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ABSTRACT

Weak supervisory information of web images, such as cap-
tions, tags, and descriptions, make it possible to better un-
derstand images at the semantic level. In this paper, we pro-
pose a novel online multimodal co-indexing algorithm based
on Adaptive Resonance Theory, named OMC-ART, for the
automatic co-indexing and retrieval of images using their
multimodal information. Compared with existing studies,
OMC-ART has several distinct characteristics. First, OMC-
ART is able to perform online learning of sequential data.
Second, OMC-ART builds a two-layer indexing structure,
in which the first layer co-indexes the images by the key
visual and textual features based on the generalized distri-
butions of clusters they belong to; while in the second layer,
images are co-indexed by their own feature distributions.
Third, OMC-ART enables flexible multimodal search by
using either visual features, keywords, or a combination of
both. Fourth, OMC-ART employs a ranking algorithm that
does not need to go through the whole indexing system
when only a limited number of images need to be retrieved.
Experiments on two published data sets demonstrate the
efficiency and effectiveness of our proposed approach.

Categories and Subject Descriptors

H.3.1 [Content Analysis and Indexing]: Indexing meth-
ods; H.3.3 [Information Search and Retrieval]: Clus-
tering, Information filtering.

General Terms
Algorithms, Theory, Experimentations

Keywords

Hierarchical image co-indexing, multimodal search, online
learning, clustering, weakly supervised learning.
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1. INTRODUCTION

Automatic indexing and retrieval of images based on visual
features has been a widely studied problem. However, due
to the diverse visual content of images, the low-level visual
features are typically not consistent in modeling the char-
acteristics of images belonging to the same class, a problem
known as the semantic gap [19, 2]. Recently, a number of
studies make use of the surrounding text of images, such as
captions, tags, and descriptions, as additional features for
better understanding and representation of images [21, 15,
22, 7, 11, 20, 10, 18, 17]. The surrounding text of images,
also referred to as weak supervision [8], side information
[16], and meta-information [15], typically involves high-level
semantics that describe the background, objects, and even
events about the images. On one hand, using multimodal
information helps to improve the indexing and retrieval per-
formance of images. On the other hand, multimodal in-
dexing facilitates multimodal image search based on visual
content, keywords, or their combination [9, 1].

Existing studies on multimodal image indexing and re-
trieval typically focus on techniques that can either identi-
fy a latent feature space for the image representations by
fusing the multimodal feature representations, such as the
Latent Semantic Indexing (LSI) [2, 3], probabilistic Latent
Semantic Analysis (pLSA) [10, 3], and Non-negative Matrix
Factorization (NMF) [1], or infer the associations among the
multimodal features in order to generate a new representa-
tion for each image [7, 20, 9]. However, several limitations of
such approaches have been identified. First, these approach-
es cannot perform online learning. Therefore, they cannot
handle the large live streams of images that require frequent
updates. Second, the surrounding text of images typically
has several descriptive keywords together with a relatively
large number of words that are not descriptive to the image
content [15]. Such noisy information may result in spurious
relation between images and have side-effect on the distri-
bution of images in the derived feature space. Third, some
of the existing approaches support only one type of queries
while those supporting multiple types of queries typically
require the generation of multiple transformation matrices,
which limits their flexibility for multimodal search. Lastly,
all existing approaches return the search result to the query
by directly ranking the images of the whole data set. This
results in a slow response time for a given query when the
data set is large.



To address the aforementioned issues, we propose an on-
line unsupervised learning algorithm, named Online Mul-
timodal Co-indexing Adaptive Resonance Theory (OMC-
ART), for the automatic multimodal co-indexing and re-
trieval of weakly labeled web image collections. In contrast
to existing approaches, OMC-ART performs online learning,
which allows the adaptation of the learnt indexing system,
rather than a re-indexing of the whole data set that will incur
heavy computation. To alleviate the side-effect of noisy in-
formation and reduce computation complexity, OMC-ART
formulates the indexing process as that of simultaneously
identifying the clusters of similar images and the key fea-
tures from their generalized feature distributions, in terms
of visual and textual features. As such, OMC-ART gener-
ates a two-layer indexing structure, wherein images are co-
indexed by the key visual and textual features based on the
generalized distributions of the clusters in the cluster-level
layer, named the abstraction layer; and their own feature
distribution in the image-level layer, named the object layer.
Moreover, OMC-ART enables multimodal search by using
either visual features, keywords, or a combination of both;
and employs a ranking algorithm that iteratively selects the
most similar cluster in the abstraction layer and subsequent-
ly sorts the images therein in a ranked list. This ranking
algorithm may reduce the computational cost because of the
pre-ranking of clusters, and will be more efficient when only
a limited number of images need to be retrieved.

