD have the polynomial homomorphism property, i.e.,
given [[x1]] , · · · , [[xn]] and a1, · · · , an, it has

[[a1·x1+a2·x2+· · · anxn]]←[[x1]]a1 ·[[x2]]a2 · · · [[xn]]an .

Mathematical function computation
In this section, we define the function which is used for
data processing in our LightCom.

Definition 1 (Deterministic Multiple-output Multivari-
able Functions) Let D = {(x1, · · · , xv) : xi ∈ G} be
a subset of G

v. We define the deterministic multiple-
output multivariable function as follows: (I) A multiple-
output multivariable function F of v variables is a rule
which assigns each ordered vector (x1, · · · , xv) in D to a
unique vector denoted (y1, · · · , yw), denote (y1, · · · , yw) ←
F(x1, · · · , xv). (II) The set D is called the domain ofF . (III)
The set {F(x1, · · · , xv)|(x1, · · · , xv) ∈ D} is called the range
of F .

Note that the deterministic multiple-output multivari-
able function is the general case of the deterministic
multiple-output single-variable function (v = 1), deter-
ministic single-output multivariable function (w = 1), and
deterministic single-output single variable function (v =
1,w = 1). As all the functions used in our paper can be
successfully executed by a polynomial deterministic Tur-
ing machine (See Supplementary materials Section A), we
omit the word “deterministic” in the rest of the paper.

Systemmodel & privacy requirement
In this section, we formalize the LightCom system model,
and define the attack model.

Systemmodel
In our LightCom system, we mainly focus on how the
cloud server responds to a user request on outsourced
computation in a privacy-preserving manner. The system
comprises Request User (RU) and a Cloud with Untrusted
Storage (UnS) and Trusted Processing Units (TPUs) - see
Fig. 2.

• A RU generates his/her public key, private key shares,
and data shares. After that, the RU can securely
outsource the public key and private/data shares to
the cloud’s UnS for secure storage (See 1©).
Moreover, the RU can also request a cloud to
perform some secure outsourced computations on
the outsourced data and securely retrieve the final
encrypted results (See 5©).

• A UnS of the cloud has ‘unlimited’ data storage space
to store and manage data outsourced from the
registered RU. Also, the UnS stores all the
intermediate and final results for the RU in encrypted
form.

• The TPUs of the cloud provides online computation
ability for each RUs. Each TPU provides isolation
secure computing environment for individual RU and
can load RU’s data shares from UnS (See 2©), perform
certain calculations over the data shares (See 3©), and
then securely seal the data shares in UnS for storage
(See 4©)8. Note that one TPU cannot load other
TPU’s sealed data, which are stored in UnS.

Attack model
In our attack model, the cloud is curious-but-honest party,
which strictly follow the protocol, but are also interested
in learning data belonged to the RUs. The UnS inside the
cloud is transparency to both the cloud and the outsider
passive attackers. Every TPU can provide a secure execu-
tion environment (a.k.a., TPU enclave) for a RU, which is
secure against the other RU, the cloud, and outsider pas-
sive attackers. The inside non-challenge RUs and outside
attackers can also be interested to learn challenge RU’s
data. Therefore, we introduce three active adversaries
A∗

1,A∗
2,A∗

3, which can simulate the malicious actions cor-
responding to the outside attackers, non-challenge RUs,
UnS, respectively. The goal of these adversaries is to get
the challenge RU’s plaintext or try to let the challenge RU
get wrong computation result with the following capabili-
ties:
1)A∗

1 acts as the outside attacker that may eavesdrop on
all communication links and CP’s UnS, and try to decrypt
the challenge RU’s encrypted data. 2) A∗

2 may compro-
mise RUs, except for the challenge RU, to get access to
their decryption capabilities, and try to guess all plaintexts
belonging to the challenge RU. 3) A∗

3 may compromise
the TPU to guess plaintext values of all data shares sent
from the UnS by executing an interactive protocol. Noting
that the above adversaries A∗

1,A∗
2,A∗

3 are restricted from
compromising (i) all the TPUs concurrently9, and (ii) the
challenge RU.

8See the algorithm Seal and UnSeal in “ecure TPU-based data seal &
UnSeal” section.
9Note that P ≥ 3 TPUs are required in LightCom for the security
consideration.

Liu et al. Cybersecurity (2020) 3:17 Page 6 of 21

Fig. 2 System model under consideration

Basic privacy preserving computation protocols
In this section, we introduce our general design method of
the mathematical function for LightCom. Moreover, the
dynamic private/data share update without the participa-
tion of the DO are also introduced.

The LightCom design method for the single functions
Our LightCom achieves the user data’s privacy during the
efficiency in the outsourced cloud with three-dimensional
protection: 1) secure storing in the untrusted cloud stor-
age; 2) secure processing in TPUs against side-channel
attack; 3) efficient and dynamic outsourced key and data
shares updating. Specifically, to outsource the data to
the cloud, the RU first initializes the system, uses the
RU’s public key to encrypt the data, and outsources these
encryptions and the system parameters to UnS for storage.
To achieve the second-dimensional protection, our Light-
Com uses the data sharing-based secure computation
method between TPUs, which can resist the side-channel
attacks even the PPCD ciphertexts are decrypted. After
finishing the processing, the data are sent back to UnS for
further processing to complete the corresponding func-
tionality defined in the program, and the enclaves in TPUs
are released. Moreover, to tackle the leaked private key
and data shares, all the TPUs can jointly update these
shares without the help of RU. Thus, the LightCom can
classify into the following four phases.
1) System Initialize Phase: Firstly, the RU generates a

public key pk and private key is sk of appropriate pub-
lic key crypto-system, and then splits the private key sk
into P shares ski (i = 1, · · · ,P) with the Share algo-
rithm. After that, for each TPU i in the cloud, it initials
an enclave i, builds a secure channel, and uploads the ski
to the enclave i securely. Finally, the TPU i uses the data
sealing to securely stored the pk, ski in to UnS.
2) Data Upload Phase: In the phase, the RU randomly

separates the data xj,1, · · · , xj,P ∈ G, such that xj,1 +
· · · + xj,P = xj for j = 1, · · · , v. Then, the TPU i (i =
1, · · · ,P) creates the enclave i. After that, the RU defines
the program Ci for some specific computation function,
builds a secure channel with TPU enclave i, remotely

loads x1,i, · · · , xv,i, Ci into the enclave i, and securely seals
x1,i, · · · , xv,i, Ci in the UnS. After that, TPU i releases the
enclave i.
3) Secure Computation Phase: The goal of the phase

is to achieve the secure computation among the TPUs
according to the user-defined program Ci. Thus, it works
as follows:

• (3-I) Each TPU i generates an enclave i. After that, all
the TPUs build a secure channel with each other.
Load sealed data x1,i, · · · , xv,i, pk, ski, Ci to enclave i
from UnS, and denote them as Si.

• (3-II) TPUs jointly compute (y1,1, · · · , yw,1 : · · · :
y1,P , · · · , yw,P) ← GenCpt(S1 : · · · : SP) according
to the user-defined program C1, · · · , CP10.

• (3-III) All the TPUs jointly update the private key
shares and data shares dynamically.

After the above computation, the TPU i seals
y1,i, · · · , yw,i into the UnS, and releases the enclave.
4) Data Retrieve Phase: If the RU needs to retrieve the

computation results from the cloud, the TPU i creates
an enclave i, opens the sealed data y1,i, · · · , yw,i, builds a
secure channel with the RU, and sends the data shares
back to RU. Once all the shares are sends to RU, the RU
computes yj = ∑P

i=1 yj,i for j = 1, · · · ,w.

The LightComDesign for Combination of the Functions
Our LightCom can support for single data outsourced
with multiple function operations. The procedure is as
follows:
1) System Initialize Phase: Same to the LightCom with

single function in “The LightCom design method for the
single functions” section.
2) Data Upload Phase: After the system initialize phase,

the RU defines the program Ci,t for TPU i (i = 1, · · · ,P)

with function computation step t (t = 1, · · · , ζ) and ran-
domly separates the data xj,1,1, · · · , xj,1,P , such that xj,1,1 +
10The construction of General Secure Function Computation Algorithm
(GenCpt) can be found in “General secure function computation algorithm
(GenCpt)” section.

Liu et al. Cybersecurity (2020) 3:17 Page 7 of 21

· · · + xj,1,P = xj for j = 1, · · · , v 11. After that, the
RU builds a secure channel with TPU enclave i, remotely
loads C1,i, · · · , Cζ ,i, x1,1,i, · · · , xv,1,i into the enclave i, and
securely seals these data in the UnS. After that, TPU i
release enclaves i for all the i = 1, · · · ,P .
3) Secure Computation Phase: The goal of the phase

is to achieve the secure computation among the TPUs
according to the user-defined program Ct,i for function t
(t = 1, · · · , ζ). Thus, for each step t, the phase works as
follows:

• (3-I) Each TPU i generates an enclave i. After that, all
the TPUs build a secure channel with each other.
Load sealed data x1,t,i, · · · , xv,t,i, pk, ski, C1,i, · · · , Cζ ,i
to enclave i from UnS, and put them in a set Et,i.

• (3-II) TPUs jointly compute (y1,t,1, · · · , yw,t,1 : · · · :
y1,t,n, · · · , yw,t,P) ← GenCpt(Et,i : · · · : Et,i),
according to the user-defined program C1,i, · · · , Cζ ,i.

• (3-III) All the TPUs jointly update the private key and
data shares. If t = ζ , the TPU i seals y1,ζ ,i, · · · , yw,ζ ,i
into the UnS, release the enclave. Otherwise, move to
(3-IV) for further computation.

• (3-IV) Select x1,t+1,i, · · · , xv,t+1,i from the
y1,t,i, · · · , yw,t,i for TPU i. Then, the TPU i seals
x1,t+1,i, · · · , xv,t+1,i into the UnS, release the enclave,
and move to (3-I) for next step computation.

After the t step is finished, the TPU i seals the set Ej into
the UnS, and releases the corresponding enclave.
4) Data Retrieve Phase: After the computation, TPU i

new an enclave i, opens the sealed data y1,ζ ,i, · · · , yw,ζ ,i,
builds a secure channel with the RU, and sends these
data back to the RU. Once all the TPU’s data are sent,
the RU computes the result yj,ζ = ∑P

i=1 yj,ζ ,i for step ζ

(j = 1, · · · ,w) to get the final results.

General secure function computation algorithm (GenCpt)
As the key component of the LightCom, the General
Secure Function Computation Algorithm (GenCpt) are
proposed to achieve the secure deterministic multiple-
output multivariable function F computation which
is introduced in definition 1. Assume TPU i (i =
1, · · · ,P) holds x1,i, · · · , xv,i, GenCpt can securely out-
put y1,i, · · · , yw,i for each TPU i, such that (y1, · · · , yw) ←
F(x1, · · · , xv), where xj,1 + · · · + xj,P = xj and yk,1 + · · · +
yk,P = yk for j = 1, · · · , v; k = 1, · · · ,w. The GenCpt can
be classified into offline/online stages and constructed as
follows:
Offline Stage: Each TPU i (i = 1, · · · ,P) creates an

enclave i, loads the sealed keys pk, ski and program Ci into
the enclave from the UnS, builds a secure channel with the

11Data share xj,t,i is for TPU enclave i for data j of function computation step-t.

other TPUs12. With the help of homomorphic cryptosys-
tem, all the TPUs can collaboratively generate the shares
of random numbers and put them into a set Ri. Note the
shares in set Ri cannot be known by all the other TPUs
during the generation. After the above computation, each
TPU i seals theRi into the UnS, respectively.
Online Stage13 For each TPU i (i = 1, · · · ,P), loads the

sealed random numbers setRi from offline stage into the
enclave i. All the TPUs cooperatively compute and output
the results

(y1,i, · · · , yw,i) ← fi(x1,i, · · · , xv,i,Ri),

where fi is the combination of+,× for ZN and ⊕,∧ for Z2
with specific functionality according to the program Ci.

