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Absbucf-Network &c is a complex and nonlinear 

process, which is significantly afFected by immeasurable 
parameters and variables. This paper addresses the use of 
the five-layer fuzzy neural network (FNN) for predicting 
the nonlinear network traEc. The structure of this system is 
introduced in detail. Through training the FNN using 
back-propagation algorithm with inertial tenns the traffic 
series can be well predicted by this FNN system. We 
analyze the performance of the FNN in terms of prediction 
ability as compared with solely neural network. The 
simulation demonstrates that the proposed FNN is superior 
to the solely neural network systems. In addition, FNN with 
dif€erent fuzzy reasoning approaches is discussed 

Back-propagation algorithms, Inertial tenns 
Zndor Term-Fuzzy neural network, Traflic prediction, 

1. Introduction 
It has been proved that a neural network system with 

appropriate structures is able to approximate an arbitrary 
nonlinear function [I]. As neural networks (NN) has 
flexible learning capabilities that make it possible to 
develop nonlinear models using only input-output data, NN 
has been widely studied in the traffic control or traffic 
prediction of the computer network [2-4]. Although NN is 
capable of learning complex nonlinear relationships, it is 
dil3icult to h e  modeling the logical process of human 
reasoning. On the other hand, fuzzy systems are universal 
approximators and am capable of approximating any real 
continuous function [5].  Fuzzy systems store rules and 
estimate the functions from linguistic input to linguistic 
output [6]. However, fuzzy systems lack the ability of 
learning and adapting. Thus, a combined fuzzy-neural 

network approach offers interesting potential for nonlinear 
modeling. A combination of the fuzzy system and the 
neural network is called the fuzzy neural network systems 
(FNN), which utilize both the linguistic, human-lie 

reasoning of fuzzy systems and the powerful computing 
ability of neural network. They can avoid some drawbacks 
of solely fuzzy or neural network systems. It had been 
proven that ''fuzzy-neural network can approximate any 
nonlinear function to any desired accuracy because of the 
universal approximation theorem'' [7]. 

Recently, there have been considerable interests in the 
application of FNN. A number of several successful FNN 
systems were reported in the literature [SI. Some works 
have been carried out on FNN for nonlinear time series 
prediction or other problems of prediction [9-111. A FNN 
with a general parameter learning algorithm and heuristic 
model structure determination had been proposed for 
modeling nonlinear time-series [9]. And an alternative F'" 
architecture had been proposed to predict a chaotic time 
series. Such work has demonstrated the superior prediction 
capabilities of a fuzzy neural network as compared with the 
conventional neural network approach [IO]. The paper [I I] 
employed a five-layer FNN to predict the quality of 
chemical components of the finished sinter mineral and 
obtained very good performance. 

In this paper, the authors propose a five-layer FNN to 
predict the traffic of video and voice sources. The FNN 
uses Mamdani's inference which includes the min-max 
operator and is introduced in detail. The traffic is 
characterized by a continuous-state discretetime 
autoregressive (AR) Markov process. The improved BP 
algorithm [13] is adopted to train the FNN. The architecture 
provides a comparable degree of accuracy to the solely 
neural network. The abilities of this architecture to leam 
and generalize have been demonstrated by its application in 
the traffic prediction. 

2. The Structure of Proposed FNN 
The knowledge representation in fuzzy models was 

developed by Mamdani [12]. The knowledge is presented 
in these models as follows. 
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R, : ifxl is A i ,  x2 is A;, ___, andx, is A:, theny is B (1) 
Where R, (i=l, 2, ..., c) denotes the ith fuzzy rule, and x, 
PI, 2, ..., n) is the input variables and y is the output 
variable of the fuzzy rule R,, All, A;, ..., A.' are fuzzy sets 
of input space and B is a fuzzy set of output space. The 
corresponding memberihip functions of these fuzzy sets 

are, p i  andpbb)  respectively, 

which are bell-shaped trapezoidal, or triangular, et al., and 
usually associated with linguistic terms. 

The proposed FNN is a fivelayer fuzzy neural network 
and the structure of the FNN is shown in Fig. 1. Let Nk 
denotes the number of nodes of each layer and M, denotes 
the terms number of input linguistic variables. 

- 
Pi a1 

layer - 
P,? ff" a" 
Second Third Fourth 
layer layer layer 

Fig. 1 The schematic structure of the FNN 

The functions of each layer and each node are described 

Layer 1: The INPUT-FN's [9] is used in this layer. Each 
INPUT-FN node in this layer is called input node and 
corresponds to one input linguistic variable. The number of 
nodes in this layer is NI. Each node transmits the input to 

the next layer directly, i.e., y;l) = $1 ( i = 42 ,.-,NI). 

as follows. 