We evaluate the performance of OMC-ART using two
published web image datasets, namely, the NUS-WIDE and
Corel5k data sets. In the experiments, we report our studies
on parameter selection, retrieval performance comparison,
and efficiency analysis. The experimental results show that
OMC-ART has a much better performance in terms of the
mean Average Precision, Precision, and Recall, and has a
much faster response time.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes existing studies on multimodal image
indexing and retrieval. Section 3 presents the problem for-
mulation. The technical details and experimental evaluation
of OMC-ART are described in Section 4 and Section 5,
respectively. Section 6 summarizes the main findings of the
study and suggests several extensions.

2. RELATED WORK

Multimodal image indexing and retrieval typically follow two
main approaches. The first approach is to extend existing
algorithms for image indexing with single type of features
for integrating multiple types of features. Examples include
Latent Semantic Indexing (LSI) [2, 3], probabilistic Latent
Semantic Analysis (pLSA) [10, 3], and Non-negative Matrix
Factorization (NMF) [1]. Caicedo et al. [2] proposed a
Latent Semantic Kernel (LSK), based on LSI, which adopts
kernel methods to compute the similarity between the query
and the indexed images. Multimodal LSI (MMLSI) [3] uti-
lizes tensors for multimodal image representation and em-
ploys Higher Order Singular Value Decomposition (HOSVD)
[5] for obtaining the feature representation of images. Chan-
drika et al. [3] extended pLSA by jointly considering visual
and textual features in a probabilistic model, and employed
EM algorithm to obtain the derived representation of the
images. The Multilayer Multimodal probabilistic Latent
Semantic Analysis (MM-pLSA) [10] handles the visual and
textual information of images by a multi-layer model, which

consists of two leaf pLSA models for learning the visual and
textual representation of images respectively, and a node
pLSA for obtaining a unified representation. Caicedo et al.
[1] proposed two methods based on Non-negative Matrix
Factorization (NMF), of which the first method concate-
nates the matrices for visual and textual features in order to
enable search by both visual and textual features, while the
second method aims to successively optimize the transforma-
tion matrices of textual and visual features, which enables
search by using either visual features or keywords.

The second approach is to construct a new representation
by exploring the association among multimodal features. Li
et al. [9] proposed four methods to infer the similarity
matrices for the visual and textual features. The learned
similarities are utilized for tackling image retrieval based on
visual or textual features. Escalante et al. [7] proposed
two methods for image indexing based on the occurrences
and co-occurrences information of terms in the surrounding
text and the object labels associated to images. The hybrid
framework [20], named iSMIER, performs image retrieval by
predicting the captions and annotations for the query image,
and indexing it by its visual fuzzy membership of clusters.

3. PROBLEM FORMULATION

Given a weakly labeled image collection D = {di,...,dn}
with their associated visual features ¥V = {V1,..., Vi } and
textual features 7 = {Ti,..., Ta}, the nth image is repre-
sented by the visual feature vector v, = [vn,1, ..., Un,m], and
the textual feature vector t,, = [tn,1,...,tn,z] (R =1,...,N).
The multimodal co-indexing and retrieval problem of weak-
ly labeled images is defined as the process of simultaneously
identifying a set of clusters of similar images C = {c1, ..., cs}
and their generalized visual and textual feature represen-
tations as weight vectors wj = [w};,...,w} ] and W} =
Wiy, ...,wig] (j = 1,...,J). In this way, the key visual
and textual features of each cluster ¢; (j = 1,...,J) can be
identified according to the cluster weight vectors w; and
Wt;’ denoted as K] = {vm|vm € key featuresofc;} and
K = {tm|tm € key featuresof c;}, respectively. As such,
images in the indexing system, e.g. the nth image d, € c;,
will be co-indexed by the identified key visual features K, =
{vn,m|vm € K7} and textual features Kj, = {tn,n|tn € K}}.
The subsequent retrieval problem is defined as a ranking
process. Specifically, a query ¢ can either be an image,
or several keywords, or a combination of both. When ¢
is presented to OMC-ART, the corresponding visual and
textual feature vectors v4 and t, will be constructed based
on V and 7. By calculating the similarities between the
query and images in the indexing system S(q,dn), a list of
most similar images £ is returned as the retrieval result.