Private key share dynamic update
The private key shares are more sensitive and vulnera-
ble, as the adversary can use the private key to decrypt
the RU’s data in the untrusted storage if the side-channel
attack leaks all shares of the private key. Thus, we should
frequently update the key shares in the TPU enclave.
The intuitive idea is to let the RU choose a new pri-
vate key, separate the new private key into different key
shares, update these key shares in the different individ-
ual enclaves, and update all the ciphertext with the new
key. However, the above strategy has the main drawback:
the RU has to be involved in the private/public key update
phase, which brings extra computation and communica-
tion costs. Thus, in this case, the RU needs to frequently
generate and update the public/private keys, impracti-
cal. Therefore, we bring the idea of proactive secret
sharing into the LightCom: keeps the public/private key
unchanged, the TPUwill periodicity refresh the key shares
without the participation of the RU. Mathematically, to
renew the shares at period t (t = 0, 1, 2, · · ·), we need to
update the shares such that

∑P
i=1 sk

(t+1)
i = ∑P

i=1 sk
(t)
i +

∑P
i=1

∑P
j=1 δ

(t)
i,j , where

∑P
j=1 δi,j = 0,

∑P
i=1 sk

(0)
i = sk and

sk(0)
i = ski for i = 1, · · · ,P (See Fig. 3 for example of

private key update procedure with P = 3). The special
construction is as follows:
1) Each TPU i(i = 1, · · · ,P) creates an enclave i. After

that, TPU i the builds a secure channel with TPU j’s
enclave (j = 1, · · · ,P ; j �= i).
2) TPU i picks random numbers δi,1, · · · , δi,P ∈ G such

that δi,1+· · ·+δi,P = 0 under the groupG, and then sends
δi,j to TPU enclave j.
3) After received δj,i, TPU i computes the new shares

sk(t+1)
i ← sk(t)

i + δ
(t)
1,i + δ

(t)
2,i + · · · + δ

(t)
P ,i ∈ G. After that,

12As offline stage of the secure computations needs to do TPU enclave
initialization, we just omit the description in the rest of the section.
13The input data x1,i, · · · , xv,i,, public key pk, private key shares ski , and the
program Ci are loaded in the step of (3-I) of both “The LightCom design
method for the single functions” and “The LightCom Design for Combination
of the Functions” sections.

Liu et al. Cybersecurity (2020) 3:17 Page 8 of 21

Fig. 3 Key Shares Update (example ofP = 3)

TPU i erases all the variables which it used, except for its
current secret key sk(t+1)

i .

Data Shares Dynamic Update
As data shares need to load to TPU for processing, the
shares can be leaked to the adversary by side-channel
attack, and reconstruct the RU’s original data. Thus, we
also need to dynamically update data shares x(t)

1 , · · · , x(t)
P

at period t (t = 0, 1, 2, · · ·), such that
∑P

i=1 x
(t+1)
i =

∑P
i=1 x

(t)
i + ∑P

i=1
∑P

j=1 δi,j, where
∑P

i=1 x
(0)
i = x, x(0)

i =
xi, and

∑P
j=1 δi,j = 0 for i = 1, · · · ,P . The construc-

tion is same to the private key share update method in
“Private key share dynamic update” section.

TPU-based basic data shares operations
In this section, we introduce some basic TPU-based data
shares operations, which can be used as LightCom.

Data domain and storage format
Here, we introduce three the data group domain
for LightCom: ZN = {0, 1, · · · ,N − 1}, DN =
{−
N

2 �, · · · , 0, · · · ,
N
2 �), and Z2 = {0, 1}. As we use

PCDD for offline processing and its plaintext domain is
ZN , we define the operation �x�N which transforms data
x from group ZN into the group DN , i.e.,

�x�N ←
{
x, 0 ≤ x < N/2
x − N , N/2 ≤ x < N .

Moreover, the data �x�N in group DN can be directly
transformed into group ZN with x = �x�N mod N . It can
be easily verified that group DN and ZN are isomorphism.
To guarantee the security of secret sharing, two types

of data shares are used in the LightCom, called integer
share (belonged to ZN) and binary share (belonged to Z2).
For the integer share separation, RU only needs to execute
Share(m) described in “Additive secret sharing scheme
(ASS)” section, such that m = m1 + · · · + mP , where

m,m1, · · · ,mP ∈ DN . For the binary shares, RU exe-
cutes Share(m), such that m = m1 + · · · + mP , where
m,m1, · · · ,mP ∈ Z2. After that, RU securely sends integer
sharemi or binary sharesmi to TPU i, and seals to UnS for
securely storage.

System initial and key distribution
The LightCom system should be initialized before achiev-
ing the secure computation. Firstly, the RU executes
KeyGen algorithm, and outputs public key pk = (N , g)
and private key sk = θ . Then, the system uses KeyS to
split key θ into P shares ski = θi (i = 1, · · · ,P). After
that, for each TPU i in the cloud, it initials an enclave i,
builds a secure channel, and uploads the ski to the enclave
i securely. Beside, the RU’s PCDD public key pk and pro-
gram Ci for the specific function F are needed to securely
send to TPU i (i = 1, · · · ,P). Finally, the TPU i securely
seals the data pk, ski, Ci into UnS. As all the parameters
need to load to the TPU enclaves along with the data
shares according the specific functionality, we will not
specially describe it in the rest of the section.

Secure distributed decryption algorithm (SDD)
Before executing the TPU-based operation, we first con-
struct the algorithm called Secure Distributed Decryption
(SDD), which allows all the TPUs to decrypt PCDD’s
ciphertext. Mathematically, if enclave in TPU χ contains
the encryption [[x]], the goal of SDD is to output x, which
contains the following steps: 1) The TPU enclave χ estab-
lishes a secure channel with the other TPU enclave i(i �=
χ). Then, enclave χ sends [[x]] to all the other enclave i.
2) Once received [[x]], the TPU i uses PDec to get CTi,
and securely sends CTi to enclave χ . 3) Finally, the TPU χ

securely uses CTχ with TDec algorithm to get x.

Secure TPU-based data seal & UnSeal
As TPU enclaves only provide an isolated computing
environment during the secure processing, the data in
the TPU enclave needs to seal to UnS for long-term

Liu et al. Cybersecurity (2020) 3:17 Page 9 of 21

storage. Thus, we propose two algorithms called Seal
and UnSeal to achieve.
Seal(xi) : The TPU i encrypts the data share x

into [[xi]], then uses hash function H : {0, 1}∗ →
ZN with input the [[xi]] associated with TPU t-time
period private key share sk(t)

i to compute St,i ←
H([[xi]] ||sk(t)

i ||IDi||t), where IDi is the transaction iden-
tity for [[xi]]. Then, TPU i sends [[xi]] with St,i to UnS for
storage.
UnSeal([[x]] , St,i) : The TPU i loads [[xi]] with St,i to

the enclave i, and computes H([[x]] ||sk(t)
i ||IDi||t) to test

whether the result is equal to St,i. If the equation does not
holds, the algorithm stops and outputs ⊥. Otherwise, the
TPU i uses SDD to get the share xi.

Random shares generation
The secret sharing based privacy computation requires
one-time random numbers for processing. Before con-
structing the TPU-based computation, we design a proto-
col called Random Tuple Generation Protocol (RTG). The
goal of RTG is to let TPUs cooperatively generate random
tuple r

(1)
i , · · · , r(�)i ∈ Z2 and ri ∈ DN for each TPU i

(i = 1, · · · ,P), such that r = −r(�)2�−1 + ∑�−1
j=1 r(j)2j−1

and r(j) = r
(j)
1 ⊕ · · · ⊕ r

(j)
P and r = r1 + · · · + rP holds,

where � is the bit-length of random number r ∈ DN . The
RTG generates as follows:
1) The TPU 1 randomly generates r(1)1 , · · · , r(�)1 ∈ Z2,

encrypts them as [[r(1)1]] , · · · , [[r(�)1]], denotes them as
[[r(1)]] , · · · , [[r(�)]], and sends these ciphertexts to TPU 2.
2) The TPU i (i = 2, · · · ,P) generates r(1)i , · · · , r(�)i ∈ Z2

and computes

[[r(j)]]←[[r(j)]](1−r
(j)
i) · ([[1]] ·[[r(j)]]N−1)r(j)

i =[[r(j) ⊕ r
(j)
i]].

If i �= P , the TPU i sends [[r(1)]] , · · · , [[r(�)]] to TPU i + 1.
If i = P , the TPU P computes

[[r]]←[[r(�)]]N−2�−1 ·[[r(�−1)]]2�−2 · · · · ·[[r(1)]] .
3) For TPU i (i = P , · · · , 2), randomly generates ri ∈ DN
and computes [[r]]←[[r]] ·[[−ri]] , and sends [[r]] to TPU
i−1. Once TPU 1 gets [[r]], uses SDD to get r, and denotes
�r�N as r1. After computation, each TPU i (i = 1, · · · ,P)

holds randomly bits r(1)i , · · · , r(�)i ∈ Z2 and integer ri ∈
DN .

Share domain transformation
Binary share to integer share transformation (B2I)
Suppose TPU i hold a bit share ai ∈ Z2, where a1 ⊕ · · · ⊕
aP = s ∈ Z2, the goal of the protocol is to generate a
random integer share bi ∈ ZN for each TPU i, such that
b1 + · · · + bP = s. To execute B2I, the TPU 1 randomly
generates b1 ∈ ZN , denotes x = b1 and s = a1, encrypts
x as [[x]], s as [[s]], and sends [[x]] and [[s]] to TPU 2. After
that, the TPU i (i = 2, · · · ,P − 1) generates bi ∈ ZN and
computes

[[s]]←[[s]](1−ai) ·([[1]] ·[[s]]N−1)ai

=[[s ⊕ ai]] , [[x]]←[[x]] ·[[bi]] ,
and sends [[x]] , [[s]] to TPU i + 1. Once received the
[[x]] , [[s]], TPU P computes

[[s]]←[[s]](1−aP) ·([[1]] ·[[s]]N−1)aP

=[[s ⊕ aP]] , [[bP]]←[[s]] ·[[x]]N−1 ,
and uses the SDD to decrypt and gets bP .

Integer share to binary share transformation (I2B)
Suppose TPU i hold an integer share ai ∈ ZN , where a1 +
· · · + aP = s ∈ Z2, the goal of the I2B protocol is to
generate a random bit share bi ∈ Z2 for each TPU i, such
that b1 ⊕ · · · ⊕ bP = s. To execute I2B, the TPU 1 lets
y = a1, encrypts y as [[y]], and sends the ciphertext to TPU
2 for computation. After that, the TPU i (i = 2, · · · ,P)

uses the share to compute [[y]]←[[y]] ·[[ai]]. If i �= P , TPU
i sends [[y]] to TPU i + 1. After that, denote [[s]]←[[y]],
and each TPU i (i = P , · · · , 2) generates bi ∈ Z2 and
computes

[[s]]←[[s]](1−bi) ·([[1]] ·[[s]]N−1)bi =[[s ⊕ bi]] ,

and sends [[s]] to TPU i − 1. Once received [[s]], TPU 1
uses the SDD to decrypt [[s]] and denotes the result s as b1.

TPU-based secure outsourced computing toolkits
in the cloud
In this section, we introduce and construct the commonly
used secure outsourced binary and integer computation
sub-protocols for a single cloud.

Secure computation over binary shares
Secure bit multiplication protocol (SBM)
The SBM can achieve plaintext multiplication on bit shares
and output bit shares, i.e., given two shares xi, yi ∈ Z2 (i =
1, · · · ,P) for TPU i as input, SBM securely outputs fi ∈ Z2
for TPU i, such that

⊕P
i=1 fi = (

⊕P
i=1 xi) ∧ (

⊕P
i=1 yi).

Offline Stage: All the TPUs initialize their enclaves and
load the public parameters to UnS. For enclave 1, gen-
erate a1, b1 ∈ Z2, compute c = a1 · b1 ∈ Z2. Encrypt
[[a1]] , [[b1]] and [[c]], and denote them as [[a]] , [[b]] , [[c]],
respectively. After that, TPU enclave i (i = 1, · · · ,P − 1)
sends [[a]] , [[b]] , [[c]] to enclave i+ 1, TPU i+ 1 generates
ai+1, bi+1 and computes

[[A]]←[[a]] ·[[c]]N−1 =[[a · (1 − b)]] ,

[[B]]←[[b]] ·[[c]]N−1 =[[b · (1 − a)]] ,
[[C]]←[[1]] ·[[a]]N−1 ·[[b]]N−1 ·[[c]]=[[(1−b)·(1−a)]] ,

[[c]] ←[[c]](1−ai+1)(1−bi+1) ·[[C]]ai+1·bi+1 ·[[A]](1−ai+1)bi+1

·[[B]]ai+1(1−bi+1) =[[(a ⊕ ai+1) ∧ (b ⊕ bi+1)]] .

