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Complexity science provides a powerful framework
for understanding physical, biological and social
systems, and network analysis is one of its
principal tools. Since many complex systems exhibit
multilateral interactions that change over time,
in recent years, network scientists have become
increasingly interested in modelling and measuring
dynamic networks featuring higher-order relations.
At the same time, while network analysis has been
more widely adopted to investigate the structure and
evolution of law as a complex system, the utility of
dynamic higher-order networks in the legal domain
has remained largely unexplored. Setting out to
change this, we introduce temporal hypergraphs as
a powerful tool for studying legal network data.
Temporal hypergraphs generalize static graphs by
(i) allowing any number of nodes to participate in
an edge and (ii) permitting nodes or edges to be
added, modified or deleted. We describe models and
methods to explore legal hypergraphs that evolve over
time and elucidate their benefits through case studies
on legal citation and collaboration networks that
change over a period of more than 70 years. Our work
demonstrates the potential of dynamic higher-order
networks for studying complex legal systems, and it
facilitates further advances in legal network analysis.

This article is part of the theme issue ‘A complexity
science approach to law and governance’.

2024 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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1. Introduction
In law, myriad entities—e.g. individuals, organizations and texts—interact in intricate ways,
producing emergent phenomena, feedback loops and nonlinear change [1]. As such, legal systems
are complex systems [2–4], and complex systems have long been successfully modelled as networks
using the language of graphs [5].

While considerable progress has been made using simple graphs as models of complex
networks, in recent years, the network-science community has embraced more expressive higher-
order network models [6], allowing us, for example, to distinguish multiple types of nodes
and edges (multilayer networks [7]) or capture change over time (temporal networks [8]). A
comparatively recent trend is the systematic study of networks beyond pairwise interactions,
allowing interactions between more than two nodes at a time [9]. These networks are naturally
modelled as hypergraphs, which generalize graphs by allowing edges to contain any nonempty
subset of nodes [10]. Acknowledging that n-ary interactions may also evolve over time, we arrive
at temporal hypergraphs [11–13].

Our work starts from the observation that in the legal domain, interactions constantly change
and often involve more than two entities [14,15]. For example, in the legislature [16,17], lawmakers
constantly negotiate new laws, which once passed may repeal or amend old laws, and the
composition of the lawmaking body changes with every election. Likewise, in the judiciary,
individual judges are affiliated with courts and judicial bodies, but they may retire or move
between institutions [18], and panels of judges decide cases based on prior decisions, which they
often cite in their opinions [19,20]. Hence, legal systems are naturally modelled as temporal legal
hypergraphs—but as far as we know, this option has not been explored in the literature.1

(a) Contributions
In this work, we make three contributions. First, we introduce hypergraphs and temporal
hypergraphs as mathematical representations of legal network data. Second, we describe classic
methods to study temporal hypergraphs in the legal domain. Third, we demonstrate the impact
of data-modelling decisions on the output of these methods in case studies on legal information
networks and legal collaboration networks, sharing two novel datasets in the process. To the best
of our knowledge, we are the first to model legal network data as temporal hypergraphs and
highlight the potential of hypergraph methods for understanding legal phenomena.

(b) Related work
Our work is closely related to two bodies of work: legal network analysis, which focuses on our
domain of interest, and higher-order network science, especially the literature studying hypergraphs,
which engages with our models and methods.

In legal network analysis, inspired by the seminal work of [22], scholars have studied both
information networks, such as judicial citation networks [19,20,23–26] or legislation networks
[14,16,27,28], and social networks, such as legislative collaboration networks [29–31] or judicial
collaboration networks [32]. While most investigations have focused on individual countries
[33–36], others have compared several countries [37,38], or studied networks at the European
level [39–42] or the international level [43–46]. Although researchers are increasingly using
temporal graphs in their modelling [47,48], they have yet to systematically consider higher-order
interactions, as has recently been done in other domains [49].

In higher-order network science, much work has been done to port concepts and methods
from graphs to hypergraphs, leading, e.g. to generalizations of walks [50,51], centralities [52,53],
motifs [12,54–56], clustering [57–60] and cores [61]. Exploiting edge cardinality as a new source

1The only (partial) exception we are aware of is the work by Boulet et al. [21], who model sequences of multilateral-treaty
ratifications as directed hypergraphs, encoding time in hyperedge directions (based on a non-standard definition of directed
hypergraphs). However, they only use the incidence matrix of this hypergraph to embed their nodes (representing countries)
in Rk for some chosen (undisclosed) k and then use methods tailored to point-cloud data to perform the rest of their analyses.
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Table 1. Metadata describing the datasets used as our running examples. We state the network type, the semantics of our raw
data along with their count, the temporal coverage of the data along with the number of distinct timestamps T in the dataset,
and the type of network evolution.

dataset network type raw data cases coverage T evolution type

GFCC citation case texts 3618 1951–2022 (72 years) 2109 point-aggregation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ICSID collaboration case metadata 742 1974–2023 (50 years) 1077 interval-event
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

of variation in hypergraphs, researchers are increasingly adapting concepts and methods from
topology to analyse higher-order network data [13,62,63], and they have also made some progress
by leveraging (structurally more constrained) simplicial complexes [64–67]. Recent surveys have
consolidated our knowledge of when and how to use higher-order network models or collected
the mathematical and computational tools currently available for their study [9,68–71], and the
software landscape for working with higher-order network data has improved dramatically over
the past few years [72–74]. Nevertheless, the study of higher-order network data is still in its
relative infancy, especially when compared with traditional network analysis.

(c) Structure
After describing the two datasets that serve as our running examples in §2, we discuss how these
datasets can be modelled as static or temporal (hyper)graphs in §3. In §4, we then introduce
different methods for investigating temporal legal hypergraphs and show how these can be used
on our datasets, before concluding with a discussion in §5.

