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a b s t r a c t 

With the recent rapid growth of technology-enabled mobility services, ride-sourcing plat- 

forms, such as Uber and DiDi, have launched commercial on-demand ride-pooling pro- 

grams that allow drivers to serve more than one passenger request in each ride. Without 

requiring the prearrangement of trip schedules, these programs match on-demand passen- 

ger requests with vehicles that have vacant seats. Ride-pooling programs are expected to 

offer benefits for both individual passengers in the form of cost savings and for society 

in the form of traffic alleviation and emission reduction. In addition to some exogenous 

variables and environments for ride-sourcing market, such as city size and population den- 

sity, three key decisions govern a platform’s efficiency for ride-pooling services: trip fare, 

vehicle fleet size, and allowable detour time. An appropriate discounted fare attracts an 

adequate number of passengers for ride-pooling, and thus increases the successful pair- 

ing rate, while an appropriate allowable detour time prevents passengers from giving up 

ride-pooling service. This paper develops a mathematical model to elucidate the complex 

relationships between the variables and decisions involved in a ride-pooling market. We 

find that the monopoly optimum, social optimum and second-best solutions in both ride- 

pooling and non-pooling markets are always in a normal regime rather than the wild goose 

chase (WGC) regime—an inefficient equilibrium in which drivers spend substantial time on 

picking up passengers. Besides, in general, a unit decrease in trip fare in a ride-pooling 

market attracts more passengers than would a non-pooling market, because it not only 

directly increases passenger demand due to the negative price elasticity, but also reduces 

actual detour time, which in turn indirectly increases ride-pooling passenger demand. As 

a result, we prove that monopoly optimum, social optimum and second-best solution trip 

fares in a ride-pooling market are lower than that in a non-pooling market under certain 

conditions. These theoretical findings are further verified by a set of numerical studies. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

Ride-sharing programs offer numerous advantages, including reduced travel costs, energy savings, less traffic congestion, 

and lower carbon dioxide emissions ( Chan and Shaheen, 2012 ). Ride-sharing dates to as early as World War II, when the US 
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Fig. 1. Examples of on-demand ride-pooling programs. 

government established a Car-Sharing Club for fuel conservation. In general, ride-sharing requires prearrangement, in which 

agencies can pair requests that are announced in advance. Traditional methods for ride-sharing include carpooling, vanpool- 

ing, dial-a-ride, etc. For example, carpooling was initially introduced by large companies to encourage ride-sharing among 

their employers during trips to and from work, and has been extensively studied ( Ferguson, 1997 ; Yang and Huang, 1999 ; 

Huang et al., 20 0 0 ; Konishi and Mun, 2010 ). Dial-a-ride programs employ dedicated drivers to serve prearranged passenger 

ride requests with diverse origins and destinations ( Cordeau and Laporte, 2007 ). Comprehensive reviews of the ride-sharing 

have been conducted, for example, by Furuhata et al. (2013) and Ho et al. (2018) . 

Recent breakthroughs in mobile internet technologies have made on-demand dynamic (and real-time) ride-sharing ser- 

vices possible. In these applications, on-demand ride requests can be matched en route with vehicles that have vacant seats. 

On-demand dynamic ride-sharing can be provided by a fleet of dedicated drivers (such as taxi drivers or drivers affiliated 

with transportation network companies). These types of on-demand dynamic ride-sharing programs provided by for-hire 

dedicated drivers, termed as ride-pooling (or ridesplitting or ridepooling) services in the literature ( Shaheen et al., 2015 ; 

Chen et al., 2017 ; Li et al., 2019a ; Wang and Yang, 2019 ), are already available on the major commercial ride-sourcing plat- 

forms, such as UberPool, DiDi Express Pool, Lyft Line, and GrabShare (as shown in Fig. 1 ). 

When a passenger launches a ride-sourcing platform application, he or she can select an on-demand ride-pooling service 

or a non-pooling ride-sourcing service. Normally, a passenger choosing a ride-pooling service pays an up-front discounted 

fare, which is predetermined and lower than the fare for a non-pooling service. A key concern for platform operators is the 

probability of en route pairing (successful pairing rate), i.e., the proportion of matched/paired passengers among those who 

select the ride-pooling option. If successfully paired, passengers may experience a longer trip time than they would with 

non-pooling service. If the pairing is unsuccessful, the platform suffers a loss of revenue due to the lower predetermined 

fare with the up-front discount for passengers who opted for ride-pooling. Fig. 2 displays the empirical probability density 

functions of trip time for ride-pooling service and non-pooling service of for-hire-vehicle ride-sourcing services in New York 

City. 1 The average trip time of passengers opting for ride-pooling and non-pooling service are 20.63 min and 18.71 min 

respectively. Clearly, the ride-pooling service has a slightly longer average trip time. 

The relationships between the variables and decisions involved in ride-pooling services are complicated: (1) the success- 

ful pairing rate depends on the number of passengers opting for on-demand ride-pooling services (i.e., passenger demand) 

and the allowable detour time; (2) the discounted fare directly affects platform revenue and passenger demand; (3) pas- 

senger demand affects the successful pairing rate and, in turn, platform revenue; and (4) the allowable detour time in the 

ride-pooling service also directly governs the successful pairing rate and affects passenger demand. Intuitively, a larger al- 

lowable detour time will increase the system’s successful pairing rate on one hand, but increase a passenger’s actual detour 

time and thus decrease passenger demand for ride-pooling on the other hand—which, in turn, decreases the successful 

pairing rate. A precise understanding of the intricate relationships between the platform decision variables (i.e., trip fare, 

1 The open-source dataset that contains trip records of for-hire-vehicle services (including Uber and Lyft) in New York City is obtained from the New 

York City Taxi & Limousine Commission. Link: https://www1.nyc.gov/site/tlc/about/tlc- trip- record- data.page . Unfortunately, this dataset does not provide 

vehicle trajectories and detailed information of the shared rides, thus we cannot calculate the actual detour distance and time for each ride-pooling trip. 

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Fig. 2. Distribution of passengers’ trip times of ride-pooling and non-pooling for-hire-vehicle services in New York City. 

vehicle fleet size and allowable detour time) and the system’s endogenous variables (e.g., pick-up time, passenger demand, 

successful pairing rate and actual detour time) is critical for optimal operating strategy designs. 

In this paper, we establish a mathematical model to elucidate the complex relationships between the system’s decision 

variables and endogenous variables in a ride-sourcing market with on-demand ride-pooling services. The reciprocal inter- 

actions between passenger demand, successful pairing rate, and actual detour time in equilibrium under certain platform 

operating strategies are characterized by a system of simultaneous equations. Based on the model, we compare the ride- 

sourcing markets with ride-pooling service and non-pooling service and examine the impacts of operating strategies on the 

platform’s profit and social welfare. The major contributions of this paper are summarized below: 

• We propose a modeling framework to characterize the equilibrium in ride-sourcing markets, in which the vehicles are 

in one of the three statuses: vacant, picking up, and occupied. The picking up status is what distinguishes ride-sourcing 

market from the conventional street-hailing taxi market. By spelling out the intriguing relationship among passenger 

demand, successful pairing rate, and actual detour time, we use the model to describe the equilibrium in an on-demand 

ride-pooling market. 
• We identify and compare the monopoly optimum, social optimum and second-best solutions in the two markets — a 

non-pooling market and a ride-pooling market and obtain some managerial insights. We investigate the joint impacts of 

platform decision variables (i.e., trip fare, vehicle fleet size and allowable detour time) on the platform’s profit and social 

welfare, analytically and numerically. 
• We find that the monopoly optimum, social optimum and second-best solutions in the two markets are always in the 

normal regime rather than the wild goose chase (WGC) regime, and show that the monopoly optimum, social optimum 

and second-best solution trip fares in a ride-pooling market are lower than those in a non-pooling market under certain 

conditions. The reason is that a unit decrease in trip fare in a ride-pooling market attracts more passengers than would 

in a non-pooling ride-sourcing market due to a reduced actual detour time. These observations are also verified by the 

numerical studies. 

The rest of the paper is organized as follows. Section 2 reviews the relevant studies and differentiates this study from the 

previous ones. Section 3 establishes a model to describe the stationary equilibrium of a non-pooling ride-sourcing market. 

Section 4 extends the model to delineate the equilibrium of an on-demand ride-pooling market, in which two passengers 

can be paired up with a certain probability and experience certain detour time. Section 5 analytically examines the prop- 

erties of the monopoly and social optimum solutions of both the non-pooling and ride-pooling markets. Section 6 conducts 

numerical studies to investigate how the platform leverages the key decision variables to achieve maximum platform profit 

or social welfare. Section 7 summarizes the paper and discusses future research directions. 

2. Literature review 

This section reviews relevant studies on the ride-sourcing market from the following perspectives: (1) general research 

on ride-sourcing markets; (2) optimization algorithms for ride-sharing programs served by drivers with their own trip plans; 

and (3) trip fare and cost-sharing strategies for dynamic ride-sharing services provided by drivers with their own trip plans. 

As a typical business model in a sharing economy, ride-sourcing service has been reshaping our mobility and sparked 

heated discussion since its emergence in 2009. Wang and Yang (2019) provide a general framework and comprehensive 

review on research problems in ride-sourcing markets. Due to the similarities between the ride-sourcing market and con- 

ventional taxi market, supply-demand properties in equilibrium have their roots in research on street-hailing taxi services 
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( Yang and Yang, 2011 ; Yang et al., 2010 ) and e-hailing taxi services ( He and Shen, 2015 ; Wang et al., 2016 ; He et al., 2018 ). 

