
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2020

A survey of typical attributed graph queries A survey of typical attributed graph queries

Yanhao WANG

Yuchen LI
Singapore Management University, yuchenli@smu.edu.sg

Ju FAN

Chang YE
Singapore Management University, changye.2020@phdcs.smu.edu.sg

Mingke CHAI

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Theory and Algorithms Commons

Citation Citation
1

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5431&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5431&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5431&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

A survey of typical attributed graph queries

Yanhao Wang1, Yuchen Li2, Ju Fan3, Chang Ye2, Mingke Chai3

1 Department of Computer Science, University of Helsinki, Helsinki, 00560, Finland

2 School of Information Systems, Singapore Management University, Singapore, 178902,
Singapore

3 Key Lab of Data Engineering and Knowledge Engineering (DEKE) and Information School,
Renmin University of China, Beijing, 100872, China

Published in World Wide Web, 2020 November, advance online

https://doi.org/10.1007/s11280-020-00849-0

Abstract

Graphs are commonly used for representing complex structures such as social relationships,
biological interactions, and knowledge bases. In many scenarios, graphs not only represent
topological relationships but also store the attributes that denote the semantics associated with their
vertices and edges, known as attributed graphs. Attributed graphs can meet demands for a wide
range of applications, and thus a variety of queries on attributed graphs have been proposed.
However, these diverse types of attributed graph queries have not been systematically investigated
yet. In this paper, we provide an extensive survey of several typical types of attributed graph queries.
We propose a taxonomy of attributed graph queries based on query inputs and outputs. We
summarize the definitions of queries that fall into each category and present a fine-grained
classification of queries within each category by analyzing the semantics and algorithmic
motivations behind these queries. Moreover, we discuss the insights of how existing studies address
the technical challenges of query processing and outline several promising future research
directions.

Keywords

Attributed graph, Knowledge base, Query definition, Query processing, Taxonomy, Survey

1 Introduction

Due to the rising complexity of data generated in the big data era, numerous applications
have ubiquitously used graphs for storing complex information. Generally, a graph consists
of a set of vertices (a.k.a. nodes) representing the entities and edges representing the
relationships between entities. Furthermore, many real-world graphs known as attributed

Electronic supplementary material

The online version of this article (https://doi.org/10.1007/s11280-020-00849-0) contains
supplementary material, which is available to authorized users.

Corresponding author: Ju Fan fanj@ruc.edu.cn

https://doi.org/10.1007/s11280-020-00849-0

World Wide Web

graphs associate the vertices and edges with attributes, e.g., types, numbers, and texts1,
to capture rich knowledge embedded in the graph structure. To extract information from
attributed graphs, an extensive number of queries with different semantics have been pro-
posed to meet the demand for a diverse range of applications. Some examples are listed as
follows.

– Social networks can be seen as attributed graphs: users are vertices and their profiles
are vertex attributes; user relationships are edges and the information about the rela-
tionships (e.g., type and strength) constitutes edge attributes. For relationship discovery,
one may issue a query to find how two persons A and B are connected, e.g., “What
is the shortest path from A to B through online interactions?. To analyze the relation-
ships between different user groups, we may need a summary to answer a question like
“What are the differences between men and women in making online friends?”. For
friend suggestion, we may need to evaluate the proximity of two persons, e.g., “How
likely is it that A will be connected with B?”.

– Biological networks, such as metabolic networks, are also attributed graphs, where
a vertex represents a compound and a directed edge between two compounds means
that one compound can be transformed into another one through a chemical reaction.
The properties of compounds are vertex attributes while the conditions and enzymes of
chemical reactions are edge attributes. One fundamental query is whether there exists a
chain of reactions that can transform a compound to another one under some conditions
(called pathway finding). In addition, given a graph pattern that represents an interesting
pattern of reactions, researchers may further explore the graphs to search for similar
patterns, which is referred as subgraph pattern matching.

– RDF is a common data model for schema-free information like knowledge bases.
RDF data can be seen as attributed graphs, where each RDF triple (sub, pred, obj) is
a directed edge from subject sub to object obj with the relation indicated by predicate
pred. The types of subjects, objects, and predicates are attributes. A vertex can have dif-
ferent attributes in different triples and two vertices may be connected by several edges
of different attributes. One can issue keyword queries or even natural language ques-
tions to RDF graphs for knowledge extraction, e.g., “John F. Kennedy, successor” or
“Who was the successor of John F. Kennedy?” to find the U.S. president after John F.
Kennedy, i.e., “Lyndon B. Johnson”.

