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Abstract—Visual privacy concerns associated with image shar-
ing is a critical issue that need to be addressed to enable safe
and lawful use of online social platforms. Users of social media
platforms often suffer from no guidance in sharing sensitive
images in public, and often face with social and legal conse-
quences. Given the recent success of visual attention based deep
learning methods in measuring abstract phenomena like image
memorability, we are motivated to investigate whether visual
attention based methods could be useful in measuring psycho-
physical phenomena like “privacy sensitivity”. In this paper we
propose PrivAttNet – a visual attention based approach, that
can be trained end-to-end to estimate the privacy sensitivity of
images without explicitly detecting sensitive objects and attributes
present in the image. We show that our PrivAttNet model
outperforms various SOTA and baseline strategies – a 1.6 fold
reduction in L1− error over SOTA and 7%–10% improvement
in Spearman-rank correlation between the predicted and ground
truth sensitivity scores. Additionally, the attention maps from
PrivAttNet are found to be useful in directing the users to the
regions that are responsible for generating the privacy risk score.

I. INTRODUCTION

The advent of resource efficient pervasive cameras, ranging
from mobile phones and cameras to surveillance and wearable
cameras, have enabled vast amounts of images being captured
and shared in online social media platforms. Such ubiquity
of these devices enables them to automatically capture and/or
record a wide range sensitive information and inadvertently
leaked by sharing them on social networks. To mitigate catas-
trophic consequences of such privacy leakage, we advocate
that the users should be given means to control the privacy
loss by making informed decision prior to sharing the content
online based on the artefacts/attributes presented in the image.

Prior studies have proposed various computer vision tech-
niques to detect sensitive objects and attributes in images:
social relationships [25], face [26], gender [20], age [20],
[5], occupation [22] and license plates [34]. Recent line of
work [19] extended it to a much wider range of attributes:
including (a) array of generic objects, such as credit cards,
driver’s license and home address and, (b) attributes that
cannot be localized, e.g., age and religion. Prior works have fo-
cused on utilising traditional vision techniques, such as, pixel-
wise segmentation [32] and object detection [19] techniques
to detect and localise various scene elements in the images.

However, our goal of detecting a variety of sensitive at-
tributes outlined in [19] has the following unique characteris-

tics that may render the current techniques short-handed: (a)
the images usually contain multiple objects with each of them
associated with one or more labels (e.g., a driver’s license
can be associated with sensitive labels “face”, “address” and
“date of birth”) (b) the multiple attributes present in an image
may exhibit label correlation or inter-dependencies and (c)
the multiple labels present in the image can lie anywhere,
not necessarily in the foreground, hence, different parts of the
image may have varying significance. To this end, we propose
visual attention based privacy sensitivity estimation network to
address our twin-goals: (a) given an image, predict its privacy
sensitivity as a “score” based on the sensitive attributes present
in the image, and (b) localise the attributes using soft heat-
maps so that the user can visualise the sensitive regions.

Fig. 1. Visual Attention Model To Predict Sensitivity Score of the Images

Attention mechanisms are extensively used in neural ma-
chine translations [4], image captioning [31] and visual ques-
tion answering [21]. Visual attention mechanisms focus only
on important regions of an image and ignore the redundancies,
hence, achieving promising results on various challenging
object detection tasks [17], [13]. Recently, attention mecha-
nisms have been used to estimate memorability (the ability of
human cognition to recall a visual content), by hypothesizing
that salient objects can be linked with highly memorable
visual content. Motivated by this, in this paper, we attempt
to use a visual attention based deep neural network to predict
a measure of the complex pyscho-physical phenomena of
“privacy sensitivity” that is evoked in human subjects by
images acquired in daily life. We believe that such a network
will be useful in informing users about sensitive content when
capturing, storing and sharing the images responsibly.

Research Questions and Contributions: We empirically
investigate the following research questions:
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• Can visual attention based deep neural networks be
used to measure privacy sensitivity of images? Using a
publicly available dataset of images with corresponding
privacy sensitivity scores provided by human subjects,
we propose and demonstrate that the use of a visual
attention mechanism can enhance the ability of deep
neural networks to estimate the human-provided privacy
sensitivity scores of the images. We show that, the
attention based PrivAttNet model outperforms state-of-
the-art method proposed in [19] by 1.6 fold reduction in
L1-Error.

