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Abstract—Due to their online learning nature, incremental
clustering techniques can handle a continuous stream of data.
In particular, various incremental clustering techniques based
on Adaptive Resonance Theory (ART) have been shown to
have low computational complexity in adaptive learning and
are less sensitive to noisy information. However, parameter
regularization in existing ART clustering techniques is applied
either on different features or on different clusters exclusively.
In this paper, we introduce Interest-Focused Clustering based
on Adaptive Resonance Theory (IFC-ART), which self-regulates
the vigilance parameter associated with each feature and each
cluster. As such, we can incorporate the domain knowledge
of the data set into IFC-ART to focus on certain preferences
during the self-regulated clustering process. For performance
evaluation, we use a real-world data set, named American Time
Use Survey (ATUS), which records nearly 160,000 telephone
interviews conducted with U.S. residents from 2003 to 2014.
Specifically, we conduct case studies to explore three types of
interesting relationship, focusing on the wage, age, and provision
of elderly care, respectively. Experimental results show that the
performance of IFC-ART is highly competitive and stable when
compared with two well-established clustering techniques and
three ART models. In addition, we highlight the important and
unexpected findings observed from the clusters discovered.

I. INTRODUCTION

Among all the data analysis models, clustering techniques
are still the major learning methods used in unsupervised
learning, which handles unlabelled data [1]. There is no
universally agreed upon definition on clustering [2]. However,
“most researchers describe a cluster by considering the internal
homogeneity and the external separation, i.e., patterns in the
same cluster should be similar to each other, while patterns in
different clusters should not” [3].

Adaptive Resonance Theory (ART) [4] is a well-established
self-organizing neural network model. Associations among
the low-level input patterns are encoded in the high-level
category field based on the resonance effect. Specifically,
inspired by how human brains perceive the environment, ART
involves a bottom-up processing of the external information
and a top-down modulation of the internal knowledge (see
Section III-A). Based on the different number of input fields in
use and their corresponding usage, ART models can perform
various types of learning [5], such as unsupervised [6], [7],
reinforcement [8], [9], and supervised learning [10], [11].

ART has been widely employed in various clustering tech-
niques in the literature. ARTMAP [12] uses a match tracking

strategy (see Section III-B) to regulate the vigilance parameter
(see Section III-A) during the clustering process. However,
ARTMAP requires the presence of class labels of the data,
which makes it unsuitable for unsupervised learning. ART
under Constraint (ART-C) [13], [14] also regulates the vigi-
lance parameter, but requires a user-defined number of clusters
a priori. Generalized Heterogeneous Fusion ART (GHF-ART)
[6] regulates both the vigilance and the contribution parameters
(see Section III-A) associated with each input field to adap-
tively tune its relative importance. Hybrid Integration ART
(HI-ART) [7] regulates the vigilance parameter associated with
each formed cluster to adaptively tune its cluster boundary. In
this paper, we propose Interest-Focused Clustering based on
Adaptive Resonance Theory (IFC-ART), which extends GHF-
ART and HI-ART in that the vigilance parameter associated
with each input field and each formed cluster is self-regulated
during the autonomous clustering process.

The major advantage of IFC-ART lies in that we can
incorporate domain knowledge into the autonomous clustering
process. Please note that by domain knowledge, we refer to
some basic understanding of the data set, such as the nature of
certain features, rather than some heuristic assumptions, such
as the number of clusters. Before applying any learning model
to a data set, we inevitably require some basic understanding
of the data set, such as the number of features, whether their
values are continuous or categorical, the value range of each
feature, whether there are missing values, etc. Such basic
understanding plays a critical role when we pre-process the
data set and more importantly, enables us to further identify
certain interesting features to be focused on during the data
mining process. For example, instead of categorizing the
personal income into rigidly defined wage groups, we may
simply apply IFC-ART and pre-set its vigilance parameter
associated with wage larger than those associated with the
other features. As such, although all parameters are regulated
in a generic way during the autonomous clustering process,
we can still roughly control the different level of interest that
we desire in various features. Therefore, IFC-ART removes
the rigid restriction on the categorization of the sub-groups
in the input features but still regulates the formation of data
clusters according to our interests or preferences.

