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Abstract 

Despite the relative successes of natural language processing in providing some useful interfaces 
for users, natural language understanding is a much more difficult issue. Natural language 
processing was one of the main topics of AI for as long as computers were put to the task of 
generating intelligent behavior, and a number of systems that were created since the inception of 
AI have also been characterized as being capable of natural language understanding. However, in 
the existing domain of natural language processing and understanding, a definition and consensus 
of what it means for a system to “truly” understand language do not exist. For a system to 
understand an idea, firstly it has to ground the meaning of the concepts in the idea that it 
manipulates - the concepts that are associated with the words it inputs and outputs. However, 
there has not been any standardized consensus on what constitutes adequate semantic grounding. 
This paper presents a spatio-temporal representational method as a basis for a specification of 
what constitutes adequate semantic grounding, particularly in connection with certain words and 
concepts related to grounding of physical concepts and mental constructs. This research has 
critically important implication for learning – true language understanding will usher in an era of 
learning through language instruction, which is how humans learn, to rapidly accumulate a vast 
amount of knowledge critical to the propagation of the species and the advancement of its 
civilization. 
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1   Introduction 

Even though natural language processing (NLP) has been a bourgeoning field in artificial 

intelligence (AI), and has scored successes in many applications [1–4], natural language 
understanding (NLU), on the other hand, has not been satisfactorily addressed. With respect to 
certain NLP applications, such as question-answering, an NLP system is typically able to give 
reasonably satisfactory answers in many instances. Despite this, from the “understanding” point 

of view, scientists engaged in NLU research still believe that the system involved does not really 
“understand.” What does it really mean to understand? “To understand” seems to require more 

than generating a string of language tokens (words) in the output. But what is this extra ability 
that a language understanding system should have to qualify it as having “truly” understood a 



language input? What true language understanding is still an unsolved problem and an
un-answered question. This paper provides the answer and presents a specification for
true language understanding.

2 The Importance of Semantic Grounding

2.1 The Problems with Dictionary Definitions

First, we would like to explore the issue of concept or semantic grounding. Let us begin
with a simple concept “Move.” Often we refer to the dictionary for “meanings” of
words. Here, we would like to show that the dictionary cannot supply the “meaning”
for true understanding. The definition of Move in Merriam Webster is:

Move: To go from one place or position to another
So, for a language processing system to understand the meaning of any concept or

word, it has to understand the meaning of the constituents of its definition. Let us next
retrieve the definition of a key constituent of the above definition, “Go”:

Go: To move on a course
Thus, there is circularity in the definitions: Move is defined in terms of Go and Go

is defined in terms of Move. One has a feeling that the system does not “really
understand” other than to rephrase a series of words with another series of words [5].

2.2 The Proposed Spatio-Temporal Representations

What is really the meaning of the concept Move? We submit that it is a spatio-temporal
concept that is better represented in a “pictorial” manner as shown in Fig. 1.

In Fig. 1(a) one can see that there is an axis representing the time dimension and
three other axes representing the spatial dimensions. Different from the three spatial
dimensions, time is a unique and special dimension sensed by humans. The “blob” is
an object A. The object A changes its location over time. Figure 1(b) shows a sim-
plified spatio-temporal representation of the concept Move in which the object A
changes one unit of elemental location over one unit of time. This is a reduction of a
three-dimensional representation (x, y, z) of space (Fig. 1(a)) to a two-dimensional
representation (x = 0, y, z) of space for the purpose of simplification without com-
promising the concepts involved.

In Fig. 1(c) there is a more general representation. The gray “bars” represent “any
number of units in between.” Therefore, the representation in Fig. 1(c) says that the
object A changes any amount of space location over any amount of time.

Combining the representational schemes of Figs. 1(a), (b) and (c), we define a new
space variable l and spatial change Dl, and we leverage the unique and special
dimension of time t to represent Move. The gray “bars” represent “any number of units
in between.” Therefore, the representation in Fig. 1(d) says that the object A changes
any amount of location over any amount of time. This, we submit, is the definition of
Move in its most grounded and general form.
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Of course, pictures such as those in Fig. 1 have to be operated on by some pro-
cesses to render them fully operational. Therefore, we posit that there are processes that
operate on these representations as follows:

(i) RECOGNITION: Firstly, there is the process of recognition. In order to determine
whether an instance of Move has occurred in the environment with respect to
some objects, a system would check if the object has indeed changed location
with respect to time, as stipulated by Fig. 1(d)

(ii) ACTION/GENERATION: Secondly, if a system, endowed with the definition of
Move as stipulated in Fig. 1, is asked to “move the object,” it would act to change
the object’s location over time, as stipulated by Fig. 1(d).

