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Abstract—In recent years, research on the recognition of
human physical activities solely using wearable sensors has
received more and more attention. Compared to other types of
sensory devices such as surveillance cameras, wearable sensors
are preferred in most activity recognition applications mainly
due to their non-intrusiveness and pervasiveness. However, many
existing activity recognition applications or experiments using
wearable sensors were conducted in the confined laboratory
settings using specifically developed gadgets. These gadgets may
be useful for a small group of people in certain specific scenarios,
but probably will not gain their popularity because they introduce
additional costs and they are unusual in everyday life. Alter-
natively, commercial devices such as smart phones and smart
watches can be better utilized for robust activity recognitions.
However, only few prior studies focused on activity recognitions
using multiple commercial devices. In this paper, we present our
feature extraction strategy and compare the performance of our
feature set against other feature sets using the same classifiers.
We conduct various experiments on a subset of a public dataset
named PAMAP2. Specifically, we only select two sensors out of
the thirteen used in PAMAP2. Experimental results show that
our feature extraction strategy performs better than the others.
This paper provides the necessary foundation towards robust
activity recognition using only the commercial wearable devices.

Index Terms—activity recognition, PAMAP2 dataset, wearable
sensor, support vector machine, random forest

I. INTRODUCTION

Human physical activity recognition is a challenging but
emerging research topic. In essence, a system is built to rec-
ognize the specific types of activities performed by the human
subjects using data collected from sensors. Many application
areas benefit from a robust activity recognition system, such as
healthcare, security, sports, etc. In terms of healthcare for the
general population, activity tracker mobile devices and apps
are pervasive nowadays. Moreover, activity recognition may be
much more beneficial to the elderly to query their well-being,
ensure their safety, provide personalized recommendations on
healthier activities, etc.

This research is supported in part by the National Research Foundation,
Prime Minister’s Office, Singapore under its IDM Futures Funding Initiative.

For activity recognition within a predefined area, surveil-
lance cameras, such as video cameras, infra-red cameras,
motion detectors, are often used, which are more and more
reliable due to the recent advances in image and video under-
standing using machine learning techniques [1], [2]. However,
such surveillance systems always receive privacy concerns due
to their intrusiveness as people feel being watched.

Another dominating type of activity recognition approach is
to use the sensory inputs collected from wearable sensors or
devices. However, many such applications or experiments were
conducted in the confined laboratory settings using specifically
developed gadgets [3], [4]. These gadgets may be useful for
a small group of people in certain specific scenarios, but
probably will not gain their popularity because they introduce
additional costs and they are unusual in everyday life.

On the other hand, commercial devices such as smart
phones and smart watches are pervasive in most developed and
developing countries that “more than half the world now uses a
smart phone” [5]. However, the types of activities recognizable
by the commercial devices are still limited. Smart wristbands
and watches can count the number of your steps on a daily
basis and some can log your sleep status. Smart phones can
recognize and record much more types of activities, e.g., An-
droid smart phones may recognize ‘In vehicle’, ‘On bicycle’,
‘On foot’, ‘Running’, ‘Still’, ‘Tilting’ and ‘Walking’, using
the ActivityRecognitionApi [6]. Nonetheless, all these types of
activities are primitive that they do not even cover the basic
Activities of Daily Living (ADLs), not to say instrumental
ADLs [7]. Therefore, the motivation of our work is as follows:

Whether we can use a limited number of commercial
devices to accurately recognize a large variety of
physical activities solely based on the signals col-
lected from the sensors embedded in those devices?

Towards using lesser number of sensors embedded in the
commercial wearable devices, an activity recognition system
faces two major challenges to achieve satisfactory robustness,
namely the varying positions of the devices and the confidence



in recognizing the same complex activities performed in
various patterns due to individual differences.