For performance evaluation, we apply IFC-ART on a real-
world data set, named American Time Use Survey (ATUS)



[15]. ATUS is a federally administered on-going survey on
the national scale on how U.S. residents spend their time
on various activities. It is sponsored by the U.S. Bureau of
Labor Statistics and conducted by the U.S. Census Bureau.
The subjects participated in the survey were randomly se-
lected from a large number of U.S. households and were
interviewed via telephone. During the interviews, the subjects
reported on how much time they spent on all the activities
they performed from 4am on the previous day to 4am on
the interview day. ATUS categorizes all activities into 17
types, which can be further expanded into over 400 sub-types.
Besides the extremely detailed activity information, ATUS also
consists of a wide range of demographic information, such as
age, gender, education attainment, occupation, income, marital
status, information about other occupants in the household, etc.
ATUS has been studied in various aspects (see Section II-B).
In this paper, we focus on three interesting case studies (see
Section IV), namely (a) the relationship among wage, age, and
education attainment, (b) the relationship among age and time
spent on various activities, and (c) the relationship among age
and time spent on child and elderly care.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III introduces the dynamics
of ART and the details of IFC-ART. Section IV presents
the case studies conducted on the ATUS data set. Section V
concludes this paper and proposes future work.

II. RELATED WORK

In this paper, we mainly focus on applying IFC-ART on
the ATUS data set for performance evaluation and knowledge
discovery. Therefore, in this section, we review the related
clustering techniques and the prior studies on ATUS.

A. Closely Related Clustering Techniques

Clustering techniques may differ in many ways and can
be categorized using various criteria. For example, based
on the formation process, they can be broadly divided into
the incremental and partitioning types. Generally speaking,
incremental clustering techniques start with forming the first
cluster using the first datum and subsequently decide for all the
remaining data whether to form new clusters or to add them
into existing ones based on certain similarity assessments.
According to their nature, incremental clustering techniques
such as ART-C [13], [14], ECM [16], and DIC [17] are
often used for online learning. On the other hand, partitioning
clustering techniques such as K-means [18], DBSCAN [19],
and GARSC [20] treat all data as a whole and then divide them
into clusters, which may only be used for offline learning.

Adaptive Resonance Theory (ART) [4] is a generic self-
organizing neural model comprising two layers of neural fields
connected by bidirectional conditional links. ART clustering
techniques have been shown to have low computational com-
plexity [6], [7] in online adaptive learning [13], [14] and are
less sensitive to noisy information [6], [7]. However, ART-C
[13], [14] requires a predefined number of clusters a priori,
which is often heuristically assigned. Both GHF-ART [6] and

HI-ART [7] do not require such empirical knowledge of the
data sets and the parameters in use can be adaptively tuned
along the clustering process. GHF-ART is mainly used for
co-clustering of multimodal features and its parameters are
regulated according to each feature. HI-ART is mainly used for
homogeneous clustering of large scale data and its parameters
are regulated according to each formed cluster. In this paper,
we propose a new member IFC-ART to the family of ART
clustering techniques, which regulates the vigilance parameter
associated with each feature and each cluster. As such, we
can incorporate the domain knowledge grasped from the basic
understanding of the nature of the data set into the autonomous
clustering process to maintain the focus on the identified
interests or preferences.

B. Prior Studies on ATUS

Due to its large scale (159,900+ respondents) and large
number of features (500+), ATUS [15] has attracted re-
searchers from various backgrounds and has been studied in
various aspects. Among all the academic studies on ATUS,
first of all, some are specific to wage. In terms of the subjective
well-being (reported in another data set), which is “connected
to how people spend their time” [21], Kahneman et al. found
that “people with greater income tend to devote relatively
more of their time to work, compulsory non-work activities,
and active leisure and less of their time to passive leisure
activities” [21]. In terms of the relationship between paid work
and housework, Hersch found that “housework has a negative
relation with wages for both women and men” [22]. In terms
of the relationship between wage and emotion, Kushlev et al.
found that “higher income is associated with experiencing less
daily sadness, but has no bearing on daily happiness” [23].

Secondly, some studies are specific to age. Zick et al.
studied the difference in the amount of time spent on various
physical activities among the subjects aged between 15 and 29
[24]. In terms of the relationship between social connections
and the subjective well-being of the elderly, Kang and Michael
found that “the number of daily social contact was positively
associated with the self-rated health of older adults” (65+)
[25]. In terms of subjective tiredness, Dolan and Kudrna found
that elderly (65+) are “almost one point less tired” than people
aged between 15 and 24 on a self-reported 0–6 scale [26].