4. ONLINE MULTIMODAL CO-INDEXING
ADAPTIVE RESONANCE THEORY

Online Multimodal Co-indexing Adaptive Resonance The-
ory (OMC-ART) comprises three steps. First, OMC-ART
employs an adaptation method to extend the heterogeneous
data co-clustering algorithm, named Generalized Hetero-
geneous Fusion Adaptive Resonance Theory (GHF-ART)
[15], to perform online learning and generate the clusters
of similar images with the respective generalized visual and
textual feature distributions. Second, making use of the
learnt weight vectors of the discovered image clusters, OMC-
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Figure 1: The architecture of GHF-ART for integrating K
types of feature vectors.

ART dynamically selects the key features of each cluster in
order to co-index the images in the clusters using a two-
layer hierarchical indexing structure. Third, OMC-ART
incorporates a ranking algorithm that allows multiple types
of queries for retrieving images in the indexing system.

4.1 GHF-ART

4.1.1 Heterogeneous Feature Representation

GHF-ART [15], as shown in Figure 1, consists of K indepen-
dent feature channels in the input field, each of which han-
dles one feature modality x* of the input data object, and a
category field consisting of clusters that are represented by
weight vectors w* (k = 1,...,K). It allows for different
representation and learning methods for different feature
modalities. Regarding the weakly labeled image collection,
given an image d,,, GHF-ART may receive any type of visual
features in the form of a vector vy, = [vn,1, ..., Un,a], Which
should be further normalized by the min-max normalization
that guarantees the input values are in the interval [0, 1].

The corresponding textual feature vector t,, = [tn,1, ..., tn, H]
is represented by the presence of words in d,,, defined by
1, if th € dn
T (1)
0, otherwise

4.1.2  Clustering Procedures of GHF-ART

GHF-ART performs clustering of composite data objects in
an incremental manner. Given an input data object d,
represented by K types of features Z, = {xF|& ), the
clustering process of GHF-ART has three steps:

1) Category Choice: When the input vectors Z,, of the
data object d, is presented, a choice function is firstly em-
ployed to evaluate the overall similarity between d,, and each
cluster ¢; in the category field, which is defined by

IxE A wh|
n7cJ Z i (2)

a+|w |’

where w? denotes the weight vector of the jth cluster for
the kth feature modality, the contribution parameter v* €
[0,1] is the weight for the kth feature modality, the choice
parameter @ ~ 0 is a positive real value to balance the
denominator, the operation A is defined by (Xn A WJ)
mln(:c’fl’i,w}“’i), and |.| is the ¢; norm.

2) Template Matching: After identifying the winner clus-
ter ¢;j=, a match function is used to evaluate if c¢;+ matches
dn in terms of each feature modality. For the kth feature
modality, the match function is defined by

Ixk A whe|

ko ko
M(xy, wix) = FA (3)

3) New Cluster Creation or Resonance: Given the
vigilance parameter p* € [0, 1] for the kth feature modality,
if the vigilance criteria M (xF, w;“*) >pFfor k=1,..K are
not satisfied, a reset occurs so that a new winner is selected.
If all clusters in the category field do not meet the vigilance
criteria, a new cluster, denoted as cpew, Will be created to
encode d,, such that wfnew =x"fork =1, ..., K. Otherwise,
a resonance occurs so that the weight vectors {w[t_,} of
c¢j» are updated in terms of different modalities. Assuming
that W;?* contains the features extracted from images, the
corresponding update equation is defined by

WJ —,B(X /\w] )—i—(l—ﬂ)wf*, 4)

where 8 € [0,1] is the learning parameter. In contrast,
assuming that wf* contains the features extracted from the
surrounding text of images, the update equation is defined
by

Zf xfl,h =0

K nw
ik {n(w;ﬂ’h + 1) otherwise )

T ﬁh is the hth feature

of x¥ L is the number of data objects in cj*, and n = L%q

Where wk* ., is the hth feature of wh

4.1.3 Adaptive Weighting for Heterogeneous Features

GHF-ART adaptively tunes the weights v* (k=1,..K) for
different feature modalities as used in Equation (2) through
the Robustness Measure, which evaluates the importance
of different feature modalities in recognizing similar data
objects. Considering a cluster ¢; with L data objects, each of
which is denoted by Z; = {x{,...,xF} forl=1,...,L, and
the corresponding weight vectors for the K feature modali-
ties are denoted by W; = {le-, R Wf}, the Difference for
the kth feature modality of ¢; is measured by

% 2 ‘Wf - x/]

DF =
Wi

’ (6)
Considering all the J clusters, the Robustness of the kth
feature modality can be measured by
1
k k
R —exp(—j Dj)r (7
Finally, the contribution parameter for the kth feature chan-
nel 4" is defined by
k
k R
V=S (8)
2= R
For efficiency purpose, the respective incremental update
equations for v* (k= 1,...K) are further derived:

e Resonance in existing cluster: Assuming the in-
put data object dry1 with feature vectors Zp4+1 =
{XL41,---, X541} is assigned to the cluster ¢;. For
the kth feature modality, the update equations for the
features extracted from images and surrounding text
are defined by equations (9) and (10) respectively:

