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Complex societies and the growth 
of the law
Daniel Martin Katz1,2,5*, Corinna Coupette 3, Janis Beckedorf 4 & Dirk Hartung 2,5

While many informal factors influence how people interact, modern societies rely upon law as 
a primary mechanism to formally control human behaviour. How legal rules impact societal 
development depends on the interplay between two types of actors: the people who create the rules 
and the people to which the rules potentially apply. We hypothesise that an increasingly diverse 
and interconnected society might create increasingly diverse and interconnected rules, and assert 
that legal networks provide a useful lens through which to observe the interaction between law and 
society. To evaluate these propositions, we present a novel and generalizable model of statutory 
materials as multidimensional, time-evolving document networks. Applying this model to the federal 
legislation of the United States and Germany, we find impressive expansion in the size and complexity 
of laws over the past two and a half decades. We investigate the sources of this development 
using methods from network science and natural language processing. To allow for cross-country 
comparisons over time, based on the explicit cross-references between legal rules, we algorithmically 
reorganise the legislative materials of the United States and Germany into cluster families that reflect 
legal topics. This reorganisation reveals that the main driver behind the growth of the law in both 
jurisdictions is the expansion of the welfare state, backed by an expansion of the tax state. Hence, our 
findings highlight the power of document network analysis for understanding the evolution of law and 
its relationship with society.

Modern societies rely upon law as the primary mechanism to control their development and manage their 
conflicts. Through carefully designed rights and responsibilities, institutions and procedures, law can enable 
humans to engage in increasingly complex social and economic activities. Therefore, law plays an important role 
in understanding how societies change. To explore the interplay between law and society, we need to study how 
both co-evolve over time. This requires a firm quantitative grasp of the changes occurring in both domains. But 
while quantifying societal change has been the subject of tremendous research efforts in fields such as sociol-
ogy, economics, or social physics for many  years1–6, much less work has been done to quantify legal change. In 
fact, legal scholars have traditionally regarded the law as hardly quantifiable, and although there is no dearth of 
empirical legal  studies7–9, it is only recently that researchers have begun to apply data science methods to  law10–13. 
To date, there have been relatively few quantitative works that explicitly address legal  change14–19, and almost no 
scholarship exists that analyses the time-evolving outputs of the legislative and executive branches of national 
governments at scale. Unlocking these data sources for the interdisciplinary scientific community will be crucial 
for understanding how law and society interact.

Our work takes a step towards this goal. As a starting point, we hypothesise that an increasingly diverse and 
interconnected society might create increasingly diverse and interconnected rules. Lawmakers create, modify, 
and delete legal rules to achieve particular behavioural outcomes, often in an effort to respond to perceived 
changes in societal needs. While earlier large-scale quantitative work focused on analysing an individual snapshot 
of laws enacted by national  parliaments20,21, collections of snapshots offer a window into the dynamic interac-
tion between law and society. Such collections represent complete, time-evolving populations of statutes at the 
national level. Hence, no sampling is needed for their analysis, and all changes we observe are direct consequences 
of legislative activity. This feature makes collections of nation-level statutes particularly suitable for investigating 
temporal dynamics.

To preserve the intended multidimensionality of legal document collections and explore how they change 
over time, legislative corpora should be modelled as dynamic document  networks20–26. In particular, since legal 
documents are carefully organised and interlinked, their structure provides a more direct window into their con-
tent and dynamics than their language: Networks honour the deliberate design decisions made by the document 
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authors and circumvent some of the ambiguity problems that natural language-based approaches inherently face. 
In this paper, we therefore develop an informed data model for legislative corpora, capturing the richness of 
legislative data for exploration by social physics. We leverage our data model to analyse the evolution of federal 
statutes in the United States and Germany. Here, we find extensive growth in legal complexity as a function of 
volume, interconnectivity, and hierarchical structure of the legislation in both countries—evidence that the 
highly industrialised countries we study seek to manage behaviour by building increasingly complex bodies of 
legal rules. Searching for the sources of the growth we observe, we draw on graph clustering techniques to locate 
those legal topics that contribute most to the complexity increase and trace their development over time. Deriving 
our information on the content of legislative documents directly from the conscious structural choices made by 
their drafters, we find that the main driver behind the growth of the law in both the United States and Germany 
is the expansion of the welfare state, backed by an expansion of the tax state. Beyond this high-level picture, 
our methodology also enables more fine-grained discoveries—for example, we find that during our observation 
period, the regulation of natural resources in the United States shifted from exploitation to conservation. Thus, 
we achieve results that would be hard (or even impossible) to obtain using approaches that leverage only the 
natural language of legislative documents while keeping the amount of subjective judgements to a minimum. Our 
work highlights the potential of legal network data and document network analysis for studying the interaction 
between law and society when viewed through the lens of Complex Adaptive Systems (CAS)17,27–31, and it opens 
novel research avenues to the interdisciplinary scientific community.

Results
Dynamic network model of legislation. We model 25 years of statutory materials from two advanced 
industrial countries, the United States and Germany, as time-evolving document networks. To build our original 
datasets, for the United States, we collect annual snapshots of the United States Code (US Code) from 1994 to 
2018 from the Office of the Law Revision Counsel of the U.S. House of Representatives. For Germany, we create 
a parallel set of yearly snapshots for all federal statutory laws in effect at the beginning of the year in question 
based on documents from Germany’s primary legal data provider, juris GmbH. For details on our data sources, 
see Sect. 1 of the Supplementary Information (SI).