Thirdly, some studies are specific to health. Most of these
studies focused on how different behavioral or lifestyle factors
influence the subjects’ general health, or a specific aspect
of health, such as sleep [27]. In terms of the amount of
healthcare required, Russell et al. found that “the prevalence
of health-care related activities rose with age” [28]. In terms
of physical well-being, Hamermesh found that “eating meals
more frequently is associated with lower BMI and better
self-reported health, as is grazing more frequently” [29]. In
addition, Podor and Halliday found that “better health is
associated with more time allocated towards production on the
market and at home, but less consumption of leisure” [30].

Some other interesting studies on ATUS are the analyses
on the activity patterns of certain demographic groups, such



Fig. 1. Network structure of IFC-ART for associating K input fields.

as (a) how does a mother spend her time among various
activities [31]; (b) how does the education attainment of
the parents affect the amount of time they spend with their
children [32]; and (c) what are the most frequently performed
activities in each intensity-different category [33].

From the literature review, we observe that most existing
studies on ATUS consider no more than three years of the
collected data, despite now ATUS assembles twelve years of
data. In our experiments, we use all available data across all
years and apply IFC-ART for knowledge discovery.

III. INTEREST-FOCUSED CLUSTERING BASED ON
ADAPTIVE RESONANCE THEORY

As depicted in Fig. 1, IFC-ART consists of a high-level
category field and K number of low-level feature channels (or
input fields), where K varies according to different clustering
tasks and different data sets. Each committed code in the
category field represents certain learned association among the
input features in its weight vectors. The fundamental opera-
tions of IFC-ART follow the standard dynamics of Fusion-
ART [5], which are introduced in the following subsection.

A. Dynamics of Fusion Adaptive Resonance Theory

Before we present the dynamics of Fusion-ART [5], we
introduce all terms involved in its operations as follows.

Input vectors: Let Ik = (Ik1 , I
k
2 , . . . , I

k
L) denote the

input vector, where Ikl denotes input l to channel k, for
l = 1, 2, . . . , L and k = 1, 2, . . . ,K, where L denotes the
length of Ik and K denotes the total number of input fields.

Input fields: Let F k1 denote an input field that receives Ik

and let xk = (xk1 , x
k
2 , . . . , x

k
L) denote the activation vector of

F k1 receiving Ik. Please note that normalization is performed
on Ik to obtain xk, such that xkl ∈ [0, 1]. If fuzzy ART opera-
tions (see (1) and (3)) [34] are used, xk is further augmented
with a complement vector xk, where xkl = 1 − xkl . This
augmentation is named complement coding, which is applied
to prevent the code proliferation problem [34]. As such, by
applying fuzzy ART learning (see (3)), the learned codes in
the category field represent more generalized associations [34].

Category field: Let F2 denote the category field and let
y = (y1, y2, . . . , yJ) denote the activation vector of F2, where
J denotes the number of codes in F2. Please note that there are
always J−1 committed (learned) codes and one uncommitted
(J th) code in F2. If ART learns from scratch, initially there
is only one uncommitted code in F2.

Weight vectors: Let wk
j denote the weight vector of the jth

code Cj in F2 for learning the input patterns in F k1 , where j =
1, 2, . . . , J . In terms of clustering, wj represents the template
used to characterise the jth cluster.

Parameters: The dynamics of Fusion-ART are regulated by
the parameters associated with each input field, namely choice
parameters αk > 0, learning rate parameters βk ∈ [0, 1],
contribution parameters γk ∈ [0, 1], where

∑
γk = 1, and

vigilance parameters ρkj ∈ [0, 1]. Please note that as aforemen-
tioned, in IFC-ART, the vigilance parameters are associated
with each feature and each cluster.

As briefly introduced in Section I, ART involves a bottom-
up processing of the external information and a top-down
modulation of the internal knowledge. Specifically, the bottom-
up processing consists of the code activation and code compe-
tition processes and the top-down modulation consists of the
template matching, template learning, and knowledge readout
processes. All these five processes are introduced as follows.

Code activation: Given {xk|Kk=1}, for each F2 code j, the
corresponding activation Tj is computed as follows:

Tj =
∑
k

γk
|xk ∧wk

j |
αk + |wk

j |
, (1)

where the fuzzy AND operation ∧ is defined by pi ∧ qi ≡
min(pi, qi) and the norm |.| is defined by |p| ≡

∑
i pi.

Code competition: Given {Tj |Jj=1}, the F2 code with the
highest activation value is named the winner, which is indexed
at j∗, where j∗ = argmaxjTj .