(Iwh DY + |wh —wh| + — |vv§—xi+1|>7 (9)

2|5

k
7l

-
D; =

3

1
Ak k K k
(‘W |D |Wj *”W]“JF E|W]‘ 7XL+1‘) (10)

\'?r

After the update for all feature modalities, the updated
contribution parameter can then be obtained using
Equations (7) and (8).



e Generation of new cluster: When generating a new
cluster, the differences of other clusters remain un-
changed. Therefore, it just introduces a proportional
change in Difference. Considering the robustness R*
(k = 1,...,K) for all feature modalities, the update
contribution parameter for the kth feature modality is
defined by:

sk (RMTH
K (ReyTEH

4.2 Online Adaptation of Normalized Feature
Distributions

GHF-ART may not be directly applicable to online learning,
because the min-max normalization requires the maximum
and minimum values of each feature for normalizing the fea-
tures extracted from document content. To address this is-
sue, OMC-ART employs an adaptation method that updates
the normalized feature vectors of data objects and cluster
weights to what they should be when an input data object
incurs a change in such values, as defined by Equations (12)
and (13) below,

(11)

(old) (old) (old) _  (new)

(new) _ Tmaz — Lpyipn (old) Lmin Linin
z T (new) _,(new) x + (new) __(new)’ (12)
max min mazx min
( N (old) __ (old) (old) m(old) _ (new)
new) __ mazx min o min min
w T (new) _ (new) (new) _ (new)’ (13)
max min max min

where x denotes a feature extracted from document content,

2 is the value of z calculated based on the old maximum

value :vgﬁf{i) and minimum value :cn‘;ii , and (") g the

updated value calculated based on the new maximum value
(new) o (new)

Tmaz  and minimum value z,,,,."’ .

As an online algorithm, the initial maximum and mini-

(1) (1)

mum values Z;maz and x,,;,. should be carefully considered.

Without the loss of generalization, we set 2, = 2 and
:ci,llzn =2 —1, where (% is the original value of = without

normalization.

THEOREM 1. Considering a feature x that will be con-
tinuously normalized by N set of maximum and minimum
5:271}7]:]:1: the value of © with n round of nor-

can be inferred directly by that of (=1 by

values {xﬁﬂqp, T

malization (™

Equation (12).
PROOF. Civen 2™, and z"™ , we have

min

0) _ .(n)
2 = S Tmin (14)
xn?az - xrszn
(0) (n—1)
(n—1) __ z - xmin
x = . (15)
winad) =y

By substituting z(*) in Equation (14) using the expression
of z(®) derived from Equation (15), we have

(n—1) (n—=1) (n—=1) (n)
(n) _ Tmaz ™ — Tmin (n—1) Lonin ~ — Linin
oW = Tmar 7 Bmin_p(n=1) 4 Tmin T Tmin - (16)
m’(ﬂ?‘lz - ‘risi)n m’(ﬂ?‘lz - ‘risi)n
[

THEOREM 2. Considering the value of weight w, denoted

by w™N) | which learns from the features {xglN)}le of N data
(N) _(N)

objects, and is normalized by {Tmax, T, - If @ new input
data object dn+1 introduces x%\gl) and x%jm, the adapted
(N+1)

weight value w can be derived by Equation (13).

PROOF. Section 4.1.2 indicates that w®) = x§N>, and the
value of w is updated by learning from input data objects
following Equation (4). Therefore, we have

if 200 > wY

(n—1)
(n _ JW
w'™ = .17
{(1 — Bw™ D 4 82N otherwise (1"

Based on Equation (17), we may infer that w™) = clacgN) +
...+CNZES\],V> and c1+...4cny = 1. Therefore, when x%y) and

iﬁ.;‘” are introduced, we obtain w™+1) = clﬂcgN"'l) +...+
chg\],VH). By denoting Equation (16) by (™ = o™z~ 4
b we have

T

wN Y = a<N+1)(clx§N) + ...+ chE\,N)) + (1 + . 4 en )b
= a4 p(NHD), (18)

O

4.3 Dynamic Selection of Key Features and Hi-
erarchical Co-Indexing of Images

The learning functions of GHF-ART for document content
and surrounding text, as discussed in Section 4.1.2, essential-
ly aim to discover the key features by preserving or increas-
ing the values of key features while decreasing those of noisy
features. Therefore, the representative visual and textual
features V and 7 can be obtained from the corresponding
cluster weight vectors {w4}7_, (k = {v,t}) of the clusters
{cj}/=1. The key visual and textual features KY and KY of
¢; are selected based on the following criteria,

M
v v 1 v
i=1
1 H
K5 = {tnlwjn > T ;wL} (20)

The proposed criteria select the features of values above
average as key features. They are based on the idea that
the high dimensional features are usually sparse and noisy,
especially for the surrounding text of images. Therefore,
the proposed method may filter the features providing little
information while keeping those that are useful for indicating
the difference between clusters.