Each individual law or section (that has not been repealed) contains at least some text, and it may contain 
nested subsections as well as ingoing and outgoing references. For each country and yearly snapshot, we construct 
a network of all federal statutes. The entities in this network are the structural elements of the statutes we collect, 
some of which contain text (i.e., the stipulation of a legal rule). These entities are interconnected by inclusion 
relationships (e.g., a section containing several paragraphs) and cross-references (i.e., the text of an element 
referencing another element), and they can be sequentially ordered by their labels. Notably, only one level of the 
inclusion hierarchy in legislative corpora is uniquely sequentially labelled (this is the Section level in the United 
States and the § or Article level in Germany). We refer to the structural elements in this layer as seqitems. For 
excerpts from United States law and German law that illustrate their inherent structure, see Sect. 1.3 of the SI.

In the legislative process, the structure of legislative texts is controlled by the administrative officials drafting 
the rules. Therefore, hierarchy, reference, and sequence within a corpus of legislative documents contain infor-
mation about the content of the corpus that is less noisy and easier to parse than its language. To unlock this 
information for large-scale comparative and dynamic analysis, we model a body of legislation at a certain point in 
time as a document collection following the Document Object Model (DOM)  standard32 (for our domain-specific 
XML Schema Definition [XSD], see Sect. 2.4 of the SI). With each document collection, we associate four graphs 
as depicted in Fig. 1a, whose formal definitions are given in "Modelling legislative document collections". Our 
simplest graph is the hierarchy graph, which models the inclusion relationships between the structural elements 
of legal texts. It is a subgraph of the reference graph, which models inclusion and cross-reference relationships. 
From a network science perspective, the reference graph is perhaps the most intuitive representation of a legisla-
tive document collection, and all of our other graphs can be derived from it. The sequence graph contains only 
the seqitems from the reference graph, which are connected by cross-reference edges and bidirectional sequence 
edges ("Modelling legislative document collections" introduces a parametrized definition of this graph for greater 
analytical flexibility). The cross-reference edges are unweighted, while the sequence edges have weights propor-
tional to the distance between their endpoints in the undirected version of the hierarchy graph (e.g., a sequence 
edge between Section i − 1 and Section i in Chapter A weighs more than a sequence edge between Section i in 
Chapter A and Section i + 1 in Chapter B). The sequence graph expresses how legal practitioners work with a 
legal text (i.e., they approach a topic through one particular rule, scan its vicinity as long as it is also hierarchically 
close, possibly follow a cross-reference, then scan the hierarchically close vicinity of a referenced rule). Finally, 
we define quotient graphs based on attributes attached to the elements of our reference graphs. In these graphs, 
all elements with the same attribute value(s) (e.g., all seqitems belonging to the same Chapter) are collapsed into 
one node, and edges are rerouted accordingly.

The graphs sketched above allow us to compare legislative document collections both horizontally (i.e., across 
nations) and vertically (i.e., across time). In particular, hierarchy graphs and reference graphs let us track basic 
statistics over time (cf. "Assessing legislative growth"), which change when lawmakers add, update, or delete 
legal rules as depicted in Fig. 1b. Sequence graphs help us align basic elements of legal texts across years (cf. 
"Comparing document networks over space and time”). Along with quotient graphs, they also facilitate the 
reorganisation of legislative materials via graph clustering (cf. "Comparing document networks over space and 
time"), where they allow us to focus on different topics or levels of granularity depending on the research question 
to be investigated. To the best of our knowledge, there exists no comparably flexible explicit model for legislative 
document collections in the document network analysis literature. Since we do not use all features of the model 
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in our analysis, exploiting the power of our data model to a greater extent is a natural direction for future work 
(see "Discussion" for details).

Substantial growth in volume, connectivity, and hierarchical structure. The data model intro-
duced in "Dynamic network model of legislation" enables us to track the development of our legislative corpora 
over time. As Table 1 shows, the absolute size of these corpora has grown substantially in the past two and a 
half decades, whether measured by the number of tokens (whitespace-delimited chunks of text that roughly 
correspond to words), the number of structural elements, or the number of cross-references contained therein. 
Judging merely by the number of tokens, in both jurisdictions, the law in 2018 is more than 1.5 times as large as 
the law in 1994. Given the fact that the legal systems of both countries were already fully developed twenty-five 
years ago, the sheer magnitude of this growth is striking.

Inspecting the statistics in Table 1 along with the relative growth over time illustrated in Fig. 2 further reveals 
two distinct growth patterns: In the United States, the number of tokens and the number of cross-references 
grow at the same rate, which is considerably lower than the growth rate for the number of structural elements. 
In contrast, the German corpus exhibits its highest growth rate for the number of cross-references, and growth 
in the number of tokens is noticeably faster than growth in the number of structural elements. Thus, the volume 
increase in the federal statutory legislation of the United States is accompanied primarily by an increase in the 
number of entities, whereas the volume increase in the federal statutory legislation of Germany is accompanied 
primarily by an increase in the number of relationships in the legislative network. This suggests that cross-
references and hierarchical elements function as substitutes when it comes to integrating new content into an 
existing legal corpus.

However, increasing the number of hierarchical elements or the number of cross-references also tends to 
correlate with a decrease in navigability as it may be indicative of content fragmentation: Anyone trying to 
understand a legal rule will more often be forced to combine information from multiple places in the law to 
obtain a complete picture of its content. This difficulty is only exacerbated by the dominant legal information 
systems, which often force users to click through hierarchies of legal elements and seldom allow them to display 
a custom selection of structural units in a single browser tab for joint appreciation. Therefore, our statistics for 
both countries support the intuition that their legislative apparatuses are growing also in complexity—although 
the complexity increase is driven by different design choices in both jurisdictions. While the difference in legisla-
tive drafting styles is of natural interest for comparative legal scholarship, the common growth trend we observe 
begs a broader question: What is its source?