[[a]]←[[a]](1−ai+1) · ([[1]] ·[[a]]N−1)ai+1 =[[a ⊕ ai+1]] ,

Liu et al. Cybersecurity (2020) 3:17 Page 10 of 21

[[b]]←[[b]](1−bi+1) · ([[1]] ·[[b]]N−1)bi+1 =[[b ⊕ bi+1]] .
After the above computations, enclave i (i = P , · · · , 2)

randomly generates ci ∈ ZN and computes [[c]]←
[[c]](1−ci) ·([[1]] ·[[c]]N−1)ci =[[c ⊕ ci]]. When the TPU 2
sends [[c]] to TPU 1, the TPU 1 uses SDD to get c and
denotes as c1 ← c. After the above computations, each
enclave holds ai, bi, ci, which satisfies a1 ⊕ · · · ⊕ aP = a,
b1 ⊕· · ·⊕ bP = b, c1 ⊕· · ·⊕ cP = c and c = a∧b. Finally,
each TPU i seals ai, bi, ci to UnS for storage individually.
Online Stage: For each TPU i (i = 1, · · · ,P), load the

ai, bi, ci into the enclave i. Then, compute Xi = xi ⊕ ai
and Yi = yi ⊕ bi. Securely send Xi and Yi to other enclave
j (j = 1, · · · ,P ; j �= i). After receiving other Xj and Yj,
each TPUs computes X = ⊕P

i=1 Xj and Y = ⊕P
i=1 Yj.

For TPU i (i = 1, · · · ,P − 1), compute fi ← ci ⊕ (bi ∧
X) ⊕ (ai ∧ Y). Then, TPU P computes fP ← cP ⊕ (bP ∧
X) ⊕ (aP ∧ Y) ⊕ (X ∧ Y). Here, we denote the protocol as
〈f〉 ← SBM(〈x〉, 〈y〉).
Secure bit-wise addition protocol (BAdd)
The BAdd describes as follows: the TPU i holds bit shares
a
(�)
i , · · · , a(1)

i of � bit-length integer a and r
(�)
i , · · · , r(1)i of �

bit-length integer r. The goal is to compute y(�)
i , · · · , y(1)

i ,
such that y = a+ r, where y = −y(�)2�−1 +∑�−1

j=1 y(j)2j−1,
a(j) = a

(j)
1 ⊕ a

(j)
2 ⊕ · · · ⊕ a

(j)
P , y(j) = y

(j)
1 ⊕ y

(j)
2 ⊕ · · · ⊕ y

(j)
P

and r(j) = r
(j)
1 ⊕r

(j)
2 ⊕· · ·⊕r

(j)
P . The idea is easy and simple:

use the binary addition circuit to achieve the addition, i.e,
compute the integer addition as y(j) = a(j) ⊕ r(j) ⊕ c(j) and
c(j+1) = (a(j) ∧ r(j)) ⊕ ((a(j) ⊕ r(j)) ∧ c(j)) for j = 1, · · · , �.
The procedure of BAdd works as follows:
1) For each TPU i (i = 1, · · · ,P) and each bit posi-

tion j = 1, · · · , �, all the TPUs jointly compute d
(j)
i ←

a
(j)
i ⊕ r

(j)
i and 〈e(j)〉 ← SBM(〈a(j)〉, 〈r(j)〉). After using the

computation of SBM, it indeed computes e(j) = a(j) ∧ r(j).
2) Each TPU i sets c(1)i ← 0 and y

(1)
i ← d

(1)
i . Then, for

j = 2, · · · , �, all TPUs jointly computes

〈d(j−1)〉 ← SBM(〈d(j−1)〉, 〈c(j−1)〉).
Moreover, for each TPU i locally computes

c
(j)
i ← d

(j−1)
i ⊕ e

(j−1)
i and y

(j)
i ← d

(j)
i ⊕ c

(j)
i .

and outputs y(j)
i for all j.

Secure bit extraction protocol (BExt)
Suppose TPU i (i = 1, · · · ,P) contains an integer share
ui, where u = ∑P

i=1 ui. The goal of BExt is to out-
put the bit extraction shares u(�)

i , · · · , u(1)
i for each TPU i

(i = 1, · · · ,P), where u = −u(�)2�−1 + ∑�−1
j=1 u(j)2j−1 and

u(j) = ⊕P
i=1 u

(j)
i . The BExt also contains offline/online

phase which describes as follows:
Offline Phase: Execute RTG to get r(�)i , · · · , r(1)i and ri

for party i. Then, all the TPUs need to jointly compute

a(�), · · · , a(1) ∈ Z2, such that a(�) ⊕ · · · ⊕ a(1) = 0. Firstly,
TPU 1 randomly generates a

(�)
1 , · · · , a(1)

1 ∈ Z2 and let
t(j) = a

(j)
1 for j = 1, · · · �. After that, the TPU i generates

a
(�)
i , · · · , a(1)

i ∈ Z2, computes

[[t(j)]]←[[t(j)]](1−a
(j)
i) ·([[1]] ·[[t(j)]]N−1)a

(j)
i =[[t(j)⊕a

(j)
i]] ,

and sends these ciphertexts to TPU i + 1. Once the
[[t(�−1)]] , · · · , [[t(0)]] are received, the TPU P uses the
SDD to decrypt, gets t(�), · · · , t(1) and denotes them as
a
(�)
P , · · · , a(1)

P . After that, each TPU i seals r(�)i , · · · , r(1)i , ri,
a
(�)
i , · · · , a(1)

i in UnS, respectively.
Online Phase: The TPU i computes vi = ui − ri,

encrypts vi and sends [[vi]] to TPU P . After received all
the encryptions, the TPU P computes [[v]]← ∏P

i=1[[vi]]
and executes SDD to get the v, and computes �v�N . Then,
TPU P generates its twos complement binary representa-
tion v(�−1), · · · , v(0), and computes v(j)

P ← v(j)⊕a
(j)
P , where

j = 1, · · · , �. Other TPU i (i = 1, · · · ,P − 1) keeps other
v

(�)
i ← a

(�)
i , · · · , v(1)

i ← a
(1)
i unchanged.

After that, all the TPUs jointly compute

(�u1, · · · , �uP) ← BAdd(�v1, · · · , �vP ; �r1, · · · ,�rP),

where �ui =
(
u

(�)
i , · · · , u(1)

i

)
, �vi =

(
v

(�)
i , · · · , v(1)

i

)
, �ri =

(
r
(�)
i , · · · , r(1)i

)
. Finally, the BExt algorithm outputs �ui =

(u
(�)
i , · · · , u(1)

i) for TPU i = 1, · · · ,P .

Secure integer computation
Securemultiplication protocol (SM)
The SM achieves integer multiplication over integer
shares, i.e., given shares xi, yi (i = 1, · · · ,P) for TPU
i as input, SM securely outputs fi for TPU i, such that∑P

i=1 fi = x · y, where data shares xi, yi satisfy x = ∑P
i=1 xi

and y = ∑P
i=1 yi.

Offline Stage: All the TPUs initialize their enclaves
and load the public parameters to the UnS. Then, for
the enclave 1, it generates a1, b1 ∈ DN , computes
z = a1 · b1, encrypts [[a1]] , [[b1]] , [[z]], and lets them
be [[a]] , [[b]] , [[c]], respectively. After that, enclave i (i =
1, · · · ,P − 1) sends [[a]] , [[b]] , [[c]] to enclave i + 1, TPU
i + 1 generates ai+1, bi+1 and computes

[[c]]←[[c]] ·[[ai+1 · bi+1]] ·[[a]]bi+1 ·[[b]]ai+1 ,

[[a]]←[[a]] ·[[ai+1]] , [[b]]←[[b]] ·[[bi+1]] .

After the computation, for i = P , · · · , 2, TPU enclave
i generates ci ∈ DN and computes [[c]]=[[c]] ·[[ci]]N−1 .
After the computation, the TPU 2 sends [[c]] to TPU 1.
Then, TPU 1 uses SDD to get c and denotes the final result

c�N as c1. After the above computation, each enclave hold
ai, bi, ci, such that �a1 + · · · + aP�N = �a�N ,
b1 + · · · +
bP�N = �b�N , �c1 + · · · + cP�N = �c�N and c = a · b

Liu et al. Cybersecurity (2020) 3:17 Page 11 of 21

mod N . After the computation, each TPU enclave i seals
ai, bi, ci to UnS for storage individually.
Online Stage: TPU i loads the ai, bi, ci into the enclave

i. Then, compute Xi = xi − ai and Yi = yi − bi. Securely
send Xi and Yi to other enclave j (j = 1, · · · ,P ; j �= i).
After receiving other Xj and Yj, the each TPU i computes
X = ∑P

i=1 Xj and Y = ∑P
i=1 Yj. After that, for each TPU i

(i = 1, · · · ,P − 1), compute fi ← �ci + biX + aiY�N . For
TPUP , compute fP ← �cP +bPX+aPY +X ·Y�N . Here,
we denote the protocol as 〈f 〉 ← SM(〈x〉, 〈y〉).
SecureMonicmonomials computation (SMM)
The SMM protocol can achieve monic monomials com-
putation over integer shares, i.e., given a share xi (i =
1, · · · ,P) and a public integer number k for TPU i
as input, SMM securely outputs fi for TPU i, such that∑P

i=1 fi = xk , where data shares xi satisfy x = ∑P
i=1 xi.

The construction of the SMM is list as follows: Denote k as
binary form k�, · · · , k1. Initialize the share fi ← xi for each
TPU i. For j = � − 1, · · · , 1, compute 〈f ∗〉 ← SM(〈f 〉, 〈f 〉).
If kj = 1, compute 〈f 〉 ← SM(〈f ∗〉, 〈x〉). Otherwise, let
〈f 〉 ← 〈f ∗〉. Here, the algorithm outputs 〈f 〉 and denotes
the protocol as 〈f 〉 ← SMM(〈x〉, k).
Secure binary exponential protocol (SEP2)
The SEP2 can achieve exponential over binary shares with
a public base, i.e., given a binary share xi ∈ Z2 (i =
1, · · · ,P) and a public integer β for TPU i as input14, SEP2
securely outputs an integer share fi ∈ ZN for TPU i, such
that

∑P
i=1 fi = βx, where x = ⊕P

i=1 xi.
Offline Stage: All the TPUs initialize their enclaves

and load the public parameters to the UnS. Then, for the
enclave 1, it generates a1 ∈ Z2, encrypts a1 as [[a1]], and
lets it be [[a]]. After that, enclave i (i = 1, · · · ,P − 1)
sends [[a]] to enclave i+ 1, TPU i+ 1 generates ai+1 ∈ Z2,
computes

[[a]]←[[a]](1−ai+1) ·([[1]] ·[[a]]N−1)ai+1 =[[a ⊕ ai+1]] ,

Once [[a]] is received, TPU P computes

[[b]]=[[a]]β ·([[1]] ·[[a]]N−1) =[[β · a + (1 − a)]]
=[[βa]] , [[b∗]]=[[a]] ·([[1]] ·[[a]]N−1)β

=[[a + β(1 − a)]]=[[β1−a]] .
After the computation, for i = P , · · · , 2, TPU i gener-

ates bi, b∗
i ∈ DN and computes [[b]]=[[b]] ·[[bi]]N−1 and

[[b∗]]=[[b∗]] ·[[b∗
i]]N−1 . After the computation, the TPU 2

sends [[b]] and [[b∗]] to TPU 1, and TPU 1 uses SDD to get
b, b∗ and denote them as b1 and b∗

1, respectively. After the
above computation, each TPU i holds ai, bi, which satisfies
a1⊕· · ·⊕aP = a, b1+· · ·+bP = βa, b∗

1+· · ·+b∗
P = β1−a.

After the computation, each TPU i seals ai, bi to UnS for
storage individually.

14β is a small positive number which satisfies gcd(β ,N) = 1.