In this way, each image d, € c¢; in the indexing system
of OMC-ART is hierarchically indexed by the key weight
values, KW} = {wj,,|vm € Kj} and KW}, = {w! ,|tn €
K.}, in the abstraction layer and the corresponding feature
values, Ky, = {vn,m|vm € Ki} and Ki, = {tn,nltn € K5}, in
the object layer.

4.4 Ranking for Multimodal Queries

OMC-ART enables multimodal search by using either visual
features, keywords, or combination of both. Given a query gq,
the visual and/or textual feature vectors, vq and tq, for the
provided query image and/or keywords will be construct-
ed based on V and 7. Taking advantage of the two-layer



indexing structure, we employ a ranking algorithm based
on binary insertion sort. In the first step, the similarity
between the query ¢ and the clusters ¢; for j = 1,...,J in
the abstraction layer will be computed. We first define the
dissimilarity between two feature values as

max(a;, b;) — min(a;, b;)

DIS(a;,b;) = e 28 (21)

The dissimilarity evaluates the degree of the difference be-
tween a; and b; to a;, and « is defined in Equation (2).
Subsequently, the similarity between g and c; is defined as

Salg,c)) =" Y.
w}’)i GICW;.’
++° Z

t t
Wi SV

max(0,1 — DIS(vg,i, w5 ;))

(22)
max(0,1 — DIS(tq,, w;"l))7

where v” and ' are the weights learnt by Equation (8)
during clustering, which assign higher weights to the more
important feature modality. For queries using either image
or keywords, the corresponding part in Equation (22) will
not be considered. Here, the max(.) function is utilized to
avoid the case that the selected key features of clusters are
not the key features of the query.

Given the cluster ¢; € L. that is most similar to query g,
each d, € c¢; is inserted to the ranking list £ according to
the binary insertion sort. Considering an image d, € c;, the
similarity between the query ¢ and d,, is defined as

SO(Q7 dn) = ’YU Z w;'},i max(O, 1 - DIS(’Uq,i,Un,i))

Vp,i ECY

+4* Z w}; max(0,1 — DIS(tgi,tn,i))-
tn,i XL

(23)

Note that the weights for similarities are introduced here
to enhance the impact of key features. In addition, with a
predefined length u of £, the ranking algorithm may stop
without traversing the entire indexing system if the ranking
list keeps unchanged for a certain period of time, in view that
the images most similar to the query are presented prior to
those of lower similarity.

4.5 Computational Complexity Analysis

OMC-ART includes a co-indexing module and a retrieval
module. Regarding the co-indexing module, for each da-
ta object, OMC-ART first normalizes the features, which
requires a time complexity of O(n;ny), where n; denotes
the number of images and ns denotes the total number of
features. A change in the bound values of features Tmax
and Tmin will incur a computation cost of O(n;nys) in the
worst case. Second, the clustering process of OMC-ART,
as demonstrated in [15], has an overall time complexity of
O(nineny), where n. is the number of clusters. Finally,
the hierarchical co-indexing process has a time complexity
of O((n; + nc)ny). Therefore, the co-indexing module of
OMC-ART has a total time complexity of O(n;neny).

The retrieval module of OMC-ART includes the construc-
tion of features, the similarity evaluation between the query
and the indexed images, and the ranking algorithm. The
feature construction for the query occurs in real-time. If the
ranking list £ includes all images in the data set, the overall
time complexity for the similarity measure and ranking is

Algorithm 1 OMC-ART - Co-Indexing

Input: Images {dn}ﬁ’:l with the corresponding visual and
textual features {v,}3_, and {t,}A_,, and parameters
a =0.001, 3= 0.6, p” and p'.

1: Present di with v; and t1 to the input field.

: Initialize Tmae and zm, for each feature z of vy, and
perform min-max normalization on vi.

: Set J = 1. Create cluster c; with w4 = v; and WtJ =t.