Figure 1.  Dynamic network data model for legislative document collections. All figures created by the authors.
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This question has no meaningful answer within the current formal organisation of the legislative materials. In 
fact, the US Code as the primary organisational system for legislation in the United States has barely changed in 
the time period under study. The US Code comprised 50 Titles in 1994; since then, three Titles have been added 
(51, 52, and 54), two formerly empty Titles have been reassigned (6, 34), and two Titles have experienced small 
name changes (36, 47). Apart from that, US federal legislation has been codified in the same Titles since 1994, 
with the total number of Chapters existing across all Titles rising from 2000 to 2723 (for an average growth of 
30 Chapters per year). Figure 3 localizes the growth over four-year intervals within the existing, content-based 
organisation of the US Code. Based on raw token counts (excluding notes and appendices), the biggest growth 
has occurred in Title 42 (The Public Health and Welfare), Title 7 (Agriculture), and Title 15 (Commerce and 
Trade). The relative growth in the number of tokens has been highest in Title 4 (Flag and Seal, Seat of Govern-
ment, and the States), Title 46 (Shipping), and Title 7 (Agriculture).

This gives an interesting first impression on the macro level, but the Title headings are so general, and the 
content placed in the individual Titles is so diverse (e.g., the current Title 42 contains provisions on Social 
Security [Chapter 7], Energy Policy [Chapter 134], and Aeronautics and Space Activities [Chapter 155]), that it 
tells us little about the triggers and the nature of the growth we observe. The situation further deteriorates if we 
want to compare the German developments with those in the United States: Germany does not codify its federal 
legislation in a single official collection but publishes only individual acts and classifies them into subject areas 
for navigation (details can be found in Sect. 1.2 of the SI). The number of consolidated acts with more than 500 

Table 1.  Federal legislation in the United States and Germany: descriptive statistics (1994 and 2018).

United States Germany

1994 2018 � 1994 2018 �

Tokens 14.0 M 21.2 M 51 % 4.5 M 7.4 M 64 %

Structures 452.4 K 828.1 K 83 % 120.6 K 161.4 K 34 %

References 58.0 K 88.6 K 53 % 76.9 K 139.1 K 81 %

Figure 2.  Federal legislation in the United States and Germany: growth statistics (1994–2018).

Figure 3.  Federal legislation in the United States by Title (1994–2018), measured in tokens.
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characters (roughly a paragraph, effectively excluding laws with purely formal content) grew from around 1550 
to over 1800 in the period from 1994 to 2005, then was intentionally shrunk to around 1550 until 2011, and has 
resumed slow growth since 2011, reaching around 1600 in 2018—so we do not even see a monotone growth pat-
tern in this data. To uncover the sources of the growth of the law, and compare our findings between the United 
States and Germany, we thus need to reorganise the legislative materials of both nations.

Clustering for comparative and dynamic analysis. A first, straightforward way to reorganise the US 
Code is to aggregate it not at the Title level but rather at the Chapter level. This is especially convenient because 
the number of Chapters in the US Code is comparable to the number of individual laws in Germany, which we 
only break up into smaller units if they contain several Books (a common feature of large German codifications 
such as the German Civil Code [BGB] and the German Commercial Code [HGB]). The node-link diagrams 
of the quotient graphs corresponding to this reorganisation for the United States and Germany in 1994 and 
2018 are shown in Fig. 4. In these graphs, nodes share the same colour if they belong to the same cluster family. 
Broadly speaking, cluster families are sets of clusters (a cluster is a set of nodes), mostly from different snapshots, 
which contain many identical, similar, or related rules (cf. Definition 8 in "Comparing document networks over 
space and time")—and as such, they approximate legal topics. We identify cluster families using node and cluster 
alignments (cf. "Comparing document networks over space and time"). Cluster families will help us assess which 
legal topics are driving the growth we report in "Substantial growth in volume, connectivity, and hierarchical 
structure". The cluster family colouring scheme will be used in all remaining graphics; a full legend mapping 
colours to legal topics can be found in Sect. 5.1 of the SI. In Fig. 4, nodes of the same colour can generally be 
thought of as belonging together (i.e., same colour ⇔ (roughly) same legal topic), and node colours can be com-
pared across years but not across nations (e.g., the legal topic of red nodes in the graphs for the United States may 
differ from the legal topic of red nodes in the graphs for Germany).

The node-link diagrams in Fig. 4 allow us to identify interesting connections between individual parts of the 
law at the Chapter level— e.g., Book Three of the German Commercial Code (HGB/Drittes Buch), which regu-
lates books of accounts, is much more central as a reference target in 2018 than it was in 1994, and the central 
role of Title 42, Chapter 6 of the US Code in 1994 (The Children’s Bureau) has been taken by Title 42, Chapter 6A 
(Public Health Service) and Chapter 7 (Social Security) in 2018. But since there are well over 1000 nodes in both 
jurisdictions, the quotient graphs are difficult to analyse in their entirety, related content remains scattered over 
different nodes, and the changes between snapshots are difficult to trace. Hence, the main conclusion from Fig. 4 
is that the quotient graphs by Title/Chapter (United States) and Law Name/Book (Germany) alone are unsuited 
to unveil the temporal dynamics of legislative corpora in full detail. To coherently group related content and 
investigate change over time, we thus need a more sophisticated reorganisation method. Therefore, we cluster 
our annual Chapter quotient graphs for each country based on their cross-references.