Online Stage: TPU i loads the data share xi and ran-
dom shares ai, bi into the its enclave. Then, TPU i locally
computes Xi = xi ⊕ ai. Securely send Xi to other enclave
j (j = 1, · · · ,P ; j �= i). After receiving other Xj,
each TPU i locally computes X = ⊕P

i=1 Xi and fi ←
�(b∗

i)
X · (bi)1−X�N . We can easily verify that

∑P
i=1 fi =

β(1−a)(x⊕a)+a(1−x⊕a) = βx. Here, we denote the protocol
as 〈f 〉 ← SEP2(〈x〉,β).

Secure integer exponential protocol (SEP)
The SEP can achieve exponential over integer shares with
a public base, i.e., given an integer share xi ∈ DN (i =
1, · · · ,P) and a public integer β for TPU i as input, SEP
securely outputs shares fi ∈ DN for TPU i, such that∑P

i=1 fi = βx, where data shares xi satisfy x = ∑P
i=1 xi and

x is relative small positive number with � bit-length.
i) Compute (�x1, · · · ,�xP) ← BExt(x1, · · · , xP), where

�xi = (x
(�)
i , · · · , x(1)i) for TPU i = 1, · · · ,P , and x(j) =

⊕P
i=1 x

(j)
i , and x = ∑�

j=1 x
(j)2j−1.

ii) Execute 〈f〉 ← SEP2(〈x(1)〉,β). For j = 2, · · · , �, com-
pute 〈fj〉 ← SEP2(〈x(j)〉,β), 〈f ∗

j 〉 ← SMM(〈fj〉, 2j−1), and
〈f 〉 ← SM(〈f 〉, 〈f ∗

j 〉). The SEP outputs 〈f 〉, and we denote
the protocol as 〈f 〉 ← SEP(〈x〉,β).

Secure comparison protocol (SC)
The SC can securely compute the relationship between
integer u and v, where each TPU i holds shares ui and
vi, where u = u1 + · · · + uP , v = v1 + · · · + vP . The
construction of SC is listed as follows:
i) Each TPU i (i = 1, · · · ,P) locally computes wi = ui −

vi. After that, all TPUs jointly compute

(�w1, · · · , �wP) ← BExt(w1, · · · ,wP).

ii) As we use twos complement binary representation,
the most significant digit of u − v will reflect the relation-
ship between the u and v. After the above computation,
TPU i outputs w

(�−1)
i ∈ �wi. The most significant digit

w(�−1) of w = ∑P
i=1 wi decides the relationship of u and

v, specifically, if
⊕P

i=1w
(�−1)
i = 0, it denotes u ≥ v.

Otherwise, it denotes u < v.

Secure equivalent protocol (SEQ)
The goal of secure equivalent protocol SEQ is to test
whether the two values u, v are equal or not by giving
the shares of the two values 〈u〉, 〈v〉. Mathematically, given
two shares 〈u〉 and 〈v〉, SEQ (Liu et al. 2016a) outputs
the shares fi for each TPU i (i = 1, · · · ,P) to determine
whether the plaintext of the two data are equivalent (i.e.
test u ?= v. If

⊕P
i=1 fi = 1, then u = v; otherwise, u �= v).

The SEQ is described as follows:
i) All the TPUs jointly calculate

〈t∗1〉 ← SC(〈u〉, 〈v〉); 〈t∗2〉 ← SC(〈v〉, 〈u〉).

Liu et al. Cybersecurity (2020) 3:17 Page 12 of 21

ii) For each TPU i, it computes fi = t∗1,i ⊕ t∗2,i locally, and
outputs fi ∈ Z2.

Secureminimumof two number protocol (Min2)
The TPU i (i = 1, · · · ,P) stores shares 〈x〉 and 〈y〉 of two
numbers x and y, The Min2 protocol outputs share 〈B〉
of minimum number B, s.t., B = min(x, y). The Min2 is
described as follows:
i) All the TPUs can jointly compute

〈u〉←SC(〈x〉, 〈y〉); 〈u〉←B2I(〈u〉); 〈X〉←SM(〈x〉, 〈u〉);
〈Y 〉 ← SM(〈y〉, 〈u〉).

ii) The TPU i computes locally and outputs Bi = yi −
Yi + Xi.

Secureminimumof H numbers protocol (MinH)
The goal of MinH is to get theminimumnumber amongH
numbers. Given the shares x1,i, · · · , xH ,i for TPU i, the goal
is to compute the share x∗

i for TPU i such that x∗ stores
the minimum integer value among x1, · · · , xH , where x∗ =∑P

i=1 x∗
i , xj = ∑P

i=1 xi,j for j = 1, · · · ,H . The MinH exe-
cutes as follows: Each TPU i puts x1,i, · · · , xH ,i into a set
Si. If L(Si) = 1, the share remaining in L(Si) is the final
output. Otherwise, the protocol is processed according to
the following conditions.

• If L(Si) mod 2 = 0 and L(Si) > 1, 1) set S′
i ← ∅; 2)

for j = 1, · · · ,L(Si)/2, compute

〈xj〉 ← Min2(〈x2j−1〉, 〈x2j〉), (1)

and add xj,i to the set S′
i; 3) clear set Si and let Si ← S′

i.• If L(Si) mod 2 �= 0 and L(Si) > 1, take out the last
tuple xL(Si)−1,i from set Si s.t., L(Si) mod 2 = 0. Run the
above procedure (L(Si) mod 2 = 0 and L(Si) > 1) to
generate set S′

i. Put xL(Si)−1,i into a set S′
i and denote S′

i ←
Si.
After computation, each set Si in TPU i only contains

one element and we denote it as x∗
i . Thus, we denote the

protocol as 〈x∗〉 ← MaxH(〈x1〉, · · · , 〈xH〉).

Security extension of integer computation
The above secure computation only considers data pri-
vacy. Two types of information can be leaked to the
adversary: 1) the access pattern of function’s input, and 2)
the access pattern of RU’s result retrieve. Here, we give
two security extensions to achieve access pattern hiding
and private information retrieval, respectively.

Achieve input access pattern hiding (APH)
As data are directly sealed in the UnS, the adversary
may analysis the access pattern of UnS without knowing
the function’s input. Suppose the system contains H data
x∗
1, · · · , x∗

H ∈ DN . The data shares xj,i are hold by each
TPU i (j = 1, · · · ,H ; i = 1, · · · ,P), such that xj,1 + · · · +
xj,P = x∗

j . To achieve access pattern hiding, the homo-
morphic property of PCDD can be used. Specifically, the

RU uploads [[a1]] , · · · , [[aH]] to each TPU i, s.t., for a spe-
cific 1 ≤ γ ≤ H , it has aγ = 1, and other j �= γ and
1 ≤ j ≤ H , it holds aj = 0. Then, the goal of the algo-
rithm is to securely select the shares of xγ ,j from the input
shares, and constructs as follows:
1) Obviously select encrypted shares. Each TPU initial-

izes an enclave. Then, for each TPU i (i = 1, · · · ,P),
compute

[[bi]]←[[a1]]x1,i ·[[a2]]x2,i · · · · ·[[aH]]xH ,i mod N2.

2) Securely update share [[bi]] for TPU i. Without any
share update, the adversary can still know the access pat-
tern once the ciphertexts are decrypted. Thus, all the
shares should be dynamically updated before the decryp-
tion.
The TPU i picks random numbers δi,1, · · · , δi,P ∈ ZN

such that δi,1 + · · · + δi,P = 0 mod N , and then encrypts
δi,j and sends [[δi,j]] to TPU enclave j. Once all the update
shares are received, TPU i computes

[[b∗
i]]←[[bi]] ·[[δ1,i]] ·[[δ2,i]] · · · · ·[[δP ,i]] mod N2.

Finally, each TPU i uses the SDD to get b∗
i and denotes

�b∗
i �N as the final share output.

Achieve private information retrieve (PIR)
If the computation results are needed, the RU will let
the TPU send the data shares back via a secure chan-
nel. However, if one of the TPU has been compromised,
the adversary will know the retrieve access pattern even
if the data are encrypted. Suppose the system contains
H data x∗

1, · · · , x∗
H ∈ DN . The data share xj,i are hold

by each TPU i (j = 1, · · · ,H ; i = 1, · · · ,P), such that
xj,1 + · · · + xj,P = x∗

j . Thus, to achieve the private infor-
mation retrieve, the RU uploads [[a1]] , · · · , [[aH]] to each
TPU, s.t., for a specific 1 ≤ γ ≤ H , it has aγ = 1, and
other j �= γ , 1 ≤ j ≤ H , it holds aj = 0. The goal of
PIR is to let RU privately retrieve xγ . Then, the algorithm
computes among all TPUs as follows:
1) For each TPU i, compute

[[bi]]←[[a1]]x1,i ·[[a2]]x2,i · · · · ·[[aH]]xH ,i mod N2.

2) TPU 1 denotes [[b∗]]←[[b1]], and sends [[b∗]] to TPU
2. Then, each TPU i = 2, · · · ,P , computes [[b∗]]←
[[b∗]] ·[[bi]] mod N2. If i = P , then send [[b∗]] to RU.
Otherwise, [[b∗]] is sent from TPU i to i + 1. Finally, RU
uses the Dec to get the b∗, and denotes xγ ← �b∗�N as
final output.

Secure floating point number computation
Data format of floating-point number
To achieve the real number storage and computation, we
can refer to the IEEE 754 standard to use Floating-Point
Number (FPN) for real number storage. To support the
LightCom, we change the traditional FPN and describe

Liu et al. Cybersecurity (2020) 3:17 Page 13 of 21

the FPN by four integers: 1) a radix (or base) β ≥ 2; 2)
a precision η ≥ 2 (roughly speaking, η is the number of
“significant digits” of the representation); 3) two extremal
exponents emin and emax such that emin < 0 < emax. A
finite FPN â in such a format is a number for which there
exists at least one representation two-tuple (m, e) with
public parameters β , η, emin, emax, such that,

â = m · βe−η+1.

• m is an integer which satisfied
−βη + 1 ≤ m ≤ βη − 1. It is called the integral
significand of the representation of x;

• e is an integer such that emin ≤ e ≤ emax, called the
exponent of the representation of a.

As only the significand and exponent contains sensitive
information, we assume all the FPNs have the same public
base β = 10, and use the fix bit-length to store the inte-
ger m. Thus, to achieve the secure storage, the RU only
needs to random share the â into â1 = (m1, e1), · · · , âP =
(mP , eP), and sends âi to TPU i for storage, respectively.
For the secure FPN computation, if all the FPNs are

transformed with the same exponential, we can directly
use secure integer computation methods introduced in
“TPU-based secure outsourced computing toolkits in the
cloud” section. Thus, the critical problem to achieve
secure FPN computation is how to allow all the FPNs
securely transformed with the same exponential. Here, we
first construct an algorithm called Secure Uniform Com-
putation (UNI) and then achieve the commonly-used FPN
computations.

Secure uniform computation (UNI)
Assume each TPU i(i = 1, · · · ,P) stores into âj,i =
(mj,i, ej,i) , the goal of UNI is to output â∗

j,i = (m∗
j,i, e∗)

for j = 1, · · · ,H , and the construction of UNI can be
described as follows:
i) All the TPUs jointly compute

〈e∗〉 ← MinH(〈e1〉, · · · , 〈eH〉). (2)

ii) Each TPUs locally computes 〈cj〉 = 〈ej〉 − 〈e∗i 〉.
As ej − e∗ is a relative small number, TPUs jointly
executes 〈10ej−e∗ 〉 ← SEP(〈cj〉, 10) and 〈m∗

j 〉 ←
SM(〈10ej−e∗ 〉, 〈mj〉).
After computation, all the 〈a1〉, · · · , 〈aH〉 will transform

to 〈a∗
1〉, · · · , 〈a∗

H〉 which shares the same e∗, where 〈â∗
j 〉 =

(〈m∗
j 〉, 〈e∗〉) for j = 1, · · · ,H .