The challenge of varying positions of the devices is not the
focus of this paper. Readers may refer to other publications
on robust activity recognition using a single device (smart
phone) with varying orientations, facing and placement [8],
[9]. Readers may also refer to other publications on using a
single device (smart phone) for both activity recognition and
context awareness based on the placement of the phone and
the surrounding environment [10]–[12].

Alternatively, this paper focuses on meeting the challenge
of activity recognition with individual different behavioral
patterns. Specifically, we design and conduct our study ac-
cording to the following three criteria: (i) the set of activi-
ties to be recognized should cover more than the primitive
activities, (ii) activity recognition should be performed using
lesser number of sensors yet the recognition should achieve
a reasonable level of accuracy, and (iii) most importantly, the
activity recognition algorithm should perform robustly even if
the underlying behavioral patterns are unseen.

To test whether our extracted feature set, which consists of
features extracted from both the time and frequency domains
(see Section III), can meet the challenges of using lesser
number of sensors but still performing well even on unseen
behavioral patterns, we conducted extensive experiments on a
public dataset named PAMAP2 [13] [14], which collected the
raw sensory input data of twelve types of activities performed
by nine subjects. However, we did not use all the sensory
readings archived in PAMAP2. Instead, we only selected two
sensors out of the total number of thirteen (see Section IV-A).
Furthermore, we conducted experiments on applying other
feature sets [15] [16] on the same selected dataset for per-
formance comparisons. Experimental results show that our
feature set outperforms the other two in the leave-one-person-
out scenario. Moreover, our feature set obtains satisfactory
level of performance when compared with the results reported
in [13] and [14], if taking the number of sensors in use,
window size used for recognition, sampling rate, and the
number of extracted features into consideration. In summary,
our feature set is empirically shown to be accurate in activity
recognitions using lesser number of sensors and robust in
dealing with unseen individual different behavioral patterns.

The rest of the paper is organized as follows. In Section II,
we review the related work. In Section III, we introduce our
model for robust human activity recognition. In Section IV,
we present the experimental results of our activity recognition
model with comparisons and discussions. In Section V, we
conclude this paper and propose future extensions.

II. RELATED WORK

To maximize activity recognition accuracy, some re-
searchers opt to design and implement their own devices
or gadgets to monitor the body movements precisely. Nam
and Park [3] developed a wearable device that consists of
several sensors (including accelerometer and barometer) to
recognize eleven types of activities of ten children from 16

to 29 months of age. Reiss and Stricker [13] [14] used three
inertial measurement units (IMUs) and a heart rate monitor
to recognize twelve types of activities of nine subjects aged
27 in average. Chernbumroong et al. [4] developed a set of
wearable devices (one chest strap for heart rate and two wrist
watches with integrated accelerometer, altimeter and other
sensors) to recognize twelve types of activities of the elderly
aged 73 in average. All these studies show promising results.
However, the usage of these specially crafted or not-everyday-
in-use devices may be hindered due to the popularity reason.
We prefer to use widely owned commercial devices for non-
intrusive human activity recognition.

Studies on activity recognition using commercial devices
have been emerging in recent years, due to the ever increasing
penetration rate of those devices. However, majority studies
only used one device, which may not cover a comprehensive
set of activities to be recognized. Some pioneer studies (e.g.,
[17] and [18]) only used the accelerometer readings for activity
recognition. Later on, more studies included other sensory
inputs from the same device to improve the activity recognition
accuracy, such as gyroscope [19], light and proximity sensors
[12], Wi-Fi and GPS signals [20], etc. Although we prefer
to use lesser number of sensors, we still want to use sensors
placed in different locations, e.g., movement tracking of the
wrist may allow us to distinguish writing and typing.