Template matching: Given the winner code Cj∗ , the match
between the input pattern and the weight vector of Cj∗ is
computed as follows:

Mk
j∗ =

|xk ∧wk
j∗ |

|xk|
. (2)

If Cj∗ satisfies the vigilance criteria such that ∀Mk
j∗ ≥ ρkj∗ ,

a resonance occurs in which leads to the subsequent learning or
readout process. Otherwise, a mismatch reset occurs in which
Tj∗ ← 0 until a resonance occurs at another F2 code. This
template matching process is guaranteed to end, because either
a committed code that satisfies the vigilance criteria will be
identified or an uncommitted one, whose weights are all 1s
that definitely satisfies the criteria, will be recruited to encode
the new input pattern. Once an uncommitted code is recruited,
a new uncommitted code will be autonomously added in F2.
Thus, ART self-organizes its network structure.

Template learning: If learning is required, once found Cj∗
that satisfies the vigilance criteria, its corresponding weight
vectors are updated by the following learning rule:

w
k(new)
j∗ = (1− βk)wk(old)

j∗ + βk(xk ∧w
k(old)
j∗ ). (3)

Knowledge readout: If readout is required, Cj∗ presents its
weight vectors to the input fields, such that xk(new) = wk

j∗ .
In terms of clustering, the dynamics of Fusion-ART can

be summarized as follows. Based on the similarity measures
(see (1)), a winner cluster can be identified. If the input pattern



satisfies the vigilance criteria of the winner cluster (see (2)), it
will be added into the identified cluster (see (3)). Otherwise,
Fusion-ART will select another winner until the vigilance
criteria are satisfied and learn accordingly. At the end of the
autonomous clustering process, each committed code in the
category field represents one formed cluster.

B. IFC-ART for Clustering with Focused Preferences

From the introduction of how Fusion-ART performs clus-
tering, we can find that the autonomous clustering process
is affected by the vigilance parameters to a great extent,
which regulate the boundaries or regions of the clusters. For
graphical demonstrations of the cluster boundaries in ART,
readers may refer to [7]. To adaptively regulate the vigilance
parameters while maintaining the focus on the interesting
or preferred features, we introduce IFC-ART, which self-
regulates the vigilance parameter associated with each feature
and each cluster under a generic framework.

The dynamics of IFC-ART is summarized in Algorithm 1.
Comparing to Fusion-ART, IFC-ART incorporates two more
procedures to enable the self-regularization of the vigilance
parameters during the autonomous clustering process, one
refers to the identification of interesting features to incorporate
domain knowledge and the other is called match tracking to
reduce the overlap between cluster boundaries.

First of all, based on the basic understanding of the data set
and the clustering task, we can identify the set of interesting
features IF among the K number of input fields of IFC-ART.
Then the remaining ones form the set of normal features NF,
such that |IF|+|NF| = K. Given the initial vigilance parameter
value ρ0 ∈ [0, 1], the vigilance of an uncommitted code, which
always has the largest index in F2, is computed as follows:

ρkJ =

{
min{(1 + φ)ρ0, 1}, if k ∈ IF,
ρ0, otherwise,

(4)

where φ refers to the magnifying parameter and φ ∈ (0, 1).
As such, the difference between the interesting or preferred
features and the normal ones is preserved during the initial
formation of all clusters.

Furthermore, during the clustering process, the vigilance
parameters are also self-regulated according to the learned
weight vectors and the input patterns. Specifically, when a
mismatch reset occurs during template matching, other than
setting the activation value Tj∗ to 0 during the presence of
the current input pattern, for every input field that violates the
vigilance criterion, the corresponding vigilance parameter is
updated using the following equation:

ρ
k(new)
j∗ =Mk

j∗ + δ, (5)

where δ is a significantly small number and δ > 0. The
regularization of the vigilance parameters using (5) is named
match tracking [7], [12], [35]. The rational of match tracking
is to minimize the conflict between the clusters to a minimum
degree of δ. Specifically, matching tracking is applied when a
mismatch reset occurs, which means that although the winner

Algorithm 1 Interest-Focused Clustering based on ART
Require: ρ0 ∈ [0, 1], φ ∈ (0, 1), δ > 0, αk > 0, βk ∈ [0, 1],

γk ∈ [0, 1], and
∑
γk = 1, where k = 1, 2, . . . ,K and K

denotes the number of input fields
1: Compute ρk1 for the uncommitted code in F2 {see (4)}
2: Initialize IFC-ART with K, αk, βk, γk, and ρk1
3: for all {Ik|Kk=1} in the given data set do
4: obtain {xk,xk|Kk=1}, such that xkl ∈ [0, 1], where l =