In (non-overlapping) graph clustering, the goal is to divide the elements of the graph (typically the nodes, 
here: Chapters in the United States and Books or individual laws in Germany) into groups such that elements 
in the same group are relatively densely connected, whereas elements in different groups are relatively sparsely 
connected. We use the Infomap algorithm based on the map equation33,34 to find our clusters for three reasons. 
First, in using random walks (i.e, sequences of random steps using the edges of the graph) as a basic ingredient, 
Infomap mimics how lawyers navigate legal texts. The legal navigation process is similar to how scholars navigate 
papers or web surfers navigate the World Wide Web (WWW), with the additional quirk that sequence edges 
play a large role in steering the search (think of reading the next paper in the special issue of a journal or clicking 
through a series of blog posts). Second, by leveraging the connection between finding clusters in a graph and 
minimizing the description length of a random walk on the graph, Infomap has a solid information-theoretic 
foundation. And third, the algorithm scales to large graphs.

When running Infomap, we use the default configuration, with one exception: We pass 100 as a parameter for 
the preferred number of clusters, which roughly corresponds to the number of top-level categories with which 
legal databases structure their content. This parameter choice allows us to determine the legal topics driving the 
growth we observe at a sufficiently high granularity while maintaining an overview of the entire corpus, and it 
protects against sudden jumps in the cluster granularity between years due to small differences in the descrip-
tion lengths of competing solutions, which are more likely to occur when no preferred cluster size is given. As 
detailed in the sensitivity analysis included in Sect. 4.1 of the SI, the precise number of input clusters has little 
impact on the overall results, as long as the numbers of clusters are comparable across years (e.g., tracing changes 
between a clustering in which most of the text is contained in 5 clusters and a clustering with 50 clusters is an 
invidious task). To increase the stability of our results, we obtain our final clustering for each country and year 
as the consensus clustering of 1000 Infomap runs, where the consensus clusters are the connected components 
of a graph whose nodes are the quotient graph nodes, and whose edges indicate which nodes co-occurred in 
the same cluster in 95 % of all runs. As shown in Sect. 4.2 of the SI, there is little variance both across those runs 
and across multiple consensus clusterings using 1000 runs to find the consensus, indicating that our results are 
robust against the randomness inherent in the Infomap algorithm.

Based on our consensus clusterings, we can compute alignments between the clusters we find in subsequent 
snapshots for each of our countries. These cluster alignments allow us to track the temporal evolution of indi-
vidual clusters. They are based on node alignments of a fine-grained variant of sequence graphs, which leverage 
that most rules do not change most of the time—i.e., we can match many seqitems between adjacent snapshots 
based on their (nearly) identical texts or (nearly) identical keys. For details on our node alignment heuristic and 
the cluster alignment procedure that builds upon it, see "Comparing document networks over space and time".

The fine-grained year-to-year cluster alignment facilitates a meso-level analysis of the growth reported in 
"Substantial growth in volume, connectivity, and hierarchical structure". Figure 5 provides a comprehensive 
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overview of the aligned clusters for the entire United States corpus (an analogue figure for the German corpus 
can be found in Sect. 3.3 of the SI): The corpus in a certain year is modelled by a horizontal bar, which is com-
posed of blocks representing clusters with width proportional to the number of tokens they contain. The year-
to-year movement of tokens between clusters—i.e., the volume of text associated with one cluster in one year 
and another cluster in the next year, identified using the alignment between the items below the seqitem level 
(subseqitems) of the clusters—is indicated by splines connecting the blocks of adjacent years, where we only plot 
token movements corresponding to at least 15 % of the tokens from both the ingoing and the outgoing cluster 
to filter out noise and isolate largely self-contained strands of the law as cluster families (see also "Comparing 
document networks over space and time"). The width of the plotted splines is again proportional to the number 
of tokens moving. Within each horizontal bar, the blocks representing the clusters are sorted in descending 

Figure 4.  Federal legislation in the United States and Germany: quotient graphs by Title/Chapter (United 
States) and Law Name/Book (Germany) (1994 and 2018), with arrows running between nodes indicating that 
text contained in one node cites text contained in another node. Node sizes indicate token counts (larger = more 
tokens), where only nodes with at least 5000 tokens (corresponding to roughly ten pages) are shown. For each 
nation separately, nodes share the same colour if they are placed in the same cluster family, and nodes not in 
one of the 20 largest cluster families are coloured in grey. Only the labels of the 50 largest nodes (measured in 
tokens) are drawn.
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order by their size, i.e., the clusters with the largest numbers of tokens are always pushed to the left. To reduce 
visual clutter, we summarize very small clusters in one miscellaneous cluster. This cluster is always the rightmost 
cluster, depicted in light grey; more information on its contents can be found in Sect. 5.2 of the SI. The blocks 
and splines belonging to the 20 largest cluster families are uniquely coloured, whereas smaller cluster families 
are alternately coloured in alternating greys. The absolute growth of the United States corpus is reflected in the 
increasing width of the bars over time, whereas changes in cluster compositions and relative cluster sizes are 
visible as diagonal year-to-year movements.