• Can attention mechanisms be used as an end-to-end
trainable model to estimate sensitivity scores of the im-
ages without attempting to explicitly detecting/localising
objects? In this paper, we propose PrivAttNet , an end-
to-end trainable network, that uses subjective sensitivity
scores to learn “interesting” regions of the images and
subsequently estimate the same for the new images. More
specifically, we show that we are able to accurately
estimate the privacy scores of the images – Spearman
correlation between the human vs. machine estimated
scores is 0.86. The attention-maps in turn can then be
used to inform the user of the regions of the images that
contributed to the predicted privacy risk score.

II. RELATED WORK

A. Privacy and Computer Vision

The task of using image level features to predict whether an
image would be considered private or public has been studied
in the past. Zerr et al. [33] used simple image level features
such as color histograms, faces, edge-direction coherence etc.,
along with user provided tags to perform this task using
machine learning classifiers. However, user provided tags are
exhibited to be noisy, hence, Tonge et al. [28], [27] proposed
the use of deep features (with the advent of deep learning
classifiers) and a fusion of object, scene context and image
tags that are automatically generated by pre-trained models
to predict whether an image is private or public. However,
several tags generated by such pre-trained models are not
abstract enough (e.g., religion, political affiliation, sexual
orientation etc.) to capture the privacy sensitivity evoked by
the images. Yu et al. [32] used convolutional neural networks
for segmentation of privacy-sensitive objects in images and
studied the relationship between the detected objects and
privacy sensitivity. The recent work by Orekondy et al. [19]
provided a large curated dataset of images (labelled VISPR)
that contains 68 abstract as well as concrete attributes that
are considered to be sensitive according to various privacy
laws in force across the world. By conducting a human-subject
study on their sensitivity towards each of those attributes, it is
possible to assign a privacy risk score for them. Such a risk
score can better capture the sensitivity of the users towards the
content in the images than a simple binary classification into
private vs. public. The authors further trained a deep learning
based classifier that can perform the multi-label classification
task of detecting the presence of the sensitive attributes in

these images. However, hybrid CNN-RNN approaches [29]
have recently shown good performance on multi-label clas-
sification tasks and therefore, it is possible that they can
help in achieving better performance recognizing the multiple
attributes present in the images from the VISPR dataset.

B. Private Attribute Recognition

Recognising Personally Identifiable Information (PII) in the
images is an important task to understand the privacy sensitiv-
ity of the images. Ranging from detecting PIIs in the electronic
documents [2] to email content [11], [6], prior works have
focused on redacting attributes such as telephone numbers
and address. Moving forward, various computer vision tech-
niques are proposed to detect sensitive objects and attributes
in images: social relationships [25], face [26], gender [20],
age [20], [5], occupation [22] and license plates [34]. In
contrast to detecting attributes, several works have focused
on preserving privacy of the images: privacy enabled life-
logging [14], adversarial perturbations [24] and person re-
identification [16], [1]. In this paper, our primary challenge
is to quantify the privacy sensitivity of the images without
detecting and localising the attributes in the images.

C. Attention Networks

Visual attention based networks have been successful in
producing enhanced performance in several computer vision
tasks. For example, Rodriguez et al. [20] have used attention
based deep neural networks for an enhanced performance
in detecting the age and gender of a person appear in an
image. Attention based deep learning based approaches have
been extensively studied for sensory tasks such as image
recognition [30], [15], [3], action recognition [23] as well
as cognitive phenomena such as emotion recognition [10]
etc. Recently, Fajtl et al. [9] have successfully used a CNN-
RNN approach along with a soft-attention based mechanism
(labelled AMNet) to measure the abstract phenomenon of
image memorability. Privacy sensitivity is also an abstract
psycho-physical phenomenon that is evoked when a person
is presented with images as stimuli. Therefore, in this paper
we investigate whether a similar CNN-RNN approach with a
soft-attention mechanism would be successful in estimating
the privacy risk of the content in the images provided by
the VISPR dataset. However, unlike memorability estimation
(where memorability is directly related to saliency), sensitivity
of an image may arise due to non-salient artefacts present in
the images as well.