2. Data
As running examples, we consider two types of network data: judicial decisions and their
citations as a classic example of information networks (legal citation networks), and arbitrators and
their tribunals as a classic example of social networks (legal collaboration networks). In particular, we
study citation networks derived from the official collection of Germany’s Federal Constitutional
Court (GFCC), and collaboration networks derived from the cases registered at the International
Center for Settlement of Investment Disputes (ICSID). Notably, these networks also feature
different types of temporal evolution: GFCC decisions are associated with one specific date and
aggregate over time (point-aggregation), and ICSID cases form intervals of collaboration events,
associated with a start date and an end date (interval-event). Providing a high-level overview of
our datasets in table 1, in the following, we give more information on each of our datasets.

(a) Legal citation networks (GFCC)
We derive our legal citation network data from the texts of judicial decisions published
by the Federal Constitutional Court of Germany (the Court) in volumes 1–160 of its official
collection, BVerfGE. The Court settles questions surrounding the interpretation of the German
constitution (Grundgesetz), and it is generally known to rely heavily on citations to its own
case law to develop its arguments [75]. We source the texts of volumes 1–140 from the online
appendix made available by Coupette [19] and collect the texts of the remaining volumes from
the Court’s official website (https://www.bundesverfassungsgericht.de/DE/Entscheidungen/
Entscheidungen/Amtliche%20Sammlung%20BVerfGE.html).2 The result is a GFCC corpus of 3618

2Although the Court provides an overview of the decisions included in its official collection on its website, its documentation
is still incomplete (e.g. some decisions included in the collection are missing from the overview) and the text of most older
decisions is not currently available from the website.
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(a) (b)
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Figure 1. Schematic depiction of the phenomena captured by our datasets.With GFCC,we seek to understand the development
of constitutional jurisprudence, with a particular view to how new decisions (large rectangles) create meaning by combining
ideas fromprevious decisions (arrows, drawnhere only for themost recent decision, and small rectangles).With ICSID,wewould
like to explore how the social structure of an elite group, arbitrators (circles) appointed to panels in international-arbitration
cases (lines and rounded polygons), evolves over time. (a) GFCC, (b) ICSID.

decisions covering the Court’s most prominent jurisprudence from its inception in 1951 to its
latest collection-included decisions rendered in early 2022.

For each decision in the GFCC corpus, we extract the other GFCC decisions it cites using a
procedure previously introduced in the literature [19]. Notably, our extraction process records
the cited decisions at the level of individual citation blocks, i.e. uninterrupted strings of cited
decisions contained in a citing decision. This allows us to distinguish between decisions cited to
illustrate the same legal argument (co-citation in a citation block) and decisions cited (only) in the
same decision, providing a more nuanced perspective on the relationships that citations establish
between co-cited decisions. We provide a schematic depiction of the phenomenon captured by
our GFCC data in figure 1a.

(b) Legal collaboration networks (ICSID)
We derive our legal collaboration network data from the metadata of cases registered at the
World Bank’s International Center for Settlement of Investment Disputes (the Center) since its
establishment in 1966 until mid-June 2023. Among the signatory states of the ICSID Convention,
the Center is designed to provide an impartial forum, independent of national courts, for the
settlement of investment-related disputes between foreign investors and investee states. All
ICSID disputes involve investors as claimants and states as respondents, and they are typically
administered by panels of three arbitrators: one appointed by the claimants, one appointed by the
respondents, and one jointly appointed by the parties’ selected arbitrators.3 We obtain the case
metadata from the Center’s website (https://icsid.worldbank.org/cases) and restrict ourselves
to cases for which arbitrator names and date information are complete.4 This leaves us with 742
cases (corresponding to 2226 tribunal-member slots) registered between 6 March 1974 and 14 June
2023, with participation by 441 unique arbitrators.

In addition to arbitrator names and case-registration dates, we collect and clean the available
case metadata on arbitrators’ nationalities, appointing entities, claimants and their nationalities,
respondent states, subject and economic sector of the dispute, legal instruments and applicable
rules involved, as well as conclusion status, conclusion date, and the date at which the tribunal

3The procedural details and arbitration realities are more complicated. For a review of the rules governing ICSID’s operations,
including the selection of arbitrators, see [76]. For a summary of concerns surrounding ICSID’s operations, see [77].
4By completeness of arbitrator names, we mean that we can identify one arbitrator in each role. We do not currently account
for changes in panel composition while a case is ongoing (identified arbitrators correspond to the latest entries in the ICSID
database), which will be of interest to scholars specializing in international arbitration. By completeness of date information,
we mean that (i) the case is either still pending or we know when it was concluded and (ii) the tribunal constitution date is
available. For all cases fulfilling these conditions, a case registration date is also available (which usually, but not always, lies
before the tribunal constitution date), but there are three cases that fulfil condition (i) for which we know only the registration
date but not the tribunal constitution date. For consistency, we exclude those cases from our analysis.
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was constituted. This allows us to analyse several classes of collaboration and affinity relations,
including party roles, industry specialization and nationality. A schematic depiction of the
phenomenon captured by our ICSID data is given in figure 1b.

3. Models
Having described our example datasets in §2, we now show how these datasets can be modelled
as graphs of varying expressiveness. To this end, we first introduce the relevant abstract concepts,
along with their associated notation and basic terminology. We then proceed to model our
datasets using these concepts and provide basic statistics of the resulting concrete mathematical
objects. As there are two ways to go from static graphs to temporal hypergraphs, depicted in
figure 2, in our exposition, we take the route via temporal graphs for the GFCC data and the route
via static hypergraphs for the ICSID data.