Inspecting the numbers behind Fig. 5, we find that our clusters grow linearly with respect to their size, i.e., 
bigger clusters gain more tokens than smaller clusters, but that the growth rates differ depending on the legal 

Figure 5.  Federal legislation in the United States by cluster (1994–2018). Each block in each year represents 
a cluster. Clusters are ordered from left to right by decreasing size (measured in tokens) and coloured by the 
cluster family to which they belong, where clusters not in one of the 20 largest cluster families are coloured in 
alternating greys. Small clusters are summarised in one miscellaneous cluster, which is always the rightmost 
cluster and coloured in light grey. A full legend mapping colours to legal topics can be found in Sect. 5.1 of 
the SI.
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topic represented by the cluster. To understand which legal topics are driving the overall growth, we determine 
the growth rate of our cluster families via an ordinary least squares (OLS) regression. We select the 20 largest 
cluster families for both countries, where the size of a cluster family is the size of its largest cluster (measured in 
tokens), called its leading cluster. For each of these cluster families, we inspect its content composition, and label 
it with the dominant legal topic. More information on our labelling process, including a list of all labels, can be 
found in Sect. 5.1 of the SI. Together, the labelled cluster families account for roughly 50 % of the total growth in 
the United States and roughly 80 % of the total growth in Germany. Figure 6 displays a selection of the most and 
least growing cluster families in the United States and Germany, while detailed results can be found in Sect. 3.4 
of the SI. The colouring scheme for the United States is identical to that used in Fig. 5, while the colours for 
Germany are chosen to match those for the United States for similar topics and avoid colour clashes otherwise.

Notably, in both jurisdictions, growth rates are highest for the cluster families concerning social welfare 
and financial regulation, and cluster families dealing with taxes, environmental protection, and immigration 
also display strong growth in both countries. In addition to these similarities, we also find some differences in 
the growth patterns of both countries. As one might expect, the United States has cluster families concerned 
with Native Americans (shrinking) and student loans (growing), while no analogous families exist in Germany. 
Likewise, Germany has a cluster family concerned with war restitution (shrinking) that has no counterpart in 
the United States. The unmatched growth of the criminal law and corporate and insurance law cluster families 
in Germany, which may be counterintuitive at first sight, is probably a result of differences in legislative compe-
tencies (criminal law and corporate law including insurance are largely state law in the United States while they 
are federal law in Germany). In addition, insurance regulatory law on the federal level in the United States is 
primarily enforced through federal regulations, which are not part of our dataset as they are kept in a separate 
collection (the Code of Federal Regulations). That the United States has a growing cluster family concerned, inter 
alia, with foreign assistance and export control will not surprise those working in international development or 
international politics, and the fast-growing cluster dealing with renewable energy, power grid regulation, and 
related administrative procedures in Germany will not surprise those following the nation’s political discourse 
(although in both cases, the unexpectedness could be impacted by hindsight bias). Overall, the differences we 
observe seem to be in line with differences in the prominence of certain policy debates in both countries, reflect-
ing social, political, and cultural divergences. As such, they invite in-depth analysis by subject matter experts.

Finally, the year-to-year cluster alignment underlying Fig. 5 allows us to observe different types of growth. 
For example, some clusters or cluster families witness intrinsic growth, i.e., growth by addition of tokens without 
large gains of tokens from other areas; the cluster family containing veteran’s benefits is a case in point, as is a 
cluster family on small business support and civil and military public procurement. Such cluster families, which 
have been rather self-contained in the past 25 years, address issues of sustained or increasing societal importance. 
Other clusters or cluster families, however, witness extrinsic growth, i.e., growth by gaining tokens from clusters 
in other families. One example is a United States cluster concerned with the environmental protection of national 
parks and rivers, which grew substantially when rules about national forests as well as prospecting permits and 
leases joined it from clusters concerned with forestry and mining, indicating a shift in perspective from land use 
as resource exploitation to land use as resource conservation. To capture such differences in change processes, 
an elaborate cluster change event taxonomy is needed. Such a taxonomy could build on the work by Palla et al.4, 
and developing it provides an interesting opportunity for further research.

Figure 6.  Federal legislation in the United States and Germany: growth statistics by cluster family for selected 
cluster families (1994–2018). The legends are sorted by the y-values of the regression lines in 2018. The colours 
are comparable across countries, i.e., same colour ⇔ (roughly) same topic.
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Discussion
This paper investigates the growth of federal legislation in two industrial countries over a period of 25 years. As 
such, it is limited in geographic scope (United States and Germany), temporal scope (1994–2018), and institutional 
scope (legislative bodies on the federal level). This makes it hard to assess to which extent the growth we observe 
is particular to our data or rather universal. The trend we identify applies to the recent history of federal legisla-
tion in at least two countries, the United States and Germany, and our findings in one country provide context 
for our findings in the other. Thus, we can establish that the growth we find is not a singular phenomenon, but 
we can only guess how it relates to the trends we might find in the legal document networks of other countries, 
time frames, or institutions.

The document networks that are most closely related to legislative networks are networks of regulations 
(produced by executive agencies) and networks of judicial decisions (produced by courts)—and for all of them, 
growth statistics that are directly comparable to ours are lacking. Some growth statistics are known for patent 
citation  networks35–38, where, e.g., the number of patents granted annually by the United States Patent and 
Trademark Office has roughly tripled in the 25 years from 1994 to  201838. Since the generating processes of pat-
ent citation networks are very different from those of legislative networks (patent applicants need to cite prior 
art in their filings, patent examiners can add further citations, and too much prior art might risk patentability) 
and the units of analysis are not the same (structural elements in legislative networks vs. individual patents in 
patent citation networks), however, this result has little bearing on our findings. For similar reasons, comparing 
our findings with results on non-legal document networks, such as the World Wide Web or scholarly networks, 
is potentially misleading. To put our findings into perspective, extending the scope of our data to other legal 
document networks is therefore an important direction for future work. For example, investigations in the fol-
lowing directions are supported by our legal network data model: 

1. Analysing legislative activity on levels above and below the federal level and comparing the results with our 
findings will advance the search for invariants that characterize the development of legislative systems. It can 
also help us understand the division of labour within the legislative pyramid (e.g., the federal, the state, and 
the local level). Does state law grow even faster than federal law? If so, are the growth mechanisms similar 
or different? How do the answers to these questions depend on the allocation of legislative competencies?