Computation transformation
The secure floating-point number computation can be
transformed into the secure integer computation proto-
cols with the usage of UNI. Formally, given FPN shares
〈âj〉 = (〈mj〉, 〈ej〉), (for j = 1, · · · ,H), we can first compute

(〈â∗
1〉, · · · , 〈â∗

H〉) ← UNI(〈â1〉, · · · , 〈âH〉),

where 〈â∗
j 〉 = (〈m∗

j 〉, 〈ê∗〉). Then,

(〈y∗
1〉, · · · , 〈y∗

ζ 〉) ← SIF(〈m∗
1〉, · · · , 〈m∗

ξ 〉),

where SIF denote secure integer computation proto-
col designed in “TPU-based secure outsourced computing
toolkits in the cloud” section, and 〈y∗

1〉, · · · , 〈y∗
ζ 〉 can be

either integer shares or binary shares according to the
function type. If the SIF is the SC and SEQ, then the
SIF output the binary share 〈y∗〉 as the final output, and
we denote these two algorithms as secure FPN compari-
son (FC) and secure FPN equivalent test protocol (FEQ).
If the SIF is the SM, SMM, Min2 and MinH , then the
SIF outputs the integer share 〈y∗〉, and denotes 〈ŷ∗〉 =
(〈y∗〉, 〈e∗〉) as the secure FPN’s output, and we denote
above four algorithms as secure FPN multiplication (FM),
secure FPN monic monomials computation (FMM), secure
minimum of two FPNs protocol (FMin2), and secure min-
imum of H FPNs protocol (FMinH), respectively. Specif-
ically, for the multiple FPN addition (FAdd), given FPN
shares 〈âj〉 = (〈mj〉, 〈ej〉), (for j = 1, · · · ,H), we can
first compute 〈â∗

1〉, · · · , 〈â∗
H〉 with the UNI, where 〈â∗

j 〉 =
(〈m∗

j 〉, 〈e∗〉). Then, compute 〈y∗〉 ← ∑H
j=1〈m∗

j 〉 and denote
the final FPN addition result as 〈ŷ〉 = (〈y∗〉, 〈e∗〉).
Secure extension for FPN computation
Similar to the secure integer computation, we have the
three following extension for LightCom.
Access PatternHiding:As all the secure FPN computa-

tion can be transformed in to secure integer computation
with the help of the UNI, we can also use the samemethod
in “Achieve input access pattern hiding (APH)” section
to achieve input access pattern hiding for the secure FPN
computation.
Achieve Private FPN Retrieve: In out LightCom, one

floating-point number is stored as two integer numbers.
Thus, we can use the method in “Achieve private infor-
mation retrieve (PIR)” section to privately retrieve integer
for twice to achieve the private FPN retrieve.

Functional extension for LightCom
Non-numerical data storage and processing
For the non-numerical data storage, the traditional char-
acter encodings with Unicode (Consortium and et al.
1997) and its standard Unicode Transformation Format
(UTF) scheme is used which maps a character into an
integer. Specifically, for secure storage, use UTF-8 to map
the character into 32-bit number x, randomly splits x into
x1, · · · , xP , such that x1 + · · · + xP = x, and sends ai to
TPU i for processing. In this case, all the non-numerical
data processing can be transformed into secure integer
computation which can be found in “TPU-based secure
outsourced computing toolkits in the cloud” section. For
the secure storage, each TPU i securely seals the share

Liu et al. Cybersecurity (2020) 3:17 Page 14 of 21

ai into the UnS with the algorithm Seal in “Secure
TPU-based data seal & UnSeal” section. Once the data
shares are needed for processing, TPUs need to use
UnSeal algorithm to recover the message from UnS.

Extension ofmultiple user computation
All the secure computations in the previous section are
designed for the single user setting, i.e., all the data are
encrypted under a same RU’s public key. If all RUs want
to jointly achieve a secure computation, each RU j(j =
1, · · · ,ψ) executes KeyGen to generate public key pkj
and private key is skj locally. Then, RU j uses KeyS to
split key skj into P shares 〈skj〉, and sends these shares
to TPUs in the cloud. Assume RU j’s ciphertext [[xj]]pkj is
securely stored in UnS, TPUs can get data shares 〈xj〉 with
UnSeal and achieve the corresponding secure computa-
tions GenCpt in Section 3 with these shares.

Security analysis
In this section, we first analyze the security of the basic
crypto primitives and the sub-protocols, before demon-
strating the security of our LightCom framework.

Analysis of basic crypto primitives
The security of secret sharing scheme
Here, we give the following theorem to show the security
of the additive secret sharing scheme.

Theorem 1 An additive secret sharing scheme achieves
an information-theoretic secure when the P participants
can reconstruct the secret x ∈ G, while any smaller set
cannot discover anything information about the secret.

Proof The shares X1, · · · ,XP are selected with random
uniform distribution amongP participants such that X1+
· · · + XP = m ∈ G. Even the attacker A holds P − 1
shares, (s)he can only compute x′ = ∑P−1

i=1 X′
i , where X′

i is
selected from X1, · · · ,XP . The element x is still protected
due to the x = x′+X′

P . Since random valueX′
P is unknown

forA, it leaks no information about the value x.

Theorem 2 A proactive additive secret sharing scheme
achieves an information-theoretic secure if the scheme sat-
isfies the following properties: I. Robustness: The newly
updated shares correspond to the secret x (i.e., all the new
shares can reconstruct the secret x). II. Secrecy: The adver-
sary at any period knows no more than P shares (possible
a different share in each period) learns nothing about the
secret.

Proof The data shares X(t)
i in time period t are stored

in party i, s.t.,
∑P

i=1 X
(t)
1 = x. Each party i generates

shares δ
(t)
i,1 , · · · , δ(t)

i,P which satisfies δ
(t)
i,1 + · · · + δ

(t)
i,P = 0

mod N . Thus, the new shares denote X(t+1)
i = X(t)

i +
δ
(t)
1,i + · · · + δ

(t)
P ,i, and satisfy

∑P
i=1 X

(t+1)
i = ∑P

i=1 X
(t+1)
i +

∑P
i=1

∑P
i=1 δ

(t)
i,j = x which the robustness property hold.

To guarantee the secrecy property, the data shares in
time period t can achieve the information theoretic secure
according to the Theorem 1. Even adversary can get P −1
shares in each time period t (t ≤ t∗), the adversary can
compute x(t) = x−X(t)

Pt
= ∑P

i=1,i�=Pt X
(t)
i , whereX(t)

Pt
is the

non-compromised share in time period t. The adversary
A∗ still cannot get any information from x(1), · · · , x(t∗)

as δ
(1)
P1,P1

, · · · , δ(t∗)
Pt∗ ,Pt∗ are independently and randomly

generated and cannot be compromised by the adversary.
Thus, the secrecy property holds.

The security of PCDD
The following theorem gives the security of our PCDD.

Theorem 3 The PCDD scheme described in
“Additive homomorphic encryption scheme” section is
semantically secure, based on the assumed intractability
of the DDH assumption over Z∗

N2 .

Proof The security of PCDD has been proven to be
semantically secure under the DDH assumption over Z∗

N2
in the standard model (Bresson et al. 2003).

Security of TPU-based basic operation
Theorem 4 The RTG can securely generate random

shares against adversary who can compromise at most
P − 1 TPUs, assuming the semantic security of the PCDD
cryptosystem.

Proof For each TPU i (0 ≤ i < P), only the PCDD
encryption [[r(1)]] , · · · , [[r(�)]] are sent to TPU i + 1. After
that, PCDD encryption [[r]] is sent from TPU i + 1 to i.
According to semantically secure of the PCDD (Theorem
3), the TPU i + 1 cannot get any information from
the ciphertext sent from TPU i. Even the adversary can
compromise at most P − 1 TPUs and get the shares
r
(1)
i , · · · , r(�)i , ri, (s)he cannot get the secret r(1), · · · , r(�), r
due to r

(1)
P , · · · , r(�)P , rP are unknown to adversary accord-

ing to the security of Theorem 1.

The security proof of the secure share domain trans-
formation in section, secure binary shares operation in
section, secure integer computation, and secure FPN
computation are similar to the proof of Theorem 4. The
security of the above operations are based on the seman-
tic security of the PCDD cryptosystem. Next, we will
show that AHP and PIR can achieve its corresponding
functionality.

Theorem 5 The AHP can securely achieve the access
pattern hidden for the function input under the semantic
security of the PCDD cryptosystem.

Liu et al. Cybersecurity (2020) 3:17 Page 15 of 21

Proof In the select share phase, all a1, · · · , aH are
selected and encrypted by RU, and are sent to TPUs for
processing. The adversary cannot know the plaintext of
the ciphertext due to the semantic security of PCDD. Also,
the shares are dynamically updated by computing b∗

i ←
bi + δ1,i + δ2,i + · · · + δP ,i mod N . As δj,i is randomly
generated by TPU i and is sent from TPU j to TPU i. It
is hard for the adversary to recover bi; even the adversary
compromises the other P − 1 TPUs due to the secrecy of
Theorem 2. Thus, it is still impossible for the adversary to
trace the original shares with the update shares, which can
achieve the access pattern hidden.

Theorem 6 The PIR can securely achieve the private
information retrieve under the semantic security of the
PCDD cryptosystem.

Proof In PIR, all a1, · · · , aH are selected and encrypted
by RU, and sent to TPUs for processing. After that, [[b∗]]
is transmitted among TPUs. As all the computations in
the PIR are executed in the ciphertext domain, the adver-
sary cannot know the plaintext of the ciphertext due to
the semantic security of PCDD, which can achieve private
information retrieval.

Security of LightCom
Theorem7 The LightCom is secure against side-channel

attack if tc+tp+td < P ·ta, where tc, tp and td are the run-
time of secure computation GenCpt, private key update,
and data share update, respectively; ta is the runtime for
attacker successfully compromising the TPU enclave; P is
the number of TPUs in the system.

Proof In the data upload phase, RU’s data are randomly
separated and uploaded to TPUs via a secure channel.
According to Theorem 1, no useful information about
the RU’s data leaked to the adversary by compromising
P − 1 TPUs enclaves. For the long-term storage, the data

shares are securely sealed in the UnS with PCDD crypto-
system. With the Theorem 3, we can find the encrypted
data shares are semantically secure stored in the UnS.
In the secure online computing phase, all the cipher-

texts are securely loaded to the TPUs with UnSeal. Then,
all the TPUs jointly achieves the secure computation with
the GenCpt. During the computing phase, the system
attacker can launch the following three types of attacks:
1) compromise the TPU enclave: the adversary can com-
promise a TPU enclave to get current data shares and
private key shares with the time ta; 2) store the old pri-
vate key shares: the adversary tries to recover the RU’s
private key with current and old private key shares. 3)
store the old data shares and try to recover the RU’s orig-
inal data: the adversary tries to recover the RU’s data
with current and old data shares. To prevent the first type
of attack, RU separates and distributes his/her own data
among P TPUs. Unless the adversary can compromise all
the TPU enclaves at the same time, A can get nothing
useful information from compromised shares according
to Theorem 1. Thanks to the secrecy property of a proac-
tive additive secret sharing scheme in Theorem 2, it is
impossible for the adversary to recover the private key and
RU’s data by getting P − 1 TPUs at each time period.
As the TPU enclaves are dynamically released after the
computation, the attacker needs to restart to compromise
the TPU enclaves after the enclaves are built for secure
computation.
Thus, the adversary fails to attack the LightCom system

if the data shares are successful seals in the UnS, and all
the TPU enclaves are released before the adversary com-
promises all the enclaves in the secure computation phase.
In this case, the LightCom is secure against adversary
side-channel attack if tc + tp + td < P · ta.

Evaluations
In this section, we evaluate the performance of LightCom.

Fig. 4 Simulation results of Basic Protocols

Liu et al. Cybersecurity (2020) 3:17 Page 16 of 21

Fig. 5 Simulation results of LightCom

Experiment analysis
For evaluating the performance of the LightCom, we build
the framework with C code under the Intel� Software
Guard Extensions (SGX) environment as a particular case
of TPU15. The experiments are performed on a personal
computer (PC) with a 3.6 GHz single-core processor and
1 GB RAM (we use the single-thread program) on a vir-
tual machine with a Linux operation system. To test the
efficiency of our LightCom, there are two types of metrics
are considered, called runtime and security level (asso-
ciate with PCDD parameter N). The runtime refers to the
secure outsourced computation executing duration on the
server or user’s side in our testbed. The security level is
an indication of the security strength of a cryptographic
primitive.Moreover, we use SHA-256 as the hash function
H(·) in LightCom. As the communication latency among
CPUs is very low (use Intel� UltraPath Interconnect (UPI)
with 10.4 GT/s transfer speed and theoretical bandwidth
is 20.8 GB/s)16, we do not consider the communication
overhead as a performance metric in our LightCom.