(a) Concepts
Static graphs. A simple graph G = (V, E) is a tuple containing n nodes (vertices) V = {v1, . . . , vn} and
m edges E = {e1, . . . , em}. We call n the order and m the size of G. If the graph is undirected, ei ∈ (V

2
)

for
all i ∈ [m], where for a set S and a positive integer k ≤ |S|, (S

k
)

denotes the set of all k-element subsets
of S, and for x ∈N with 0 /∈N, [x] = {i ∈N | i ≤ x}. If the graph is directed, E ⊆ (V × V) \ Eii, where
Eii = {(i, i) | i ∈ V}. In multi-graphs, edges can occur multiple times, and hence, E = (e1, . . . , em) is an
indexed family of sets, with ei ∈ (V

2
)

(undirected graphs) resp. ei ∈ (V × V) \ Eii (directed graphs)
for all i ∈ [m]. We write u ∼ v if {u, v} ∈ E in undirected graphs, where u is said to be adjacent to v if
u ∼ v and u → v if (u, v) ∈ E in directed graphs, where u is to be adjacent to v if u → v or v → u.

In undirected graphs, we denote the neighbourhood of node u as N (u) = {v | u ∼ v} and define
the degree of u as δ(u) = |{e ∈ E | u ∈ e}|. In directed graphs, we denote the out-neighbourhood of node
u as N+(u) = {v | u → v}, the in-neighbourhood of u as N−(u) = {v | v → u}, and the neighbourhood of
u as N (u) =N+(u) ∪ N−(u). Further, we define the out-degree of u as δ+(u) = |{(i, v) ∈ E | i = u}|, the
in-degree of u as δ−(u) = |{(v, j) ∈ E | j = u}|, and the degree of u as δ(u) = δ+(u) + δ−(u). Finally, the
line graph of G is L(G) = (E, {{e, f } | e ∩ f 	= ∅}), i.e. each edge in G becomes a node in L(G), and two
nodes e and f are connected in L(G) if the edges e and f intersect in G.

Static hypergraphs. Generalizing simple undirected graphs, a simple undirected hypergraph
H = (V , E), also called a set system, is a tuple containing n nodes V and m hyperedges E ⊆P(V) \ ∅,
where P(V) = {S | S ⊆ V} is the power set of V , i.e. in contrast to ordinary edges, a hyperedge
e can have any cardinality |e| ∈ [n]. In an undirected multi-hypergraph, E = (e1, . . . , em) is an
indexed family of sets, with ei ⊆ V for all i ∈ [m]. We define adjacency, node degrees and node
neighbourhoods as detailed for simple graphs, and further denote the edge-neighbourhood of
an edge as N (e) = {f ∈ E | e 	= f ∧ e ∩ f 	= ∅}, as well as its node-neighbourhood as NV (e) = {v | v ∈⋃

N (e)}. Observe that while δ(u) = |N (u)| in simple graphs and δ(u) ≥ |N (u)| in multi-graphs
for all u ∈ V, these relations do not generally hold in hypergraphs. Further, as the cardinality
of hyperedges is generally variable, we call a hypergraph r-uniform if all hyperedges have the
same cardinality, i.e. |e| = r for all e ∈ E , such that graphs are 2-uniform hypergraphs. As the size
of hyperedge intersections can vary as well, we can further define an s-line graph, which generalizes
the line graph by placing edges between two nodes e and f in L(H) only if |e ∩ f | ≥ s.

Lastly, there are two natural projections that transform a hypergraph H = (V , E) into a graph:
the bipartite projection, also known as the star expansion, defines G� = (V�, E�) with V� = V∪̇E and
E� = {{v, e} | v ∈ V , e ∈ E , v ∈ e}, and it is lossless if we remember the partition of V� into the original
node and edge sets. The clique projection, also known as the clique expansion, defines G◦ = (V◦, E◦)
with V◦ = V and E◦ = {{u, v} | ∃ e ∈ E : {u, v} ⊆ e}, i.e. two nodes are adjacent in G◦ if and only if they
are adjacent in H. It can optionally be equipped with a weighting function, w : E◦ →R reflecting
the intensity of node-to-node associations. The simplest weighting function is w : E◦ →N with
w(e) = |{e ∈ E | {u, v} ⊆ E}| for each e ∈ E◦, i.e. an edge {u, v} in E◦ is weighted by how often u and
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static graph

static hypergraph

temporal graph

temporal hypergraph

Figure 2. Routes from static graphs to temporal hypergraphs. We will go via temporal graphs when modelling the GFCC data,
and via static hypergraphswhen modelling the ICSID data.

v co-occur in edges from {H}. Even when equipped with a weighting function, clique expansions
are generally lossy, i.e. we cannot uniquely reconstruct H from G◦.

Temporal (hyper)graphs. There are multiple ways to capture information on temporal evolution
in (hyper)graph data. We use the definition of a snapshot-graph sequence from Gauvin et al. [78],
slightly adapted to more naturally accommodate changes to the node set. That is, we define a
temporal graph GT = (T , Γ ), where T = t1, . . . , tT is a sequence of monotonically increasing time
stamps, Γ = (Γ1, . . . , ΓT) is a sequence of snapshot graphs Γi = (Vi, Ei) for i ∈ [T], Vi is the set of
nodes present in graph snapshot i and Ei is the set (or indexed family) of edges present in graph
snapshot i.5 To define a temporal hypergraph HT = (T , Ξ ), we simply allow hyperedges in Ei.