Only few prior studies focused on activity recognitions
using multiple commercial devices that the most common
combination is one smart watch placed on the wrist (dominant
hand) and one smart phone placed in a fixed place such as
attached to the belt or in a pocket. Nonetheless, although
using more than one devices, some studies still focused on
a limited number of primitive activities (e.g., five in [21]
and nine in [22]). Although Shoaib et al. [15] mimicked the
deployment of a smart watch by attaching a smart phone to
the wrist, they achieved quite good recognition accuracy on
thirteen activities including those only distinguishable by wrist
movements such as typing, writing, eating, drinking coffee,
and smoking. The activities studied in [16] are richer and
more challenging, such as clapping hands, brushing teeth,
folding clothes, and eating various kinds of food. The complex
activities studied in [15] and [16] allow us to learn more of
one’s daily activities non-intrusively. However, datasets used
in [15] and [16] are not publicly available. Therefore, in this
paper, we use the PAMAP2 dataset instead. In PAMAP2, the
IMUs were placed on the subject’s wrist, chest and ankle.
We select one accelerometer on the wrist by assuming it is
embedded in a smart watch and another one on the chest by
assuming it is embedded in a smart phone being placed in one
of the jacket’s pockets. Nonetheless, both the feature sets used
in [15] and [16] are also used in this paper for benchmarks.

III. ROBUST ACTIVITY RECOGNITION MODEL

Because every smart phone and smart watch has an em-
bedded triaxial accelerometer, our robust activity recogni-
tion (RAR) model consists of the following eight stages:
(i) collect the raw sensory readings from each accelerometer,



Fig. 1. The overall work flow of our robust activity recognition model.

Fig. 2. Formation of half overlapping windows (i ∈ {x, y, z,mag}, where
mag denotes the acceleration magnitude, see (2)). In this illustration, the
frequency is n Hz and window size is 2 seconds.

(ii) synchronize the various signals, (iii) organize them into
data windows, (iv) sample them using the same frequency,
(v) extract both the time and frequency domain features,
(vi) aggregate the features from different sources to obtain the
overall feature set, (vii) apply machine learning algorithms on
the overall feature set to distinguish various types of activities,
and (viii) evaluate the performance of the recognition. For sim-
plicity, stages (i)-(vi) can be grouped as the feature extraction
stage. The overall work flow of our robust activity recognition
model is shown in Fig. 1. In the following subsections, we
introduce the feature extraction strategies, machine learning
algorithms, and performance evaluation metrics, respectively.

A. Feature Extraction Strategies

There are three readings (A = {ax, ay, az}) given by any
triaxial accelerometer at any time (t) corresponding to the three
orthogonal axes (x, y, z), respectively:

At = {atx, aty, atz}. (1)

Because we only use accelerometers, which do not directly
tell any orientation information. For robust activity recognition
without knowing the orientation of the device (e.g., from gyro-
scope or magnetometer), we introduce an extended dimension
(acceleration magnitude) as augmentation [23] [9]. Therefore,
at any time (t), we use four readings that are defined as

At = {atx, aty, atz, atmag}, (2)

where mag denotes the acceleration magnitude (||x, y, z||) and
||x, y, z|| =

√
(x2 + y2 + z2).

There are two parameters, window size and frequency, to be
defined for data formation. After which, continuous data will
be chopped into discrete windows (see Fig. 2). In this paper,
all windows are half overlapping.

After data formation, assume each window consists of N
readings. Then, in each dimension (i ∈ {x, y, z,mag}), we

extract four features, namely mean (M ), variance (V ), energy
(EE), and entropy (ET ). The first two features are defined as

Mi =
1

N

N−1∑
n=0

ani (3)

and

Vi =
1

N − 1

N−1∑
n=0

(ani −Mi)
2, (4)

respectively. The latter two are computed in the frequency
domain, where discrete Fourier transform (DFT) is applied:

Fi(k) =

N−1∑
n=0

ani e
−j2πnk/N , k = 0, 1, 2, . . . , N − 1. (5)

The energy (L2 norm) and entropy are then defined as

EEi =

√∑N−1
k=1 |Fi(k)|2
N − 1

(6)

and

ETi =

N−1∑
l=1

−Oi(l) ln(Oi(l)), (7)

where
Oi(l) =

|Fi(l)|∑N−1
k=1 |Fi(k)|

, (8)

respectively. Please note that since the DC component of (5)
(mean) has already been used as an individual feature (see
(3)), when computing the energy and entropy, the indices start
from 1 instead of 0.