Set n = 2.

repeat
Present d,, to the input field.
If Zinax and Tmin are changed, update normalized fea-
tures according to Equations (12) and (13). Normalize
Vn With Zmae and Tmin.
8  For Ve; (j = 1,...,J), calculate the choice value
T(dn, cj) according to Equation (2).

V]

9:  repeat

10: Identify a winner cluster cj= so that j* =
arg max;.c;er, T(dn, c;).

11: Calculate the match values M (v,,wj+) and
M (tn, wi+) according to Equation (3).

12: If M (v, wha)<p”(k = {v,t}), set T(dn,cj«) =—1.

13:  until Identify c;+ such that M(v,, wh) > p¥ for k =
{v,t}, or T(dn,cj*) = —1.

14:  If T(dn,cj) # —1, set dn € c;=, update w'h. for k =
{v,t} according to Equations (4) and (5) respectively,
and update v and v* according to Equations (7)-(10).

15:  If T'(dn,cjx) = —1, set J = J + 1, create a new node
¢y such that w§ = v, and Wf] = tn, and update 7"
and " according to Equation (11).

16: Setn=n+1.

17: until All images are presented.

18: Identify key features of clusters according to Equation-
s (19) and (20), and obtain the indexes KWY and KW}
of clusters {c;};—, and the indexes K} and K!, of images
{dn},lyzl as discussed in Section 4.3.

Output: Clusters {cj}‘jjzl, cluster assignment of images
{A,}}_, and indexes ICW? and KF for k = {v,t}.

of O(ninks + nilogn;), where niy < ny is the total number
of key features. In our experiment on the NUS-WIDE data
set, we have ny = 2000 while ny ¢ of a cluster is typically less
than 30. In contrast, if £ has a limited length u, the overall
time complexity is O(nunky + n.logn.,), where n, < n; is
the number of images used to achieve a stable L.

5. EXPERIMENTS
5.1 Data Sets

We conducted experiments on two data sets. The first is
the NUS-WIDE data set [4], consisting of 269,648 images
with surrounding text and their ground-truth labels of 81
concepts. We used 16,000 images belonging to 10 classes,
including dog, birds, flower, lake, sunset, beach, bridge,
cars, coral, and garden, each of which includes 1,600 images.
We used a concatenation of Grid Color Moment (255 fea-
tures), Edge Direction Histogram (73 features) and Wavelet
Texture (128 features) as visual features. For the textual



Algorithm 2 OMC-ART - Retrieval

Input: Query ¢ (image, keywords, or combination of both).

1: Construct the visual feature vector v, and/or textual
feature vector t,, and present them to the input field.

2: Perform min-max normalization on v, based on the
current Tmaz and Tmin. If 3i such that vy > Tmaz
or Vgq,i < Tmin, set vg,; = 1 or 0, respectively.

3: Calculate Sa.(q,c;) for j = 1,...J according to Equa-
tion (22), and obtain the ranking list L. = {¢; L.

4: Set i = 1.

5: repeat

6: Select cluster ¢; € L.

7 repeat

8 Select an image dn, € ¢, and calculate So(q,dn)

according to Equation (23).
9: Find its ranking in the retrieval list £ using the
binary search algorithm.
10: until all images d,, € c¢; are presented to L, or L of
length u remains unchanged for a period of time.

11: Set i =i+ 1.

12: until All images are presented, or £ of length u remains
unchanged for a period of time.

Output: The list £ of ranked images to the query q.

features, we filtered the surrounding text of images and
considered all distinctive and high frequency tags. In to-
tal, we selected 2,000 tags and ensured that each selected
image is associated with at least five tags. For the retrieval
performance evaluation, we used 1,500 images of each class,
i.e. 15,000 images, for building the indexing system and the
remaining 1,000 images for queries.

The second data set used is the Corel5k data set, which
is originally used in [6] for visual object recognition. This
data set consists of 5,000 images from 50 Corel Stock Photo
CDs, each of which contains 100 images of the same class.
Each image is typically manually annotated by 3-4 tags from
a dictionary of 374 words. However, our obtained data set
contains only 4,999 images with one missing. Similar to the
NUS-WIDE data set, we utilized the same visual features
and 374 words to build the visual and textual feature vectors.
We treated images in the same folder as belonging to the
same class, and 10 images of each class were selected as
queries while the remaining 4,499 images were used to build
the indexing system.