We posit that both (i) and (ii) suffice to demonstrate that the system “truly
understands” the concept Move as stipulated in the representations of Fig. 1.

Of course, the representation of the concept Move need not be pictorial as shown in
Fig. 1. One can also use logic language to represent it as follows:

Object, x, y, z, t    Location(Object, x, y, z, t)
Location(Object, x+Δx, y+Δy, z+Δz, t+Δt)
→ Move(Object)

ð1Þ

To make the representation simpler and more general, we use l to represent spatial
location and Dl to represent spatial location changes, and Eq. (1) can be then repre-
sented as:

Object, l, t    Location(Object, l, t)  
Location(Object, l+Δl, t+Δt)
→ Move(Object)

ð2Þ

which states exactly the same thing as the pictorial representations of Fig. 1, which is
that if the Object is at location l at time t and then at location l + Dl at time t + Dt, it is
deemed to have Moved, if Dl 6¼ 0. This logic representation, when acted on with some
processes, would also be able to render the concept fully operational with respect to the
RECOGNITION and ACTION/GENERATION requirements as described above. The
critical issue is not whether the fundamental representation that leads to “true”
understanding is pictorial or logical. The issue is that space and time are fundamental
ad “atomic” with respect to our understanding of the world and only by defining
concepts such as Move, which is spatio-temporal in nature, in its most fundamental
spatio-temporal form, can the true understanding of these concepts be achieved.

2.3 Other Examples of Spatio-Temporal Representations of Physical
Concepts

In Fig. 2 we show some other related atomic, ground level concepts represented in
spatio-temporal forms.
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Figure 2(a) shows the concept of “Materialization,” in which, at time frame t1, there
is no object in the corresponding location but there is an act of Materialization, rep-
resented by an “exploding” shape. Then, at time frame t2, an Object appears. Figure 2(b)
shows the concept of “Stay”, in which the Object does not change location over time.

Fig. 1. (a) A spatio-temporal representation of a specific instance of the concept Move in which
the object A changes one elemental location in both y and z dimensions over time from t0 to t1. In
order to make the illustration simple, we assume that there is no location change in the x
dimension. (b) A simplified representation of the spatio-temporal representation of the concept
Move in which the Object A changes one unit of elemental location in both y and z dimensions
over time from t0 to t1. (c) A spatio-temporal representation of a general concept Move in which
the object A changes any number of elemental locations in both y and z dimensions over time
from t0 to t1. (d) After l is leveraged to represent the space dimension and Dl to represent spatial
dimensional changes, a spatio-temporal representation of a general concept Move in which an
Object changes any number of elemental locations Dl over any amount of time Dt. The “Up-
Down Symmetry” indicator specifies that the template has an up-down symmetry – it encodes
both the “upward” (i.e., +ve space direction) as well as the “downward” (−ve space direction).
Based on [5, 6].
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Figure 2(c) shows the concept of “Push and Make Move” in which at time frame t1, a
force appears and acts on the Object involved, and in the next time frame t2, the Object
changes location by one unit. Figure 2(d) shows the concept of “Attach”, in which an
Attach action is performed at time frame t1 between two Objects, and in time frame t2,
the two Objects acquire a new property (in a sense a “change of state”) which is shown
as a bar connecting them. Later, suppose a force is acted on one of them to move it in the
direction away from the other, the other will follow. This is the grounded meaning of
Attach [5, 6].

These are specific instances much like Fig. 1(a). Corresponding generalized ver-
sions of these such as that in Fig. 1(b) would allow a system to achieve
(i) RECOGNITION and (ii) ACTION/GENERATION as stipulated above. There are
other atomic concepts discussed in Ho [5, 6] and we posit that something akin to a set
of ground and atomic concepts like this is necessary to achieve semantic grounding for
a language system to bring about true language understanding, at least with respect to
various physical aspects of the environment. (There are other “mental” aspects such as
the various concepts and words referring to the various emotions and sensations
experienced by humans that will be discussed below.)

In cognitive linguistics, there has also been some investigations into grounded
language understanding. For example, in Fig. 3, the representations of the concepts of
“Before” and “After” are demonstrated.

Cognitive linguistics [7] defines landmark (lm) as the “focus” of the sentence and
trajector (tr) as something that is “in reference to the focus.” In Fig. 3, it is shown that
Before and After both involve two temporal time frames in a sequence. In the concept of
After, the earlier event is the lm and the later event is the tr, and vice versa for Before.