Challenges of Attributed Graph Queries Compared with queries on general graphs,
attributed graph queries pose unique challenges due to the inherent heterogeneity of
attributed graphs. First, the semantics of attributed graphs are significantly different from
the underlying general graphs. Applying queries that do not take attributes into account to
attributed graphs could lead to semantic inconsistency. For example, general subgraph pat-
tern matching only considers the topology mapping but ignores the attribute mapping. For
the team formation problem, we consider not only the relationships between persons but
also their roles in the team. In this case, one should use attributed query patterns to guar-
antee the semantic consistency. Second, attributed graph queries allow more diverse types
of inputs, e.g., aggregation conditions, keywords, and nature language questions, which
capture richer semantics associated with attributes to satisfy the demands in real-world

1Graphs associated with spatial and temporal attributes are often referred to as spatial-temporal graphs [12,
82]. Since spatial-temporal graph queries are typically orthogonal to the attributed graph queries we
investigate, we omit detailed discussions on them in this survey.

World Wide Web

applications. Third, attributed graph queries often face greater algorithmic challenges due
to the high order information captured by attributes. For example, the index sizes for reach-
ability queries may grow exponentially on attributed graphs due to the combinatorial nature
of attribute constraints.

To address the challenges, extensive efforts have been made in the past decades to
advance the field of attributed graph data management. This article systematically surveys
existing studies on attributed graph queries. We provide a taxonomy of attributed graph
queries by categorizing existing queries based on their inputs and outputs. To help read-
ers better understand each type of queries, we present their motivations and demonstrate
the application scenarios where a attributed graph query is used. Moreover, we discuss the
insights of how existing studies address the technical challenges of query processing and
outline several promising future research directions. Our main goal is to promote the rich
literature developed on this topic to a wider audience, especially for end-users of graph
databases. By providing the taxonomy, we aim to ease the job for end-users on identifying
appropriate queries to address their application requirements in practice.

Taxonomy of Attributed GraphQueries We now introduce our taxonomy, which classifies
attributed graph queries into two general categories: structured and unstructured queries.
Structured queries have pre-defined query format, such as paths, subgraphs and SQL-like
operators. End-users who are familiar with the graph schema can extract valuable infor-
mation by employing the low-level structured queries. In contrast, unstructured queries do
not require any prior knowledge about the graph schema, and allow end-users to issue free-
form queries, e.g., node proximity, keywords, and natural language questions, that naturally
express the query semantics. In this survey, we propose a fine-grained taxonomy that fur-
ther dissects structured and unstructured queries into six major categories, which are listed
as follows:

– Path query: the inputs are vertices (and/or) constraints; the outputs are paths. We fur-
ther divide path queries into reachability query, shortest-path query, and regular path
query according to query objectives.

– Subgraph pattern query: the inputs and outputs are both subgraphs. Given a query
graph and data graph(s), a subgraph pattern query returns the subgraphs that best match
the query graph from data graph(s). Based on the matching criteria, subgraph pattern
queries can be divided into exact match query (a.k.a. subgraph isomorphism), approxi-
mate match query, and extended match query. As exact and approximate match queries
have been extensively surveyed [65, 66, 99, 109, 130, 137, 202], we focus on reviewing
existing studies on extended match query, which extends exact or approximate match
queries with different contexts.

– Aggregate query: the inputs are aggregation conditions; the outputs are aggregate
graphs/values. We have two subcategories, namely, graph OLAP and egocentric aggre-
gate query. The classification is based on that the aggregation graph is generated for
the entire graph or a local subgraph, respectively.

– Similarity search: the input are vertices; the output is a set of vertices with high sim-
ilarities to query vertices. Typically, the similarity of two vertices is measured by a
score in the range [0, 1]. According to similarity measures, we further classify existing
methods into path-based approaches and graph embedding-based approaches.

– Keyword search: the inputs are a set of keywords; the outputs are top-k substructures
which are the most relevant to query keywords. We further classify existing methods

World Wide Web

by the substructures to represent query semantics, i.e., tree-based and subgraph-based
semantics.

– Natural language query: the inputs are natural language questions; the outputs
are substructures that can match the semantics of input questions. According to the
schemes for question translation, we classify existing methods into query-graph-based
approach that translates questions into structured queries for extracting answers and
end-to-end approach that directly extracts subgraphs as answers without intermediate
steps.

An illustrative example for our taxonomy is shown in Figure 1. We present an
attributed graph with several types of vertices (i.e., person, music, movie) and edges (i.e.,
“friend, supervision, spouse” between persons; “like” between person and music/movie;
“theme music” between music and movie). Then, we show a use case of each query cate-
gory in our taxonomy. We give an exemplar input of each query category and illustrate its
result(s) on the attributed graph.