Layer 2: Nodes in this layer are called input term nodes 
and each represents a term of an input linguistic variable. In 
other word, the membership value belongs to a fuzzy set is 
calculated in this layer. The membership function is: 

=pi,(xz) i =1,2,...,n; j = 1,2,...,M, (2) 

where n is the numher of input and Mi is the terms 
number of input variable xi. In this paper, the Gaussian 
function is chosen as the node function. And it is assumed 
that each input linguistic variable has the same number of 

term numbers. p{ can he defined as: 

(3) 

where c,, and crg are the center and width of the Gaussian 

membership. The number of nodes in this layer is: 

n 
N ,  = E M i  =Nl .Mi  

i=l 
(4) 

And the connection weight W e e n  the input layer and the 
second layer is [I I]: 

wherek=O,l, ..., N 2 - l ,  i=L2 ,..., N,, and j = 1 , 2  ,..., N I .  
The input and output of each node of the second layer are 

(7) 

where i = 1,2 ,..., N, , and j = 42 ,...,NI . 
Layer3: Each node in this layer represents one fuzzy 

logic rule and performs precondition matching of a rule. 
The min operator is chosen as follows. 

ff I = minb; ,p; ,...,pi] (8) 

where i j e  (1,2, ..., m j } ,  ile (1,2, ..., m2} ,..., inE {I ,  2, ..., 

rn.},j=l, 2, ___, rn; m = n r n , ,  rn, = M , ,  and n=N, ,  

so the total nodes of this layer is: 

t=1 

n N, 
N, = n m ,  = n ~ ~  = M , ~ '  (9) 

,=I 1 4  

And the connection weight between layer 2 and layer 3 is: 

k ~ , ( ~ - ' '  + 1 s i < (k + 1)M,'"-') 
IlkN,+l< j < ( k + l ) N ,  

otherwise; 
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where m = N I  , k=0,1, ..., M i - 1 ,  i=1,2 ,..., N ,  , and 
j = l,2, ..., N ,  . 

Let vector p=bi ~2 ~ 3 1 ,  4 = h  4 2  4337, and 

= blql p2qZ ~ , q , l [ l l I .  The input and output of 
each node of the third layer are obtained by the equations 
(1 1) and (12). 

(11) -(3) = + 7 , ( 3 ) ( j , . ) j ( 2 )  xi 

yj3) = min~(3)(l),x~3)(2 ),..., x( , ) (N, ) }  (12) 

is a vector which represents the outputs of the where 

nodes in the second layer, is a vector which represents 

the inputs of the ith node in the third layer. And y,'" is a 

scalar which represents the outputs of the ith node in the 
third layer. 

Layer 4: The nodes in this layer are called output term 
nodes. The number of nodes in this layer is the same as that 
of the third layer. These nodes realize following normalized 
calculation. 

The output of each node of layer 4 is: 

(14) 

Layer 5 is output layer. The node is a neuron. The 
sigmoid function is chosen as the activation function of the 
neuron for this traffic model. In this paper, there is only one 
node in layer 5.  The input and the output are defined as: 

a = y ( 4 )  , = x ,  (4) j = 1 , 2 , . . . , N 4  

This arcbitechre can be readily implemented on the 
MATLAE! neural network toolbox and trained using 

improved back-propagation algorithms. 

3. Predicting problem presentation 

The traffic characterization is presented in [2] and [14]. 
The scalar traffic series is denoted by y( t )  , and the FNN 

model used will be 

YO) = Fm b@--O,~(t - 2), ..., y(t - m)}+E( t )  (17) 

where Fm is an approximate function of the nonlinear 

function f and E ( i )  is the prediction error. The main 

difficulty in implementing prediction model is that function 

f is actually unk~~om. And the only information available 

is the set of obsewables: y(l),y(Z),y(3), ...,y( n), where n 
is the total length of the traffic series. It is the goal of 
prediction scheme to approximate this function. FNN is 
known to be the good function approximator [5-7]. Their 
real awction lies in their ability to leam by the examples 
of NN and fuzzy concept, fuzzy judgment and fuzzy 

reasoning of fuzzy system. However, in order to obtain a 
network that produces a desirable output, Fuzzy neural 
network must t y p i d y  be trained upon the available 
examples many limes. 

During training, a FNN is presented with several 
inputloutput pairs just as training the NN, and is expected 
to leam the functional relationship between inputs and 
outputs of the simulation model. Therefore, the trained 

FNN can predict the output for inputs other than the ones 
presented during training. 

4. Simulation Results and Discusses 

The traffic series used in this work are generated from 
video.and voice sources. A continuowstate discretetime 
autoregressive (AR) Markov process is proposed in [14] 
and used by [2] to characterize this traffic. Let 
A(n) represent the bit rate of a single source during the nth 

W e .  A h t  order Markov process AR (1) is generated by 
the recursive relation: 

(18) 
where a = 0.8781, b = 0.1108 and w(n) is a sequence 

of independent Gaussian white noise with mean = 0.572 
and variance = 1. 