Fig. 2. Spatio-temporal representations of (a) Materialization. (b) Stay. (c) Push and Make
Move. (d) Attach – the left figure showing the Attach action and the right figure showing the
consequence – later, if a force is applied to one of them in the direction away from the other, both
Objects would move together. The vertical dimension is space and the horizontal one is time.
Based on [5, 6].

Fig. 3. Cognitive linguistic representation of the concepts of Before and After [7].
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2.4 The Issues on the Grounding of Mental Constructs

An important next question would be the issue concerning concepts or words that refer
to some mental states such as human sensation or emotion. How would “Saltiness” or
“Happiness” be represented? We can certainly represent the consequences of these
states, which is Saltiness or Happiness would lead to certain behaviors of the agents
involved (e.g., a sequence of actions to seek more situations that lead to Happiness or
situations to avoid experiencing Saltiness). But what about the concepts themselves? If
a human says “I want to move,” a natural language understanding system can use the
above spatio-temporal representation in Fig. 1 to expect a certain spatio-temporal
behavior of the human, and hence “truly” understands what he means. However, if he
were to say “I am happy”, and if the system simply responds, “I don’t know how it
feels to be happy, but I know what you will be doing in the state of happiness,” the
system can still be a good companion, but the human may then respond, “You don’t
really understand me.”

In Ho [5], it has been demonstrated that it is possible to represent the changes of
these internal mental states in a system. Consider mental parameters such as Saltiness
(a kind of sensation) or Happiness (a kind of emotion). Their changes can be repre-
sentation as shown in Fig. 4(a). These changes are in turn describable by the earlier
spatio-temporal concepts such as Move in the upward direction, which corresponds to
Increase in the intensity, or Stay – no change in intensity.

One can imagine there is a Saltiness sensor installed in a robotic system as shown in
Fig. 4(b), and the output of the sensor may fluctuate like in Fig. 4(a). Then, the robotic
system could output something like, “After consuming salty food, I detect an increase
in Saltiness in my food receptacle.” And if both human and the robotic system agree to
the labeling of this particular sensory impression arising from the salty food as
“Saltiness”, then the robotic system can be said to also “truly” understand the meaning
of Saltiness. The meaning of Saltiness is grounded in the input to the robotic system
from the Saltiness sensor.

Fig. 4. (a) Changes of some internal mental states such as the Saltiness sensation and the
Happiness emotion. (Increase, decrease, or no change in the intensity of these mental states are
shown.) (b) A Saltiness sensor for a robot, providing the grounded understanding of the
sensation. (c) An internal sensor that senses the emotional situations of Happiness, providing the
grounded understanding of the emotion.
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For the issue of emotions such as Happiness, one could imagine that there is an
internal mental “Happiness” sensor in a robotic brain, as shown in Fig. 4(c). When
certain internal states arises in the brain (e.g., the imagining, recall or sensing of
“happy” situations), this sensor detects them and outputs certain signals to signify such
a state representing a Happiness situation exists. The robot can then be said to
understand Happiness in the same way that a human does, in parallel with the situation
of the understanding of the concept of Saltiness. The concept of Happiness is grounded
in the “output” of the internal “sensor” (not from an external sensor like the Saltiness
sensor) to the rest of the processing system (i.e., some parts of the brain that processes
this further). (We ignore the “qualia” problem for now – i.e., the “subjective quality” of
the sensation and emotion involved – and instead focus on specifying the functional
aspects of these sensations and emotions in the systems described in Figs. 4(b) and (c).)

Thus in the case of understanding of certain sensation, the issue cannot be divorced
from the presence and availability of certain sensors converting certain external stimuli
to internal signal (i.e., if a robot does not have a Saltiness sensor, it will never be able to
truly understand Saltiness, much like a human who is color blind, which means she
does not have the corresponding sensors of certain colors, can never truly understand
the sensation of these colors). In the case of understanding certain emotions such as
Happiness, the system must have an “internal sensor” that can sense those corre-
sponding situations (whether currently sensed from the external world or imagined
from past experiences), and generate a signal to some other parts of the system that
process it like the processing of sensations like Saltiness. It is through the detection of
this signal that the robot “truly” understands the emotion involved.

2.5 An Example to Demonstrate True Language Understanding

In Ho [5], it has been shown how some instructions can be given to a language
understanding system to construct a tool and use it for some purpose. In Fig. 5, we use
a simplified 1D (one dimensional) space and 1D time representation to illustrate the
process (this should readily generalize to 3D space and 1D time).