5.2 Evaluation Measures

We evaluated the retrieval performance of OMC-ART using
four measures, including the mean Average Precision@k
(mAPQK), Precision@K, Recall@K, and the response time.
Given the number of queries, N, the number of relevant
images in the indexing system, M,,, to the nth query, and
the number of retrieved images K, mAPQK is defined as

N
1
mAPOK = n; AP,QK, (24)
1 K k o
AP,QK = ——— n eLiy 2
@ min(M,, K) ;r k; k (25)

Note that AP,@QK is the Average Precision (AP) obtained
by the nth query, r, = 1 if the kth retrieved image is

relevant to the nth query, and r, r = 0 otherwise. AP,QK
considers positions of the relevant images in the ranking
list, and the top ranked relevant images will result in a
high performance. It essentially calculates the weighted
sum of Precision,@Qk for k = 1,..., K when K < M,, and
calculates the weighted sum of Recall,,Qk when K > M,,. In
addition, Precision,@QK = Zfil T%", and Recall,QK =
Zf{zl 7;\21: PrecisionQK and RecallQK are the respective
mean values over N queries.

5.3 Parameter Selection

OMC-ART requires three parameters for GHF-ART in order
to build the co-indexing module, namely, the choice param-
eter «, the learning rate § and the vigilance parameters p”
and p'. As demonstrated in several studies [12, 13, 14], the
performance of GHF-ART is generally robust to the values
of a and B, and a = 0.01 and 8 = 0.6 are commonly used.
Therefore, we consistently used a = 0.01 and 8 = 0.6 across
our experiments on the two data sets.

The vigilance parameter p essentially constrains the min-
imum intra-cluster similarity. As specified in [13], a suitable
value of p typically results in the generation of a few small
clusters, typically 10% of the total number of the generated
clusters. Besides, a small cluster typically contains several
or tens of data objects. Therefore, the moderate values of
p’ and p’ can be obtained based on the clustering results
produced by the respective visual and textual features. Note
that p” and p’ affect the retrieval performance of OMC-ART
in terms of the selection of key features and the accuracy of
grouping similar data objects. Therefore, relatively higher
values of p¥ and p' are preferred in order to enhance the
accuracy of co-indexing with some increase in the computa-
tional cost for building the indexing system. In our exper-
iments, we consistently used p” = 0.8 and p’ = 0.3 for the
two data sets.

5.4 Performance Comparison

The performance of OMC-ART is compared with four state-
of-the-art multimodal images indexing and retrieval algo-
rithms, namely (1) the Latent Semantic Kernels (LSK) [2]
which supports query by image, keywords and combination
of both; (2) Content-based Image Retrieval (CBIR) and
Text-based Image Retrieval (T'BIR) [9] which support query
by image and keywords respectively; (3) Multimodal Prob-
abilistic Latent Semantic Analysis (M MpLSA) [3] which
supports query by combination of image and keywords; and
(4) the algorithms based on Non-negative Matrix Factoriza-
tion (NMF) [1] which support query by image, keywords,
and combination of both, denoted as NMF,, NMF}, and
N M Fyorp, respectively.

For a fair comparison, we normalized the visual features
so that they fit the input of all algorithms. Regarding the
algorithm implementations that are not mentioned or have
alternatives in the respective papers, for LSK, we used the
cosine kernels for feature similarity measure and the lin-
ear kernel for combining visual and textual similarities; For
CBIR and TBIR, the cosine similarity was used for similarity
measure. Because the ranking algorithms of all four algo-
rithms were not mentioned in the respective papers, we used
the binary insertion sort as used in OMC-ART. Regarding
the parameters such as the weights of features, the number
of iterations, and the number of clusters/dimensionality of
latent space, we first followed the suggestions in the respec-



Table 1: The retrieval performance of OMC-ART and the baselines on the NUS-WIDE and Corel5k data sets.

mAP Query by Image Query by Keywords Query by Both
datase LSK CBIR [NMF, [OMC-ART LSK TBIR [ NMF; [OMC-ART LSK [MMpLSA [NM Fyoip, [OMC-ART
NUS-WIDE | 0.1382 | 0.1763 | 0.2287 0.2729 0.2794 | 0.3345 | 0.2936 0.3804 0.3474 0.3948 0.3469 0.4974
Corel5k 0.1418 | 0.1976 | 0.1712 0.2877 0.3391 | 0.3412 | 0.3682 0.4865 0.3552 0.3991 0.3875 0.5283
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Figure 2: The retrieval performance of OMC-ART and the
compared algorithms on Corelbk data set with queries of

both image and keywords, in terms of (a) Precision@k and
(b) Recall@k.

L L L
200 400 600

tive papers, and then empirically tuned them so that each
algorithm achieved roughly the best retrieval performance
in terms of mAP.