A summary of the implementation results obtained is 
presented in Table 1. AU the simulations use 500 points 
60m the traffic series as training data and use a further 
1500 points as test data. And FNN network is trained for 
3000 epochs. To compare the performance of the FNN, 

,qn + 1) = ua(n) + bw(n) 

1699 

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on February 12, 2010 at 12:20 from IEEE Xplore.  Restrictions apply. 



similar sued neural networks are also implemented. Five 
NN networks are used. One is with 2 input nodes and 6 
nodes in hidden layer, such a neural network is denoted as 
(2: 6 1); the second is with 2 input nodes and 9 nodes in 
hidden layer ( 2  9 1); the third is with 2 input nodes and 12 
nodes in hidden layer (2: 12: 1); the fourth is with 2 input 
nodes and 15 nodes in hidden layer (2: 15: 1) and the lifth 
is five-layer f o m d  networks with 2 input nodes and 6 
nodes, 9 nodes, 9 nodes in the next three hidden layers, 
respectively, and one node in output layer ( 2  6: 9 9: 1). 

Table 1 

Implementation results of predicting the traffic 

The structure RMSE RMSE 

(training) (testing) 
FNN 0.016 0.012 

“(2: 6 1) 0.076 0.070 
“(2: 9 1) 0.067 0.065 
“(2: 12: 1) 0.101 0.099 
“ ( 2 :  15: 1) 0.127 0.122 

The results are presented in terms of the accuracy of the 
prediction wing the root-mean-square error (RMSE). The 
values for RMSE (training) are obtained using the training 
data and similarly the values of RMSE (testing) are 
obtained using the test data. 

The results presented in table 1 illustrate the benefits of 
the FNN approach compared to the NN as the error metric 
is lower. Table 1 illustrates that the prediction accuracy 
improves using 9 neurons in input layer rather than 6 nodes 
in hidden layer. Another result of the implementations is 
that the prediction accuracy degrades when moving ftom 
12 nodes of hidden layer to 15 nodes of hidden layer. And 
it is ditscult to predict this traffic series when we use the 
(2-69-9-1) five-layer NN which are trained for 3000epchs. 
This can be explained by the larger size of the network with 
higher number of hidden layer which introduces extra 
parameters and hence increases the training difficulties. 

The accuracy of the predictions is illustrated in Fig. 2. 
The simulation results, which are obtained by the FNN, 
demonstrate that the predicted and actual points of the 
traffic series are almost heavy to match. The results 
establish that the FNN can approximate the fm5c series to 
the satisfied degree of accuracy. 

I 
framer 

Fig. 2 Prediction of the traffic series as compared with the 
actual data (solid line) 

-actualdata 

______ prediction 

Table 2 
Implementation results of predicting the traffic 

The stxncture of the RMSE RMSE 
FNN (training) (testing) 

FNN with 2 fuzzy sets 0.032 0.028 
in each input variable 
FNNwith3fuzzysets 0.016 0.012 

FNN with 4 fuzzy sets 0.0 17 0.012 
in each input variable 
FNNwith5fuzzysets 0.024 0.021 
in each input variable 

in each input variable 

For further analysis, the proposed FNN are extended to 
account for different numbers of fuzzy sets of the input 
space. In general, the prediction capability of a fuzzy set 
system improves when increasing the number of fuzzy set 
of the input variables. However, the results presented in 
Table 2 illustrate that the prediction capability degrades 
when increasing the number of fuzzy sets from 3 to 5. The 
results indicate that “increasing the number of fuzzy seta 
not only increases the network dimensions and training 
times but may also over-parameterise the problem which 
may degrade its performance” [lo]. The results also 
illustrate that the FNN with 3 fuzzy sets maintains a similar 
degree of accuracy compared to the FNN with 4 fuzzy sets 
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of the input space. Thus 3 fuzzy sets in each input domain 
are sufficient for this problem. 

5. Conclusions and Future Work 
A fivelayer FNN has been used for predicting the traffic of 
video and voice sources. The simulation results 
demonstrate that FNN is capable of predicting this traflic 
series to any desired degree of accuracy and the FNN is 
superior to the solely neural network systems. The 
architecture not only provides a comparable degree of 
accuracy to the solely neural network, but offers the 
additional advantage of the reduced dimensions. TralXc 
prediction has become one of the most important problems 
for internet management. Although the problem of 
predicting time series using FNN has been widely 
considered as an imposing research object, it has not made 
enough influences on the traffic forecasting. Further 
research on real traffic prediction using FNN is required, 
and the shucture and learning algorithms of the FNN MO 

be improved. 
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