1, 2, . . . , |Ik|, and present the pattern to F k1
5: for all Cj in F2, where j = 1, 2, . . . , J and J denotes

the number of clusters in F2 do
6: compute Tj {see (1)}
7: end for
8: loop
9: identify j∗, such that j∗ = argmaxjTj

10: compute Mk
j∗ {see (2)}

11: if ∀Mk
j∗ ≥ ρkj∗ then

12: exit loop
13: else
14: Tj∗ ← 0
15: for all Mk

j∗ < ρkj∗ do
16: ρ

k(new)
j∗ ←Mk

j∗ + δ {see (5)}
17: end for
18: end if
19: end loop
20: if j∗ = J {winner is an uncommitted cluster} then
21: wk

J = {xk,xk}
22: J ← J + 1 {create a new uncommitted cluster}
23: wk

J ← (1, 1, . . . , 1) and wk
J ← (1, 1, . . . , 1)

24: assign ρkJ {see (4)}
25: else
26: update wk

j∗ {see (3)}
27: end if
28: end for

code j∗ has the maximum activation value in response to the
presented input pattern, j∗ fails to fulfil the vigilance criteria.
As such, to minimize the risk of incorrect categorization
and to well maintain the cluster boundaries, we shrink the
corresponding vigilance value according to the match value
Mk
j∗ between the input pattern and the weight vector (see (2)).

Match tracking has been shown to be effective as a regulariza-
tion strategy used for clustering [7]. Therefore, Fusion-ART
with match tracking, along with Fusion-ART and Fusion-ART
with interesting features, are selected as the benchmarking
ART models when conducting the case studies.

It is easy to identify from Algorithm 1 that the complexity
of IFC-ART is O(N · J · K), where N denotes the number
of data samples in the data set. In Section IV of this paper,
we report the execution time of IFC-ART and all the other
benchmarking models for comparisons.

IV. CASE STUDIES ON AMERICAN TIME USE SURVEY

As introduced in Sections I and II-B, the American Time
Use Survey (ATUS) records 159,937 interviews conducted



with U.S. residents from 2003 to 2014. We select this real-
world data set to assess the performance of IFC-ART.

In terms of the parameters used by all ART models in all
the experiments, we vary the value of ρ0 (see (4)) from 0.1
to 0.9 with an increment of 0.1 for performance comparisons.
The other parameters are set as follows: αk = 0.01, which
is mainly used to avoid NaN in (1); βk = 0.5, which is the
median between the fastest learning (i.e., βk = 1) and no
learning (i.e., βk = 0); and γk = 1/K, which equally assigns
the contribution of each feature given that the importance of
the identified interesting features has already been reflected on
their vigilance parameters. Moreover, for IFC-ART, we simply
assign φ in (4) to γk and assign δ in (5) to 0.001.

Because there are no class labels given in the ATUS data
set, we cannot evaluate the performance using accuracy and
entropy types of measures. For the internal evaluation of the
clustering results, we select the Davies–Bouldin Index (DBI)
[36] as the measuring metric, which is defined by

DBI =
1

J

J∑
i=1

max
i 6=j

(
σi + σj

d(mCi
,mCj

)

)
, (6)

where σi denotes the average distance of all elements in the
ith cluster to its centroid mCi

and d() computes the Euclidean
distance between the two vectors. DBI combines the measure
of both intra-cluster similarity (numerator of the max term in
(6)) and inter-cluster similarity (denominator of that term). A
smaller DBI value suggests better performance.

For the ART benchmarking models, other than Fusion-
ART (see Section III-A), we also select Fusion-ART-wif and
Fusion-ART-wmt, which denote Fusion-ART with interesting
features (i.e., Step 16 of Algorithm 1 is skipped) and Fusion-
ART with match tracking (i.e., Step 1 of Algorithm 1 is
skipped). For classical clustering techniques, we select K-
means [37] and X-means [38] for comparisons. For the number
of clusters pre-requested by K-means, we assign J−1, J , and
J + 1 to K, where J is the number of clusters obtained by
IFC-ART when achieving the best DBI. Similarly, we assign
the minimum number of clusters to J−1 and the maximum to
J+1 in X-means. However, due to its characteristics, X-means
may form less number of clusters than J−1. Then we run K-
means and X-means for nine times with different initializations
and record their best DBI, respectively. The reason why we did
not select density based clustering technique such as DBSCAN
[19] for comparisons is because it always forms a single cluster
consisting of all data in all three case studies, even with a high
epsilon value of 0.9 and the minimum number of data in one
cluster being set to 1. Although we run the K-means and X-
means algorithms implemented in WEKA [39], in this paper,
we still compare their execution time with that of the ART
models, which are implemented in JAVA, given that we run
all the models on the same computer.