(b) Instantiations
Legal citation networks (GFCC). A legal citation network is classically modelled as a static
directed graph G = (V, E). In a judicial citation network, each node v ∈ V represents a decision, and
each edge e = (u, v) ∈ E represents a citation u → v. When an edge indicates the binary observation
that decision u cites decision v at least once, the result is a simple directed graph, whereas when an
edge indicates an observed citation instance, the result is a directed multi-graph (or equivalently,
a count-weighted directed graph). Observe that judicial decisions (unlike, e.g. statutory texts)
cannot typically be altered or removed after they have been published, and that each decision
is associated with a decision date. Hence, the graph G = (V, E) used in the static model is simply
the last snapshot graph ΓT of a temporal graph GT = (T , Γ ) whose time stamps are the ordered
sequence of unique decision dates found in the data. Thus, denoting as t(u) the time stamp of
decision u, for a snapshot graph Γi = (Vi, Ei) with i ∈ [T], the node set is Vi = {u ∈ V | t(u) ≤ ti}, and
the edge sequence is Ei = ((u, v) ∈ E | t(u) ≤ ti ∧ t(v) ≤ ti). Note that the resulting snapshot-graph
sequence GT is a growing graph, i.e. we have Vi ⊆ Vj and Ei ⊆ Ej for i, j with ti ≤ tj.

While temporal graphs retain more information than static graphs, they do not explicitly
capture higher-order interactions in legal citation network data. In judicial citation networks
in particular, when modelling decisions as nodes and citations as edges, we can only recover
which decisions are cited together in the same decision by considering the out-neighbourhoods
of the nodes (equivalently, we could define a hypergraph in which each citing decision is a
hyperedge and each cited decision is a node). However, we lose valuable information regarding
which decisions get cited together in the same legal context. To capture this information, we can
model each decision as a sequence of hyperedges, i.e. s(u) = (s1, . . . , sc), where si ⊆ V contains the
decisions that are cited in context i, and c is the number of distinct contexts in the decision. This
requires us to define a context model to describe when we deem decisions to be cited in the same
context. The practical zeroth-order approach we adopt in this paper is to consider each sequence
of consecutive citations (i.e. citations not interrupted by prose) as a separate hyperedge.

Independent of the context model, the result is a temporal hypergraph HT = (T , Ξ ) with the
same node sets as the temporal graph defined above, and hyperedge sequences corresponding to
the contexts that occurred on or before ti, i.e. Ei = (∗s(u) | t(u) ≤ ti), where we employ ∗ to denote
sequence unpacking in a slight abuse of notation. In this framework, individual decisions are
represented not only as nodes but also as (sub-)hypergraphs, as illustrated in figure 3. Assuming

5The difference to the definition from Gauvin et al. [78] is that we allow the node sets to differ between snapshots.
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(a) (b) (c)

Figure 3. Three prominent decisions from the GFCC corpus depicted as hypergraphs (labeled volume, page). The decisions
concern data privacy (a), European integration (b) and religious freedom (c), respectively. In each panel, nodes represent
decisions cited at least once by the visualized decision, and (hyper)edges indicate unique citation blocks. Hyperedge colours
progress, by increasing cardinality, from light yellow to dark blue and then red, with binary edges (indicating that exactly two
decisions share a citation block) drawn in black. To limit visual clutter, we encode neither the sequential order of hyperedges
nor their multiplicities. (a) 125, 260—Retention of Data, (b) 135, 317—ESM Treaty, (c) 153, 1—Headscarf III.

Table 2. Basic statistics of our data modelled as static graphs (τE = ∗g) or static hypergraphs (τE = ∗h), allowing binary
edges only (τE = b∗) or permittingmulti-edges (τE = m∗). For each (hyper)graph,we state its edge semantics, its number of
edgesm, aswell as itsmean degreeδ and itsmedian degreeδM. For the directed GFCC graphs,we report the average out-degree
(equal to the average in-degree) under δ, and separate values for the median out- and in-degrees under δM.

(a) GFCC (b) ICSID

edges τE m δ δM edges τE m δ δM

citations bg 39 428 10.9 6+|7− case sharing bg 1 869 8.5 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mg 77 284 21.4 9+|10− mg 2 226 10.1 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

citation blocks bh 13 541 10.2 6 shared cases bh 722 4.9 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mh 46 257 21.4 10 mh 742 5.0 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

that t(v) ≤ t(u) for all v ∈ ⋃
s(u) (i.e. citations do not point into the future),6 just like GT is a

growing graph, HT is a growing hypergraph.
In table 2a, we provide the basic statistics of the GFCC data when modelled as static

(multi-)graphs or (multi-)hypergraphs, supplementing the static description with a temporal
perspective in figure 4a. We see that the statistics differ widely depending on whether we
allow or disallow multi-edges. This indicates considerable redundancy in our data, which can
be leveraged to distinguish different intensities of binary or n-ary relationships between the
judicial decisions in our corpus. Furthermore, note that under the same edge model, the degree
statistics in the graph and the hypergraph are very similar even though the edge counts differ
widely—which is a consequence of our definitions. We also see that our median degrees are
consistently much smaller than our mean degrees under the same (hyper)graph model. This
suggests that our degree distributions are skewed, which can be confirmed by an inspection of the
empirical complementary cumulative distribution functions (CCDFs) of node degrees in ΓT ≡ G.
In figure 4b, we additionally show the empirical CCDFs of edge sizes at different points in time
in our temporal multi-hypergraph model HT . Here, we witness a noticeable shift to the right,

6Our GFCC dataset contains 38 instances of citations forward in time and 55 instances of citations where source decision and
target decision were rendered on the same date. While forward citations mostly result from editorial choices concerning the
collection, lateral citations can also follow from scheduling decisions within the Court.
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Figure 4. Descriptive statistics based on different network models of the GFCC data. We show (i) the evolution of n and m
in the temporal graph and hypergraph models, (ii) empirical CCDFs of edge sizes at different time points in the temporal
multi-hypergraph model (b), and (iii) empirical CCDFs of thresholded edge-neighbourhood sizes for the last hypergraph in the
temporal hypergraph model with binary edges (b) or multi-edges (m) (c). (a) Evolution of GT and HT , (b) edge sizes inΞt ,
(c) neighbourhood sizes inΞT .

indicating that citation blocks grow larger over time. Finally, in figure 4c, we show the empirical
CCDFs of thresholded edge-neighbourhood sizes for hyperedges in ΞT ≡ H, modelled as a simple
hypergraph (b) or a multi-hypergraph (m). That is, we ask: for a given edge e with |e| = x, how
many other edges share at least x nodes with e? We observe that nontrivial nonempty hyperedge
intersections (i.e. |e ∩ f | > 1) exist in our data, but also that a large fraction of these intersections is
contributed by multi-hyperedges (i.e. citation blocks that occur more than once).