Differences from Prior Surveys There have been several surveys on graph queries. Sub-
graph pattern queries are extensively surveyed in [65, 66, 130, 202]. Lee et al. [109] and
Ma et al. [137] experimentally evaluate the performance of different subgraph isomorphism
algorithms. Katsarou et al. [99] compare the performance and scalability of different index
structures for graph queries. Yu and Cheng [215] provide a survey of graph reachability
queries. Keyword search on graph data is reviewed in [189]. Sommer [170] reviews the tech-
niques on shortest-path queries in static graphs. Shi et al. [166] summarize existing studies
on heterogeneous information network (HIN) analysis, where similarity search on HINs is
included. Fang et al. [60] provide a survey of community search on graphs. Natural language
question answering on graphs is surveyed in [41, 81]. Our survey is different from existing
ones from three aspects. First, existing surveys focus on a specific type of graph queries but
we introduce a taxonomy of queries and summarize each query category in our taxonomy

Figure 1 An illustration of our taxonomy for attributed graph queries

World Wide Web

systematically. In this way, our survey would be helpful to end-users to identify appropriate
queries for their application scenarios. Second, for query types that are well-studied on both
attributed and non-attributed graphs, e.g., reachability and shortest-path queries, we high-
light their diversity in semantics and unique challenges in algorithm design on attributed
graphs. Third, some existing surveys are outdated and a large amount of recent literature is
not covered.

Graph query languages are surveyed in [2, 195]. They investigate declarative languages,
e.g., SPARQL [74], Cypher2, and Gremlin3, that provide high-level interfaces for expressive
and efficient querying of attributed graphs. However, the focus of this paper is differ-
ent from them: we consider primitive and low-level queries on attributed graphs, some
of which form the foundations of high-level declarative languages. Moreover, the queries
that involve rich semantics, i.e., similarity search, keyword search and natural language
question answering, have not been well supported by existing declarative graph query
languages.

Organization The remainder of this article is organized as follows. Section 2 defines the
basic concepts used in the article. From Sections 3 to 8, we summarize each category of
attributed graph queries in our taxonomy, respectively. Finally, we conclude the article in
Section 9.

Before moving on to the subsequent section, we first summarize existing works in each
category of our taxonomy in Table 1.

2 Preliminary

We first give a formal definition of attributed graph.

Definition 1 (Attributed Graph) An attributed graph G = (V ,E, �,L) is a graph where
(1) V is the set of vertices and v ∈ V is a vertex in G; (2) E ⊆ V × V is the set of edges
and e = (u, v) ∈ E is an edge between two vertices u, v; (3) � is the domain of attributes;
(4) L is the function that assigns attributes to vertices and edges. Specifically, we use l(v)

and l(e) to represent the attributes of vertex v and edge e respectively.

In this paper, we consider three types of attributed graphs with different types of
attributes: (1) labeled graph: each vertex/edge has a single categorical attribute (known as
label) that indicates the vertex/edge type; (2) multi-labeled graph: each vertex/edge has
multiple categorical attributes (e.g., keywords); (3) property graph: both vertices and edges
have multi-dimensional attributes in different domains (e.g., categorical, numerical, and so
on). Moreover, several query types are based on edge-weighted graphs. For these graphs,
there is an additional function w : E → R≥0 assigns a weight w(e) to each edge denot-
ing the weight of edge e. We consider a query can be performed on either one large graph
G (called a data graph) or a collection of n graphs G = {G1, . . . , Gn} (called a graph
database).

Next, we introduce the notations of path and subgraph on attributed graphs.

2https://www.opencypher.org/
3https://tinkerpop.apache.org/gremlin.html

https://www.opencypher.org/
https://tinkerpop.apache.org/gremlin.html

World Wide Web

Table 1 Classification of existing works on attributed graph queries (we use “*” to denote surveys)

Category Structured Subcategory List of Works

Path query Y Reachability query [51, 54, 94, 151, 169, 185, 243]

Shortest-path query [10, 11, 18, 40, 75, 118, 157, 228]

Regular path query [4, 5, 19, 39, 79, 103, 119, 138–140,
148, 149, 186, 192, 199, 229]

Subgraph pattern query Y Exact match query [15, 20, 37, 73, 156, 162, 181, 200,
204]

Approximate match query [32, 33, 46, 52, 53, 63, 64, 80, 100,
101, 111, 122, 136, 161, 175–177,
191, 197, 205, 208, 225, 232, 236,
238, 241]

Extended match query [45, 55, 67, 88–90, 144, 150, 153,
155, 163, 210, 221, 226, 227, 233,
234]

Aggregate query Y Graph OLAP [13, 25, 154, 193, 214, 231]

Egocentric aggregation [49, 143, 203]

Similarity search N Path/subgraph-based [35, 69, 77, 104, 105, 141, 142, 164,
165, 167, 173, 180, 187, 188, 217,
222, 223] [62, 87, 235]

Graph embedding-based [126–129, 184] [23, 68, 190]∗

Keyword search N Tree-based [1, 14, 43, 83, 84, 95, 97, 108, 116,
121, 133, 134, 168, 209]

Subgraph-based [26, 27, 48, 57, 59, 61, 72, 86, 96,
98, 108, 110, 112, 123, 179, 207,
239, 240]

Natural language query N Query graph-based [8, 38, 78, 131, 132, 147, 158, 182,
183, 206, 212, 242]

End-to-end [29, 44, 211] [41, 81]∗

Definition 2 (Path) A path P in graph G is a sequence 〈v0, e1, v1, . . . , vi−1, ei , vi , . . . ,

em, vm〉 for any m > 0 (m is the length of P), where vi ∈ V for i ∈ [0,m] and ei =
(vi−1, vi) ∈ E for i ∈ [1,m]. Specifically, P is a simple path if it does not have duplicate
vertices in P .