A. Relationship among Wage, Age, and Education Attainment

It is a common stereotype that people who earn more money
are better educated and probably older. Based on the real-world
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Fig. 2. Performance comparisons among the four ART models on the wage
study: (a) number of clusters and (b) DBI.

TABLE I
PERFORMANCE COMPARISONS ON WAGE STUDY.

Model Best DBI J Time (s) Mean DBI
K-means 2.66 4 0.17 –
X-means 2.94 3 2.15 –
Fusion-ART 2.13 (ρ0=0.1) 4 0.09 11.90 (6.26)
Fusion-ART-wif 2.13 (ρ0=0.1) 4 0.09 –
Fusion-ART-wmt 2.41 (ρ0=0.1) 4 0.09 8.00 (3.77)
IFC-ART 2.32 (ρ0=0.1) 4 0.10 7.26 (3.62)

cases recorded in ATUS, we study the relationship among
wage, age, and education attainment and we select wage as
the only interesting feature.

ATUS records the weekly wages of the respondents if they
are employees (excluding self-employments). Therefore, after
removing all the not-applicable entries, we have 88,598 data
samples in this case study. Furthermore, because the interviews
were conducted over twelve years, we adjust the wages accord-
ing to the yearly Commercial Price Index (CPI) [40], so that
all wages after pre-processing are levelled on year 2014. The
age of the respondents ranges from 15 to 85 and the education
attainment ranges from less than first grade to doctorate degree
in step-wise definitions. Therefore, for ART models, the inputs
are normalized according to the minimum and maximum
values in each feature. The performance comparisons of the
ART models are shown in Fig. 2. Please note that for Fusion-
ART-wif, we do not plot when ρ0 = 0.8 and 0.9, because DBI
is returned as “infinity” and J is extremely large (35,047 and
47,649, respectively). Moreover, without match tracking, the
number of clusters obtained by Fusion-ART and Fusion-ART-
wif increases exponentially when ρ0 > 0.5.

Table I summarizes the best performance of all models
and the averaged performance of ART models. Please note
that DBI of every model is computed on the original feature
values. The reason why X-means has a significantly longer
execution time is because it is the only iterative clustering
technique benchmarked in this paper. All the others only



TABLE II
CLUSTER REPRESENTATIONS OF IFC-ART ON THE WAGE STUDY.

ID # data Education attainment Age Weekly wage
1 5,298 College but no degree 29.98 (15.90) 346.19 (354.90)
2 14,678 Bachelor’s degree 43.28 (10.46) 1736.84 (875.42)
3 24,961 High school diploma 37.21 (13.74) 649.97 (406.65)
4 43,661 Occupational degree 45.43 (11.33) 915.69 (598.73)

run for one iteration, i.e., for incremental ART models, the
presented results show their capability to deal with a stream
of data that are fed in an online manner for only once. For
performance evaluation, although IFC-ART does not achieve
the best DBI, it achieves the best averaged DBI.

The best clustering results obtained by IFC-ART is pre-
sented in Table II. The first cluster shown in Table II can be
interpreted as “on average, those 30 year-old people who went
to college but did not graduate with a degree earn 346 dollars
per week”. Because we select wage as the interesting feature,
among the four obtained clusters, values in wage are relatively
better separated when compared to those in the other two
features. Clusters 2 and 4 show that the high earners do have
higher education attainment and are relatively older. People in
cluster 3 have the lowest education attainment, however, due
to the age difference, they earn more than those in cluster 1,
who have slightly higher education attainment on average.

B. Relationship among Age and Time Spent on Activities

Due to the completeness of ATUS, all the 159,937 data
samples record the detailed activities performed by the respon-
dents on the day before the interview. In this paper, for all the
amount of time spent on various activities, we normalize them
by 1440, which is the total number of minutes in one day. As
such, all those features are levelled on the same scale.