Legal collaboration networks (ICSID). A legal collaboration network is classically modelled as a
static undirected graph G = (V, E). In an arbitrator collaboration network, each node v ∈ V represents
an arbitrator sitting on at least one tribunal, and each edge e = {u, v} ∈ E indicates that arbitrators
u and v share a tribunal. The result is an undirected simple graph when an edge models the binary
observation that u and v sat on the same tribunal at least once, and an undirected multi-graph (or
equivalently, an undirected count-weighted graph) when an edge models an observed collaboration
instance. In this modelling framework, every ICSID case induces three (potential) edges, one
between each pair of arbitrators that is part of the case tribunal. That is, the static graph G is a
clique expansion of the static 3-uniform hypergraph H = (V, E) with the same node set as G, and
the edge sequence containing one hyperedge for each constituted tribunal of a case.

While moving from static graphs to static hypergraphs allows us to investigate higher-order
interactions in ICSID arbitration tribunals, we have yet to account for temporal evolution. To
this end, observe that unlike the citations in the GFCC data, which enter the citation network
and then stay there, collaborations on ICSID tribunals only exist while the case is active. We
proxy the activity timespan of a case by the closed interval between its tribunal constitution date
and its conclusion date. Therefore, when we model the ICSID data as a temporal hypergraph
HT = (T , Ξ ), our time stamps are the ordered sequence of unique dates on which a tribunal
is constituted or a case is closed. Denoting as tmin(e) the tribunal constitution date of a case e,
and as tmax(e) its conclusion date, for a snapshot hypergraph Ξi = (Vi, Ei) with i ∈ [T], our edge
sequence is Ei = (e | tmin(e) ≤ ti ∧ tmax(e) ≥ ti), and our node set is Vi = ⋃

e∈Ei
e. This construction

implies that δ(v) > 0 for all v ∈ Vi. In contrast to our GFCC data, due to the interval nature of
ICSID collaborations, the temporal hypergraph derived from our ICSID data is not growing.

In table 2b, we provide the basic statistics of the ICSID data when modelled as static (multi-)
graphs or (multi-)hypergraphs. We see that in the representations allowing multi-edges, the
graph representation has exactly three times as many edges as the hypergraph representation,
and its average and median degrees are twice as high. This is a consequence of the fact that H
is 3-uniform and G is a clique expansion of H. Furthermore, the differences between the edge
counts of our binary and multi-edge models show that while there is a considerable fraction of
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Figure 5. Descriptive statistics based on different networkmodels of the ICSID data.We show (i) the empirical CCDFs of degrees
for the static graphG and the static hypergraphH (a), (ii) the evolutionofnandm inHT in contrast to a staticH cut offat the same
time stamp (b), and (iii) statistics characterizing how the distribution of the number of nodes (arbitrators) in the neighbourhood
of an edge (case) in HT changes over time (c). (a) Degrees in G and H, (b) order and size in HT and H, (c) neighbourhood sizes
in HT .

repeated collaboration pairs ( 357
2 226 = 0.16), the fraction of repeated collaboration trios is much smaller

( 20
742 = 0.03)—but both fractions are significantly higher than expected under a random model.7

Similar to our findings for the GFCC data, we again observe median degrees that are much smaller
than mean degrees, with δ > 2δM in all network models, and as illustrated in figure 5a, the degree
distributions are skewed, too.8 To demonstrate the impact of temporal modelling on our ICSID
data, in figure 5b, we show the order and size of hypergraphs in HT as compared to those of a
static hypergraph H that, at time ti, includes all cases whose tribunal was constituted on a date
no later than ti (effectively following a point-aggregation instead of an interval-event evolution
model). We see that the total number of cases (m) grows about twice as fast as the number of
active cases (mT ), and the total number of arbitrators (n) grows more than three times as fast
as the number of active arbitrators (nT ). Notably, the number of active arbitrators per active
case (nT /mT ) drops from 3 in the early 2000s to around 1 in mid-2023 (i.e. on average, each
active case shares two arbitrators on its tribunal with other active cases), indicating increasing
concentration of cases among arbitrators. This concentration is also reflected in figure 5c, where
we depict the temporal evolution of point statistics showing how many arbitrators are at most one
hop away from an individual case (i.e. |NV (e)| for e ∈ Ei at time stamp i). Figure 5c further reveals
that the mean and median node-neighbourhood sizes of edges remain consistently close to each
other, which contrasts with the discrepancy between mean and median node degrees recorded in
table 2b. Interestingly, while the mean node-neighbourhood size of edges has roughly doubled
between 2007 and 2023, with an active case now having more than 25 arbitrators in its immediate
vicinity, we also find that although over 90% of nodes have been part of the largest connected
component, the diameter of this component has remained relatively large (i.e. between 6 and 9).