2. Integrating documents from the executive and judicial branches of government with our datasets could help 
us explore how different parts of the legal system interact. How does the evolution of a legislative network 
compare to that of a network of administrative regulations, a network of executive orders, or a network of 
judicial decisions? In what areas of law is the development driven by the executive or the judiciary, rather 
than the legislative? What does this tell us about the distribution of power between the different branches of 
government?

3. Combining our legislative network data with data collected in other fields of quantitative social science might 
improve our understanding of the interaction between legal rules and other rule sets that impact the behav-
iour of individuals and societies. When, where, and how do legislative changes impact how people behave on 
the ground? When, where, and how do changes in how people behave prompt legislative changes? In other 
words: What causal relationships can we establish between legal change and societal change? These questions 
are inherently multidisciplinary, and to separate causes from confounders, legal network data would need 
to be combined with data reflecting public sentiment (e.g., social media data or public news data) and data 
reflecting individual or collective choices (e.g., financial network data, company reports, or economic panel 
data on households, firms, and non-governmental organisations). Similarly, a multi-pronged strategy could 
be pursued to investigate the relationships between legal change and technological change. Here, combining 
legal network data with patent citation network, patent litigation, and R&D investment data appears to be 
particularly promising.

Methodologically, our approach emphasizes the structural features of legislative texts. In particular, for the 
results we report in this work, the content of the legal texts has been only of indirect interest, e.g., as reflected 
in raw token counts or in reference structures that characterize legal topics. As demonstrated in "Clustering for 
comparative and dynamic analysis", however, qualitative analyses of the legal rules contained in our document 
networks can yield further insights, and this opens opportunities for normative legal research in areas such 
as comparative law and legal  theory39–41. In these legal disciplines, the United States and Germany are usually 
classified as following different legal traditions, also referred to as legal families, and the categorization, though 
commonly accepted, has not been corroborated by empirical  studies42–45.

Last but not least, the findings reported in this paper are based on a set of choices for methods and param-
eters. For example, we examine growth by analysing year-to-year net gain of tokens, as this difference can be 
determined reliably. The amount of legislative activity, however, is likely much higher (e.g., deletions and addi-
tions cancel out from the net gain perspective), and developing tools that allow for a fine-grained accounting of 
legislative changes constitutes an interesting research direction. While we explored our model space extensively 
(as detailed in Sect. 4 of the SI), the parametrisation of the clustering required numerous decisions based on 
our experience and familiarity with the subject matter. Other parametrisations are possible, and they might be 
needed in other analytical settings. In particular, future work could examine selected parts of our data in greater 
detail, zoom in on a particular legal topic, and therefore choose very different parameters to operate at a higher 
level of resolution.
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Methods
Modelling legislative document collections. To formalize the intuition that is given in "Dynamic 
network model of legislation" and illustrated in Fig. 1, we use the following definitions. Let D be a document 
understood by the Document Object Model (DOM) standard, with elements ED of types {document, item, 
seqitem, subseqitem, text} and root rD of type document. We interpret D as a directed rooted tree TD 
in the graph theoretical sense, where the nodes of TD are the elements of D that are not of type text, and an 
arc between two nodes indicates that the source contains the target—i.e., TD contains all structural elements of 
D with their containment relations. With each node in TD , we associate a unique identifier and three attributes: 
The type of a node is its type in D, the level of a node is its distance d from the root, with d(rD , rD) = 0 , and the 
text of a node is the text of all its children (which can be used to derive additional statistics as necessary). Nodes 
of type seqitem (short for sequence item) typically have cite keys, i.e., sequentially ordered unique identifiers 
by which they are commonly referenced. All nodes may also have headings (representing the headings in the 
original document), and documents may have abbreviations by which they are commonly referenced. The 
custom XSD expressing this document model can be found in Sect. 2.4 of the SI.

Now let Di
t be collection i of documents at time t with their tree representations T i

t  . We define the following 
graphs for Di

t:

Definition 1 (Hierarchy Graph Hi
t) The hierarchy graph of collection Di

t , denoted Hi
t , is a directed graph

where

with a structural element r̄i on level −1 representing the identity of the collection, and

That is, the hierarchy graph is the union of all document trees’ structural elements equipped with their con-
tainment relation, joined by a meta root node identifying the collection.

Definition 2 (Reference Graph Ri
t) The reference graph of collection Di

t , denoted Ri
t , is a directed multigraph

where

with Ci
t a multiset given by

That is, the reference graph is the hierarchy graph, augmented by reference relations between its nodes.