Up to now, all the extracted features are from the indi-
vidual axes. To make the activity recognition more robust,
covariances (COV ) between the axes (of each accelerometer
embedded in different devices) are also used:

COVp,q =
1

N − 1

N−1∑
t=0

(atp −Mp)(a
t
q −Mq), (9)

where p, q ∈ {x, y, z,mag} and p 6= q.
Therefore, after introducing the six covariance measures,

the total number of features extracted from each triaxial
accelerometer is 4∗4+6 = 22. Furthermore, after aggregation
of two accelerometers embedded in two different devices, the
total number of features in the overall feature set is 44.

Normalization is performed on all the extracted feature val-
ues before being processed by any machine learning algorithm.
Let f denote the index of the feature (f = 1, 2, . . . , 44), then
the maximum and minimum values of all the observed data in
each feature can be denoted as maxf and minf , respectively.
Therefore, all values (both observed and unobserved) will be
normalized using the following equation:

v′f =
vf −minf

maxf −minf
, (10)

where v′f denotes the normalized value in the f th feature and
vf denotes the original value in the f th feature.



B. Machine Learning Algorithms

In this paper, we use two well-known machine learning
algorithms as the classifiers for activity recognition, namely
random forest and support vector machine (SVM). Further-
more, we use scikit-learn [24] to implement both algorithms.

Random forest [25] is an ensemble algorithm. As its name
suggests, a random forest model consists of a multitude
of decision trees, where each decision tree is trained on a
randomly selected subset of the training data and the feature
sets. During prediction, the answers produced by each decision
tree are aggregated by various means of majority voting. In
scikit-learn, a random forest model derives the final prediction
using probabilistic prediction, which is defined as follows:

A = argmax
c

1

N

N∑
i=1

Pi(c), (11)

where A denotes the predicted class, c denotes the class label,
N denotes the number of decision trees, and Pi(c) denotes
the probability of class c computed by the ith decision tree.

SVM [26] aims to minimize the structural risk of the learnt
model, especially when there are a limited number of training
data available. In this paper, we use the radial basis function
(RBF) kernel to transform the training data into a higher
dimensional space. For SVM with RBF kernel, there are two
control parameters to be defined. One is the cost parameter
C (C > 0), which defines the amount of penalty on error.
The other is the gamma parameter γ (γ > 0), which controls
the flexibility of the decision boundary. Both C and γ control
the level of generalization of the SVM model. Their optimal
values should prevent both the over- and less-fitting problems.
In this paper, we set the values of C and γ in two ways. If C
and γ are determined by a grid search using cross-validation,
we denote the learnt model as SVM-best. If the default values,
i.e., C = 1 and γ = 1/l, where l denotes the dimensionality
of the feature space, are used as suggested [27], we denote
the learnt model as SVM-default.

C. Performance Evaluation Metrics

After training, the learnt models are applied to the testing
dataset for performance evaluation. To measure both Type-I
and Type-II errors, precision and recall are defined as

precision =

∑
true positive∑

predicted positive
=

TP

TP + FP
(12)

and

recall =
∑

true positive∑
actual positive

=
TP

TP + FN
, (13)

respectively. The terms TP, FP , and FN denote true positive,
false positive, and false negative, respectively.

The overall performance (F -score) is then computed as

F -score =
2 ∗ precision ∗ recall

precision + recall
. (14)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the details of how we conduct the
experiments to evaluate our approach of using lesser number
of sensors for robust recognition of a wide range of activities.
Furthermore, we compare the experimental results with other
two approaches and provide the corresponding analysis.