The edge-attribute set Le(P) of P is denoted by the union of its edges’ attributes, i.e.,
Le(P) = ⋃

e∈P l(e). Similarly, we can define the vertex-attribute set Lv(P) of P by
Lv(P) = ⋃

v∈P l(v). More generally, the attribute set L(P) of P is the union of its edge-
attribute set and vertex-attribute set, i.e., L(P) = Lv(P) ∪ Le(P). For edge-weighted
graphs, the weight of P is defined as w(P) = ∑

e∈P w(e).

Definition 3 (Subgraph) A graph S(Vs, Es,�,Ls) is a subgraph of graph G (S ⊆ G) if
(1) Vs ⊆ V , (2) Es ⊆ E, (3) ∀e = (u, v) ∈ Es , u, v ∈ Vs , and (4) ∀v ∈ Vs, ∀e ∈ Es ,
ls(v) = l(v) and ls(e) = l(e).

Especially, a subtree T of G (T ⊆ G) is a tree-structured subgraph of G.

World Wide Web

3 Path query

In this section, we review path queries whose inputs are vertices and/or constraints and
outputs are paths. Based on the differences in query objectives, we further divide path
queries into three subcategories. The simplest case is reachability query that returns
whether a vertex can reach another vertex through any path satisfying some attribute con-
straint. Furthermore, a shortest-path query returns the path that has the minimal weight
and satisfies some attribute constraint between two vertices in a (weighted) data graph.
The most general case is regular path query that enumerates all pairs of vertices that
are connected by a path satisfying a regular expression constraint in a data graph. In
Sections 3.1–3.3, we will review existing work on each subcategory of path queries,
respectively.

3.1 Reachability query

In this subsection, we summarize existing studies on reachability queries, one of the most
fundamental graph queries, in the context of attributed graphs. A reachability query on
an attributed graph asks whether there exists any path satisfying some attribute constraint
from a source vertex to a destination vertex. There are many real-world applications of
reachability queries on attributed graphs. In social networks, it can be used for relation-
ship discovery: for two persons A and B, it finds if A can reach B with an attribute
constraint. For example, it checks whether A reaches B via common friends (i.e., the
edge type is ‘friend of’). In metabolic networks, it can be applied to pathway finding:
for two compounds C and D, it finds if C can be transformed to D by the action of
enzyme X. For instance, a query can ask whether C can reach D via a path whose
attribute set is ‘{X}’. In addition, reachability query is also a building block for more
complex queries, e.g., regular path queries, and declarative graph query languages, e.g.,
SPARQL [74].

Generally, existing literature on reachability queries is mostly specific for labeled graphs.
Next, we will classify them into two categories according to the constraint type: (1) simple
label constraint and (2) regular expression constraint.

Label constraint reachability query First, we formally define the label constraint reacha-
bility (LCR) query on attributed graphs [94, 151, 185, 243].

Definition 4 (LCR) For a data graph G, two vertices u, v ∈ V , and a label set C ⊆ �, if
there is a path P from vertex u to vertex v such that L(P) ⊆ C, we say v is C-reachable
from u. For a source vertex u, a destination vertex v, and a label set C, a LCR query asks
whether v is C-reachable from u.

Example 1 Let us consider the labeled graph in Figure 2. For a reachability query with-
out any constraint, vertex 6 is reachable from vertex 1 because there are two paths P1 =
〈1, a, 2, c, 5, a, 6〉 and P2 = 〈1, a, 2, a, 3, b, 4, a, 5, a, 6〉 between vertex 1 and 6. How-
ever, for a LCR query with C1 = {a}, vertex 6 is not C1-reachable from vertex 1 because
L(P1), L(P2) �⊂ C1. For another LCR query with C2 = {a, c}, vertex 6 is C2-reachable
from vertex 1 since L(P1) ⊆ C2.

World Wide Web

Figure 2 An example for reachability query on a labeled graph

Two basic approaches to LCR processing are (1) online DFS/BFS with the label con-
straint for search space pruning and (2) precomputing the transitive closure (TC) matrix of
the graph. The prior approach does not build indices and incurs significant query overheads.
The latter one can answer any reachability query instantly but takes a large amount of time
and space to build and store the full TC matrix. Moreover, the TC must contain label infor-
mation for LCR query processing. And there could be O(2|�|) possible labels in a labeled
graph. Therefore, maintaining the full TC matrix would be prohibitive for large graphs. To
strike the balance between index size and query efficiency, different schemes have been pro-
posed for index compression. First of all, several methods propose to partition the data graph
into local subgraphs based on different schemes such as spanning trees [94] and strongly
connected components [243]. A TC matrix is maintained for each local subgraph and used
for queries between any two vertices in the same local subgraph. To answer a LCR query
between vertices in different local subgraphs, online DFS/BFS and local TC matrices will
be used jointly. Then, Valstar et al. [185] propose a landmark indexing for LCR queries. It
selects a small number of landmarks and precomputes the TC of each landmark. To answer
a LCR query, it first conducts a label-respecting BFS from the source vertex to a landmark
and then exploits the information maintained for the landmark to get a shortcut to the tar-
get vertex. Recently, Peng et al. [151] propose a label-constrained 2-hop indexing for LCR
queries. Compare with the aforementioned methods, it shows both lower worst-case query
time and better empirical performance.