III. METHODOLOGY

Our proposed architecture PrivAttNet is similar to the one
detailed in [9] – it consists of four major components: (a) CNN
network as a feature extractor, (b) a soft attention network,
(c) recurrent neural network, and (d) regression network for
sensitivity score estimation. In Fig. 4 we depict the architecture
of our privacy sensitivity estimation model. We shall discuss
each of the components in this section.
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A. Dataset Description

In this paper, we make use of the publicly available dataset
called Visual Privacy (VISPR) [19] – this is sourced from
publicly available 22,167 Flickr1 images containing 68 privacy
sensitive attributes, carefully curated based on the following
guidelines: (a) EU Data Protection Directive 95/46/EC, (b)
US Privacy Act of 1974, and (c) personal data sharing rules
from social media websites (e.g., Flickr and Twitter). The 68
privacy attributes capture a wide range of sensitivity – from
face, skin color, gender being highest sensitive attributes to
hair color, eye color, and traditional clothing being lowest
sensitive attributes. Each image is annotated as a multi-label
task. In Fig. 2, we plot the histogram of number of attributes
present in each image in our training set.

B. Annotation of Privacy Scores

To quantify the sensitivity of an image, each attribute is
given a likert-scale score – (1) Privacy is not violated (2)
Privacy is slightly violated (3) Privacy is somewhat violated
(4) Privacy is violated (5) Privacy is extremely violated, via a
user study conducted in Amazon Mechanical Turk with 305
participants [19]. Fig. 2 shows the histogram of number of
attributes present in a image – we see that more than 45%
of the images contain at least 2 attributes in a single image,
while a proportion of more than 10% of the images contain
10 or more attributes.

Each image is then given an aggregated privacy score as a
weighted sum of individual attribute scores (hence, considering
both attribute-level sensitivity and number of attributes in the
image), which is then subsequently been min-max normalised
across all the images in the training set.

In Fig. 3, we depict the histogram of the privacy risk scores
across the images in the training set.

Fig. 2. Histogram of Privacy Attributes in the Training Dataset

C. Privacy Sensitivity Estimation

Our first goal is to estimate the privacy sensitivity score y
of an image X based on the attributes present in it. For this
task, we adopt the visual attention mechanism called AMNet

1https://www.flickr.com/

Fig. 3. Distribution of the modified privacy risk scores

proposed in [9] for memorability estimation. While AMNet
hypothesizes that highly memorable visual content are linked
with regions of the images that draw human attention (visual
saliency), in our work, we test the efficacy of linking image
regions with sensitive content (not necessarily the salient
content) present in the image.

Further, our task of predicting privacy score on VISPR
dataset has previously been explored in [19]. The key dif-
ference is: our work estimates the sensitivity scores of the
images without detecting the corresponding attributes – i.e.,
our training process does not involve attribute labels, instead,
our model is trained using an aggregate privacy score per
image.

D. Attention Mechanism

Similar to the approach of how human performs visual
recognition, attention networks attend the most relevant re-
gions of the input image [3]. We adopt the soft attention
mechanism proposed in [4], [9] – instead of producing hard
decision boundary, the network generates a probability weight
for every visual region or element present in the image.

Our proposed PrivAttNet model aims to estimate the sub-
jective privacy score y of an image X . In Fig. 4 we depict our
proposed architecture – the first component is the deep CNN
feature extractor that acts as an encoder, the second component
is the visual soft-attention network, the third component is
LSTM based RNN to preserve memory and the last component
is the privacy score regressor.

We choose the soft-attention mechanism for the following
reasons:

• Allows soft memory access – comes with the benefit that
the network can be easily trained end-to-end using back
propagation.

• Allows to visualize regions with potentially high sensi-
tivity.