Basic crypto and system primitive
We first evaluate the performance of our basic opera-
tion of cryptographic primitive (PCDD cryptosystem) and
basic system operations (Seal, UnSeal and SDD proto-
col). We first let N be 1024 bits to achieve 80-bit security
(Barker et al. 2007) to test the basic crypto primitive and
basic protocol. For PCDD, it takes 1.153 ms to encrypt a
message (Enc), 1.171 ms for Dec, 1.309 ms to run PDec,
5.209 μs to run TDec. For the basic system operations
(See Fig. 4), it takes 1.317 ms for Seal, 1.523 ms for
UnSeal, and 1.512 ms for SDD (P = 3). Moreover, Seal,
UnSeal and SDD are affected by the PCDD parameter
N and the number of TPUs P (See Fig. 4a and b respec-
tively). From Fig. 4a and b, we can that the parameter N
will significantly affect the runtime and communication
overhead of the protocols.

Performance of TPU-based integer computation
Generally, four factors affect the performance of TPU-
based integer computation: 1) the number of TPUs P ;
2) the PCDD parameter N ; 3) the bit-length of the inte-
ger �; 4) the number of encrypted data H (See Fig. 5).
In Fig. 5a-e, we can see that the runtime of all the pro-
tocols increase with P . It is because more runtime is
needed, and more data in the online phase and random
numbers in the offline phase are required to process with
extra parties. Also, we can see that the runtime of all the

15Currently, Intel SGX is considered as the most practical and typical TEE.
Thus, we use SGX as the TPU for testing the LightCom. Note that the
LightCom is designed as a generic privacy computation framework and can be
fit for any trusted execution environment. Any types of TPU can be used in
the LightCom.
16https://www.microway.com/knowledge-center-articles/performance-
characteristics-of-common-transports-buses/

https://www.microway.com/knowledge-center-articles/performance-characteristics-of-common-transports-buses/
https://www.microway.com/knowledge-center-articles/performance-characteristics-of-common-transports-buses/

Liu et al. Cybersecurity (2020) 3:17 Page 17 of 21

TPU-based integer computations increase with the bit-
length ofN from Table 1. It is because the running time of
the basic operations (Enc and Dec algorithms of PCDD)
increases when N increases. Moreover, in Fig. 5f-k, the
performance of RTG, SMM, BAdd, BExt, SEP, SC, SEQ,
Min2, MinH , UNI are associated with �. The computa-
tional cost of above protocols are increased with �, as
more computation resources are needed to process when
� increase. Finally, we can see that performance of APH
and PIR are increased withH in Fig. 5l. It is because more
numbers of PCDD ciphertexts cost more energy with the
homomorphic and module exponential operations.

Performance of TPU-based FPN computation
For the basic TPU-based FPN computation, four factors
affect the performance of LightCom: 1) the number of
TPUs; 2) the PCDD parameter N ; 3) the bit-length of the
integer �; 4) the number of encrypted data H . The run-
time trends of FPN computation protocols (e.g. FC, FEQ,
FM, FMM, FMin2, FMinH) are similar to the trends of cor-
responding secure integer computation (e.g. SC, SEQ, SM,
SMM, Min2, MinH), as the runtime of FPN computation
is equal to the runtime of corresponding secure integer
computation add the runtime of UNI.

Theoretical analysis
Let us assume that one regular exponentiation operation
with an exponent of ‖N‖ requires 1.5 ‖N‖ multiplications
(Knuth 2014). For PCDD, it takes 3‖N‖multiplications for
Enc, 1.5‖N‖ multiplications for Dec, 1.5‖N‖ multiplica-
tions for PDec, P multiplications for TDec, 1.5‖N‖ mul-
tiplications for CR. For the basic operation of LightCom, it
takes 1.5P‖N‖ multiplications to run SDD, 3‖N‖ + thash
multiplications for Seal, 1.5P‖N‖+ thash multiplications
for UnSeal, O((� + P)‖N‖) multiplications for RTG,
O(P‖N‖) multiplications for B2I, I2B. For the integer
and binary protocol in LightCom, it takesO(P‖N‖) mul-
tiplications for offline phase of SBM and SM, O(�P‖N‖)
multiplications for offline phase of BAdd, BExt, SC,
SEQ, Min2, O(�P‖N‖) multiplications for both offline
and online phase of SEP, O(HP‖N‖) multiplications for
offline phase of APH and PIR,O(�log2H�·�P‖N‖)multi-
plications for offline phase of MinH . For the FPN compu-
tation in LightCom, it takes O(H�P‖N‖) multiplications
for offline phase UNI and FAdd, O(�P‖N‖) multiplica-
tions for offline phase FM, FMM, FC, FEQ, FMin2, and
O(�log2H� · �P‖N‖) multiplications for offline phase of
FMinH . All the above protocols only need O(1) multi-
plications in online phase, which is greatly fit for fast
processing.

Related work
Homomorphic Encryption. Homomorphic encryption
allows third-party to do the computation on the cipher-
text, which reflected on the plaintext, is considered as

the best solution to achieve the secure outsourced com-
putation. Gentry proposed the first construction of fully
homomorphic encryption in 2009 under the ideal lattices,
which permits the evaluation of arbitrary circuits over
the plaintext (Gentry and et al. 2009). Later, some of the
new hard problems (such as Learning With Errors (LWE)
(Brakerski and Vaikuntanathan 2014), Ring-LWE (Brak-
erski et al. 2014)) are used to construct the FHE which
can greatly reduce the storage overhead and increase the
performance of the homomorphic operations (Chillotti
et al. 2016; Liu et al. 2020). However, the current FHE
solutions and libraries are still not practical enough for
the real real-world scenarios (Doröz et al. 2015; Liu et
al. 2017). Somewhat homomorphic encryption (Damgård
et al. 2012; Fan and Vercauteren 2012) can allow semi-
honest third-party to achieve the arbitrary circuits with
limited depth. The limited times of homomorphic oper-
ations restrict the usage scope of the application. Semi-
homomorphic encryption (SHE) can only support addi-
tive (Paillier 1999) (or multiplicative Gamal (1985)) homo-
morphic operation. However, with the help of the extra
semi-honest computation-aid server, a new computation
framework can be constructed to achieve commonly-used
secure rational number computation (Liu et al. 2018a),
secure multiple keys computation (Peter et al. 2013), and
floating-point number computation (Liu et al. 2016b). The
new framework can greatly balance the security and effi-
ciency concerns; however, the extra server will still com-
plex the system, which brings more risk of information
leakage.
Secret Sharing-based Computation. The user’s data in

secret sharing-based (SS-based) computation are sepa-
rated into multiple shares with the secret sharing tech-
nique, and each share is located in one server to guar-
antee security. Multiple parties can work jointly together
to securely achieve a computation without leaking the
original data to the adversary. Different from the heavy-
weight homomorphic operation, the SS-based compu-
tation (Cramer et al. 2000; Chen and Cramer 2006;
Chida et al. 2018) can achieve the lightweight compu-
tation. Despite the theoretical construction, many real-
word computation are constructed for practical usage,
such as SS-based set intersection (Dong et al. 2013),
top-k computation (Burkhart and Dimitropoulos 2010)
and k-means (Liu et al. 2020). These basic computa-
tions can be used to solve data security problem in
data mining technique, such as deep learning (Huang
et al. 2019). Emekçi et al. (Emekçi et al. 2007) pro-
posed a secure ID3 algorithm to construct a decision
tree in a privacy-preserving manner. Ma et al. (Ma et al.
2019) constructed a lightweight privacy-preserving adap-
tive boosting (AdaBoost) for the face recognition. The
new secure natural exponential and secure natural log-
arithm which can securely achieve the corresponding

Liu et al. Cybersecurity (2020) 3:17 Page 18 of 21

Table 1 Protocol Performance: A Comparative Summary (� = 32,H = 8,P = 3, 100-time for average)

Online computation cost (Millisecond) Offline computation cost (Second)

N 512 768 1024 1280 1536 1792 2048 512 768 1024 1280 1536 1792 2048

RTG 16.66 53.61 117.0 225.92 369.92 675.15 933.13 - - - - - - -

B2I 2.2 6.29 13.92 27.15 47.29 85.8 116.7 - - - - - - -

I2B 2.72 8.19 16.38 31.21 51.13 70.25 102.0 - - - - - - -

SBM 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.004 0.014 0.024 0.047 0.076 0.139 0.192

BAdd 0.053 0.053 0.054 0.054 0.057 0.059 0.084 0.222 0.915 1.569 3.024 4.868 8.897 12.346

BExt 1.36 4.24 8.54 16.6 29.1 51.93 70.13 0.268 1.077 1.882 3.634 6.016 10.842 14.868

SM 0.003 0.003 0.005 0.007 0.008 0.012 0.013 0.009 0.031 0.066 0.128 0.228 0.387 0.530

SMM 0.140 0.215 0.248 0.356 0.457 0.46 0.614 0.305 1.006 2.114 4.108 7.313 12.396 16.965

SEP2 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.004 0.013 0.028 0.056 0.103 0.171 0.232

SEP 2.73 5.95 10.79 19.44 34.84 53.8 74.08 9.867 32.739 68.414 132.96 236.28 400.87 548.76

SC 1.32 4.11 8.77 16.73 29.68 49.85 68.39 0.267 1.077 1.882 3.634 6.017 10.743 14.869

SEQ 2.59 8.06 16.96 32.84 54.17 98.8 139.1 0.535 2.155 3.764 7.269 12.034 21.486 29.378

Min2 3.37 9.26 20.34 38.14 66.58 97.9 145.4 0.286 1.141 2.015 3.891 6.474 11.517 15.929

MinH 3.75 68.89 150.85 294.49 510.82 869.74 1453.6 2.007 7.983 14.101 27.24 45.318 80.624 111.51

APH 4.955 15.12 33.29 63.58 117.79 191.25 228.5 - - - - - - -

PIR 0.926 2.492 5.057 9.28 16.6 26.6 31.67 - - - - - - -

UNI 44.58 119.03 247.27 460.56 810.9 1181.5 1686.9 81.016 270.14 561.94 1090.9 1937.4 3290.7 4505.8

computation to balance accuracy and efficiency. Although
many of the privacy-preserving data mining techniques
with secret sharing are constructed (Ge et al. 2010; Gheid
and Challal 2016), the SS-based computation still needs
to build a secure channel among these parties. More-
over, the high communication rounds among the com-
putation parties still become an obstacle for a large-scale
application.
Intel� Software Guard Extensions. Intel� SGX is a

kind of TEE which provides strong hardware-enforced
confidentiality and integrity guarantees and protects an
application form the host OS, hypervisor, BIOS, and
other software. Although an increasing number of real-
world industry applications are securely executed in the
untrusted remote platforms equipped with SGX, the SGX
still faces the side-channel attack to expose the informa-
tion during the computation. Götzfried et al. (2017) pro-
posed a new attack called root-level cache-timing attacks
which can obtain secret information from an Intel� SGX
enclave. Lee et al. (2017) gave a new side-channel attack
cannled branch shadowing which reveals fine-grained
control flows in a SGX enclave. Van Bulck et al. (2017)
constructed two novel attack vectors that infer enclaved
memory accesses. Chen et al. (2018) presented a new
attack call SGXPECTRE that can learn secrets inside the
enclave memory or its internal registers. Currently, three
types of solutions are used to protect the side-channel
attack: hardware method (Domnitser et al. 2012; Costan

et al. 2016), system method (Liu et al. 2016c; Zhou et
al. 2016), and application method (Coppens et al. 2009;
Shih et al. 2017). These methods can only guarantee
some dimension of protection, and cannot be used for
all-directional protection even against the unknown side-
channel attack. We list all the current main methods in
Table 2 for detailed comparison.

Conclusion
In this paper, we proposed LightCom, a framework
for practical privacy-preserving outsourced computa-
tion framework, which allowed a user to outsource
encrypted data to a single cloud service provider for
secure data storage and process. We designed two
types of outsourced computation toolkits, which can
securely guarantee the achieve secure integer com-
putation and floating-point computation against side-
channel attack. The utility and performance of our
LightCom framework were then demonstrated using
simulations. Compared with the existing secure out-
sourced computation framework, our LightCom takes
fast, scalable, and secure outsourced data processing into
account.
As a future research effort, we plan to apply our Light-

Com in specific applications, such as the e-health cloud
system. It allows us to refine the framework to handle
more complex real-world computations.