Regular expression constraint reachability query Several studies [51, 54] use regular
expressions to generalize the label constraints for reachability queries.

Definition 5 (RECR) For a data graph G, two vertices u, v, and a regular expression R that
specifies the class of admissible label sequences, a RECR query asks whether there exists a
path P from u to v such that the concatenation of labels in P matches R.

Example 2 We also consider the labeled graph in Figure 2. Given a regular expression
R1 = a∗b∗, vertex 6 is not reachable from vertex 1 because the paths from vertex 1 to 6 do
not match R1. Conversely, vertex 1 is reachable from vertex 6 because the label sequence of
path P3 = 〈1, b, 6〉 is 〈b〉 ∈ R1.

The basic approach to RECR query processing is online BFS. During BFS, an automation
derived from the regular expression is used to prune paths whose label sequences do not

World Wide Web

satisfy the regular expression. Moreover, bi-directional [51] and MapReduce-based [54]
BFS schemes are proposed for acceleration.

3.2 Shortest-path query

In this subsection, we review another fundamental graph query, namely shortest-path query,
on attributed graphs. A shortest-path query on an attributed graph asks for the path with
the minimal weight among all the paths that satisfy an attribute constraint from the source
vertex to the destination vertex. Its most important application is route planning. In a trans-
portation network, each vertex represents a position and each edge denotes a route between
two positions. Each route is labeled by its type while the estimated traveling time of a road
is its weight. A user may request the shortest path from the source to the destination with
restrictions, e.g., avoiding toll roads. In addition, shortest-path queries can also be used for
relationship discovery in social networks and pathway finding in metabolic networks.

Label constraint shortest-path query First, we formally define the label constraint
shortest-path (LCSP) query on attributed graphs [18, 75, 157].

Definition 6 (LCSP) Let G be a weighted data graph. For two vertices u, v ∈ G and a label
set C ⊆ �, a LCSP query returns a path P from u to v s.t. L(P) ⊆ C and w(P) is minimal.

Example 3 Figure 3 gives a labeled graph for the illustration of shortest-path query. We
assume the weights of all edges are equal to 1. First, the result of an unconstrained shortest-
path query from vertex 1 to 8 returns P1 = 〈1, a, 2, a, 8〉 with w(P1) = 2. Second, for a
LCSP with C1 = {b}, the result becomes P2 = 〈1, b, 3, b, 7, b, 4, b, 8〉 with w(P2) = 4
because P2 is the only path satisfying C1. Finally, for a LCSP with C2 = {b, c}, P3 =
〈1, b, 3, c, 4, b, 8〉 with w(P3) = 3 is returned since P3 has the minimal weight among all
valid paths.

Similar to LCR queries, the idea of LCSP query processing is to extend the Dijkstra’s
algorithm and different indices from non-attributed to attributed graphs. The main challenge

Figure 3 An example for shortest-path query on a labeled graph

World Wide Web

is also the huge number (i.e., 2|�|) of possible constraints. For LCSP query processing, a
general framework [18, 75, 157] is to first partition a data graph into subgraphs such that
each subgraph contains all edges with the same label. Then, an index for non-attributed
graphs can be built on the subgraph for one label. Finally, sub-paths that contain only one
label can be efficiently computed by using these indices and then concatenated into the
shortest path.

Regular expression constraint shortest-path query The shortest-path query on attributed
graphs with regular expression constraints is one basis of route planning and journal
planning. Intuitively, regular expressions are able to represent more general types of user
preferences and constraints than simple label constraints. We give a formal definition of
regular expression constraint shortest-path (RECSP) query [10, 11, 40].

Definition 7 (RECSP) For a weighted data graph G, two vertices u, v, and a regular expres-
sion R that specifies the class of admissible label sequences, a RECSP query returns a path
P from u to v such that the concatenation of labels in P matches R and w(P) is minimal
among all matched paths.

Example 4 We continue with the example in Figure 3. For a regular expression R1 = b∗cb∗,
we can find two paths matching R1: P1 = 〈1, b, 3, c, 4, b, 8〉 and P2 = 〈1, b, 6, c, 7,

b, 4, b, 8〉. Obviously, we have w(P1) < w(P2) and P1 is returned as the result.