Definition 3 (Sequence Graph Sit(ρ,w,α)) The sequence graph of collection Di
t with parameters ρ , w, and α , 

denoted Sit(ρ,w,α) , is a directed multigraph

Here, Vi
t,S(ρ) initially contains all nodes of type seqitem, and nodes that are neighbours in the sequence are 

merged if and only if they meet the merge condition ρ . Eit,S(ρ,w,α) contains the arcs of Ri
t , projected onto the 

node set of Sit , with containment relations now represented as a pair of sequence arcs between nodes with adja-
cent cite keys. The sequence arcs in Eit,S(ρ,w,α) are weighted according to a weight function w (specifying the 
weight decay of sequence arcs as a function of the distance between the source node and the target node in the 
undirected graph underlying Hi

t ), and the reference arcs are weighted according to a weight ratio α (specifying 
the weight of reference arcs in relation to sequence arcs of maximum weight).

As mentioned in "Dynamic network model of legislation", the sequence graph representation of a legislative 
document collection is inspired by how practitioners work with legislative texts. Furthermore, the parameters 
of the sequence graph allow us to incorporate knowledge about legal users into our model (e.g., by weighting 
reference arcs less heavily than the highest-weight sequence arcs, we can express the intuition that looking up a 
reference is less likely than simply reading on). To compute the node alignments mentioned in "Clustering for 
comparative and dynamic analysis", we use a more granular variant of the sequence graph:

Hi
t = (Vi

t,H ,E
i
t,H ) ,

Vi
t,H =

⋃

T∈T i
t

V(T) ∪ { r̄i }

Eit,H =
⋃

T∈T i
t

E(T) ∪ { (r̄i , rD) | D ∈ D
i
t } .

Ri
t = (Vi

t,H ,E
i
t,R) ,

Eit,R = Eit,H ∪ Ci
t ,

Ci
t = { (v,w)m | text of v makes m references

to w inD
i
t ∧ type(v) = type(w) = seqitem } .

Sit(ρ,w,α) = (Vi
t,S(ρ),E

i
t,S(ρ,w,α)) .
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Definition 4 (Subsequence Graph S̄it(ρ,w,α)] The subsequence graph of collection Di
t with parameters ρ , w, and 

α , denoted S̄it(ρ,w,α) , is defined as the sequence graph Sit(ρ,w,α) , with seqitems being replaced by subseqitems 
(i.e., structural elements one level below the seqitem level) if they exist.

Finally, we use a multigraph version of the standard graph theoretical notion of a quotient graph (see also 
"Comparing document networks over space and time"):

Definition 5 (Quotient Graph Q(G, R)) Given a graph G and an equivalence relation R on its node set V (i.e., a 
reflexive, symmetric, and transitive binary relation), a quotient graph is the graph Q(G, R) with

and

where [u]R := { x ∈ V | (u, x) ∈ R } and [v]R := { y ∈ V | (v, y) ∈ R } are equivalence classes of V under R.

As shown in "Clustering for comparative and dynamic analysis" for aggregating legal texts at the Chapter 
level, the equivalence relations of our quotient graphs are generally given by the attributes associated with the 
structural elements contained in our reference graphs. Another example of quotient graphs, based on the cluster 
identifiers produced by our graph clustering as node attributes, can be found in Sect. 3.2 of the SI.

Assessing legislative growth. To assess legislative growth in "Clustering for comparative and dynamic 
analysis", we track three statistics for the United States and Germany from 1994 to 2018: the number of tokens, 
the number of hierarchical structures, and the number of references contained in the federal statutory legisla-
tion of both countries. For the token counts, we concatenate the text of all statutory materials for one country 
and year, ignoring the extensive appendices to some Titles or laws, and split on whitespace characters. The hier-
archical structure counts reflect the number of nodes in our hierarchy graphs, and the reference counts reflect 
the number of edges in our reference graphs. Details on our data preprocessing steps can be found in Sect. 2 of 
the SI.

Comparing document networks over space and time. Clustering document networks. To enable 
our comparative and dynamic analysis in "Clustering for comparative and dynamic analysis", we cluster each an-
nual snapshot of the legislative network separately for both countries. As mentioned in "Clustering for compara-
tive and dynamic analysis", amongst the plethora of graph clustering methods, we choose the Infomap algorithm 
due to its information-theoretical underpinnings, scalability, and interpretability as a legal (re-)search process. 
Details on this algorithm can be found in the original  papers33,34.

As the input data to Infomap, we use the sequence graph representation of an annual snapshot with a merge 
condition ρ that collapses into one node all rules from the same Chapter (or Title, if the Title has no Chapters) in 
the United States, and all rules from the same Book (or law, if the law has no Books) in Germany. This consolida-
tion step densifies the adjacency matrix of the sequence graph and reduces the noise in our data. As almost all 
remaining nodes lie at distance 2 from one another in the hierarchy graph, and very few sequence edges would 
remain, we base the clustering solely on references. Legislative network analyses using a different ρ would also 
require the choice of a weight decay function w and a sequence edge-to-reference edge weight ratio α . For Infomap 
itself, we use the default configuration with a preferred cluster number of 100 as an additional input parameter. 
As discussed in "Clustering for comparative and dynamic analysis", this parameter choice reflects the level of 
analytical resolution we seek to operate at, and it approximates the number of high-level topics legal database 
providers utilise to organise their content. The sensitivity analysis regarding our input parameter can be found 
in Sect. 4.1 of the SI.

As Infomap has a stochastic element, we use consensus clustering46 to increase the robustness of our results as 
follows: For each snapshot t in each country i, we produce 1000 clusterings with different seeds. From the results 
of these clusterings, we produce a consensus graph whose nodes are the nodes of the sequence graph, and with 
an edge connecting two nodes if these nodes are in the same cluster in at least 950 = 95 % of our Infomap runs. 
For each year and country, the connected components of the consensus graph then constitute our final clusters, 
which represent a careful reorganisation of the law enabling comparative and dynamic analysis. This leads to 
more than 100 final clusters because the initial clusters are typically split into a stable core and several smaller 
satellites, each of which becomes an additional separate cluster.