In contrast to conventional taxi markets, however, which are generally subject to strict entry restriction and price regulation, 

there is fewer entry restriction for drivers in ride-sourcing markets and less strict regulation on service pricing—i.e., regis- 

tered private car owners can flexibly decide whether, when, and where to provide ride-sourcing services with dynamically 

adjusted trip fares ( Sun et al. 2019a , 2019b ). Other specific research includes the coordination of demand and supply using 

price and wage ( Bai et al., 2018 ; Taylor, 2018 ); pricing and surge-pricing strategies ( Cachon et al., 2017 ; Castillo et al., 2017 ; 

Zha et al., 2016 ; Yang et al., 2020b ; Chen et al., 2020 ); government regulations and policies ( Yu et al., 2019 ; Li et al., 2019b ); 

impacts on conventional taxi markets ( Nie, 2017 ; Wallsten, 2015 ); geometrical matching and order dispatching ( Xu et al., 

2015 , 2018 ; Zha et al., 2018 ; Zhang et al., 2017 ; Lyu et al., 2019 ; Ke et al., 2020 ; Yang et al., 2018, 2020a ); driver labor 

supply ( Zha et al., 2017 ); supply and demand predictions ( Ke et al., 2017 , 2019c ; Tong et al., 2017 ); electrified ride-sourcing 

vehicles ( Ke et al., 2019a ); and multi-modal transportation with ride-sourcing and public transit services ( Zhu et al., 2020 ). 

Of the research issues above, surge pricing is of particular interest, as it is considered to be an efficient method for 

dynamically coordinating supply-demand balance. For example, Castillo et al. (2017) point out that a static price scheme 

may lead to a “wild goose chase” (WGC) during periods when the platform is depleted of available nearby vehicles and 

forced to match drivers with distant passengers. Based on both theoretical analysis and real-world data, they argue that 

WGC could be avoided by implementing surge pricing. Chen and Sheldon (2016) and Sun et al. (2019a ) find significant 

evidence using real data that surge pricing/wage incentivizes drivers to adjust their work schedules to align with periods 

of high demand (as indicated by surge prices). By establishing a time-expanded network to coordinate surge pricing and 

classical labor supply hypotheses, Zha et al. (2017) show that both the platform and its drivers benefit from surge pricing, 

while passengers may be worse off during high surge periods. Based on a queueing model with endogenous supply and 

demand, Bai et al. (2018) find that if potential customer demand is large, the platform should charge passengers a high 

price, pay drivers a high wage, and implement a high payout ratio (the ratio of wage over price). Taylor (2018) examines 

the impacts of two important features of a ride-sourcing market—delay sensitivity and agent independence—on a platform’s 

optimal strategies in terms of price and wage. Yang et al. (2020b) propose a novel reward scheme integrated with surge 

pricing and find that in some situations, passengers, drivers, and the platform will be better off under the reward scheme. 

Thanks to the rapid growth of mobile technologies, ride-sharing services are now able to accommodate on-demand dy- 

namic requests and no longer require users to schedule their routes in advance ( Furuhata et al., 2013 ). Primary efforts thus 

far have been directed towards designing algorithms to efficiently match drivers and riders on short notice in a dynamic 

ride-sharing environment. Agatz et al. (2011) develop optimization methods to minimize total system travel distance and 

individual riders’ travel cost in an on-demand ride-sharing program. Verified by a simulation in metropolitan Atlanta, they 

show that sophisticated optimization approaches significantly improve the performance of ride-sharing systems when com- 

pared to simple greedy matching rules. With appropriate matching algorithms, an on-demand ride-sharing program could 

even be successfully implemented in relatively sprawling urban areas. Agatz et al. (2012) systematically outline major con- 

cerns and challenges that on-demand ride-sharing programs face. One of the most important components is the real time 

matching. A good matching strategy reduces system-wide vehicle miles and travel times and increases the number of par- 

ticipants to provide the most in terms of societal and environmental benefits. They also note that a good understanding 

of riders’ behavioral preferences and mode choices is essential to the success of an on-demand ride-sharing program. More 

recently, Wang et al. (2018a) develop a stable matching algorithm to minimize the total travel distance of all potential partic- 

ipants, either in a successfully paired ride or an unsuccessfully paired ride. The method can greatly increase the stability of 

ride-sharing at the cost of only slightly reducing system-wide performance. Stiglic et al. (2015) assess the potential benefits 

of meeting points in on-demand ride-sharing systems through extensive simulation studies, and Stiglic et al. (2016) quantify 

the effects of flexibility for different participants on the performance of an on-demand ride-sharing program. Lee and Savels- 

bergh (2015) point out that the introduction of meeting points can significantly improve the number of matched participants 

and reduce the total driving distance in an on-demand ride-sharing system. 

Several recent studies also assess the impacts of on-demand ride-sharing on the minimum fleet size required to 

serve passengers. Alonso-Mora et al. (2017) propose a general mathematical model that enables real-time high-capacity 

ride-sharing on the shareability network or “vehicle-share-networks” that have been examined by Santi et al. (2014) , 

Sagarra et al. (2015) , Tachet et al. (2017) , and Vazifeh et al. (2018) . Based on simulation experiments using New York City taxi 

data, the authors show that only 30 0 0 high-capacity taxis were needed to serve 98% of the taxi rides that were currently 

being served by over 13,0 0 0 taxis. 

Some recent studies have investigated the impact of trip fare for on-demand ride-sharing programs and the possibility 

of cost sharing between riders and drivers. Xu et al. (2015) study the endogenous interactions between traffic congestion, 

ride-sharing trip fare, and passengers’ route choices in a framework that combines classical Wardrop network equilibrium 

model and ride-sharing passenger demand. Di et al. (2017, 2018) examine ride-sharing in the context of an equilibrium-based 

network design problem. Notably, Wang et al. (2018b) develop an equilibrium model to describe the interactions between 

riders’ and drivers’ mode choices, costs, and matching probability. They consider a single-corridor network in which car 

owners choose to be solo or share cars with other riders, and non-car owners have two alternatives: ride-sharing or public 

transit. They investigate the properties of cost-sharing strategies to prevent mode shifts among transit users to autos and/or 

reduce vehicular traffic, and find that a suitable cost-sharing strategy is crucial for encouraging riders to use ride-sharing 

modes. There is much relevant research into the pricing and trip fare in shared transportaton under diverse settings, such 
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as pricing for on-demand last-mile transportation ( Chen and Wang, 2018a, 2018b ) and dial-a-ride system ( Sayarshad and 

Chow, 2015 ). 

As described previously, however, most prior studies have focused on ride-sharing services provided by individual drivers 

who have their own trip plans. Few effort s have been made to understand the emerging dynamics of on-demand ride- 

pooling services provided by dedicated drivers affiliated with ride-sourcing companies, and in particular, the impacts of key 

platform decision variables (i.e., trip fare, vehicle fleet size, and allowable detour time) on the platform’s profit and social 

welfare. 

3. Equilibrium in a non-pooling ride-sourcing market 

Ride-sourcing companies provide two major types of services: on-demand ride-pooling service, denoted as RP service; 

on-demand non-pooling service, denoted as NP service. For analytical tractability to obtain managerial insights, we delineate 

and compare the equilibrium of two markets: (a) a non-pooling ride-sourcing market (abbreviated as non-pooling market) 

in which a ride-sourcing platform provides NP service and (b) a ride-pooling market in which a ride-sourcing platform 

provides RP service. In this section, we propose a modeling framework to characterize the equilibrium of the non-pooling 

market. Notation in this paper is summarized in Appendix A for the convenience of the readers. 

A few basic assumptions are worth noting here. First, we adopt the assumption in Castillo et al. (2017) that the plat- 

form matches passengers and vehicles based on a First-Come-First-Serve (FCFS) strategy. Second, the congestion externality 

( Yang et al., 2005 ) caused by both ride-sourcing vehicles and background traffic is not considered. Third, the model investi- 

gates the stationary equilibrium of the ride-sourcing markets in an aggregate context without considering network structures 

and dynamic time-varying operations. 

We first consider a stationary equilibrium in which each ride-sourcing vehicle serves one passenger (one ride request) in 

the non-pooling market. As mentioned above, we assume that passengers are matched in sequence with the closest vacant 

vehicle according to the FCFS mechanism. Let w and t np denote the average pick-up time (i.e., waiting time from being 

matched to being picked-up) and the average trip time (i.e., riding time from being picked-up to being dropped-off, which 

is assumed to be a constant in non-pooling services). Let F denote the average trip fare, then the generalized cost of a 

non-pooling ride-sourcing trip is F + β( w + t np ), where β is the value of time. We assume that passenger demand (i.e., the 

number of passengers per unit time) for non-pooling ride-sourcing services, denoted by Q , is a strictly decreasing function 

with respect to the generalized cost: 

Q = f ( F + β · ( w + t np ) ) (1) 

where f ′ ( • ) < 0. Let N denote the total number of vehicles (i.e., vehicle fleet size) on the platform. Each vehicle can be 

in one of three statuses ( Castillo et al., 2017 ): vacant (idle to be matched), picking up (on the way to pick up a passenger), 

and occupied (with passenger(s) onboard). Let N 

v denote the number of vacant vehicles in stationary equilibrium, then the 

conservation equation of vehicles is given by 

N = N 

v + Q · w 

(
N 

v 
)

+ Q · t np (2) 

where the average pick-up time w is inversely proportional to the number of vacant vehicles N 

v , i.e., w = w ( N 

v ) with 

w 

′ = ∂ w / ∂ N 

v < 0. Then Eq. (2) can be written as: 

Q = 

N − N 

v 

w ( N 

v ) + t np 
(3) 

which shows that passenger demand Q can be written as an explicit function of the number of vacant vehicles N 

v . Taking 

the partial derivative of Q with respect to N 

v gives rise to: 

∂Q 

∂ N 

v = 

−
(
Qw 

′ + 1 

)
w + t np 

(4) 