Existing methods for RECSP extend the Dijkstra’s algorithm by constructing automata
of regular expressions for path pruning. Theoretically, Barrett et al. [11] prove that the
formal-language-constrained shortest path query is solvable in polynomial time as long
as the formal language is context-free. Efficient indices for shortest-path queries on non-
attributed graphs, e.g., ALT [10] and contraction hierarchies [40], have also been extended
for RECSP. A special case of RECSP query called correlation constraint shortest path
(CCSP) query is studied in [228]. Compared with RECSP, CCSP relaxes the restriction
on the ordering of labels. A hybrid relation encoding (HyRE) method, which encodes
both topological and label information in a compact way, is proposed for CCSP query
processing.

Top-k shortest-path query Liang et al. [118] propose a variation of shortest-path query,
namely, top-k shortest path query: for a weighted data graph G, two vertices u, v, and a
predefined label sequence C, a top-k shortest path query asks to find the k loopless paths
with the minimum weights among all paths matching C from u to v. Different from shortest-
path queries, the top-k shortest path query is NP-hard. They propose a prophetic heuristic
algorithm that combines graph preprocessing with the A* search algorithm for approximate
top-k shortest path query processing.

3.3 Regular path query

In this subsection, we review existing work on regular path queries (RPQs), which are more
general than reachability and shortest-path queries. RPQ is one of the central components
of graph query languages, e.g., XPath, SPARQL, Cypher, and so on. It is also crucial for
navigational queries on XML documents and knowledge graphs.

First, we give the general formulation of the regular path query (RPQ) [139].

World Wide Web

Definition 8 (RPQ) Given a data graph G and a regular expression R, a RPQ enumerates
each pair of vertices connected by a simple path such that the concatenation of labels along
the path matches R.

RECR and RECSP are special cases of RPQ as they only check whether a valid path
exists or find the path with the minimal weight for given vertices and regular expressions
while RPQ enumerates all valid paths.

Example 5 Figure 4 depicts a knowledge graph that shows the predecessor and father rela-
tionships among seven British monarchs. A RPQ Q1 = (s?, F, t?) enumerates five pairs of
vertices connected by an edge of type ‘is father of’, e.g., 〈2, F, 1〉 and 〈3, F, 4〉.

Although RECR and RECSP are solvable in polynomial time [11], the complexity of
RPQ is NP-hard [139]. Despite the theoretical hardness, RPQ is tractable for many classes
of regular languages in practice. Interested readers can refer to [2, 195] for extensive sur-
veys on the theoretical results of RPQ. There are several methods for processing RPQs. A
general approach for RPQ evaluation is to convert the regular expression into an automa-
ton and then to perform BFS/DFS on the graph while using the automaton for search space
pruning. Several label- and query- oriented optimization strategies for RPQ processing is
proposed in [103, 148]. Wadhwa et al. [186] propose a random walk-based sampling algo-
rithm to approximate RPQ processing with theoretical guarantees. Pacaci et al. [149] study
the problem of evaluating persistent RPQs incrementally on streaming graphs.

Extensions of RPQ Provenance-aware RPQs [39, 192, 199] refer to RPQs that not only
return the pairs of vertices connected by any matched simple paths but also need to generate
the provenance why a pair of vertices is returned. Specifically, a provenance-aware RPQ
retrieves a subgraph consisting of all the simple paths matching R. Recent studies have
supported provenance-aware RPQs in real-world systems. Dey et al. [39] provide a scheme
for provenance-aware RPQs by using relational query engines. Xin et al. [199] and Wang et
al. [192] integrate provenance-aware RPQs into Pregel.

Several studies focus on extending the semantics of RPQs. Liptchinsky et al. [119] pro-
pose an extension of RPQ that retrieves a group of vertices based on group structural
characteristics and relations to other vertices or groups. They integrate this extension into
graph query languages based on RPQ. Bai et al. [5] define a query language G-path that
extends RPQs by expressing the constraints on a variety of attribute types (e.g., categorical,
numerical, boolean) in property graphs.

Figure 4 An example for RPQ on a knowledge graph in [199]

World Wide Web

In recent studies [79, 229], regular expressions have been generalized to context-free
grammars to express the constraints in path queries. Such context-free path queries (CFPQs)
increase the expressive power of RPQs as context-free grammars are generalizations of reg-
ular expressions. Similar to RPQ, CFPQ is also in general NP-complete [79, 229]. Existing
approaches to CFPQ processing are heuristic methods based on matrix multiplication [4] or
grammar parse table [138].

“Reverse” regular path queries Meng et al. [140] and Bonifati et al. [19] investigate the
“reverse” problem of RPQs: given exemplar pairs of vertices provided by a user, a reverse
RPQ aims to find a RPQ whose outputs are what the user expects. Meng et al. [140] define
the similarity measure between exemplar pairs and regular paths and select the most relevant
regular path. Bonifati et al. [19] propose to learn a RPQ from both positive and negative
examples. They formalize the notion of learnability and introduce an interactive method for
path discovery with the help of users.

3.4 Summary

Path queries are one of the most fundamental class of graph queries. We classify three
standard forms of path queries, i.e., reachability query, shortest-path query, and regular
path query. Naturally, the approaches to processing path queries on attributed graphs are
mostly extended from those for non-attributed graphs, with additional strategies to handle
the attribute constraints.