We use a CNN as a feature encoder of the attention model
– we denote the image features extracted by a CNN with
dimensions (W,H,D).
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We denote the image features in step t by vector zt: zt =∑L
i αt,iXi, where αt,i is the attention weights/probabilities,

expressed as a conditional probability on the feature vector
X and LSTM hidden state of the previous step ht−1. Subse-
quently, the attention is then represented as a softmax:

αt,i =
exp(et,i)∑L

k=1 exp(et, k)
(1)

where coefficient et,i is a product of LSTM hidden state
of previous step and the image feature vector: et,i =
fatt(Xt, ht−1). fatt is defined as follows:

fatt(Xt, ht−1) =Mt tanh (Uht−1 +KXi + b) (2)

where M , U and K and b are weights of the corresponding
networks and biases.

Privacy score p is then computed at each step t:

pt = fp(ht) (3)

Fundamentally, fp() corroborates the LSTM hidden state ht
at step t to the privacy score. The final privacy score y is then
computed as:

y =

T∑
t

pt (4)

The initial hidden state h0 and memory state c0 are derived
from image features X as follows:

c0 = finitc(
1

L

L∑
i

Xi) (5)

h0 = finith(
1

L

L∑
i

Xi) (6)

Where finitc and finith are both single FC layers with tanh
activation function.

E. Loss Function
Borrowing the custom-loss function from [9], we define

the loss function as a combination of (a) mean squared error
between the predicted vs. ground truth privacy scores and (b)
a joint l1 − l2 penalty to control the network to pay attention
on all the regions instead of focusing only on a few hot
regions. The overall loss is the sum of two terms weighted by
a parameter λ, which is chosen to be 10−4 experimentally [9].

L = (ŷ − y)2 + λLα (7)

where Lα is defined as follows:

Lα =

L∑
i

S2
i (8)

where Si is the l1 penalty which enforces the attention mod-
ule to focus more on a single region i along time dimension
t:

Si = 1−
T∑
t

αt,i (9)

IV. EXPERIMENTAL EVALUATION

In this section, we present the performance of our proposed
PrivAttNet model for estimating the privacy risk scores of
images on the VISPR dataset [19]. We further elaborate the
training process, baseline methods and evaluation metrics we
considered.

A. Training Process

As stated in the section III, our PrivAttNet model is trained
to minimize the loss function as a combination of (a) the
mean squared error between the predicted and ground truth
sensitivity scores, and (b) a joint l1-l2 penalty to enable
activations, one region at-a-time.

We adopted the same dataset split outlined in [19] – a
random 45-20-35 split with 10,000 training, 4,167 validation
and 8,000 test images.

B. SOTA & Baselines

In addition to the proposed PrivAttNet model, we propose
2 baseline strategies and compare against 2 SOTA models
proposed in [19].

1) AP–PR & PR–CNN: Our goal of estimating the privacy
scores is closely related to the models Attribute Prediction-
Based Privacy Risk (AP-PR) and Privacy Risk CNN (PR-
CNN) proposed and evaluated in the prior work by Orekondy
et al.[19]. AP–PR first detects the presence of individual
attributes, such as, face, handwriting, licence-plate etc., in
the image using the fine-tuned ResNet-50 backbone network.
Subsequently, AP–PR obtains the privacy risk score as the
user-specific score of the most sensitive attribute in the image
by using (a) the subjective privacy preferences provided by
humans during the annotation user-study, and (b) attributes
present in the image.

The PR–CNN on the other hand adds two additional fully
connected layers to the pre-trained CNN for attribute predic-
tion and fine-tunes the resultant network to directly predict the
subjective privacy risk score of a given image.

2) PrivNet : To mimic AP-PR and PR-CNN models, we
first propose PrivNet as a baseline – it first predicts the
attributes present in the image and subsequently computes
the user-specific privacy score of a given image. The PrivNet
fundamentally differs from the SOTA methods in the following
manner:

• It uses Label-Powerset method to transform the multi-
label problem to a multi-class problem by training 1
multi-class classifier on all unique label combinations
found in the training set.

• PrivNet then uses a more numerically stable Binary
Cross-Entropy with Logits Loss (BCEWithLogitsLoss) by
combining a Sigmoid layer and the BCELoss in one
single class 2.