Conversely, N 

v is also an explicit function of Q . By taking the partial derivative of both sides of Eq. (2) with respect to Q , 

we can obtain: 

∂ N 

v 

∂Q 

= 

−( w + t np ) 

Qw 

′ + 1 

(5) 

where Qw 

′ < 0, which indicates that the sign of ∂ Q / ∂ N 

v and ∂ Q / ∂ N 

v are undetermined. If Qw 

′ + 1 < 0, then Q 

strictly increases with N 

v and also N 

v strictly increases with Q , which indicates a WGC regime. Initially identified by 

Castillo et al. (2017) , the WGC is an inefficient outcome of the ride-sourcing system with extremely low density of va- 

cant vehicles and a large proportion of vehicles wasted in the picking-up phase. If Qw 

′ + 1 > 0, then Q strictly decreases 

with N 

v and also N 

v strictly decreases with Q , which indicates a normal regime. It is noteworthy to mention that, in the 

conventional street-hailing taxi market, the pick-up phase can be ignored in the vehicle conservation equation, which then 

becomes N = N 

v + Q · t np . In this case, ∂ N 

v / ∂ Q = −t np < 0, which implies that the conventional street-hailing taxi market 

always falls into the normal regime. Combining Eqs. (1) and (2) , we can obtain the market equilibrium of the non-pooling 
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market as follows: 

Q = 

N − N 

v 

w ( N 

v ) + t np 
= f 

(
F + β ·

(
w 

(
N 

v 
)

+ t np 

))
(6) 

which is an implicit function of N 

v . Taking the partial derivative of both sides of Eq. (6) with respect to the two decision 

variables F and N gives rise to: 

∂ N 

v 

∂F 
= 

− f ′ ( w + t np ) 

( Qw 

′ + 1 ) + f ′ βw 

′ ( w + t np ) 
(7) 

∂ N 

v 

∂N 

= 

1 

( Qw 

′ + 1 ) + f ′ βw 

′ ( w + t np ) 
(8) 

As mentioned above, passenger demand Q can be written as an explicit function of N 

v in Eq. (3) , and thus the partial 

derivatives of Q with respect to the two decision variables F and N are given by 

∂Q 

∂F 
= 

∂Q 

∂ N 

v ·
∂ N 

v 

∂F 
= 

f ′ 
(
Qw 

′ + 1 

)
( Qw 

′ + 1 ) + f ′ βw 

′ ( w + t np ) 
(9) 

∂Q 

∂N 

= 

1 

w + t np 
+ 

∂Q 

∂ N 

v ·
∂ N 

v 

∂N 

= 

f ′ βw 

′ 
( Qw 

′ + 1 ) + f ′ βw 

′ ( w + t np ) 
(10) 

In addition, since the average pick-up time w is a decreasing function of N 

v , the partial derivatives of w with respect to 

the two decision variables F and N are given by 

∂w 

∂F 
= 

∂w 

∂ N 

v ·
∂ N 

v 

∂F 
= 

− f ′ w 

′ ( w + t np ) 

( Qw 

′ + 1 ) + f ′ βw 

′ ( w + t np ) 
(11) 

∂w 

∂N 

= 

∂w 

∂ N 

v ·
∂ N 

v 

∂N 

= 

w 

′ 
( Qw 

′ + 1 ) + f ′ βw 

′ ( w + t np ) 
(12) 

In the normal regime with Qw 

′ + 1 > 0, passenger demand Q increases with vehicle fleet size and decreases with trip 

fare (i.e., ∂ Q / ∂ N > 0, ∂ Q / ∂ F < 0), the number of vacant vehicles N 

v increases with both vehicle fleet size and trip fare (i.e., 

∂ N 

v / ∂ N > 0, ∂ N 

v / ∂ F > 0), and the average pick-up time w decreases with both vehicle fleet size and trip fare (i.e., ∂ w / ∂ N 

< 0, ∂ w / ∂ F < 0). Yet, these monotonic properties do not necessarily hold in the WGC regime with Qw 

′ + 1 < 0. 

4. Equilibrium in a ride-pooling market 

In this section, we extend the model in Section 3 to delineate the stationary equilibrium in a ride-pooling market in 

which ride-sourcing vehicles provide ride-pooling services. Due to the complexity of urban spatial topology and randomness 

of passengers’ origins and destinations, a passenger opting for ride-pooling service may end up paired or unpaired with 

a second passenger. The major difference between ride-pooling market and non-pooling ride-sourcing market lies in the 

successful pairing rate (i.e., the fraction of passengers who are successfully paired with other passengers who opt for ride- 

pooling services) and the actual detour time (i.e., the actual extra trip time experienced by passengers who choose ride- 

pooling services and are successfully paired). These two factors are endogenously correlated with the average trip time and 

pick-up time, and affect passenger demand, the platform’s profit and social welfare. To simplify the model, we consider 

pairing at most two passengers (two ride requests) although three or more passengers can be pooled, and for analytical 

tractability, all passengers are assumed to opt for RP service, although they may end up with unpaired. 

4.1. Average trip time for ride-pooling 

Let p denote the successful pairing rate, �t denote the average actual detour time, and �t A denote the allowable detour 

time (i.e., the allowable maximum extra detour time experienced by passengers who choose ride-pooling services and are 

successfully paired). Note that �t A is a decision variable of the platform while �t endogenously depends on many other fac- 

tors. In this paper, if the allowable detour time is unlimited, i.e., �t A → ∞ , the situation is termed as a detour-unconstrained 

scenario ; otherwise, it is termed as a detour-constrained scenario. 

If successfully paired, passengers who opt for RP service will experience an average trip time that equals the sum of the 

average trip time for NP service (i.e., t np ) and the average actual detour time (i.e., �t ); otherwise, as in NP service, it equals 

the average trip time only. Thus, the expected average trip time of passengers opting for the ride-pooling mode is 

t rp = ( t np + �t ) · p + t np · ( 1 − p ) , (13) 

where t np and t np + �t are the average trip times of unsuccessfully and successfully paired passengers, respectively, and p 

is the successful pairing rate. It is also worth mentioning that, Li et al. (2019a) point out that trip time reliability of ride- 

pooling services is much worse than that of non-pooling services due to uncertain extra detour and waiting. For tractability, 



J. Ke, H. Yang and X. Li et al. / Transportation Research Part B 139 (2020) 411–431 417 

we ignore the impact of the standard deviation of trip time on the passenger demand in this paper and leave it for future 

studies. 

Rate p depends on two key factors: passenger demand for RP service Q and allowable detour time �t A . Intuitively, the 

more the passengers who opt for RP services, the higher the success rate for pairing two requests with similar routes and 

schedules, i.e., p → 1 as Q → ∞ and p → 0 as Q → 0. Also, the longer the allowable detour time �t A , the more requests that 

can be paired, and hence the higher the pairing rate, i.e., p → 0 as �t A → 0 and p → 1 as �t A → ∞ . For a given allowable 

detour time, Santi et al. (2014) demonstrate that the curve of the successful pairing rate against ride-pooling passenger 

demand resembles a “fast” saturation process. In other words, the successful pairing rate first increases quickly and then 

slowly approaches 1.0, as passenger demand for sharing increases. 

The average actual detour time, �t , is also an endogenous variable that depends on Q and �t A , and in general in- 

creases with �t A and decreases with Q . Moreover, �t → 0 as �t A → 0 and �t → 0 as Q → ∞ . Specifically, in the detour- 

unconstrained scenario with �t A → ∞ , the successful paring rate p → 1 and the average detour time �t should be mono- 

tonically decreasing with Q (i.e., more ride-pooling passengers imply better pairings with shorter actual detour time). In 

this case, with a slight abuse of notation, the average detour time can be written as a function on passenger demand, i.e., 

�t = �t ( Q ), where ∂ �t / ∂ Q < 0. To summarize, p and �t can be written as functions of Q and �t A , i.e., p = p ( Q , �t A ) and 

�t = �t ( Q , �t A ), with the following mild assumptions: 

Assumption 1. The successful pairing rate p ( Q , �t A ) and average detour time �t ( Q , �t A ) satisfy: 

1 For all Q ≥ 0 , p ( Q , �t A ) strictly increases in �t A with p ( Q , 0) = 0 and lim 

�t A →∞ 

p( Q, �t A ) = 1 ; for all �t A ≥ 0 , p ( Q , �t A ) 

strictly increases in Q with p (0, �t A ) = 0 and lim 

Q→∞ 

p( Q, �t A ) = 1 . 

2 For all Q ≥ 0 , �t ( Q , �t A ) strictly increases in �t A with �t ( Q , 0) = 0 ; for all �t A ≥ 0 , �t ( Q , �t A ) strictly decreases in Q with 

lim 

Q→∞ 

�t( Q, �t A ) = 0 ; if �t A → ∞ , �t is a decreasing function of Q. 

With some mild assumptions, we propose a probabilistic model in Appendix B to investigate how the passenger de- 

mand Q and allowable detour time �t A jointly affect the successful pairing rate p and average actual detour time �t . The 

probabilistic model is then used for numerical studies in Section 6 . 