Tracing temporal dynamics. To trace legislative change over time, we need to align the textual contents of our 
yearly snapshots within each jurisdiction. Computing the optimal node alignment between two graphs is gener-
ally a hard problem, and methods based on tree edit distance do not scale to legislative trees. However, we can 
use sequence graphs with the highest possible granularity (using a merge condition ρ that condenses nothing) 
along with the text associated with individual nodes, and exploit the fact that most rules do not change most of 
the time to construct a practical heuristic that greedily computes a partial node alignment φi

t across two snap-
shots Sit and Sit+1 from corpus i. Our heuristic operates in at most four sequential passes through these snapshots: 

VQ(G,R) = V/R = { [u]R | u ∈ V }

EQ(G,R) = { ([u]R , [v]R)
m | |{ (x, y) ∈ EG | x ∈ [u]R ∧ y ∈ [v]R }| = m > 0 } ,
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1. First pass: If v is a node in Sit and we find exactly one node w in Sit+1 with identical text and the text is at least 
50 characters long, set φi

t(v) = w.
2. Second pass: If v is an unmatched node in Sit and we find an unmatched node w in Sit+1 with identical key 

and identical text, set φi
t(v) = w.

3. Third pass: If v is an unmatched node in Sit and we find exactly one unmatched node w in Sit+1 such that (i) the 
text of v contains the text of w (or the text of w contains the text of v) and (ii) the text remaining unmatched 
in v (w) is shorter than the matched part, set φi

t(v) = w.
4. Fourth pass: If v is an unmatched node in Sit and we find a matched node v′ in Sit in the five-hop neighbour-

hood of v, search the five-hop neighbourhood of φi
t(v

′) for the unmatched node w (if any) with the largest 
Jaro-Winkler string  similarity47 to v; if that similarity is above 0.9, set φi

t(v) = w . Repeat recursively with all 
newly matched nodes until no further matches are found.

With this procedure, we manage to map between 94 % and 100 % of the subseqitems between adjacent snapshots 
in both the United States and Germany, i.e., our partial node alignments are almost complete, and the unmatched 
subseqitems are indicators of larger changes in the code (rather than errors). Based on partial node alignments 
φi
t for all relevant t, we compute a partial cluster alignment across snapshots, which we call the cluster graph Ci:

Definition 6 (Cluster Graph Ci) Let Ci
t be the consensus clustering obtained for collection i at time t. The cluster 

graph of collection i across times T, denoted Ci , is a weighted digraph

where

and

with

where |v| denotes the number of tokens in a node v of the sequence graph Sit used as input to the clustering at 
time t.

That is, the cluster graph Ci contains the clusters resulting from the clusterings of all snapshots as nodes, and 
its weighted edges (c, c′,w) indicate how many tokens from a cluster c′ ∈ Ci

t+1 stem from cluster c ∈ Ci
t.

The cluster graph allows us to identify substantial additions, deletions, and movements of tokens in the United 
States and Germany over our entire period of study, revealing dynamics at the level of individual clusters. To 
trace dynamics at the level of legal topics, we define cluster families based on the family graphs of our collections:

Definition 7 (Family Graph Fi(γ )) Let Ci be the cluster graph of collection i across times T. The family graph of 
collection i across times T, denoted Fi , is a weighted digraph

where

with

where |c| denotes the number of tokens in cluster c.

In words, the family graph Fi(γ ) contains the same nodes as the cluster graph Ci but only those edges from 
(c, c′,w) ∈ EiC that account for at least a γ fraction of the tokens in both c and c′ . We set γ = 0.15 to filter out 
noise and isolate parts of the cluster graph that are largely self-contained, but this threshold can be replaced by 
any other number between 0 and 1 for other analyses.

To trace the evolution of legal topics over time, based on the family graph, we define:

Definition 8 (Cluster Family Vi
F,j) Let Fi(γ ) be the family graph for collection i across times T consisting of 

cluster families as connected components. A cluster family Vi
F,j is the node set of Fi(γ ) ’s jth largest connected 

component (measured in tokens).

Ci = (Vi
C ,E

i
C) ,

Vi
C =

⋃

t∈T

{ c ∈ Ci
t }

EiC = { (c, c′,w) | c ∈ Ci
t ∧ c′ ∈ Ci

t+1 ∧ �(c, c′) = w }

�(c, c′) =
∑

v ∈ c \ { v | φi
t (v) /∈ c′ }

|φi
t(v)| ,

Fi(γ ) = (Vi
C ,E

i
F(γ )) ,

EiF(γ ) = { (c, c′,w) | (c, c′,w) ∈ EiC ∧ χ(c, c′,w) ≥ γ }

χ(c, c′,w) = min

{ w

|c|
,
w

|c′|

}

,
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In addition to the overall size of a cluster family (given by the size of its leading cluster), our analysis also uses 
a temporal notion of cluster family size:

Definition 9 (Cluster Family Size at Time t |Vi
F,j,t |) Let Vi

F,j be a cluster family j in collection i, and let Ci
t be the 

consensus clustering obtained for time t. The size of cluster family j at time t is defined as

where |c| denotes the number of tokens in a node c.

With our parametrisation, cluster families are sets of Chapters, Books, or laws that are closely related by 
cross-references or (almost) textual identity over time. As such, they approximately correspond to legal topics. 
Further information on how we label these topics can be found in Sect. 5.1 of the SI.
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