2https://pytorch.org/docs/master/generated/torch.nn.BCEWithLogitsLoss.html
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Fig. 4. PrivAttNet Model

3) PrivAttNetMLC : To study the efficacy of soft-attention
mechanisms on object detection, we propose PrivAttNetMLC

that uses a visual attention model followed by binary classifier
to detect multiple attributes.

We extend our proposed PrivAttNet by modifying the last
block of our model as a multi-label classification problem.
More specifically, we modify the mean square error component
of our PrivAttNet loss function as a Binary cross-entropy
(BCE) loss (we split our multi-label classification problem into
68 binary classification problems):

LBCE = − 1

N

N∑
i=1

−[yn. log(yn) + (1− yn). log(1− (yn))]

(10)

C. Evaluation Metrics

To compare our proposed PrivAttNet model against SOTA
and other baselines, we use the following metrics to capture
various accuracy measures.

• L1-Error: denotes the mean value of the absolute error
between the ground truth y and predicted privacy scores
ŷ.

• Correlation Coefficient: represents the Spearman-rank
and Pearson’s correlation between the ground truth y and
predicted privacy scores ŷ

• C-MAP: quantifies the mean average precision across
all the unique classes available in the training set. More
specifically, for the multi-label problems the C-MAP is
calculated as the mean area under the precision-recall
curves of individual classes.

D. Using PrivAttNet for estimating privacy risk of images and
localizing sensitive attributes

In this section, we present performance evaluation of Pri-
vAttNet . Note that our overall goal is to predict the privacy
score of images and we show how accurately PrivAttNet
can predict the privacy scores without detecting/localising the
corresponding attributes present in the image.

1) Estimating Privacy Sensitivity Score: In Table I, we
tabulate a comparison of the performance of PrivAttNet with
respect to the baselines for the estimation of privacy risk in the
images. In comparison with the AP-PR and PR-CNN methods
given in the prior work by [19], PrivAttNet , PrivAttNetMLC

and PrivNet are able to achieve a lower L1 error – improve-
ment in L1 error of 59.2%, 44.7%, and 48.1% respectively.
To further investigate the performance of PrivAttNet and its
variants, we evaluated the correlation co-efficient between the
predicted privacy risk score ŷ and the user-provided privacy
risk scores y (averaged across all 30 user profiles provided in
[19]) of the images. We use the Spearman rank (ρs) and the
Pearson correlation (ρs) co-efficient to quantify the monotonic
relationship and show that PrivAttNet achieves ρp = 0.87 and
ρs = 0.84 correlation – improvement of 10.5% and 7.7% in ρs
over the proposed counterparts PrivAttNetMLC and PrivNet ,
respectively.

2) Localizing Sensitive Attributes: To understand the cor-
relation between object saliency and privacy sensitivity, we
use attention maps as heat maps to visualise the salient
regions recognised by the PrivAttNet model. In Fig. 5, we
show sample images from VISPR dataset – the top 2 rows
(Fig. 5a) show the highly sensitive attributes while the bottom
2 rows (Fig. 5b and 5c) depict the attributes in small and
cluttered scenes. After a thorough inspection, in Fig. 5a, we
observe that heat maps highlight sharper focus on the regions
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TABLE I
PERFORMANCE IN ESTIMATION OF PRIVACY RISK

Method L1-Error Correlation
ρp ρs

AP-PR [19] 0.656 – –
PR-CNN [19] 0.637 – –
PrivAttNet 0.40 0.87 0.84
PrivAttNetMLC 0.44 0.83 0.76
PrivNet 0.43 0.83 0.78

TABLE II
DETECTING PRIVACY SENSITIVE ATTRIBUTES.

Method C-MAP Precision Recall F1 Hamming loss

PrivNet 35.39 65.55 39.03 43.96 65.58
PrivAttNetMLC 40.02 72.96 41.42 48.40 67.42

corresponding to credit card numbers, name, finger-prints,
face, address etc. We then qualitatively investigate the attention
maps on images where the sensitive attributes are found in not
very salient parts of the images. For example Fig. 5b shows
examples where the sensitive parts are found in a very small
portion of the image, while Fig. 5c shows examples where
sensitive attributes appear to be cluttered into various parts of
the image. Even in such situations, we find that the network
is able to display sharper focus on the features from the right
regions.