4.2. Market equilibrium 

In the ride-pooling market, the generalized cost of passengers opting for ride-pooling services is F + β · ( w + t rp ), where 

t rp = t np + p �t given by Eq. (13) . Similar to the non-pooling market, passenger demand Q can be written as a decreasing 

function of the generalized cost: 

Q = f ( F + β · ( w + t np + p�t ) ) (14) 

where f ′ < 0. Particularly, in the detour-unconstrained scenario, the average trip time for ride-pooling t np + p �t becomes 

t np + �t . Different from the non-pooling market, a vehicle in a ride-pooling market can be dispatched to an unpaired 

passenger or two paired passengers. In the former case, the number of vehicles in the pick-up phase and in-trip phase is 

(1 − p ) Q [ t np + w ( N 

v )]. In the latter case, each vehicle corresponds to two passengers, and thus the number of vehicles in 

the pick-up phase and in-trip phase can be estimated by 1 
2 pQ[ t np + �t d + w ( N 

v ) ] , where �t d is the average driver detour 

time, i.e., the extra detour time a driver experiences in a shared ride serving two requests in comparison with a normal ride 

serving one request. Therefore, the vehicle conservation function in the ride-pooling market is given by 

N = N 

v + 

1 

2 

pQ 

[
t np + �t d + w 

(
N 

v 
)]

+ ( 1 − p ) Q 

[
t np + w 

(
N 

v 
)]

(15) 

Next, we use realistic examples to discuss �t d and �t and how they are correlated. As shown in Fig. 3 , there are two 

possible route sequences in a shared ride. Suppose a driver picks-up passenger i first and passenger j second, then he/she 

has two route sequences: (1) first-pickup-last-dropoff, i.e., first drops off passenger j and then passenger i in Fig. 3 (a); (2) 

first-pickup-first-dropoff, i.e., first drops off passenger i and then passenger j in Fig. 3 (b). Let t i , t j denote the normal trip 

time for passengers i and j without ride-pooling, and let t 1( i,j ) , t 2( i,j ) , t 3( i,j ) denote the trip time for the three consecutive 

segments in the shared ride. In the first-pickup-last-dropoff case, the detour time experienced by passengers i and j is 

t 1( i,j ) + t 2( i,j ) + t 3( i,j ) − t i and t 2( i,j ) − t j = 0 respectively, while the driver detour time is the difference between the total 

trip time t 1( i,j ) + t 2( i,j ) + t 3( i,j ) and the average normal trip time ( t i + t j )/2. In the first-pickup-first-dropoff case, the detour 

time experienced by passengers i and j is t 1( i,j ) + t 2( i,j ) − t i and t 2( i,j ) + t 3( i,j ) − t j respectively, while the driver detour time 

is still t 1( i,j ) + t 2( i,j ) + t 3( i,j ) − ( t i + t j )/2. Then the average detour time �t experienced by passenger and the average detour 

time �t d experienced by driver can be estimated by: 

�t = 

t 1 ( i, j ) + t 2 ( i, j ) − t i + t 2 ( i, j ) + t 3 ( i, j ) − t j 

2 

(16) 

�t d = t 1 ( i, j ) + t 2 ( i, j ) + t 3 ( i, j ) −
t i + t j 

2 

(17) 
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Fig. 3. Ride-pooling route sequences. 

From the two equations above, we have: 

�t d − 2�t = 

t i + t j 

2 

− t 2 ( i, j ) (18) 

where the first element on the RHS is an estimate for the average normal trip time, and the second element on the RHS 

refers to the average trip time for the second segment, i.e., the “shared” segment. This indicates that �t d − 2 �t is propor- 

tional to the difference between the average normal trip time and the average trip time for the shared segment. The average 

trip time for the shared segment is hard to ascertain and depends on many factors, including the matching algorithms and 

network structures, which make the exact identification of the relationship between �t d and �t intractable. For example, 

in simplified cases where the travel directions of passengers i and j are exactly the same in Fig. 3 (c) and (d), passengers do 

not experience detour time, while the driver detour time is given by t 1( i,j ) + t 2( i,j ) + t 3( i,j ) − ( t i + t j )/2. If both the origins 

and destinations of the two passengers are close, the driver detour time is almost zero as in Fig. 3 (c); if the origins and 

destinations of the two passengers are far from each other, the shared segment is short and the driver detour time will be 

substantially larger than zero as in Fig. 3 (d). To summarize, the exact relationship between �t d and �t is difficult to de- 

termine, which requires further explorations from both theoretical and empirical perspectives. Yet, we can generally expect 

that �t d increases with �t . For simplicity in this paper, we assume �t d = γ�t in the analysis, where γ is an exogenous 

positive parameter. 

The equilibrium of the ride-pooling market can be given by solving a system of simultaneous equations that consists 

of Eqs. (14) and (15) . Particularly, in the detour-unconstrained scenario in which �t A → ∞ , p → 1, and �t = �t ( Q ) with 

∂ �t / ∂ Q < 0, all passengers can be successfully paired, thus the stationary equilibrium of the ride-pooling market can be 

simplified in the following system of nonlinear equations: 

Q = f ( F + β · ( w + t np + �t ) ) (19) 

N = N 

v + 

1 

2 

Q 

[
t np + γ�t + w 

(
N 

v 
)]

(20) 

where Eq. (19) depicts the demand curve and Eq. (20) describes the supply curve. The intersection of the demand and supply 

curves gives the equilibrium. As we can see from the supply curve, without a specific form of the average detour time �t , 

we cannot obtain the passenger demand Q as an explicit function of the number of vacant vehicles N 

v , which makes it 

intractable to investigate the effects of decision variables on the endogenous variables, such as Q, N 

v and w . A recent paper, 

Ke et al., (2020a) , find that the average detour time �t is inversely proportional to the passenger demand through extensive 

experiments using actual data from Manhattan, Chengdu and Haikou. For analytical tractability, we follow their findings and 

assume �t = A / Q , where A is a parameter. Note that this formula satisfies the properties of �t in the probabilistic model 

described in Appendix B . Combing �t = A / Q and Eq. (20) , we can obtain Q as an explicit function of N 

v as follows: 

N = N 

v + 

1 

2 

Q 

[
t np + w 

(
N 

v 
)]

+ 

1 

2 

γ A (21) 

or equivalently, 

Q = 

2 

(
N − 1 

2 
γ A − N 

v 
)

t np + w ( N 

v ) 
(22) 
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The partial derivative of Q with respect to N 

v is given by 

∂Q 

∂ N 

v = 

−
(
Qw 

′ + 2 

)
w + t np 

(23) 

Conversely, the partial derivative of N 

v with respect to Q is given by 

∂ N 

v 

∂Q 

= 

−( w + t np ) 

Qw 

′ + 2 

(24) 

Clearly, the signs of ∂ Q / ∂ N 

v and ∂ N 

v / ∂ Q are undetermined. If Qw 

′ + 2 < 0, the market is in the WGC regime and the 

number of vacant vehicles N 

v increases with passenger demand Q ; otherwise, the market is in the normal regime and N 

v 

decreases with Q . Note that the condition for the WGC regime in the non-pooling and ride-pooling markets is Qw 

′ < −1 

and Qw 

′ < −2, respectively. Next we look into the equilibrium in the ride-pooling market by combining Eqs. (19) and (21) : 

Q = 

2 

(
N − 1 

2 
γ A − N 

v 
)

w ( N 

v ) + t np 
= f 

(
F + β ·

(
w 

(
N 

v 
)

+ t np + �t 
))

(25) 

which is an implicit function of N 

v . Taking the partial derivative of both sides of Eq. (25) with respect to the two decision 

variables F and N gives rise to: 

∂ N 

v 

∂F 
= 

− f ′ ( w + t np ) 

( Qw 

′ + 2 ) 
(
1 − β f ′ ∂�t 

∂Q 

)
+ f ′ βw 

′ ( w + t np ) 
(26) 

∂ N 

v 

∂N 

= 

−2 

(
1 − β f ′ ∂�t 

∂Q 

)
( w + t np ) 

[
∂Q 
∂ N v 

(
1 − β f ′ ∂�t 

∂Q 

)
− f ′ βw 

′ ] (27) 

Since passenger demand Q can be written as an explicit function of N 

v in Eq. (21) , we can derive the partial derivatives 

of Q with respect to the two decision variables F and N as follows: 

∂Q 

∂F 
= 

∂Q 

∂ N 

v ·
∂ N 

v 

∂F 
= 

f ′ 
(
Qw 

′ + 2 

)
( Qw 

′ + 2 ) 
(
1 − β f ′ ∂�t 

∂Q 

)
+ f ′ βw 

′ ( w + t np ) 
(28) 

∂Q 

∂N 

= 

2 

t np + w 

+ 

∂Q 

∂ N 

v ·
∂ N 

v 

∂N 

= 

2 f ′ βw 

′ 

( Qw 

′ + 2 ) 
(
1 − β f ′ ∂�t 

∂Q 

)
+ f ′ βw 

′ ( w + t np ) 
(29) 

Since the average pick-up time w is a decreasing function of N 

v , the partial derivatives of w with respect to the two 

decision variables F and N are given by 

∂w 

∂F 
= 

∂w 

∂ N 

v ·
∂ N 

v 

∂F 
= 

− f ′ w 

′ ( w + t np ) 

( Qw 

′ + 2 ) 
(
1 − β f ′ ∂�t 

∂Q 

)
+ f ′ βw 

′ ( w + t np ) 
(30) 

∂w 

∂N 

= 

∂w 

∂ N 

v ·
∂ N 

v 

∂N 

= 

2 

(
1 − β f ′ ∂�t 

∂Q 

)
w 

′ 

( Qw 

′ + 2 ) 
(
1 − β f ′ ∂�t 

∂Q 

)
+ f ′ βw 

′ ( w + t np ) 
(31) 

In contrast to the non-pooling market, the signs of ∂ Q / ∂ N , ∂ Q / ∂ F , ∂ N 

v / ∂ N , ∂ N 

v / ∂ F , ∂ w / ∂ N and ∂ w / ∂ F are undetermined 

and dependent on the signs of Qw 

′ + 2 and 1 − β f ′ ∂�t 
∂Q 

. Fig. 4 illustrates the complicated relationships among decisions and 

endogenous variables in the two markets, i.e., non-pooling market and ride-pooling market. In the non-pooling market as 

shown in Fig. 4 (a), passenger demand Q and the number of vacant vehicles N 

v interacts with each other. Q decreases with 

N 

v in the normal regime but increases with N 

v in the WGC regime. The average pick-up time w decreases with N 

v , and 

Q decreases with w . Therefore, the three endogenous variables Q, N 

v and w form a cycle leading to a market equilibrium. 