A. Dataset Description

The PAMAP2 dataset [13] [14] collected the raw movement
sensory data of twelve different activities performed by nine
subjects aged 27.22 ± 3.31 in average. The twelve activities
are (i) lying, (ii) sitting, (iii) standing, (iv) walking, (v) run-
ning, (vi) cycling, (vii) nordic walking, (viii) going upstairs,
(ix) going downstairs, (x) vacuum cleaning, (xi) ironing, and
(xii) rope jumping. The aggregated time of all activities
performed by all subjects is approximately 5.5 hours.

There were four gadgets used during data collection, namely
three inertial measurement units (IMUs) and one heart rate
monitor. The three IMUs were placed on the subject’s wrist
(dominant hand), chest and ankle, respectively. The heart
rate monitor was placed on the chest to collect heart beat
signals. Each IMU integrates four sensors, namely two triaxial
accelerometers (±16 g and ±6 g), one gyroscope and one
magnetometer. Therefore, there are a total number of thirteen
sensors used in PAMAP2.

Out of the thirteen sensors, in our experiments, we only
select two accelerometers that were placed on the wrist
and chest, respectively, because they can be considered as
mimicking the accelerometers embedded in a smart watch
being placed on the wrist and a smart phone being placed in
one of the jacket’s pockets. The two selected accelerometers
are of ±6 g, which is closer to the specifications of those
embedded in smart watches and phones. Furthermore, to make
our experiments more towards real usages in one’s daily
life rather than in the laboratory setting, we greatly down-
sample the sensory readings (from 100 Hz to 5 Hz, for energy
conservation) and greatly reduce the window size (from 5.12 s
to 2 s, for faster and more challenging recognition).

B. Benchmarking Feature Sets

We denote the set of features extracted using Shoaib et al.’s
approach [15] as Shoaib’s feature set. This feature set consists
of 28 extracted features per sensor. Specifically, seven features,
namely mean, standard deviation, min, max, median, semi-
quartile, and the sum of the first ten DFT coefficients, are
extracted from each axis (x, y, z and mag).

We denote the set of features extracted using Weiss et al.’s
approach [16] as Weiss’s feature set. This feature set consists
of 43 extracted features per sensor. Specifically, fourteen
features, namely mean, standard deviation, average absolute
difference, time between peaks, and binned distribution (ten
bins per axis), are extracted from each axis (x, y and z). In
addition, the last feature is the average resultant acceleration.
Please note that the “time between peaks” features (for x, y
and z) are excluded in this paper, because they require certain
heuristic assessments that were not described in [16].



TABLE I
PERFORMANCE EVALUATIONS ON 5-FOLD CROSS VALIDATION

Feature Set Random Forest SVM-best SVM-default

RAR 0.9458 0.9476 0.8142
Shoaib [15] 0.9584 0.9567 0.7371
Weiss [16] 0.9344 0.8948 0.7469

TABLE II
PERFORMANCE EVALUATIONS ON LEAVE-ONE-PERSON-OUT

Feature Set Random Forest SVM-default

RAR 0.8062 0.7216
Shoaib [15] 0.7829 0.6537
Weiss [16] 0.7591 0.6074

C. Experimental Setups

In this paper, we use three types of classifiers, namely
random forest, SVM-best and SVM-default. For random
forest, we always employ 500 decision trees. For SVM-
best, the optimal values of C and γ are determined by
a grid search on the training dataset. The range of the
grid search is C ∈ {1, 10, 100, 500, 1000, 5000} and γ ∈
{1/l, 0.01, 0.05, 0.1, 0.5, 1}, respectively. For SVM-default,
the values for C and γ are always set to 1 and 1/l, respectively.
All experimental results shown in this paper are the average
of three runs aiming to remove the effect of randomness.