Liu et al. Cybersecurity (2020) 3:17 Page 19 of 21

Ta
b
le

2
C
om

pr
eh

en
si
ve

co
m
pa

ris
on

w
ith

th
e
ex
is
tin

g
w
or
ks

Fu
nc
tio

n/
A
lg
or
ith

m
(L
iu
et

al
.2
01
8a
)

(L
iu
et

al
.2
01
6a
)

(L
iu
et

al
.2
01
6b

)
(P
et
er
et

al
.2
01
3)

(S
am

an
th
ul
a
et

al
.2
01
4)

(L
iu
et

al
.2
02
0)

(B
ra
ke
rs
ki
et

al
.2
01
4)

(D
on

g
et

al
.2
01
3)

M
et
ho

d
PH

E
PH

E
PH

E
PH

E
PH

E
FH

E
FH

E
O
T+

SS

U
se
r-
si
de

no
n-
in
te
ra
ct
iv
e

�
�

�
�

×
�

�
×

C
om

m
un

ic
at
io
n
ro
un

d
(U
se
r)

1
1

1
1

O
(1

)
1

1
O

(n
)

A
ga
in
st
si
de

-c
ha
nn

el
at
ta
ck

�
�

�
�

�
�

�
�

D
at
a
st
or
ag
e
se
rv
er

O
ne

O
ne

O
ne

O
ne

O
ne

O
ne

O
ne

O
ne

M
in
im

um
nu

m
be

ro
f

se
rv
er
s

M
ul
tip

le
Tw

o
Tw

o
Tw

o
Tw

o
O
ne

O
ne

O
ne

Fu
nc
tio

n
ty
pe

Sp
ec
ifi
c

Sp
ec
ifi
c

Sp
ec
ifi
c

Sp
ec
ifi
c

Sp
ec
ifi
c

Sp
ec
ifi
c

Li
ne

ar
ly

In
te
rs
ec
tio

n

M
ul
tip

le
da
ta
fo
rm

at
�

×
�

×
×

×
×

×
W
ith

ou
tn

on
-c
ol
lu
de

d
se
rv
er
s

×
×

×
×

×
�

�
�

W
ith

ou
tT
TP

×
×

×
×

�
×

×
�

Su
pp

or
tm

ul
tip

le
ke
ys

×
�

×
�

×
�

×
×

Se
rv
er
-s
id
e
ov
er
he

ad
M
id
dl
e

M
id
dl
e

M
id
dl
e

M
id
dl
e

M
id
dl
e

H
ig
h

H
ig
h

M
id
dl
e

Fu
nc
tio

n/
al
go

rit
hm

(B
ur
kh
ar
ta
nd

D
im

itr
op

ou
lo
s

20
10
)

(E
m
ek
çi
et

al
.

20
07
)

(H
ua
ng

et
al
.

20
19
)

(M
a
et

al
.2
01
9)

(S
ha
on

et
al
.

20
17
)

(K
üç
ük

et
al
.2
01
6)

(C
ha
nd

ra
et

al
.2
01
7)

O
ur

M
et
ho

d
SS

SS
SS

SS
TE
E

TE
E

TE
E

TE
E+

SS
+
PH

E

U
se
r-
si
de

no
n-
in
te
ra
ct
iv
e

×
×

�
�

�
�

�
�

C
om

m
un

ic
at
io
n
ro
un

d
(U
se
r)

O
(k
n2

)
O

(n
)

1
1

1
1

1
1

A
ga
in
st
si
de

-c
ha
nn

el
at
ta
ck

�
�

�
�

×
×

�
�

D
at
a
st
or
ag
e
se
rv
er

M
ul
tip

le
M
ul
tip

le
Tw

o
Tw

o
O
ne

O
ne

O
ne

O
ne

M
in
im

um
nu

m
be

ro
f

se
rv
er
s

M
ul
tip

le
Tw

o
Tw

o
Tw

o
O
ne

O
ne

O
ne

O
ne

Fu
nc
tio

n
ty
pe

To
p-
k

A
dd

iti
on

Sp
ec
ifi
c

A
da
bo

os
t

M
at
rix

Sp
ec
ifi
c

Sp
ec
ifi
c

G
en

er
ic
&
Sp

ec
ifi
c

M
ul
tip

le
da
ta
fo
rm

at
×

×
×

×
×

×
×

�
W
ith

ou
tn

on
-c
ol
lu
de

d
se
rv
er
s

×
×

×
×

×
�

�
�

W
ith

ou
tT
TP

�
�

×
×

�
�

�
�

Su
pp

or
tm

ul
tip

le
ke
ys

�
�

�
�

×
×

×
�

Se
rv
er
-s
id
e
ov
er
he

ad
Lo
w

Lo
w

Lo
w

Lo
w

Lo
w

Lo
w

Lo
w

Lo
w

N
o
te
:I
n
th
e
ta
bl
e,
‘P
H
E’
is
sh
or
tf
or

‘P
ar
tia
lly

H
om

om
or
ph

ic
En

cr
yp
tio

n’
,‘
O
T’
is
sh
or
tf
or

‘O
bl
iv
io
us

Tr
an
sf
er
’,
‘S
S’
is
sh
or
tf
or

‘S
ec
re
tS
ha
rin

g’
,T
EE

is
sh
or
tf
or

’T
ru
st
ed

Ex
ec
ut
io
n
En

vi
ro
nm

en
t’

Liu et al. Cybersecurity (2020) 3:17 Page 20 of 21

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s42400-020-00057-3.

Additional file 1: Supplementary materials.

Acknowledgements
We thank the editor-in-chief, associate editor, and the reviewers for their
valuable comments for us to improve the paper. This research is supported in
part by the AXA Research Fund, National Natural Science Foundation of China
under Grant Nos.61702105, No.61872091, and the Cloud Technology
Endowed Professorship from the the 80/20 Foundation.

Authors’ contributions
Ximeng Liu —Writing and original draft preparation. Robert H. Deng—
Supervision. Pengfei Wu— Experiment. Yang Yang; writing-Review and
editing. The author(s) read and approved the final manuscript.

Authors’ information
Ximeng Liu received the B.Sc. degree in electronic engineering from Xidian
University, Xi’an, China, in 2010 and the Ph.D. degree in Cryptography from
Xidian University, China, in 2015. Now he is the full professor in the College of
Mathematics and Computer Science, Fuzhou University. Also, he was a
research fellow at the School of Information System, Singapore Management
University, Singapore. He has published more than 200 papers on the topics of
cloud security and big data security-including papers in IEEE Transactions on
Computers, IEEE Transactions on Industrial Informatics, IEEE Transactions on
Dependable and Secure Computing, IEEE Transactions on Service Computing,
IEEE Internet of Things Journal, and so on. He awards "Minjiang Scholars"
Distinguished Professor, "Qishan Scholars" in Fuzhou University, and ACM
SIGSAC China Rising Star Award (2018). His research interests include cloud
security, applied cryptography and big data security. He is a member of the
IEEE, ACM, CCF.

Availability of data andmaterials
All the data used in the paper are randomly constructed (integer randomly
selected from ZN and floating-point number are selected from Z

2
N).

Submission of a manuscript to a cybersecurity journal implies that materials
described in the manuscript, including all relevant raw data, will be freely
available to any scientist wishing to use them for non-commercial purposes,
without breaching participant confidentiality.

Competing interests
The authors declare that they have no competing financial interests.

Author details
1College of Mathematics and Computer Science, Fuzhou University, Fuzhou,
China. 2School of Information Systems, Singapore Management University,
Singapore, Singapore. 3School of Software and Microelectronics, Peking
University, Beijing, China.

Received: 13 July 2020 Accepted: 16 August 2020

References
Ali M, Khan SU, Vasilakos AV (2015) Security in cloud computing: Opportunities

and challenges. Inf Sci 305:357–383
Barker E, Barker W, Burr W, Polk W, Smid M (2007) NIST special publication

800-57. NIST Spec Publ 800(57):1–142
Bendlin R, Damgård I, Orlandi C, Zakarias S (2011) Semi-homomorphic

encryption and multiparty computation. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques.
Springer. pp 169–188. https://doi.org/10.1007/978-3-642-20465-4_11

Brakerski Z, Gentry C, Vaikuntanathan V (2014) (leveled) fully homomorphic
encryption without bootstrapping. ACM Trans Comput Theory (TOCT)
6(3):13

Brakerski Z, Vaikuntanathan V (2014) Efficient fully homomorphic encryption
from (standard) lwe. SIAM J Comput 43(2):831–871

Bresson E, Catalano D, Pointcheval D (2003) A simple public-key cryptosystem
with a double trapdoor decryption mechanism and its applications. In:

Advances in Cryptology - ASIACRYPT 2003, 9th International Conference
on the Theory and Application of Cryptology and Information Security,
Taipei, Taiwan, November 30 - December 4, 2003, Proceedings. pp 37–54.
https://doi.org/10.1007/978-3-540-40061-5_3

Burkhart M, Dimitropoulos X (2010) Fast privacy-preserving top-k queries using
secret sharing. In: 2010 Proceedings of 19th International Conference on
Computer Communications and Networks. IEEE. pp 1–7. https://doi.org/
10.1109/icccn.2010.5560086

Challa S, Das AK, Gope P, Kumar N, Wu F, Vasilakos AV (2020) Design and
analysis of authenticated key agreement scheme in cloud-assisted
cyber–physical systems. Future Gener Comput Syst 108:1267–1286

Chandra S, Karande V, Lin Z, Khan L, Kantarcioglu M, Thuraisingham B (2017)
Securing data analytics on sgx with randomization. In: European
Symposium on Research in Computer Security. Springer. pp 352–369.
https://doi.org/10.1007/978-3-319-66402-6_21

Chen G, Chen S, Xiao Y, Zhang Y, Lin Z, Lai TH (2018) Sgxpectre attacks: Leaking
enclave secrets via speculative execution. arXiv preprint arXiv:1802.09085

Chen H, Cramer R (2006) Algebraic geometric secret sharing schemes and
secure multi-party computations over small fields. In: Annual International
Cryptology Conference. Springer. pp 521–536

Chida K, Genkin D, Hamada K, Ikarashi D, Kikuchi R, Lindell Y, Nof A (2018) Fast
large-scale honest-majority mpc for malicious adversaries. In: Annual
International Cryptology Conference. Springer. pp 34–64. https://doi.org/
10.1007/978-3-319-96878-0_2

Chillotti I, Gama N, Georgieva M, Izabachene M (2016) Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds. In:
International Conference on the Theory and Application of Cryptology and
Information Security. Springer. pp 3–33. https://doi.org/10.1007/978-3-
662-53887-6_1

Consortium U, et al. (1997) The Unicode Standard, Version 2.0. Addison-Wesley
Longman Publishing Co., Inc., Boston

Coppens B, Verbauwhede I, De Bosschere K, De Sutter B (2009) Practical
mitigations for timing-based side-channel attacks on modern x86
processors. In: 2009 30th IEEE Symposium on Security and Privacy. IEEE.
pp 45–60. https://doi.org/10.1109/sp.2009.19

Costan V, Lebedev I, Devadas S (2016) Sanctum: Minimal hardware extensions
for strong software isolation. In: 25th {USENIX} Security Symposium
({USENIX} Security 16). USENIX Association, Austin. pp 857–874

Cramer R, Damgård I, Maurer U (2000) General secure multi-party computation
from any linear secret-sharing scheme. In: International Conference on the
Theory and Applications of Cryptographic Techniques. Springer.
pp 316–334. https://doi.org/10.1007/3-540-45539-6_22

Damgård I, Pastro V, Smart N, Zakarias S (2012) Multiparty computation from
somewhat homomorphic encryption. In: Annual Cryptology Conference.
Springer. pp 643–662. https://doi.org/10.1007/978-3-642-32009-5_38

Dimitrov DV (2016) Medical internet of things and big data in healthcare.
Healthc Inf Res 22(3):156–163