The decision trip fare F and vehicle fleet size N influence the equilibrium through passenger demand Q and vacant vehicles 

N 

v . In the ride-pooling market as shown in Fig. 4 (b), the three endogenous variables Q, N 

v and w also form a similar cycle. 

Besides, a unit increase in passenger demand Q brings an additional indirect effect on itself: it reduces the average actual 

detour time �t , which in turn increases Q . Therefore, intuitively, reducing the trip fare in the ride-pooling market brings 

greater marginal increase in passenger demand, and thus the platform is more willing to charge a lower trip fare. 

It is interesting to find that the formulations of Eqs. (26) - (31) and Eqs. (7) - (12) are similar except that: a) Qw 

′ + 2 

replaces Qw 

′ + 1 in the ride-pooling market, which indicates that ride-pooling market has some passengers sharing vehicles; 

b) the ride-pooling market has an additional term −β f ′ ∂�t 
∂Q 

, which represents the additional indirect effect on passenger 

demand Q through average actual detour time �t and corresponds to the red cycle in Fig. 4 . 

Our model is different from Castillo et al. (2017) ’s model in the following aspects. First, their model does not consider 

the extra detour time experienced by passengers and drivers, and thus its drivers’ service rate in the ride-pooling market is 

assumed to be exactly twice of that in the non-pooling market. In our model, drivers’ service rate is lower and more realistic 
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Fig. 4. Relationships between decisions and endogenous variables in two markets. 

by considering a driver detour time γ�t in Eq. (20) . Second, their model assumes that the average pick-up time in the ride- 

pooling market depends on the number of available vehicles (including vacant vehicles and vehicles serving 1 passenger), 

while our model assumes that the average pick-up time depends on the number of vacant vehicles. We then derive the 

monopoly and social optimum conditions in the detour-unconstrained scenario and obtain some theoretical insights (as 

shown in the next section). 

5. Properties of optimal solutions 

In this section we compare the two markets described in Sections 3 and 4 by examining the properties of their optimal 

solutions under three scenarios: (1) a monopoly scenario in which a monopoly platform aims to maximize its profit; (2) a 

social optimum scenario in which the platform aims to maximize social welfare without profit constraint; and (3) a second- 

best scenario in which a second-best solution is sought out to maximize social welfare while guaranteeing a certain level of 

platform profit. 

5.1. Monopoly optimum (MO) in the non-pooling market 

In the monopoly scenario in the non-pooling market, the ride-sourcing platform aims to maximize its profit by determin- 

ing trip fare F and vehicle fleet size N . This is a typical market that has been examined by, for example, Zha et al. (2016) and 

Yang and Yang (2011) . Specifically, Zha et al. (2016) argue that the ride-sourcing platform behaves like a conventional taxi 

company in terms of having an objective of maximizing its revenue without possessing any vehicles, under the following 

conditions: drivers’ entry to the market is free, drivers’ reservation rates are homogenous, labor supply is sufficient such that 

drivers will enter the ride-sourcing market until reaching zero net earnings. Under these conditions, the revenue-maximizing 

problem for a ride-sourcing platform is the same as the revenue-maximizing problem for a monopoly street-hailing taxi 

market examined in Yang and Yang (2011) . Therefore, the problem is formulated as follows: 

(P1) max �( F , N ) = F Q − cN (32) 

where � is the profit of the ride-sourcing platform and c is the unit time operating cost per ride-sourcing vehicle. The profit 

equals the total revenue, FQ , minus the total payment to the drivers, which equals cN since drivers’ net profit is zero in a 

free entry market. The first-order conditions of P1 are: 

∂�

∂F 
= Q + F 

∂Q 

∂F 
= 0 (33) 

∂�

∂N 

= F 
∂Q 

∂N 

− c = 0 (34) 

where ∂ Q / ∂ F and ∂ Q / ∂ N are given by Eqs. (9) and (10) . Combining Eqs. (33) and (34) , together with Eqs. (9) and (10) , we 

obtain: 

c 
(
Q 

∗
np w 

′ ∗
np + 1 

)
= −βQ 

∗
np w 

′ ∗
np (35) 

F ∗np = c 
(
w 

∗
np + t np 

)
− Q 

∗
np 

f 
′ ∗
np 

(36) 
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where we use the subscript “np” to specify the non-pooling market, and “∗” to indicate the optimality. Eq. (36) follows the 

form of the Lerner formula ( Lerner, 1934 ), in which the RHS consists of two terms: the average cost for a driver to serve a 

passenger in pick-up and occupied phases, i.e., c( w 

∗
np + t np ) , and the monopoly mark-up, −Q 

∗
np / f 

′ ∗
np > 0 . Moreover, in view of 

w 

′ ∗
np = dw 

∗
np / d N 

v ∗
np , Eq. (35) can be re-written as: 

c 

(
Q 

∗
np 

d w 

∗
np 

d N 

v ∗
np 

+ 1 

)
= −βQ 

∗
np 

d w 

∗
np 

d N 

v ∗
np 

⇔ c ·
(
d N 

v ∗
np + Q 

∗
np d w 

∗
np 

)
= −βQ 

∗
np d w 

∗
np (37) 

where the LHS indicates the marginal operating cost of a ride-sourcing vehicle in the vacant phase, i.e., c · d N 

v ∗
np , minus the 

marginal operating cost reduction of vehicles in the pick-up phase, i.e., −cQ 

∗
np d w 

∗
np , while the RHS indicates the marginal 

cost reduction of passengers in the pick-up phase, i.e., −βQ 

∗
np d w 

∗
np . This implies that the total marginal cost of operating the 

vehicles in the vacant and pick-up phases equals the marginal pick-up time cost reduction of passengers at the monopoly 

optimum. This is different from the traditional street-hailing taxi market, in which the marginal cost of operating vacant 

vehicles equals the marginal pick-up time cost reduction of passengers. In addition, in view of Eq. (35) and the fact that 

w 

′ ∗
np < 0 , we have Q 

∗
np w 

′ ∗
np + 1 > 0 , which indicates that, 

Lemma 1. The monopoly optimum in the non-pooling market always locates in the normal regime rather than the WGC regime. 

5.2. Monopoly optimum (MO) in the ride-pooling market 

In the monopoly scenario in a ride-pooling market, the optimization problem is similar to that in a non-pooling market. 

The ride-sourcing platform receives trip fare F from Q passengers and pays unit time operating cost c for a total of N drivers. 

(P2) max �( F , N ) = F Q − cN (38) 

where Q is the solution of the market equilibrium in Eq. (25) . The first-order conditions of P2 are: 

1 

2 

c 
(
Q 

∗
rp w 

′ ∗
rp + 2 

)
= −βQ 

∗
rp w 

′ ∗
rp (39) 

F ∗rp = 

1 

2 

c 
(
w 

∗
rp + t np 

)
+ βQ 

∗
rp 

∂�t ∗

∂Q 

∗
rp 

− Q 

∗
rp 

f 
′ ∗
rp 

(40) 

where we use the subscript “rp” to specify the ride-pooling market, and “∗” to indicate the optimality. It is interesting to 

see that the optimal pricing formula given by Eq. (40) in a ride-pooling market also follows the Lerner formula. The RHS 

consists of three terms: the average cost for a driver to serve a passenger in pick-up and occupied phases (half of a vehicle 

is required to serve each passenger), i.e., 1 
2 c( w 

∗
rp + t np ) , an additional term βQ 

∗
rp 

∂�t ∗
∂Q ∗rp 

associated with actual detour time, 

and a monopoly mark-up, −Q 

∗
rp / f 

′ ∗
rp . Since ∂�t ∗

∂Q ∗rp 
< 0 , the additional term βQ 

∗
rp 

∂�t ∗
∂Q ∗rp 

< 0 . This implies that a decrease in trip 

fare increases passenger demand, and then reduces the average actual detour time �t , which in turn increases passenger 

demand. In other words, a unit decrease in trip fare in a ride-pooling market can in general attract more passengers than 

would a non-pooling market, due to the reduced actual detour time. Therefore, the platform operating ride-pooling services 

has a stronger incentive to reduce trip fare than the platform operating non-pooling services. In addition, substituting w 

′ ∗
rp = 

dw 

∗
rp / d N 

v ∗
rp into Eq. (39) leads to: 

1 

2 

c 

(
Q 

∗
rp 

d w 

∗
rp 

d N 

v ∗
rp 

+ 2 

)
= −βQ 

∗
rp 

d w 

∗
rp 

d N 

v ∗
rp 

⇔ c ·
(

d N 

v ∗
rp + 

1 

2 

Q 

∗
rp d w 

∗
rp 

)
= −βQ 

∗
rp d w 

∗
rp (41) 

where the LHS indicates the marginal cost of operating vehicles in the vacant phase, i.e., c · d N 

v ∗
rp , minus the marginal oper- 

ating cost reduction of vehicles in the pick-up phase (each vehicle corresponds to two passengers), i.e., −c · 1 
2 Q 

∗
rp d w 

∗
rp , while 

the RHS indicates the marginal cost reduction of passengers in the pick-up phase, i.e., −βQ 

∗
rp d w 

∗
rp . In addition, in view of 

Eq. (39) and the fact that w 

′ ∗
rp < 0 , we have Q 

∗
rp w 

′ ∗
rp + 2 > 0 , which indicates that: 

Lemma 2. The monopoly optimum in the ride-pooling market always locates in the normal regime rather than the WGC regime. 