We evaluate the performance of all feature sets in two
scenarios: (i) 5-fold cross validation (CV), wherein each time
four fifths of all subjects’ data are used for training and the
remaining one fifth are used for testing, and (ii) leave-one-
person-out (LOPO), wherein each time eight out of the nine
subjects’ data are used for training and the remaining one
subject’s data are used for testing. For 5-fold CV, we report the
results of all the three classifiers. However, for LOPO, we do
not report the results of SVM-best, because it always performs
significantly worse than the other two classifiers, probably due
to over-fitting on the observed behavioral patterns.

D. Experimental Results

The experimental results of applying three classifiers on all
the three feature sets in the 5-fold CV scenario is shown in
Table I. As shown in Table I, the combination of applying ran-
dom forest on Shoaib’s feature set achieves the best F -score.
However, the difference of the best performance achieved
by our RAR feature set (applying SVM-best) is as small as
0.9584− 0.9476 = 0.0108 or 1.08%. The performance of all
feature sets are generally good as all of them can achieve an
F -score greater than 0.93 in distinguishing twelve activities.

The experimental results of applying two classifiers on all
the three feature sets in the LOPO scenario is shown in
Table II. It is encouraging to find out that our RAR feature
set achieves the best performance in recognizing the activities
performed by a subject whose behavioral patterns are not
learned before. The difference between RAR and the runner-up
(Shoaib’s feature set) is 0.8062− 0.7829 = 0.0233 or 2.33%.

TABLE III
SIZE OF ALL THE FEATURE SETS

Feature Set RAR Shoaib [15] Weiss [16]

# features 44 56 80

TABLE IV
F -SCORES ON LOPO USING DIFFERENT NUMBER OF SENSORS

# sensors # features window size frequency Classifier F -score

2 44 2 seconds 5 Hz Random Forest 0.8062

13 137 5.12 seconds 100 Hz C4.5 0.8300
13 137 5.12 seconds 100 Hz Boosted C4.5 0.8928
13 137 5.12 seconds 100 Hz Bagging C4.5 0.8556
13 137 5.12 seconds 100 Hz Naive Bayes 0.8362
13 137 5.12 seconds 100 Hz kNN 0.9110

The F -scores of the bottom five classifiers are taken from [13] and [14].

As aforementioned in Section I, the aim of this research is
to build a robust activity recognition system using lesser num-
ber of sensors to distinguish complex activities with various
patterns (especially unobserved) due to individual differences.
In view of this, the performance of the feature sets is mainly
defined by their accuracy in the LOPO scenario. Moreover,
considering RAR achieves the best LOPO performance using
the least number of features (see Table III), we may say that
our RAR feature set outperforms the other two features sets.

E. Analysis on Using Lesser Number of Sensors

The performance comparison between the best performance
obtained using two sensors and that using thirteen sensors is
presented in Table IV. There seems to be some difference be-
tween the performance of our RAR feature set with that of the
others. However, if you take the amount of information used
in the whole activity recognition process into consideration,
i.e., number of sensors in use (2 vs 13), number of extracted
features (44 vs 137), window size (2 s vs 5.12 s), and sampling
frequency (5 Hz vs 100 Hz), our approach is definitely much
more practical in real-world settings.

V. CONCLUSION

This paper presents our feature extraction strategy towards
robust activity recognition using lesser number of wearable
sensors embedded in commercial devices. Moreover, the per-
formance of our extracted feature set is evaluated using a
public dataset and compared with two recently published,
state-of-the-art benchmarking feature sets. The experimental
results show that our feature set performs competitively in the
cross-validation scenario and more importantly, it outperforms
the benchmarking feature sets in the leave-one-person-out sce-
nario. Furthermore, even our approach uses significantly lesser
amount of information across the whole activity recognition
process, its performance is still satisfactory.

Going forward, we plan to extend our work in the following
two aspects. First, we will try to include more informative and
robust features into our feature set to boost up the accuracy.
Secondly, we will recruit subjects and collect their activity



data using only the commercial-off-the-shelf smart watches
and phones in daily life settings.
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