Domnitser L, Jaleel A, Loew J, Abu-Ghazaleh N, Ponomarev D (2012)
Non-monopolizable caches: Low-complexity mitigation of cache side
channel attacks. ACM Trans Archit Code Optim (TACO) 8(4):35

Dong C, Chen L, Wen Z (2013) When private set intersection meets big data:
an efficient and scalable protocol. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security. ACM. pp 789–800.
https://doi.org/10.1145/2508859.2516701

Doröz Y, Öztürk E, Sunar B (2015) Accelerating fully homomorphic encryption
in hardware. IEEE Trans Comput 64(6):1509–1521

Emekçi F, Sahin OD, Agrawal D, El Abbadi A (2007) Privacy preserving decision
tree learning over multiple parties. Data Knowl Eng 63(2):348–361

Fan J, Vercauteren F (2012) Somewhat practical fully homomorphic
encryption. IACR Cryptology ePrint Archive 2012:144

Farokhi F, Shames I, BatterhamN (2016) Secure and private cloud-based control
using semi-homomorphic encryption. IFAC-PapersOnLine 49(22):163–168

Gamal TE (1985) A public key cryptosystem and a signature scheme based on
discrete logarithms Vol. 31. pp 469–472

Ge X, Yan L, Zhu J, Shi W (2010) Privacy-preserving distributed association rule
mining based on the secret sharing technique. In: The 2nd International
Conference on Software Engineering and Data Mining. IEEE, Chengdu.
pp 345–350

Gentry C, et al. (2009) Fully homomorphic encryption using ideal lattices. In:
Stoc Vol. 9. pp 169–178

https://doi.org/10.1186/s42400-020-00057-3
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-540-40061-5_3
https://doi.org/10.1109/icccn.2010.5560086
https://doi.org/10.1109/icccn.2010.5560086
https://doi.org/10.1007/978-3-319-66402-6_21
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1109/sp.2009.19
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1145/2508859.2516701

Liu et al. Cybersecurity (2020) 3:17 Page 21 of 21

Gheid Z, Challal Y (2016) Efficient and privacy-preserving k-means clustering
for big data mining. In: 2016 IEEE Trustcom/BigDataSE/ISPA. IEEE.
pp 791–798. https://doi.org/10.1109/trustcom.2016.0140

Götzfried J, Eckert M, Schinzel S, Müller T (2017) Cache attacks on intel sgx. In:
Proceedings of the 10th European Workshop on Systems Security
(EuroSec’17). Association for Computing Machin, New York. Article 2,
pp. 1–6

Huang K, Liu X, Fu S, Guo D, Xu M (2019) A lightweight privacy-preserving cnn
feature extraction framework for mobile sensing. IEEE Trans Dependable
Secure Comput. https://doi.org/10.1109/tdsc.2019.2913362

Knuth DE (2014) Art of Computer Programming, Volume 2: Seminumerical
Algorithms. Addison-Wesley Professional, Boston

Küçük KA, Paverd A, Martin A, Asokan N, Simpson A, Ankele R (2016) Exploring
the use of intel sgx for secure many-party applications. In: Proceedings of
the 1st Workshop on System Software for Trusted Execution. ACM. p 5.
https://doi.org/10.1145/3007788.3007793

Lee S, Shih M-W, Gera P, Kim T, Kim H, Peinado M (2017) Inferring fine-grained
control flow inside {SGX} enclaves with branch shadowing. In: 26th
{USENIX} Security Symposium ({USENIX} Security 17). USENIX Association,
Vancouver. pp 557–574

Liu X, Choo K-KR, Deng RH, Lu R, Weng J (2018a) Efficient and
privacy-preserving outsourced calculation of rational numbers. IEEE Trans
Dependable Secure Comput 15(1):27–39

Liu X, Deng RH, Choo K-KR, Weng J (2016a) An efficient privacy-preserving
outsourced calculation toolkit with multiple keys. IEEE Trans Inf Forensic
Secur 11(11):2401–2414

Liu X, Deng R, Choo K-KR, Yang Y (2017) Privacy-preserving outsourced clinical
decision support system in the cloud. IEEE Trans Serv Comput. https://doi.
org/10.1109/tsc.2017.2773604

Liu X, Deng R, Choo K-KR, Yang Y, Pang H (2018b) Privacy-preserving
outsourced calculation toolkit in the cloud. IEEE Trans Dependable Secure
Comput. https://doi.org/10.1109/tdsc.2018.2816656

Liu X, Deng R, Choo K-KR, Yang Y, Pang H (2020) Privacy-preserving
outsourced calculation toolkit in the cloud. IEEE Trans Dependable Secure
Comput 17(5):898–911

Liu X, Deng RH, Ding W, Lu R, Qin B (2016b) Privacy-preserving outsourced
calculation on floating point numbers. IEEE Trans Inf Forensic Secur
11(11):2513–2527

Liu F, Ge Q, Yarom Y, Mckeen F, Rozas C, Heiser G, Lee RB (2016c) Catalyst:
Defeating last-level cache side channel attacks in cloud computing. In:
2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE. pp 406–418. https://doi.org/10.1109/hpca.2016.
7446082

Liu Y, Ma Z, Yan Z, Wang Z, Liu X, Ma J (2020) Privacy-preserving federated
k-means for proactive caching in next generation cellular networks. Inf Sci.
https://doi.org/10.1016/j.ins.2020.02.042

Ma Z, Liu Y, Liu X, Ma J, Ren K, IEEE Internet Things J (2019) Lightweight
privacy-preserving ensemble classification for face recognition:1–1.
https://doi.org/10.1109/JIOT.2019.2905555

Ma Z, Ma J, Miao Y, Choo K-KR, Liu X, Wang X, Yang T (2020) Pmkt: Privacy-
preserving multi-party knowledge transfer for financial market forecasting.
Futur Gener Comput Syst. https://doi.org/10.1016/j.future.2020.01.007

Naehrig M, Lauter K, Vaikuntanathan V (2011) Can homomorphic encryption
be practical? In: Proceedings of the 3rd ACMWorkshop on Cloud
Computing Security Workshop. ACM. pp 113–124. https://doi.org/10.
1145/2046660.2046682

Paillier P (1999) Public-key cryptosystems based on composite degree
residuosity classes. In: Advances in cryptologyEUROCRYPT99. Springer.
pp 223–238. https://doi.org/10.1007/3-540-48910-x_16

Peter A, Tews E, Katzenbeisser S (2013) Efficiently outsourcing multiparty
computation under multiple keys. IEEE Trans Inf Forensic Secur
8(12):2046–2058

Samanthula BK, Elmehdwi Y, Jiang W (2014) K-nearest neighbor classification
over semantically secure encrypted relational data. IEEE Trans Knowl Data
Eng 27(5):1261–1273

Shaon F, Kantarcioglu M, Lin Z, Khan L (2017) Sgx-bigmatrix: A practical
encrypted data analytic framework with trusted processors. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM. pp 1211–1228. https://doi.org/10.1145/3133956.3134095

Shih M-W, Lee S, Kim T, Peinado M (2017) T-sgx: Eradicating
controlled-channel attacks against enclave programs. In: NDSS. https://doi.
org/10.14722/ndss.2017.23193

Van Bulck J, Weichbrodt N, Kapitza R, Piessens F, Strackx R (2017) Telling your
secrets without page faults: Stealthy page table-based attacks on enclaved
execution. In: 26th {USENIX} Security Symposium ({USENIX} Security 17).
USENIX Association, Vancouver. pp 1041–1056

Van Dijk M, Gentry C, Halevi S, Vaikuntanathan V (2010) Fully homomorphic
encryption over the integers. In: Advances in Cryptology — EUROCRYPT
2010. EUROCRYPT 2010. Lecture Notes in Computer Science, vol 6110.
Springer, Berlin. pp 24–43

Wazid M, Das AK, Bhat V, Vasilakos AV (2020) Lam-ciot: Lightweight
authentication mechanism in cloud-based iot environment. J Netw
Comput Appl 150:102496

Wei L, Zhu H, Cao Z, Dong X, Jia W, Chen Y, Vasilakos AV (2014) Security and
privacy for storage and computation in cloud computing. Inf Sci
258:371–386

Xu S, Ning J, Li Y, Zhang Y, Xu G, Huang X, Deng R (2020a) Match in my way:
Fine-grained bilateral access control for secure cloud-fog computing. IEEE
Trans Dependable Secure Comput. https://doi.org/10.1109/tdsc.2020.
3001557

Xu S, Yang G, Mu Y, Deng R (2018) Secure fine-grained access control and data
sharing for dynamic groups in the cloud. IEEE Trans Inf Forensic Secur
13(8):2101–2113

Xu S, Yuan J, Xu G, Li Y, Liu X, Zhang Y, Ying Z (2020b) Match in my way:
Fine-grained bilateral access control for secure cloud-fog computing. Inf
Sci. https://doi.org/10.1109/tdsc.2020.3001557

Zhou Z, Reiter MK, Zhang Y (2016) A software approach to defeating side
channels in last-level caches. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM.
pp 871–882. https://doi.org/10.1145/2976749.2978324

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/trustcom.2016.0140
https://doi.org/10.1109/tdsc.2019.2913362
https://doi.org/10.1145/3007788.3007793
https://doi.org/10.1109/tsc.2017.2773604
https://doi.org/10.1109/tsc.2017.2773604
https://doi.org/10.1109/tdsc.2018.2816656
https://doi.org/10.1109/hpca.2016.7446082
https://doi.org/10.1109/hpca.2016.7446082
https://doi.org/10.1016/j.ins.2020.02.042
https://doi.org/10.1109/JIOT.2019.2905555
https://doi.org/10.1016/j.future.2020.01.007
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1007/3-540-48910-x_16
https://doi.org/10.1145/3133956.3134095
https://doi.org/10.14722/ndss.2017.23193
https://doi.org/10.14722/ndss.2017.23193
https://doi.org/10.1109/tdsc.2020.3001557
https://doi.org/10.1109/tdsc.2020.3001557
https://doi.org/10.1109/tdsc.2020.3001557
https://doi.org/10.1145/2976749.2978324

	Lightning-fast and privacy-preserving outsourced computation in the cloud
	Citation

	Abstract
	Keywords

	Introduction
	Preliminary
	Notations
	Additive secret sharing scheme (ASS)
	Additive homomorphic encryption scheme
	Mathematical function computation

	System model & privacy requirement
	System model
	Attack model

	Basic privacy preserving computation protocols
	The LightCom design method for the single functions
	The LightCom Design for Combination of the Functions
	General secure function computation algorithm (GenCpt)
	Private key share dynamic update
	Data Shares Dynamic Update

	TPU-based basic data shares operations
	Data domain and storage format
	System initial and key distribution
	Secure distributed decryption algorithm (SDD)
	Secure TPU-based data seal & UnSeal
	Random shares generation
	Share domain transformation
	Binary share to integer share transformation (B2I)
	Integer share to binary share transformation (I2B)

	TPU-based secure outsourced computing toolkits in the cloud
	Secure computation over binary shares
	Secure bit multiplication protocol (SBM)
	Secure bit-wise addition protocol (BAdd)
	Secure bit extraction protocol (BExt)

	Secure integer computation
	Secure multiplication protocol (SM)
	Secure Monic monomials computation (SMM)
	Secure binary exponential protocol (SEP2)
	Secure integer exponential protocol (SEP)
	Secure comparison protocol (SC)
	Secure equivalent protocol (SEQ)
	Secure minimum of two number protocol (Min2)
	Secure minimum of H numbers protocol (MinH)

	Security extension of integer computation
	Achieve input access pattern hiding (APH)
	Achieve private information retrieve (PIR)

	Secure floating point number computation
	Data format of floating-point number
	Secure uniform computation (UNI)
	Computation transformation
	Secure extension for FPN computation

	Functional extension for LightCom
	Non-numerical data storage and processing
	Extension of multiple user computation

	Security analysis
	Analysis of basic crypto primitives
	The security of secret sharing scheme
	The security of PCDD

	Security of TPU-based basic operation
	Security of LightCom

	Evaluations
	Experiment analysis
	Basic crypto and system primitive
	Performance of TPU-based integer computation
	Performance of TPU-based FPN computation

	Theoretical analysis

	Related work
	Conclusion
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s42400-020-00057-3.
	Additional file 1

	Acknowledgements
	Authors' contributions
	Authors' information
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