5.3. Social optimum (SO) in the non-pooling market 

Next we discuss the first-best social optimum (SO) solution in the non-pooling market. The following problem (P3) aims 

to maximize social welfare S ( F, N ) as a function of trip fare F and vehicle fleet size N . 

(P3) max S ( F , N ) = 

∫ Q 

0 

f −1 ( z ) dz − β · ( w + t np ) Q − cN (42) 

The first-order conditions of P3 are: 

∂S 

∂F 
= 0 ⇒ F 

∂Q 

∂F 
= βQ · ∂w 

∂F 
(43) 
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∂S 

∂N 

= 0 ⇒ c = F 
∂Q 

∂N 

− βQ · ∂w 

∂F 
(44) 

Combining Eq. (43) and (44) together with Eqs. (9) - (12) yields: 

c 
(
Q 

∗
np w 

′ ∗
np + 1 

)
= −βQ 

∗
np w 

′ ∗
np (45) 

F ∗np = c 
(
w 

∗
np + t np 

)
(46) 

While Eq. (45) for the social optimum is the same as Eq. (35) for the monopoly optimum, the passenger demand and 

pick-up time in the two equations are different, because the social optimum trip fare in Eq. (46) does not contain a term of 

the monopoly markup. Similar to the analysis in Section 5.1 , substituting w 

′ ∗
np = dw 

∗
np / d N 

v ∗
np into Eq. (45) yields: 

c 

(
Q 

∗
np 

d w 

∗
np 

d N 

v ∗
np 

+ 1 

)
= −βQ 

∗
np 

d w 

∗
np 

d N 

v ∗
np 

⇔ c ·
(
d N 

v ∗
np + Q 

∗
np d w 

∗
np 

)
= −βQ 

∗
np d w 

∗
np (47) 

where the LHS indicates the marginal operating cost of a vehicle in the vacant and pickup phases, i.e., c · d N 

v ∗
np + cQ 

∗
np d w 

∗
np , 

equals the marginal pick-up time cost reduction of passengers, i.e., −βQ 

∗
np d w 

∗
np , at the social optimum. Moreover, using 

Eq. (46) , we show that the joint profit of the platform and its affiliated drivers at the social optimum is given by 

�so 
np = F ∗np Q 

∗
np − cN = −cN 

v ∗
np < 0 (48) 

Clearly, �so 
np is always negative, and the social optimum is unsustainable unless a certain amount of government subsidy 

is paid to the platform in the non-pooling market. Moreover, similar to Lemma 1 , from Eq. (45) , we find that: 

Lemma 3. The social optimum in the non-pooling market always locates in the normal regime rather than the WGC regime. 

5.4. Social optimum (SO) in the ride-pooling market 

In a ride-pooling market (under the detour-unconstrained scenario), the SO solution can be found from the following 

problem (P4): 

(P4) max S ( F , N ) = 

∫ Q 

0 

f −1 ( z ) dz − β · ( w + t np + �t ) Q − cN (49) 

The first-order conditions of P4 are: 

1 

2 

c 
(
Q 

∗
rp w 

′ ∗
rp + 2 

)
= −βQ 

∗
rp w 

′ ∗
rp (50) 

F ∗rp = 

1 

2 

c 
(
w 

∗
rp + t np 

)
+ βQ 

∗
rp 

∂�t ∗

∂Q 

∗
rp 

(51) 

Eq. (50) for the social optimum is the same as Eq. (39) for the monopoly optimum. Eq. (51) states that the social optimum 

trip fare in the ride-pooling market includes two terms: the average cost for a driver to serve a passenger and an additional 

term associated with the actual detour time �t . It is the same as Eq. (40) except for the monopoly mark-up. As mentioned 

above, the additional term βQ 

∗
rp 

∂�t ∗
∂Q ∗rp 

associated with �t is negative, which shows that the reduction of �t due to an increase 

of passenger demand will pull down the social optimum trip fare. In other words, a unit decrease in trip fare in the ride- 

pooling market attracts more passengers than would a non-pooling market, and thus the social optimum trip fare in the 

ride-pooling market is generally lower than that in the non-pooling market. In addition, substituting w 

′ ∗
rp = dw 

∗
rp / d N 

v ∗
rp into 

Eq. (50) gives rise to: 

1 

2 

c 

(
Q 

∗
rp 

d w 

∗
rp 

d N 

v ∗
rp 

+ 2 

)
= −βQ 

∗
rp 

d w 

∗
rp 

d N 

v ∗
rp 

⇔ c ·
(

d N 

v ∗
rp + 

1 

2 

Q 

∗
rp d w 

∗
rp 

)
= −βQ 

∗
rp d w 

∗
rp (52) 

which indicates that the marginal operating cost of a vehicle in the vacant and pickup phases, i.e., c · d N 

v ∗
rp + c · 1 

2 Q 

∗
rp d w 

∗
rp , 

equals the marginal pick-up time cost reduction of passengers, i.e., −βQ 

∗
rp d w 

∗
rp , at the social optimum. Moreover, at the 

social optimum, the joint profit of the platform and its affiliated drivers is given by 

�so 
rp = F ∗rp Q 

∗
rp − cN = −cN 

v ∗
rp + β

(
Q 

∗
rp 

)2 ∂�t ∗

∂Q 

∗
rp 

< 0 (53) 

which indicates the profit of the platform operating ride-pooling service at the social optimum is always negative, and 

therefore a government subsidy is needed. In addition, similar to Lemma 2 , from Eq. (50) , we find that: 

Lemma 4. The social optimum in the ride-pooling market always locates in the normal regime rather than the WGC regime. 

In addition, we prove that: 
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Proposition 1. Under a mild condition that w ( N 

v ∗
rp ) + t np ≥ �t ∗

d 
, the social optimum trip fare in the ride-pooling market is lower 

than that in the non-pooling market. 

Condition w ( N 

v ∗
rp ) + t np ≥ �t ∗

d 
indicates that the sum of the average pick-up time and normal trip time is greater than the 

average detour time experienced by drivers in a shared ride, which generally holds in actual operations. It is also worth to 

mention that w ( N 

v ∗
rp ) + t np ≥ �t ∗

d 
is a sufficient condition but not a necessary condition, and therefore, we can expect that 

the social optimum trip fare in the ride-pooling market is lower than that in the non-pooling market in most cases. 

Proposition 2. Under conditions that w ( N 

v ∗
rp ) + t np ≥ �t ∗

d 
and certain relationship between passenger demand and generalized 

cost, e.g. , a negative exponential demand function Q = f (C) = Q̄ exp ( −κC ) , the monopoly optimum trip fare in the ride-pooling 

market is lower than that in the non-pooling market. 

Condition w ( N 

v ∗
rp ) + t np ≥ �t ∗

d 
is the same as the condition in Proposition 1 , which generally holds as aforementioned. 

The second condition, i.e., passenger demand is proportional to a negative exponential function of the generalized cost, 

is widely used in literature (such as Yang and Yang, 2011 ). Therefore, we generally expect that both the monopoly and 

social optimum trip fares in the ride-pooling market are lower than those in the non-pooling market. The reason behind is 

intuitive. A platform operating ride-pooling service is able to attract more passengers through a unit decrease in trip fare 

than the platform operating non-pooling service, and thus is more prone to decrease trip fare to improve the platform’s 

profit and social welfare. The proofs for these two propositions are shown in Appendix C . 

5.5. Second-best solution with a profit constraint in the non-pooling market 

Since the profit of a ride-sourcing platform at social optimum is negative, next we consider a second-best solution whose 

objective is to maximize social welfare subject to a nonnegative profit constraint, given in the following problem (P5): 

(P5) max S ( F , N ) = 

∫ Q 

0 

f −1 ( z ) dz − β · ( w + t np ) Q − cN (54) 

subject to : �( F , N ) = F Q − cN ≥ �o (55) 

where �o is a nonnegative reservation profit. To solve this problem, we form the following Lagrangian function: 

L ( F , N ) = 

∫ Q 

0 

f −1 ( z ) dz − β · ( w + t np ) Q − cN + ξ · [ ( F Q − cN ) − �o ] (56) 

where ξ is a Lagrange multiplier. The first-order conditions are: 

c 
(
Q 

∗
np w 

′ ∗
np + 1 

)
= −βQ 

∗
np w 

′ ∗
np (57) 

F ∗np = c 
(
w 

∗
np + t np 

)
− ξQ 

∗
np 

( 1 + ξ ) f 
′ ∗
np 

(58) 

Clearly, the pricing formula in Eq. (58) is a linear combination of the pricing formulas for the monopoly optimum in 

Eq. (36) and the social optimum in Eq. (46) . Then we can infer that: 

Corollary 1. The second-best solution in the non-pooling market always locates in the normal regime rather than the WGC 

regime. 

5.6. Second-best solution with a profit constraint in the ride-pooling market 

In the ride-pooling market, a second-best solution can be found from the following problem (P6): 

(P6) max S ( F , N ) = 

∫ Q 
0 f −1 ( z ) dz − β · ( w + t np + �t ) Q − cN 

(59) 

subject to : �( F , N ) = F Q − cN ≥ �o (60) 

where �o is a nonnegative reservation profit. To solve this problem, we form the following Lagrangian function: 

L ( F , N ) = 

∫ Q 

0 

f −1 ( z ) dz − β · ( w + t np + �t ) Q − cN + ξ · [ ( F Q − cN ) − �o ] (61) 

where ξ is a Lagrange multiplier. The first order conditions are: 

1 

2 

c 
(
Q 

∗
rp w 

′ ∗
rp + 2 

)
= −βQ 

∗
rp w 

′ ∗
rp (62) 
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F ∗rp = 

1 

2 

c 
(
w 

∗
rp + t np 

)
+ βQ 

∗
rp 

∂�t ∗

∂Q 

∗
rp 

− ξQ 

∗
rp 

( 1 + ξ ) f 
′ ∗
rp 

(63) 

Clearly, the pricing formula in Eq. (63) is a linear combination of the pricing formulas for the monopoly optimum in 

Eq. (40) and the social optimum in Eq. (51) . Then we can infer that: 

Corollary 2. The second-best solution in the ride-pooling market always locates in the normal regime rather than the WGC 

regime. 