In terms of the broad categories of the various activities used
in this case study, we follow the categorization used in [21],
namely work, compulsory, and leisure activities. Specifically,
work related activities include “work & work-related activi-
ties”, “education”, and “travelling”, self-compulsory activities
include “personal care activities”, “household activities”, “con-
sumer purchases”, “government services & civic obligations”,
and “eating & drinking”, and leisure activities include “so-
cializing, relaxing & leisure”, “sports, exercise & recreation”,
“religious & spiritual activities”, and “volunteer activities”.
Other than the time spent on these three types of activities, age
is also used in this case study as the only interesting feature.

The performance comparisons among the ART models are
illustrated in Fig. 3 and comparisons among all models are
presented in Table III. It took us by surprise that both K-
means and X-means achieve much better DBI than the ART
models, unlike in the other two case studies (see Tables I and
V). One possible reason is that both K-means and X-means
only optimize the intra-cluster distance without considering
the inter-cluster distance and the overlapping of cluster bound-
aries. Therefore, in this particular case study, their optimization
strategy may well fit the distribution of this big-volume data
set and thus they obtain better DBI. Moreover, among all
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Fig. 3. Performance comparisons among the four ART models on the age
study: (a) number of clusters and (b) DBI.

TABLE III
PERFORMANCE COMPARISONS ON AGE STUDY.

Model Best DBI J Time (s) Mean DBI
K-means 1.02 11 1.15 –
X-means 0.96 10 19.68 –
Fusion-ART 3.78 (ρ0=0.9) 1381 10.61 4.66 (1.20)
Fusion-ART-wif 3.96 (ρ0=0.3) 14 0.17 5.58 (1.26)
Fusion-ART-wmt 3.51 (ρ0=0.5) 11 0.17 6.41 (3.58)
IFC-ART 2.80 (ρ0=0.5) 11 0.17 5.88 (2.65)

TABLE IV
CLUSTER REPRESENTATIONS OF IFC-ART ON THE AGE STUDY.

ID # data Age Work Compulsory Leisure
1 4,252 51.52 (8.47) 503.68 (241.48) 624.34 (174.12) 242.23 (165.06)
2 9,204 31.07 (8.06) 413.83 (275.95) 708.11 (195.54) 229.28 (157.80)
3 3,433 39.28 (12.13) 834.75 (177.58) 480.84 (140.03) 98.04 (115.33)
4 51,082 60.66 (10.95) 191.66 (221.61) 891.64 (194.60) 296.16 (146.81)
5 21,543 64.18 (11.92) 54.82 (68.61) 674.20 (117.72) 679.93 (127.58)
6 21,549 27.94 (7.99) 178.98 (181.03) 705.52 (141.65) 485.23 (160.33)
7 44,473 33.72 (8.42) 303.31 (257.28) 837.18 (203.15) 204.39 (134.04)
8 9 46.89 (11.67) 100.00 (100.69) 91.22 (55.31) 57.78 (71.92)
9 4,387 58.04 (6.64) 592.17 (134.16) 634.43 (110.38) 186.35 (111.38)
10 4 21.00 (1.73) 18.5 (24.63) 95.5 (60.85) 1326.00 (79.16)
11 1 85 (–) 870 (–) 570 (–) 0.00 (–)

Note: Clusters 8, 10, and 11 are correctly identified outliers.

the ART models, although IFC-ART achieves the best DBI,
Fusion-ART and Fusion-ART-wif perform better in terms of
the averaged DBI. This is because when ρ0 is large, both the
two models generate an unnecessarily large number of clusters,
which leads to the non-proportionally decrease in DBI (i.e., the
1
J coefficient in (6)). For example, when Fusion-ART obtains
the best DBI, it generates 1,381 clusters (see Table III).

The best clustering results obtained by IFC-ART is pre-
sented in Table IV. The first cluster shown in Table IV
can be interpreted as “on average, people aged around 51.5
spend 504, 624, and 242 minutes per day on work-related,
compulsory, and leisure activities, respectively”. Please note
that the three features on time spent do not always add up to
1440 minutes because there are other activities not included
in this study, such as telephone calls, time spent on enjoying
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Fig. 4. Performance comparisons among the four ART models on the elderly
care study: (a) number of clusters and (b) DBI.

TABLE V
PERFORMANCE COMPARISONS ON ELDERLY CARE STUDY.