Despite the proliferation of researches on the standard forms of path queries, open chal-
lenges still exist. First, most of the path queries are defined on static graphs where both
structures and attributes do not change over time. Real-world graphs, e.g., social networks
and communication networks, are highly dynamic and keep evolving. To track the changes
of relationships in real time, it is essential to extend path queries to dynamic graphs,
which is still largely unexplored yet. Second, extremely large attributed graphs with bil-
lions of vertices become prevalent in the big data era. It is a great challenge to answer
path queries on these huge attributed graphs. Interesting future directions may include
processing path queries in a distributed environment when the graph cannot fit in a sin-
gle machine and using modern hardware, e.g. GPUs and FPGA, for query acceleration.
Third, some types of path queries, e.g., k-disjoint shortest paths [71] and k-dissimilar
paths [34], that are extensively studied on general graphs have not yet been considered on
attributed graphs. It is interesting to support them on attributed graphs. Fourth, most of
the path queries assume the constraints (i.e., path patterns) are predefined or provided by
users. Nevertheless, users may not be able to identify appropriate query patterns. There-
fore, another possible direction is to combine path query with path pattern discovery.
Although there have been a few attempts along this direction [19, 118, 140], the area is still
immature.

4 Subgraph pattern query

Subgraph pattern matching is one of the most important and extensively studied areas for
graph query processing. Unlike path queries in the previous section, the input of subgraph
pattern matching is a query graph (i.e., pattern) and it aims to search for similar subgraphs
to the query pattern from a data graph or a graph database.

World Wide Web

There are numerous real-world problems that can be modeled as the subgraph pattern
matching problem [21, 24, 50, 85, 106, 120, 224]. For example, subgraph pattern matching
in graph databases is a common problem in chemical- and bio- informatics[85, 224], where
compounds and proteins are represented as graphs. Scientists show that two proteins with
structural similarity indicate a high chance of similar functionalities. By searching the parts
of proteins, we hope to identify the proteins with a similar function. Likewise, in collabora-
tion networks where each node denotes a person labeled with her expertise and each edge
indicates the collaboration relationship between two persons, subgraph pattern matching is
employed for the team formation problem where a selected team should satisfy certain skill
requirements as well as collaboration requirements between members in the team [106].

A central problem in subgraph pattern matching is to determine the similarity function
between the query pattern and a candidate subgraph. A straightforward definition of the
similarity function is graph isomorphism. It leads to the well-studied subgraph isomorphism
problem [15, 20, 37, 73, 156, 162, 181, 204]. Formally,

Definition 9 (Graph Isomorphism) a graph G = (V ,E, �,L) is isomorphic to a query
graph Q = (Vq, Eq, �, Lq) if there is a bijection f : V → Vq such that ∀e = (u, v) ∈ E

it holds that f (e) = (f (u), f (v)) ∈ Eq and l(u) = lq (f (u)) and l(v) = lq (f (v)) and
l(e) = lq (f (e)).

Graph isomorphism ensures the complete topological information through a bijective
map between the pattern and candidates, and can be applied to scenarios where one must
find out subgraphs which are exact copies (called instances) of the query pattern. For exam-
ple, extracting exact copies of a program structure is a key operation for designing pattern
detection in the software engineering domain [120].

Although isomorphism-based pattern matching is effective in some applications, it is
widely known in the literature that it suffers from two major drawbacks. First, the decision
version of subgraph isomorphism is NP-complete [36]. For some applications, one needs to
enumerate all instances w.r.t. the query graph [174, 230], which incurs prohibitively high
time complexity and is not scalable for querying large graphs. Second, the requirement of
bijective map for subgraph isomorphism could be too strict in many cases. For example, one
may not be able to find any matched instance even if there are similar enough candidates but
are not isomorphic to the pattern. The problem becomes more evident once the data source
is noisy [220].

To overcome the challenges, huge efforts have been made to relax subgraph isomorphism
in two major categories. The first category summarizes a line of works [33, 46, 53, 100,
101, 161, 175–177, 191, 197, 205, 208, 225, 232, 236, 238] that design similarity functions
which measure the “proximity” between the query graph and candidate subgraphs. Only
top-k candidates that are the most similar to the query graph or candidates whose similarity
scores exceed a certain threshold are returned as query results. The second category relaxes
the bijective map to less restrictive relations [32, 52, 63, 64, 80, 111, 122, 136, 241]. They
permit mappings from a node in the query graph to a group of nodes in the data graph and/or
mappings from an edge in the query graph to a path in the data graph.

Since there have been several extensive surveys on subgraph isomorphism [99, 109,
137], subgraph similarity search [65, 66, 130], and relation-based relaxations [63, 64, 136],
we focus on surveying a broader range which extends the aforementioned subgraph pat-
tern queries by incorporating additional ranking functions to find subgraphs that consider
diversity [210], skyline [234], and a number of other contexts [45, 89, 135, 144, 155].