Corollary 3. Under conditions that w ( N 

v ∗
rp ) + t np ≥ �t ∗

d 
and certain relationship between passenger demand and generalized cost, 

e.g. , a negative exponential demand function Q = f (C) = Q̄ exp ( −κC ) , the second-best solution optimum trip fare in the ride- 

pooling market is lower than that in the non-pooling market. 

6. Numerical studies 

In this section, a set of numerical experiments is conducted to evaluate the performance of the ride-pooling markets. 

Specifically, we discuss the impacts of decision variables (i.e., trip fare, vehicle fleet size and allowable detour time) on 

the key endogenous variables (e.g. pick-up time, passenger demand, successful pairing rate and actual detour time), the 

platform’s profit and social welfare. Both detour-unconstrained and constrained scenarios are examined. 

6.1. Experimental settings 

The demand function in Eq. (1) is assumed to be of the following negative exponential form: 

Q = f ( F + β · ( w + t np ) ) = Q̄ exp { −κ · [ F + β · ( w + t np ) ] } (64) 

where Q̄ is the potential passenger demand and κ is a parameter representing the demand sensitivity with respect to the 

generalized cost. Throughout the numerical studies, we assume Q̄ = 5 . 0 × 10 3 (trips/h), κ = 0.02 (1/HKD), β = 60 (HKD/h), 

t np = 0.4 (h), and the unit time operating cost of a vehicle c = 50 (HKD/h). The average pick-up time is assumed to be 

inversely proportional to the square root of the number of vacant vehicles, i.e., w = H/ 
√ 

N 

v , where parameter H is set to 

be 5 h. In this paper we assume that the actual detour time �t follows an exponential distribution with a parameter λ
(based on the model presented in Appendix B ) which is proportional to passenger demand Q . This implies that the aver- 

age actual detour time �t is inversely proportional to passenger demand Q in the detour-unconstrained scenario, which is 

consistent with the theoretical discussions above. Let λ = 0.2 Q and thus �t = 5/ Q under the detour-unconstrained sce- 

nario; let γ = 2, i.e., �t d ∼= 

2 �t . Note that these parameter values are chosen with partial references to previous studies 

(e.g., Yang and Yang, 2011 ), and just for illustrative purposes. In actual operations, one may calibrate the parameters of the 

proposed functions (e.g. average actual detour time versus passenger demand) and identify their properties with real data. 

6.2. Detour-unconstrained scenario 

This section verifies the theoretical findings described in Sections 5 with numerical examples in a detour-unconstrained 

scenario in which allowable detour time �t A → + ∞ . Under this scenario, a platform has two key decision variables, i.e., 

trip fare and vehicle fleet size, in both ride-pooling and non-pooling markets. The platform’s profit and social welfare are 

evaluated with different combinations of the two decision variables and illustrated by contour maps in a two-dimensional 

space in Fig. 5 . The optimal values in the contour maps in Fig. 5 (a) and (b) correspond to the monopoly optimum (MO) and 

social optimum (SO) solutions, respectively. 

Fig. 5 (a) shows the iso-profit contours together with the MO solutions of the two markets in a two-dimensional space 

with vehicle fleet size on the X -axis and trip fare on the Y -axis. Clearly, both the optimal trip fare and the optimal vehicle 

fleet size for a monopoly in the ride-pooling market are lower than those in the non-pooling market. This is because a 

decrease in trip fare not only directly increases passenger demand due to the negative price elasticity, but also reduces 

actual detour time, which in turn indirectly increases ride-pooling passenger demand (an additional indirect effect). This 

implies that in general, a decrease in trip fare in the ride-pooling market brings more benefits and thus attracts more 

passengers than would in the non-pooling market. Therefore, the platform has stronger incentives to reduce trip fare (and 

thus has a lower optimal trip fare) in the ride-pooling market than the non-pooling market. Fig. 5 (b) shows the iso-social- 

welfare contours together with the social optimum solutions of the two markets in a two-dimensional space with vehicle 

fleet size on the X -axis and trip fare on the Y -axis. It is clearly shown that both trip fare and vehicle fleet size at the social 

optimum in the ride-pooling market are lower than those in the non-pooling market. This is also attributed to the additional 

indirect effect through the actual detour time in ride-pooling, which yields a larger consumer surplus with a unit decrease 

in trip fare in the ride-pooling market than would in the non-pooling market. 
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Fig. 5. Profit and social welfare in a two-dimensional space of vehicle fleet size and trip fare. 

6.3. Detour-constrained scenario 

Although it is difficult to theoretically identify the exact impacts of allowable detour time �t A in the detour-constrained 

scenario, this section provides numerical examples to investigate the operating strategies of the ride-sourcing platform in 

the detour-constrained scenario. In this scenario, the platform has three decision variables: trip fare, vehicle fleet size, and 

allowable detour time. For illustrative purposes, we fix the vehicle fleet size and explore the contours of key endogenous 

variables (average pick-up time, passenger demand, successful pairing rate and average actual detour time), platform’s profit 

and social welfare in a two-dimensional space with allowable detour time on the X -axis and trip fare on the Y -axis. N is set 

to be 500veh (a relatively low level of supply). 

Fig. 6 (a)–(d) show the contours of average pick-up time w , passenger demand Q , successful pairing rate p and average 

actual detour time �t , respectively. Given a fixed vehicle fleet size, it is interesting to find that passenger demand first 

increases and then decreases with trip fare, which is in contrast to the traditional wisdom that passenger demand always 

monotonically decreases with trip fare. This is due to the fact that the market will collapse into a WGC regime when the 

supply is insufficient and/or demand is extremely large due to a low trip fare. It can also be seen from Fig. 6 (a) that the 

average pick-up time may become extremely large at a very low trip fare, which indicates that vehicles spend substantial 

time for picking up passengers and leads to the WGC regime. Therefore, as pointed out by Castillo et al. (2017) , when trip 

fare is extremely low, increasing the trip fare can drag the market out of the WGC regime by reducing the pick-up time 

significantly, which then increases the passenger demand. 

In addition, while successful paring rate p increases with allowable detour time �t A , it also shows a non-monotonic trend 

(i.e., first increasing and then decreasing) with respect to trip fare. The reason is that, in the normal regime (e.g., when trip 

fare is high), an increase in trip fare will reduce passenger demand and then reduce successful pairing rate. Conversely, in 

the WGC regime (e.g., when trip fare is very low), an increase in trip fare increases passenger demand by reducing the pick- 

up time significantly, and thus increases successful pairing rate. Meanwhile, the average actual detour time �t monotonically 

increases with �t A because a larger allowable detour time �t A tends to pair more passengers with long detours. It is also 

observed that �t increases with trip fare in the normal regime since an increase in trip fare reduces passenger demand and 

thus leads to pairings of larger actual detour time. 

Next, we discuss the monopoly optimum (MO) and social optimum (SO) solutions of allowable detour time and trip fare 

under different vehicle supply levels: a low supply level with vehicle fleet size N = 500 veh and a high supply level with 

vehicle fleet size N = 5, 0 0 0 veh. Fig. 7 shows platform’s profit � and social welfare S under the low supply level in a 

two-dimensional space with allowable detour time on the X -axis and trip fare on the Y -axis, together with the MO and 

SO solutions (“MO for RP” and “SO for RP” in the figures). Note that when allowable detour time �t A = 0, the ride-pooling 

market is reduced to the non-pooling market. The MO and SO trip fares in a non-pooling market with �t A = 0 are calculated 

and denoted as “MO for NP” and “SO for NP” (on the Y -axis with �t A = 0). Clearly, the optimal trip fare in the ride-pooling 

market is lower than that in the non-pooling market, with either a profit- or social-welfare-maximizing objective. When the 

supply level is low, the marginal decrease in pick-up time in response to a unit increase in the number of vacant vehicles is 

large (imagining that the average pick-up time is convex with the number of vacant vehicles). In this case, the ride-pooling 

program can greatly reduce pick-up time by having more passengers sharing vehicles to release more vacant vehicles. To 

this end, the platform will set a relatively large allowable detour time for ride-pooling services to increase the successful 

pairing rate. 
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Fig. 6. Endogenous variables in a two-dimensional space of allowable detour time and trip fare. 

Fig. 7. Profit and social welfare in a two-dimensional space of allowable detour time and trip fare with a low supply level ( N = 500veh). 
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Fig. 8. Profit and social welfare in a two-dimensional space of allowable detour time and trip fare with a high supply level ( N = 5, 0 0 0veh). 

Fig. 8 shows the iso-profit contours and iso-social-welfare contours under the high supply level, together with MO and 

SO solutions, in a two-dimensional space with allowable detour time on the X -axis and trip fare on the Y -axis. Interestingly, 

the MO solutions in the ride-pooling market are very close to those in the non-pooling market; in other words, the MO 

solutions in the ride-pooling market are achieved when �t A = 0. This is because the marginal decrease in pick-up time in 

response to a unit increase in the number of vacant vehicles is small and even negligible when the supply level is high. On 

the other hand, pairing passenger requests will increase the actual detour time, which will reduce the passenger demand. 

In this case, the gain by introducing ride-pooling services is limited and the platform has less incentive to pair passenger 

requests, thereby setting a small allowable detour time. 