In Fig. 5 there is a sequence of actions specified by a stream of linguistic
instructions (left side of the figure) and we show the corresponding “understood”
actions to be performed (right side of the figure). We posit that systems like this
demonstrate true and deep understanding of the language involved.

In the figure, the situation begins with an Agent ( ) situated some distance away
from an Object ( ) she wishes to retrieve out from a certain Confinement Area. There
is a constraint here that the Agent cannot move more than 2 pixel distance from her
point of origin (corresponding to the situation that a person may only use her hand to
reach out to a certain distance), and the confine is defined as the 3 pixel (1D) space
within the current location of the object as shown in the figure. Firstly, it is shown that
an elemental object ( ) is being Materialized next to the Agent (see Fig. 2 for this
operation), effected by the Agent. (In our 3D real world, this could correspond also to
the Agent bringing a piece of material to a location for the subsequent construction
purposes.) Then, another Materialization action is given to materialize another ele-
mental object ( ). Following this, an Attach action is generated to attach these two
elemental objects together. Subsequently another object ( ) is materialized and
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attached to object . At this point the agent has constructed a long enough tool to reach
the desired Object ( ). Under the language instruction, she then Pushes the tool
“forward” to touch the desired Object, Attaches the tool to the Object (in 3D space, the
corresponding action could be “grabbing” the object), then Pulls the object back toward
her initial location. The Object is hence moved out of the Confinement Area.

Through this example, one can see that every part of the language instruction plays a
part in instructing the system what to do, and the system “fully understands” in that it
carries out the actions accurately. In a sense, understanding is understanding how to act.

There is another level of the true language understanding system in Fig. 5 that we
did not describe, which is the syntactic level of understanding – how to convert the
English sentences to correctly interpret the overall meaning from the meaning of its
parts. We assume that there is a method to do this correctly. What is demonstrated in
Fig. 5 is the semantic aspect - how the meaning of each of the parts of the language
instructions on the left side of the figure can be interpreted at the ground level – at the
level in which the understanding of the words’ meanings lead to specific actions.

Fig. 5. The understanding of some natural language instructions in a system, which carries out
the correct actions accordingly, reflecting its “true” understanding. All the grounded constructs
discussed earlier such as Move, Materialize, Attach, Push, After are brought to bear here. Based
on [5].
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2.6 Higher Level Concepts Are Grounded Through Lower Ones

Concepts such as Move are at the ground level in that they have direct spatio-temporal
correspondences. There are concepts that are at much higher levels that are built upon
these concepts. For example, “Change-Direction” can be defined in terms of Move-Up
and Move-Down as shown in Fig. 6. At a higher level, there is the concept of “Tra-
jectory.” Figure 6 is a specific instance of Trajectory [5, 6]. Something akin to the
general version of Move in Fig. 1(d) can be concocted for Trajectory as well and it can
be defined as a sequence of “any number of Moves, any number of Changes of
Directions, any number of steps of Stay, in any combination.” But its meaning is
grounded in the ground level constructs of Move, Stay, etc. Thus, higher, more abstract
levels of concepts are grounded through intermediate and ground level concepts.

Figure 6 also shows the construct can be used to RECOGNIZE as well as
GENERATE the concept of Trajectory in a very straight forward manner.

The basic dictionary definition of Trajectory (Merriam-Webster) is:
Trajectory: The curve that a body (such as a planet or comet in its orbit or a rocket)

describes in space.
Compared to the representation in Fig. 6, the representation in Fig. 6 is grounded in

the sense that it satisfies the RECOGNTIION and ACTION criteria above in a very
straight forward manner, and allows a system to directly operate on it.

Fig. 6. The higher level concept Trajectory defined in terms of lower level and ground level
concepts. This is a specific instance of the concept of Trajectory. It could be suitably generalized
like in the case of Fig. 1(b). RECOGNITION and GENERATION of the concept are quite
straight forward. Based on [5, 6].
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3 Earlier Natural Language Understanding Work in AI

3.1 Winograd’s SHRDLU

In earlier AI work such as that of Winograd [8], true language understanding such as
that posited above has actually been achieved to some extent. Figure 7 shows what his
system, called SHRDLU, is able to do. Given some commands in language form, the
system is able to interpret the commands and carry out actions in the real world to
demonstrate that those commands are understood. Words such as “Pick-up,” “big,”
“black,” “box” are defined and understood at the ground level. The knowledge is hand-
coded in procedural form.