Table 1 summarizes the retrieval performances of OMC-
ART and the compared algorithms on the NUS-WIDE and
Corelbk data sets, evaluated by mAP. We observed that
OMC-ART consistently achieved the best performance in
terms of all types of queries and data sets, which was usu-
ally over 10% higher than that achieved by the compared
algorithms. Besides, we found that, when querying with
combined image and keywords, the performance of OMC-
ART was significantly better than that of querying by using
either image or keywords. The above findings demonstrated
the effectiveness of the proposed co-indexing method, which
indexes the images using the discovered key features of each
modality to enhance the accuracy of similarity measure.

In addition, we evaluated the retrieval performance of
OMC-ART and the compared algorithms using query by
combination of both image and keywords on the Corel5k
data set. The performance was measured by Precision@k
and Recall@k with respect to the increase in the length of
the retrieval list k, as shown in Figure 2. In Figure 2(a), we
observed that OMC-ART always obtained the best results
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Figure 3: The time cost of OMC-ART and the compared
algorithms on Corelbk data set with respect to the increase
in the length of retrieval list k.
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Figure 4: The time cost of OMC-ART with online
learning (OMC-ART (online)) and offline learning (OMC-
ART(offline)) to build the indexing system with live streams
of images from NUS-WIDE data set.

of precision with different numbers of k, and the perfor-
mance decreased slower than other algorithms along with
the increase in k. Regarding the recall shown in Figure 2(b),
we observed that OMC-ART had a much better recall than
other algorithms, and typically identified all images similar
to a given query at k > 500.

5.5 Efficiency Analysis

To demonstrate the efficiency of OMC-ART, we first evalu-
ated the response time of OMC-ART and the compared al-
gorithms on the Corel5k data set using both image and key-
words as queries, with respect to the length of the retrieval
list k. To make a fair comparison, we empirically tuned
the dimensionality of latent space of LSK, M MpLSA and
N M Fyorp, to be the same under their respective best settings
as used in Section 5.4. As illustrated in Figure 3, OMC-ART
requires the least time cost among all algorithms, which can
be shorter with respect to the decrease in k. This benefits
from the fact that OMC-ART uses key features to index
images so that its computational cost during retrieval is
low. Moreover, the hierarchical indexing structure of OMC-



ART essentially provides a batch-mode pre-ranking of the
indexed images. Therefore, the groups of images similar to
the query are likely to be selected for ranking prior to those
of dissimilar images. This allows OMC-ART to stop the
ranking process when the retrieval list is full and remains
unchanged for a certain period of time.

To demonstrate the effective of the online indexing prop-
erty of OMC-ART, we simulated the scenario of processing
live streams of images and evaluated the processing times
required by OMC-ART with online and offline learning to
index the data set. Specifically, we separated the 15,000
images of NUS-WIDE data set into 15 groups of equal size
and presented them sequentially to OMC-ART to build the
indexing system. As shown in Figure 4, we observed that,
with offline learning, the time cost of OMC-ART (offline)
required to indexing the data set linearly increases with
respect to the increase in the size of the data set. In contrast,
that of OMC-ART (online) roughly remains the same as only
the new data are handled.

6. CONCLUSIONS

This paper presented a novel idea for the automatic multi-
modal indexing and retrieval of weakly labeled image col-
lections, wherein each image is associated with a textual
description. In contrast to most existing approaches that
aim to create a new feature space utilizing multimodal infor-
mation for indexing images, the proposed OMC-ART aims
to identify the representative features of each modality for
groups of similar images and indexes the images using these
key features. This idea is achieved by producing a two-layer
hierarchical indexing structure for the images based on the
heterogeneous data co-clustering algorithm, named GHEF-
ART. In addition, by extending GHF-ART with an adapta-
tion method, OMC-ART is able to perform online learning,
which favors web image collections requiring frequent up-
date. With the proposed co-indexing method, OMC-ART
allows flexible multimodal search by using either images,
keywords, or a combination of both. Moreover, OMC-ART
employs a carefully designed ranking algorithm, using which
enables images more similar to the query to be more likely
to be selected for ranking prior to those dissimilar ones. It
also enables OMC-ART to stop the ranking process when
the retrieval list is full and remains unchanged for a certain
period of time.

In this paper, we have demonstrated the feasibility of
the proposed co-indexing approach and the ranking algo-
rithm. However, there remains places that require further
exploration. First, OMC-ART requires the tuning of the
vigilance parameters p for each modality to control the intra-
cluster similarities. Currently they are manually tuned as
discussed in Section 5.3, further efforts are required to make
them self-adapted. Second, more effective methods for the
key feature selection can be incorporated to enhance the
indexing accuracy. Third, parallel implementation of OMC-
ART can be studied in order to improve the efficiency of
indexing very large data.
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