4. Methods
In §3, we found that the representation choice, and especially the modelling decisions (i) graph
or hypergraph, (ii) static or temporal and (iii) binary edges or multi-edges, can heavily influence our
results when we analyse legal citation or legal collaboration network data—at least if we look at
basic statistics. Now, we investigate whether this also holds when applying established network-
analysis methods. Starting from the micro level and gradually zooming out to the meso level,

7For 1000 draws from the hypergraph configuration model (see §4), the z-score for observing 357 redundant collaboration
pairs is 4.81, and the z-score for observing 20 redundant collaboration trios is 10.40.
8Much of the skew in node degree distributions is due to one arbitrator, Brigitte Stern, who sat on the tribunals of 94 cases in
our corpus, serving as the president in 2 cases, and appointed by (or on behalf of) respondents in the remaining 92 cases.
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we demonstrate how generalizations of three classic network-analysis concepts can be applied to
(temporal) legal hypergraphs: centralities, motifs and communities.

(a) Centralities
Centralities are fundamental tools for assessing the importance of individual nodes or edges in
a graph, whether importance is considered to mean sheer connectedness (degree), the ability
to quickly disseminate information (closeness) or gatekeeping power (betweenness). A number
of centrality measures have been generalized from graphs to hypergraphs, including the
aforementioned centralities [50] as well as eigenvector centralities [52]. Since hyperedges can
intersect in more than one node, walk-based centrality measures can additionally be parametrized
by a required intersection size s, which determines how many nodes must be shared between two
hyperedges for them to be considered connected in the line graph L(H). Furthermore, hyperedge
centralities play a more prominent role in hypergraph analysis than edge centralities in classic
network analysis.

ICSID example. To illustrate the impact of temporal (hyper)graph modelling on micro-level
centrality assessment, in figure 6, we show the highest-centrality edges—informally termed the
centrality backbone—of the ICSID data, modelled as a temporal hypergraph, a temporal graph,
or a static hypergraph, as judged by either shortest-path betweenness centrality or shortest-path
closeness centrality. Here, edge betweenness is the classic shortest-path betweenness centrality for
edges, hyperedge betweenness is 1-betweenness centrality, i.e. shortest-path betweenness centrality
of nodes in the 1-line graph associated with the hypergraph, and hyperedge closeness is 1-closeness
centrality, i.e. shortest-path closeness centrality of nodes in the 1-line graph.9 We see that the
backbone obtained from the temporal graph representation does not contain any triangles, i.e.
it does not respect the higher-order structure of the data. Similarly, the backbone obtained from the
static hypergraph representation contains cases that overlap in their tribunal members but not in
time, i.e. it ignores the temporal structure of the data.

(b) Motifs
Motifs are small, connected, non-isomorphic subgraphs that are statistically overrepresented
in an observed graph when compared with some randomized null model [79]. This idea
straightforwardly translates to the hypergraph setting, with the modifications that (i) k-motifs
can contain hyperedges of cardinality up to k, and (ii) the null model needs to be a randomized
hypergraph model. Here, the simplest choice is the hypergraph configuration model, which keeps
the node-degree and hyperedge-cardinality distributions and randomizes node-to-hyperedge
affiliations [56,80].

ICSID example. To show how temporal (hyper)graph modelling impacts meso-level motif
analysis, we again focus on the ICSID data. Recall that our ICSID hypergraphs are 3-uniform, such
that there are only three 4-motifs, displayed in figure 7a, that could theoretically occur in our data.
Calling these motifs Y, T and O to reflect their shape, we count how often each of these potential
motifs occurs, both for individual snapshot-hypergraphs of the temporal hypergraph HT , and for
the static hypergraph H that aggregates all case observations.10 We then compare the empirical
counts with the counts we observe in 1000 hypergraphs drawn from a hypergraph configuration
model. The results, depicted in figure 7b and 7c for the Y-motif in ΞT and in H, indicate that we

9Note that temporality is reflected in figure 6a,b via the structure of the underlying hypergraph: Only cases active in the
last snapshot of HT are considered present for the purposes of our centrality assessment. This contrasts with the aggregated
input data underlying figure 6d, which was never observed as a snapshot (and hence, should not be analysed using a static
centrality measure). Developing temporal centrality measures that operate on the entire HT presents a great opportunity for
future work.
10In the terminology of Gauvin et al. [78], we randomize both hypergraphs using degree-constrained link shufflings (based on
their implicit link-timeline representations). Note that for the purposes of this exposition, we focus on how data-modelling
decisions concerning our input data impact our results. Hence, we do not require motifs to be temporally connected (e.g. a
Y-motif can consist of two cases that share two arbitrators, even if these cases are disjoint in time).
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Figure 6. Centrality backbone of the ICSID data as assessed by different centrality measures. Hyperedges represent ICSID cases
and nodes represent arbitrators participating in their tribunals.We show the top-ranked hyperedges based on the last snapshot
of the temporal hypergraph representation,ΞT , using either hyperedge 1-betweenness centrality ((a), hyperedges ranked≤10)
or hyperedge 1-closeness centrality ((b), hyperedges ranked≤ 10), the top-ranked edges (indicating that two arbitrators shared
a tribunal) based on the last snapshot of the temporal graph representation,ΓT , as judged by edge betweenness centrality ((c),
edges ranked≤ 30), and the top-ranked hyperedges based on the static hypergraph representation,H, as judged by hyperedge
1-closeness centrality ((d), hyperedges ranked ≤ 7). In (a,b,d), cases are coloured by their economic sector. In figure 6d, we
additionally surround cases concluded before 2017 with dashed black lines and cases whose tribunal was constituted after
2017 with solid black lines, thus highlighting that not all top-ranked cases in H had overlapping activity times. (a) Hyperedge
1-betweenness centrality on ΞT . (b) Hyperedge 1-closeness centrality on ΞT . (c) Edge betweenness centrality on ΓT .
(d) Hyperedge 1-closeness centrality on H.