3.2 Schank’s Script Representation

Another work in earlier AI by Roger Schank and Robert Abelson [9] used “scripts” to
encode deep understanding. Figure 8 is an example of a “Restaurant Script” in which
all the activities that take place in a restaurant together with the corresponding goals
and intentions of the participants are encoded (Fig. 8 is a vastly stripped-down version
of the script. Please refer to [9] For the full detailed version).

Fig. 7. SHRDLU – an earlier natural language understanding effort. Based on [8].

Fig. 8. Schank and Abelson’s [9] Restaurant Script (a stripped-down version of a figure in [9]).
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With this deep representation, their question answering system can respond to
statements such as “I went to the restaurant yesterday. I didn’t leave a tip.” The
expected human-like response would be “Oh, was the service bad?” Now, a typical
dictionary definition of the concept of a restaurant is “a business establishment where
meals or refreshments may be purchased” (Merriam Webster). With this kind of
shallow, ungrounded definition and representation, the above human-like response
would not be possible.

3.3 Relationships Between the Earlier Effort and Ours

The difference between our proposed true language understanding representations as
demonstrated in Figs. 1, 2, 3, 4, 5 and 6 and that of Winograd and Schank is: our is at
an even deeper ground or atomic level representation. For example, the “block” in
Winograd’s SHRDLU system or the Table in Schank’s Restaurant Script have further
detailed structures that are not captured in their representations. But in spirit, our
system is similar to theirs.

The research in language understanding such as that represented by the work of
Winograd and Schank fizzled out because their systems were not scalable. There were
no computer vision and machine learning at that time (the 1970’s) and the knowledge
involved was hand-coded. If an AI system is endowed with computer vision and
learning capabilities, deep knowledge structures such as the Restaurant Script can be
learned by bringing the system (say, a “child” robot) to a restaurant and let it observe
and learn the activities inside. As the robot moves about in an environment, it will be
able to pick up scripts of all kinds of activities. These scripts will then form the
knowledge basis for deep and true language understanding.

Pei et al. and Si et al. [10, 11] have demonstrated just such a computer vision
capability. Through video observation of the activities in a room carried out by various
human agents, their system is able to construct a causal spatio-temporal AND-OR
graph that encodes all the possible observed sequences of long range human behavior
in the scene. This is akin to the scripts of Schank and Abelson, except that this also
represents both the learning and encoding of grounded information about the real
world. This will set the stage for the acquisition of knowledge for true language
understanding.

4 Summary and Conclusion

In this paper we first showed that dictionary-like definitions, i.e., definitions of words in
terms of other words, are not sufficient for a language processing system to achieve true
language understanding because these definitions are ultimately circular. To achieve
true understanding of various concepts and words, these concepts and words must be
grounded, either directly or indirectly, through other intermediate concepts to some
ground level representations that are directly tied to the physical or mental constructs to
which they refer. We presented the idea that for physical concepts, there is a set of
spatio-temporal descriptions that can suffice to provide the ground level representations
(e.g., Move, Materialize, etc.). We posited that there is probably a limited, small set of
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these “atomic” basic concepts that are sufficient to ground all the concepts related to
physical concepts in the human lexicon, and this is consistent with previous work.

For mental constructs such as sensation and emotion, we posited that an intelligent
system needs to have the corresponding external and internal sensors akin to those
humans possess to be able to truly understand the corresponding concepts or words in a
natural language discourse.

We also specified the conditions of being able to use these concepts both to rec-
ognize instances of them in the real world and to act on the real world to be the
conditions for “true” understanding. Thus understanding, in a sense, is understanding
of how to recognize and act. We reviewed two former natural language understanding
systems from the early days of AI, namely that of Winograd and Schank and Abelson,
to demonstrate that similar ideas have been propounded before but were forgotten in AI
because those systems were not scalable. We also mentioned that armed with the new
tools of computer vision and machine learning, systems like these may become scalable
and therefore we should revisit this issue of natural language understanding.

Future research would focus on (i) further ascertaining a sufficient set of grounded
concepts for most if not all concepts/words in the human mental lexicon to be grounded
on; (ii) elucidating on how other complex concepts can be grounded accordingly;
(iii) demonstrating an AI or robotic system that can really benefit from true language
understanding – either in carrying out complex instructions by humans correctly, or
through language, learning a vast amount of knowledge necessary for its functioning,
much like how the vast majority of a human’s knowledge is learned.

This will usher in an era of machine learning akin to that of human learning, in
which most complex knowledge is learned rapidly through language instruction. This
kind of machine learning will be set totally apart from the slow and restricted kinds of
machine learning today – the supervised and unsupervised learning methods applied to
pattern recognition, or the reinforcement learning method applied to action sequence
learning.
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