7. Conclusion 

This paper investigates the emerging on-demand ride-pooling services provided by a fleet of dedicated drivers affili- 

ated with ride-sourcing platforms. A system of nonlinear equations is established to elucidate the complicated relationships 

between the platform decision variables (i.e., trip fare, vehicle fleet size and allowable detour time) and the system’s key 

endogenous variables (e.g., pick-up time, passenger demand, successful pairing rate and actual detour time) in ride-sourcing 

markets with and without on-demand ride-pooling services. Based on the modeling framework, the impacts of two decision 

variables—trip fare and vehicle fleet size—on the platform’s profit and social welfare in the detour-unconstrained scenario are 

analyzed theoretically. We prove that the monopoly optimum, social optimum, and second-best solutions in the ride-pooling 

and non-pooling markets are located in the normal regime rather than the WGC regime. We also show that monopoly opti- 

mum, social optimum and second-best optimum trip fares in the ride-pooling market are in general lower than those in the 

non-pooling market. This is because a decrease in trip fare not only directly increases passenger demand due to negative 

price elasticity, but also brings some additional indirect effects—i.e., the increase in demand itself will reduce actual detour 

time, which in turn increases passenger demand. With numerical experiments, we further examine the impacts of allowable 

detour time and trip fare on platform’s profit and social welfare under different supply levels. 

Our study opens other avenues that merit further exploration. To name a few, (1) extending aggregate models to network- 

based equilibrium models to evaluate network effects; (2) extending stationary models to dynamic models to capture multi- 

period non-stationary operations; (3) examining market equilibrium and operating strategies for multi-shared rides (ride 

service to accommodate more than two requests); (4) taking into account the impact of travel time reliability on passenger 

demand of ride-pooling services ( Li et al., 2019a ; Long et al., 2018 ); (5) examining impacts of ride-pooling services on 

traffic congestion, private car usage, and transit ridership; and (6) calibrating functions of actual detour time experienced by 

passengers and drivers and the successful pairing rate with real data. 
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Appendix A. Nomenclature 

Input variables 

Notation Interpretation 

Q̄ Total potential passenger demand (requests/hour) 

t np Average trip time of non-pooling ride-sourcing services (hour) 

κ Demand sensitivity parameter (1/HKD) 

c Unit time operating cost of each vehicle (HKD/hour) 

β Value of time (HKD/hour) 

A Parameter in the actual detour time function 

γ The ratio of the average driver detour time to the average passenger detour time 

�0 A nonnegative reservation profit 

Decision variables 

Notation Interpretation 

�t A Maximum allowable detour time (hour) 

N Vehicle fleet size (i.e., total number of vehicles) 

F Average trip fare (HKD/trip) 

System endogenous variables 

Notation Interpretation 

t rp Average trip time of ride-pooling service (hour) 

Q Arrival rate of passengers (i.e., passenger demand) (requests/hour) 

w Average pick-up time (hour) 

�t Average actual passenger detour time (hour) 

�t d Average driver detour time(hour) 

p Successful pairing rate 

N v Number of vacant vehicles in stationary equilibrium 

� Profit of ride-sourcing platform (HKD/hour) 

S Social welfare (HKD/hour) 
˜ t Random variable—actual detour time between a pair of requests (hour) 

λ Parameter in the exponential distribution of ̃  t that is governed by passenger demand Q 

System endogenous variables in optimality (monopoly optimum, social optimum, second-best optimum) 

Notation Interpretation 

Q ∗rp , Q ∗np Passenger demand in ride-pooling and non-pooling markets (requests/hour) 

w 

∗
rp , w 

∗
np Average pick-up time in ride-pooling and non-pooling markets (hour) 

�t ∗ Average actual passenger detour time (hour) 

N v ∗rp , N 
v ∗
np Number of vacant vehicles in ride-pooling and non-pooling markets 

f 
′ ∗
rp , f 

′ ∗
np Derivative of demand with respect to generalized cost in ride-pooling and non-pooling markets 

w 

′ ∗
rp , w 

′ ∗
np Derivative of average pick-up time with respect to number of vacant vehicles in ride-pooling and non-pooling markets 

�so 
rp , �

so 
np Profit of ride-sourcing platform in ride-pooling and non-pooling markets (HKD/hour) 

F ∗rp , F 
∗

np Average trip fare in ride-pooling and non-pooling markets (HKD/trip) 

Appendix B. A probabilistic model for successful pairing rate and average actual detour time 

In what follows, we propose a probabilistic model to characterize how passenger demand Q and allowable detour time 

�t A jointly determine successful paring rate p and average actual detour time �t . Suppose that the actual detour time be- 

tween a pair of requests in the detour-unconstrained scenario is a random variable denoted by ˜ t , which follows a distribution 

over the range (0, ∞ ). For analytical tractability to obtain managerial insights, we assume that ˜ t follows an exponential dis- 

tribution with a parameter λ that depends on Q . Probability density function h ( t ) and cumulative density function H ( t ) for ˜ t 

are then given by 

H ( t ) = Pr 
(

˜ t ≤ t 
)

= 1 − e −λt (65) 

h ( t ) = 

d 

d t 
H ( t ) = λe −λt (66) 

https://doi.org/10.13039/501100002920
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Fig. A1. A representation of successful pairing rate and actual detour time. 

In the detour-constrained scenario with allowable detour time �t A , the successful pairing rate p can be approximated by 

the probability that the actual detour time is in the range (0, �t A ). Meanwhile, as shown in Fig. A1 (a), the average actual 

detour time �t can be approximated by the conditional expectation of the actual detour time in the range (0, �t A ). In other 

words, the distribution of the actual detour time for successfully paired passengers follows an exponential distribution that 

is truncated at �t A . Formally, successful pairing rate p and average actual detour time �t are given by 

p = Pr 
(

˜ t ≤ �t A 
)

= H ( �t A ) = 1 − e −λ�t A (67) 

�t = E 
[

˜ t | ̃ t < �t A 
]

= 

∫ �t A 

0 

h ( t ) 

p 
td t = 

1 

λ
·
[

1 − ( λ�t A + 1 ) e −λ�t A 

1 − e −λ�t A 

]
(68) 

where the parameter λ determines the mean of the random variable ˜ t (which equals 1/ λ). 

Furthermore, in the detour-unconstrained scenario (where �t A → ∞ and all passengers opting for RP service are paired), 

one can intuitively expect that the larger the passenger demand for RP service Q , the closer the itineraries of paired requests, 

and thus the smaller the value of ˜ t . Therefore, it is reasonable to assume that the mean of ˜ t , i.e., 1/ λ, is a decreasing function 

of Q (as shown in Fig. A1 (b)), which indicates that ∂ λ/ ∂ Q > 0. With the assumptions above, we take partial derivatives of 

successful pairing rate p with respect to �t A and Q : 

∂ p 

∂�t A 
= λe −λ�t A > 0 (69) 

∂ p 

∂Q 

= �t A e 
−λ�t A 

∂λ

∂Q 

> 0 (70) 

which meets our anticipation that p increases with both �t A and Q . Furthermore, from Eq. (67) , p → 0 if �t A → 0, and 

p → 1 if �t A → ∞ , indicating that the expected boundary conditions are also satisfied. Moreover, taking partial derivative 

of average actual detour time �t with respect to �t A yields: 

∂�t 

∂�t A 
= 

e −λ�t A ·
(
λ�t A − 1 + e −λ�t A 

)
(
1 − e −λ�t A 

)2 
(71) 

Clearly, the sign of ∂ �t / ∂ �t A depends on the sign of the term λ�t A − 1 + e −λ�t A . Let y ( x ) = e −x + x − 1, for x > 0. We 

have dy ( x )/ dx = 1 − e −x > 0 and y (0) = 0, and thus y ( x ) > 0 for all x > 0. Therefore, we have λ�t A − 1 + e −λ�t A > 0 and 

obtain that �t monotonically increases with �t A . Moreover, in the detour-unconstrained scenario with �t A → ∞ , we have 

�t = 1/ λ, and thus ∂ �t / ∂ Q = −( ∂ λ/ ∂ Q )/ λ2 < 0, which implies that �t only depends on Q and monotonically decreases with 

Q when �t A → ∞ . One can show that most of the properties presented still hold for other assumptions on the distributions 
˜ t (such as normal distribution and log-normal distribution). 

Appendix C. Proofs for the propositions 

Proof for proposition 1 . 
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We first assume F ∗rp ≥ F ∗np . Then by comparing Eq. (46) and Eq. (51) , we have w 

∗
rp > w 

∗
np . On the demand side, since 

F ∗rp ≥ F ∗np , w 

∗
rp > w 

∗
np and �t ∗ > 0, we shall have Q 

∗
rp < Q 

∗
np . On the supply side, in view of the fact that w is a decreasing 

and convex function with respect to N 

v , we have N 

v ∗
rp < N 

v ∗
np . Since the social optimum locates in the normal regime (i.e., Q 

decreases with N 

v on the supply curve as Eq. (2) ), we shall have: 
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which is contradictory with the results on the demand side, i.e., Q 

∗
rp < Q 

∗
np . This implies that the initial assumption F ∗rp ≥ F ∗np 

is false, and thus we have F ∗rp < F ∗np . 

Proof for proposition 2 . 

The derivative of passenger demand Q with respect to generalized cost C is given by 

f ′ = −κQ̄ exp ( −κC ) = −κQ 

Hence, Q / f ′ = −1/ κ is a constant for any given Q . 

We first assume F ∗rp ≥ F ∗np . Then by comparing Eq. (36) and Eq. (40) , in view of that −Q 
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np . On the supply side, 

in view of the fact that w is a decreasing and convex function with respect to N 

v , we have N 
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np . Since the social 

optimum locates in the normal regime (i.e., Q decreases with N 

v on the supply curve as Eq. (2) ), we shall have: 
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np . This implies that the initial assumption F ∗rp ≥ F ∗np 

is false, and thus we have F ∗rp < F ∗np . 
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