observe far more case pairs that share two arbitrators than we would expect if active arbitrators
were assigned to cases randomly (figure 7b), and aggregating cases over time only makes the
discrepancy between the observed hypergraph and the null model more extreme (figure 7c).
While we do not observe the O-motif—either in the ICSID data or in the hypergraphs sampled
from the configuration model—we do observe individual occurrences of the T-motif in some
snapshot hypergraphs, and seven occurrences of the T-motif in the aggregated, static H (z = 6.95).
This is remarkable because the T-motif is not compatible with complete role specialization among
arbitrators: with three cases each sharing two arbitrators, it is impossible to assign the roles
president, claimant and respondent to arbitrators such that each arbitrator has the same role in all
cases.
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Figure 7. Theoretically possible 4-motifs in 3-uniform hypergraphs (a), and frequency of the Y-motif in a population of 1000
hypergraphs drawn from the configurationmodel, with the samenode-degree distribution and edge-cardinality distribution as
our ICSID hypergraph (red line), for the last hypergraph snapshot in our temporal hypergraphΞT (b) and the staticallymodelled
hypergraph H (c), with annotated counts cm(Y) and z-scores z. In the ICSID data, the Y-motif occurs muchmore frequently than
expected under the null model. (a) Feasible 4-motifs. (b) Y-motif inΞT . (c) Y-motif in H.

(c) Communities
Moving beyond the local structures captured by motifs, identifying communities (or clusters) of
closely related nodes is one of the most important meso-level tasks in network analysis [81].
While some hypergraph-specific clustering methods exist, many of them implicitly work with
a projection onto some kind of graph [82], and the toolkit for community detection in graphs
is currently much more flexible. Thus, we would like to encode the information contained in a
legal hypergraph H in a weighted graph Gw that can be used as an input to existing community-
detection algorithms. How exactly this translation should proceed depends on the semantics of
the underlying data. Hence, our goal here is merely to illustrate one plausible approach, tailored
to judicial citation data, and to demonstrate that this approach works well in practice.

To see how we can transform a hypergraph representing legal citation data into a weighted
graph reflecting its higher-order relationships, we focus on data that are structured like our GFCC
data. Recall that in these data, nodes correspond to judicial decisions and hyperedges correspond
to citation blocks, which are themselves associated with the decision in which they occur (i.e. we
can think of citing decisions as hyperedge colours). Therefore, a citation block provides evidence
for pairwise associations between the decisions contained in the block as well as between the
citing decision and each of the cited decisions, and we would like to define the edge weights of
our weighted graph to reflect the strength of this evidence. We make the following assumptions:
(i) For associations between co-cited decisions, the smaller the hyperedge, the stronger the
evidence.11 (ii) For associations between the citing decision and the co-cited decisions, if we want
to include them at all, the more a decision gets cited and the fewer other decisions get cited,
the stronger the evidence. Hence, we begin by defining Gw = G◦ = (V◦, E◦) = (V, {{u, v} | ∃ e ∈ E :
{u, v} ⊆ e}), i.e. the skeleton of Gw is the clique expansion of H = (V , E). We then define w : E◦ →R

with

w({u, v}) =
∑

{u,v}⊆e

1
|e| − 1

,

11This assumption is self-contained, i.e. it does not require any knowledge regarding the relationship between co-cited
decisions that is not expressed in the data. While testing it empirically could yield an interesting contribution to the study of
judicial citation practice, our theoretical justification of this assumption is that (1) one function of citation blocks is to back
up contentious points, (2) the more contentious a point, the more supporting evidence should be provided for an argument
to be convincing and (3) the more decisions are cited together, the fewer features will be naturally shared by all of them.
Alternative assumptions, e.g. that each co-occurrence of two decisions in a citation block provides the same level of evidence
(which would also be self-contained), can easily be incorporated by adjusting the weight-allocation procedure of our graph
Gw.
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Figure8. In the association-graph construction,we transform (1) a hypergraphHwith coloured hyperedges (indicating citation
blocks that belong to the same decision) into (2) a weighted clique expansion of H, optionally (3) augmenting this expansion
with star-expansion-like self-affiliations (a). Infomap clusterings are more balanced when based on an association-graph
representation derived from the GFCC hypergraph thanwhen based on one of the traditional directed graph representations, as
indicated by the cluster-size distribution of the AMI-determined medoids of 50 differently seeded clusterings using the same
model (b). Clusterings based on association graphs also capture node-to-node relationships differently, as indicated by the AMI
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underlying (hyper)graph representation as (binary|multi)(graph|hypergraph)[self-association (versus none)|undirected flow
(versus directed)]. (a) Association-graph construction, (b) medoid cluster-size distribution. (c) medoid clustering similarity.

i.e. for each hyperedge e of cardinality at least 2 in H, we add 1/|e| − 1 to the weight of each edge
{u, v} with {u, v} ⊆ e. This implies that the sum of the weights added to the edges incident with
node u in Gw as a consequence of its membership in a hyperedge e is exactly 1. It also ensures that
a random walk on the resulting graph that picks its next destination proportionally to the edge
weights corresponds to a non-lazy random walk on the hypergraph H that, when at node u, first
picks a hyperedge e uniformly at random and then picks a node v ∈ e \ {u} uniformly at random
(this is called an equal-edges random walk in [62]).