Model Best DBI J Time (s) Mean DBI
K-means 3.58 8 0.09 –
X-means 2.51 5 0.57 –
Fusion-ART 2.16 (ρ0=0.2) 5 0.06 3.09 (0.60)
Fusion-ART-wif 1.66 (ρ0=0.5) 11 0.07 2.46 (0.38)
Fusion-ART-wmt 1.58 (ρ0=0.5) 7 0.06 3.23 (1.69)
IFC-ART 1.50 (ρ0=0.5) 8 0.07 2.43 (0.76)

others’ services, and unlabelled activities. It is interesting to
learn that people around 40 year-old (see cluster 3) spend the
most amount of time on their work and has very little time for
leisure activities. On the contrary, people around 64 year-old
(see cluster 5) spend very little time on their work and very
long time on leisure activities. More encouragingly, IFC-ART
correctly identifies some outliers, such as the 85 year-old elder
(see cluster 11) still spent more than half a day on work and
no time on leisure activity, but a small group of young people
(see cluster 10) spent nearly all their time on leisure activities.

C. Relationship among Elderly Care, Child Care and Age

ATUS started to record the time of the respondents spent
on elderly care from 2011 (47,899 data samples). In this case
study, we investigate the relationship between the different
amount of time spent by people in all ages on child (< 15
year-old) care and elderly (≥ 65 year-old) care and we select
the time spent on elderly care as the only interesting feature.

The performance comparisons among the ART models are
illustrated in Fig. 4 and comparisons among all models are
presented in Table V. It is reassuring to learn that IFC-ART
performs best in terms of both the best and averaged DBI.

The best clustering results obtained by IFC-ART is pre-
sented in Table VI. The first cluster shown in Table VI can
be interpreted as “on average, people aged around 64.4 spend
26.3 and 7.3 minutes on child care and elderly care in one day,
respectively”. As expected, we may observe from Table VI that

TABLE VI
CLUSTER REPRESENTATIONS OF IFC-ART ON THE ELDERLY CARE STUDY.

ID # data Age Child care Elderly care
1 21,576 64.42 (9.92) 26.32 (103.41) 7.28 (43.29)
2 19,060 33.78 (10.28) 74.55 (144.28) 4.75 (42.23)
3 1,672 44.04 (7.91) 733.82 (118.31) 10.13 (66.44)
4 138 65.64 (10.53) 5.26 (30.83) 861.14 (115.48)
5 5,449 34.11 (6.57) 546.26 (199.82) 0.69 (7.28)
6 2 27.50 (2.50) 238.5 (238.5) 1092.5 (27.50)
7 1 23 (–) 1020 (–) 0 (–)
8 1 67 (–) 0 (–) 1175 (–)

Note: Clusters 6, 7, and 8 are correctly identified outliers.

people spent much less time on elderly care than child care.
In particular, only 141 people (see clusters 4, 6, and 8) out
of 47,899 (approximately 0.3%) spent a long period of time
on elderly care. When looking into the date set, we find that
these 141 people provided the elderly care either as a family
member or as a professional caregiver. Moreover, out of the
47,899 respondents, only 8,517 (17.8%) ever spent time on
elderly care on the day before the interview and only 1,114
(2.3%) lived in the same household with the elderly. All these
findings suggest that there is a vast amount of need to support
the independence of the elderly [41].

D. Discussions on Performance Comparisons
Based on the results of the case studies, match tracking is

shown to be an effective method to self-regulate the number
of obtained clusters. In contrast, Fusion-ART models without
match tracking often generate an unnecessarily large number
of clusters. The fact that IFC-ART outperforms Fusion-ART-
wmt in terms of both the best and averaged DBI in all the
three case studies (see Tables I, III, and V) suggests that
by introducing the interesting features merely based on the
basic understanding of the data set, the intrinsic structure
of the data set can be better discovered. In summary, IFC-
ART performs better than the other ART models, because
it always generates a reasonable number of clusters across
different initial vigilance values and always performs better
than Fusion-ART-wmt in terms of DBI.

V. CONCLUSION

In this paper, we introduce a self-regulated incremental
clustering technique named IFC-ART, which performs better
than the other ART models and the classical ones (for majority
cases). All the initial parameters used by IFC-ART are set to
standard or intuitive values and IFC-ART self-regulates the
vigilance parameters associated with each input field and each
formed cluster during the autonomous clustering process. By
introducing the interesting features to the cluster formation
process merely based on the basic understanding of the data
set, not only we may better control the type of knowledge
we tend to discover but also we improve the clustering
performance (comparing the performance of IFC-ART with
that of Fusion-ART-wmt).

Going forward, on one hand, we will further investigate and
improve the dynamics of IFC-ART. On the other hand, we will
design and conduct more case studies using ATUS.
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