It is worthy to note that PrivAttNet model generates false
positives as well – in Fig. 6, we show a qualitative analysis of
PrivAttNet . More specifically we show the instances where
the generated attention maps (showed as heat maps) do not
align with the sensitive attributes in the image.

3) Attribute Detection via Multi-label Classification: In
this section we quantitatively measure the goodness of multi-
label prediction of PrivNet and PrivAttNetMLC models. In
Table II we show the performance by computing C-MAP,
Precision, Recall, F1-score and Hamming loss. In comparison
with PrivNet , the attention based PrivAttNetMLC is able to
achieve higher precision and recall in detecting such sensitive
attributes – 11.3% and 6.1% improvement in precision and
recall, respectively. However, it should be noted that as evident
from Table I, the performance of PrivAttNet is better than
the performance of PrivAttNetMLC in terms of estimating the
privacy risk score of images.

Since the PrivAttNet model is end-to-end trainable, it
directly computes the privacy scores without detecting or
localising the presence of sensitive attributes, hence, no output
labels of the sensitive attributes.

The better performance of the attention-based
PrivAttNetMLC shows that visual attention mechanisms
can indeed help in detecting privacy sensitive attributes.

V. DISCUSSION

While we attempt to quantify the privacy sensitivity of the
images, we identify a list of possible avenues to investigate.

A. The Correlation Between Privacy Sensitivity and Visual
Saliency

Previous study in [9] primarily focused on linking memo-
rability of an image to salient objects. However, fundamental
differences between privacy sensitivity and visual saliency are
not systematically studied yet.

More specifically, the influence of the attributes, such as its
size, sentiment, semantics and watchable objects, on human
attention, and subsequently on sensitivity should be established
using empirical studies. Further, by using psychophysical
fixation maps of the images and attention maps, the interplay
between the sensitivity and saliency should be studied.

B. The Impact of Image Context on Privacy Sensitivity

Several works have shown that image context influences var-
ious visual cues of humans, such as, memorability [7], human
attention [12], pose estimation [8], and object recognition [18].
It is important to understand the influence of image context
on privacy sensitivity – the number of objects present in the
image, their sentiments, and semantic categories are some of
the context related features that can be considered to study
their influence.

C. The Influence of Object Features on Privacy Sensitivity

Prior works have focused on various attributes of objects
– such as low, mid and high level attributes – low: object
texture, shape and color, mid: object size and complexity,
and high: sentiment and semantics – to study the impact
of such attributes on human attention. We are motivated
to examine whether the conjecture holds while considering
privacy sensitivity of images.

VI. CONCLUSION

In this paper we have developed and evaluated PrivAttNet
– an attention based hybrid CNN-RNN approach, to automat-
ically estimate the privacy risk of an image and inform the
user about the potentially sensitive parts of the image. The
performance of PrivAttNet was compared to the state-of-the-
art using the publicly available VISPR dataset [19]. In contrast
to the state-of-the-art (AP–PR and PR-CNN) PrivAttNet is
able to be trained end-to-end to directly predict the privacy
risk score of an image, by-passing the need to explicitly detect
the presence of individual attributes. Our results show that
PrivAttNet is able to achieve a significant 1.6 fold reduction
in the L1-error when compared to the state-of-the-art. The
privacy risk scores estimated by PrivAttNet are also found
to be highly correlated with that of human assigned scores
(Spearman rank correlation of 0.86). The attention-maps from
PrivAttNet are found to be meaningful and can be used to
highlight the regions that are responsible for generating the
privacy risk score of an image. Our results show that visual
attention mechanisms are indeed helpful in measuring an ab-
stract psycho-physical phenomena like “privacy sensitivity”.
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(a) Highly Sensitive

(b) Small (c) Cluttered

Fig. 5. Attention maps of PrivAttNet highlighting the sensitive regions of images.

Fig. 6. False Positives By PrivAttNet – Qualitative Results
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