Note that Gw as defined above will contain relatively little information about recent decisions,
as these decisions did not get many opportunities to be cited by other decisions. To enable
clustering algorithms to also integrate these decisions, we can opt to further include the evidence
provided by the self-association of all decisions in the form of their own citations (at the expense
of a clean correspondence between a random walk on H and a random walk on Gw). That is, we
can add all citing decisions to V◦, and for a decision u containing citation blocks Eu, to each edge
{u, v} with v ∈ Eu, we can add the weight |{e|v∈e∧e∈Eu}|∑

e∈Eu |e| , i.e. the fraction of citations by u that go to

v, which implies that the sum of the weights added to edges by the self-association of u is exactly
1. Illustrating the construction in figure 8a, we call the resulting graph, which is a hybrid between
a weighted clique expansion and a weighted star expansion, the association graph of H.
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GFCC Example. To see how using an association-graph representation instead of a classic
graph representation impacts clustering results, we compute 50 clusterings for each of eight
different GFCC data representations, four hypergraph-derived association-graph representations
and four traditional graph representations. We use Infomap [83] as our clustering algorithm
because (i) its theoretical foundation based on random walks mimics the legal search process,
(ii) it does not require us to specify the number of communities but rather derives it from
the data based on information-theoretic principles and (iii) it has been shown to work well on
classic representations of legal citation data [14,19,32]. Moreover, the group developing Infomap
has tested the algorithm for hypergraph clustering based on clique expansions similar to those
defined above [82]. Evaluating our clustering results is not straightforward, especially because (i)
our clusterings are based on different (hyper)graph representations of the same data, (ii) there is
no universally accepted ground truth and (iii) unsupervised quality measures do not necessarily
capture clustering quality from a legal perspective. To understand how our clustering results
are related and gauge clustering quality, we thus combine objective quantitative measures and
subjective qualitative assessments.

We begin by investigating the quantitative structure of the partitions associated with each
clustering. To this end, in figure 8b, we show the cluster-size distribution of the medoid of 50
differently seeded clusterings for each of our eight (hyper)graph representations. Here, the medoid
of a set of clusterings using the same underlying representation is the clustering with the largest
sum of within-model adjusted mutual information (AMI) scores, indicating that on average, it is
closest to all other clusterings using the same model (at least when judged by AMI). We observe a
steep step from cluster size 1 to larger cluster sizes in both association-graph representations not
using self-affiliation (bh and mh), which is absent in the results using self-affiliation (bhs and mhs),
demonstrating the importance of including self-affiliation when working with the hypergraph-
based model. Furthermore, we see that clusterings based on association-graph representations
tend to be rather balanced, with the three largest clusters each holding between 4% and 6% of
all nodes, whereas clusterings based on classic graph representations (bg, bgu, mg, mgu) tend to
have one to three large dominant clusters containing between 10% and 70% of all nodes. Hence,
from a balancedness perspective, clusterings leveraging affiliation-graph representations with self-
affiliation (bhs, mhs) appear to be preferable over all other clusterings. Notably, clusterings based
on affiliation-graph representations also achieve consistently higher performance12 than those based
on classic graph representations—i.e. the former exhibit higher performance than the latter even
when both are evaluated on classic graph representations.

To further explore the relationships between our clusterings, in figure 8c, we show the
pairwise similarities between the medoid clusterings, as assessed by their AMI scores and
their adjusted rand index (ARI) scores. We see that the similarities between clusterings based
on association-graph representations on the one hand and clusterings based on classic graph
representations on the other hand are relatively low (upper right and lower left quadrant), which
suggests that association graphs capture node-to-node relationships differently from classic graph
representations. However, this can also be said, more generally, for each pair of representations
using dissimilar underlying models, as outside the submatrices bg, bgu, mg, mgu, bh, mh, bhs, mhs,
both AMI and ARI are relatively low. Notably, the scores also reflect the large variation in cluster
sizes between the different medoid clusterings (cf. figure 8b).

Lastly, we manually inspect our medoid clusterings, assigning labels to their individual clusters
based on the titles (or rather: taglines) of the clustered decisions provided by the Court (available
in the online materials). Here, we focus on the most promising representations based on the
affiliation graph and the classic graph, namely, mhs and mbu. We find that while both clusterings
capture the high-level structure of German Federal Constitutional Court jurisprudence, the
hypergraph-based clustering tends to provide a more fine-grained map of German constitutional

12Performance is defined as the number of intra-community edges plus the number of inter-community non-edges, divided
by the total number of potential edges.
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law. As a result, we can observe the evolution of distinct lines of case law at a higher level of
detail, unearthing, for example, a sequence of decisions on the legal status of Berlin as a special
case in a more general line of decisions on state-to-state and state-to-federation relations.

5. Conclusion
In this work, we proposed hypergraphs and temporal hypergraphs as mathematical representations
of legal network data. We showcased how generalizations of established network-analysis
methods can be used to study temporal hypergraphs in the legal domain, and we demonstrated
how data modelling decisions impact the results of these methods in case studies on legal citation
networks (GFCC data: citations in German Federal Constitutional Court decisions) and legal
collaboration networks (ICSID data: arbitration tribunals of cases at the International Center
for Settlement of Investment Disputes). While we provided some evidence for the potential of
temporal legal hypergraphs as representations of legal network data, we have arguably only
scratched the surface—especially in terms of our data, methods and applications. Therefore, we
see avenues for future work in several directions. First, regarding data, it would be interesting
to see existing legal network datasets modelled as temporal hypergraphs, and the results
of prior legal network studies could be re-evaluated based on the resulting representations.
Second, regarding methods, we see great opportunities in translating further concepts from
graphs to hypergraphs, and in exploring novel approaches to hypergraph data analysis based on
representations of hypergraphs as filtered simplicial complexes or partially ordered sets—which
will allow us to better understand, inter alia, the evolution of legal argumentation. And third,
regarding applications, we are curious to see what further insights in-depth analyses of temporal
legal hypergraphs can reveal about the structure and dynamics of complex legal systems.
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