World Wide Web

4.1 Extended subgraph pattern queries

All the subgraph pattern queries that have been introduced so far find matches mostly based
on how similar the candidate matches are to a query pattern. There are several existing
studies that try to extend beyond this scope and propose extended queries that consider addi-
tional contexts for determining the query results. In this section, we review several extended
queries popular in the literature, i.e., representative query, diversified query, skyline query,
why-not query, and supergraph query.

Representative query As previously discussed, isomorphism could be too strict that sub-
graph matches are hardly found. Thus, approximate subgraph matching selects subgraph
candidates which are relevant to the query graph based on the certain similarity function.
One of the most commonly used similarity function is graph edit distance [67, 221], which
is formally defined as follows:

Definition 10 (Graph Edit Distance) Given a set of edit operations, the graph edit dis-
tance between two graphs G1 and G2 can be defined as d(G1, G2) = min(e1,...,ek)∈P(G1,G2)∑k

i=1 c(ei) where P(G1,G2) denotes the set of edit paths transforming G1 into G2 and
c(e) ≥ 0 is the cost of graph edit operation e.

Although subgraph matching by graph edit distance can produce enough results. How-
ever, the results are often heavily redundant, which overwhelm the end users. Thus
representative query is proposed to restrict the number of matches by outputting the results
that best represent of all possible matches.

The representativeness of a matched subgraph is based on θ -neighborhood defined as the
following.

Definition 11 (θ -Neighborhood) Given a graph database G, a query pattern Q, the θ -
neighborhood of a graph G ∈ G, denoted as Nθ(G), contains all matched graphs within a
distance threshold θ from G, i.e., Nθ(G) = {G′ ∈ Lq |d(G,G′) ≤ θ} where d(G,G′) is the
graph edit distance, and Lq is the set of graphs from G with a distance threshold θ from Q.
The representativeness πθ (S) of a set of graphs S is defined as the proportion of relevant

graphs represented by S, i.e., πθ (S) = |⋃G∈S Nθ (G)|
|Lq | .

Definition 12 (Representative Subgraph Query) Given a graph database G, a query pattern
Q, and a budget k, the top-k representative subgraph query computes a set of graph S∗ such
that S∗ = arg maxS⊆Lq :|S|=k{πθ (S)} where Lq ⊆ G is the set of graphs from G within a
distance threshold from Q, and πθ (S) is the representativeness of S.

Example 6 Figure 5 is an example for reducing redundant results in a representative query.
Given a query Q and the data graph G (each node has a label), four subgraphs of G are
within edit distance 1 from Q, namely G1, G2, G3 and G4, which forms Lq . However,
the matched graphs are redundant, e.g., G1, G2 and G3 as they have a large overlap. More
specifically, assuming θ = 1 and we have N1(G1) = N1(G2) = N1(G1) = {G1,G2,G3}.
Hence, if G1 and G2 are selected as the result, the representativeness is π1({G1, G2}) = 3

4 .
The optimal result selects {G1, G4} where and representativeness is π1({G1, G4}) = 1.

World Wide Web

Figure 5 An example for representative query

Ranu et al. [155] propose the aforementioned measure to capture the representativeness
of the result set, and prove the top-k representative query is NP-hard. Furthermore, they
propose an index structure called NB-Index by indexing the θ -neighborhoods of the graph
database to speedup query processing.

Diversified query Like representative query, diversified query [153] also aims to find a set
of matches that are both similar to the query and not similar to each other.

Existing literature studies two types of diversified queries for subgraph pattern matching.
Fan et al. [55] first propose a query that, given a data graph G, a pattern Q, and an output
node uo ∈ Q, finds a set of k vertices (denoted as S) in the data graph that matches uo

in terms of relation-based matching from G to Q. The diversified version of the objective
function that optimizes for S is defined as:

F(S) = (1 − λ)
∑

vi∈S

δr (uo, vi) + 2λ

k − 1

∑

vi ,vj ∈S,i<j

δd(vi, vj)

where δr (uo, vi) represents the number of subgraph matches from Q to G that matches vi to
uo, δd(vi, vj) denotes the number of distinct subgraph matches that v1 or v2 matches to uo,
and λ is a parameter set by users. In other words, δr (uo, vi) measures how similar between
uo and vi whereas δd(vi, vj) penalizes if the subgraph matches which include vi and vj

have a significant overlap. Fan et al. [55] show that finding the diversified results is NP-
complete, and present an approximation algorithm called TopKDiv, as well as a heuristic
algorithm called TopKDH for this problem.

Yang et al. [210] study another type of diversified top-k subgraph query in the term of
maximum k-coverage. In particular, for a data graph G and a pattern Q, it selects a set of
k subgraphs that are isomorphic to Q such that S covers the largest number of vertices in
the data graph. Yang et al. [210] propose an approximation algorithm named DSQL, which
achieves an approximation ratio of 0.25(1 + max(1

k
, 1

z
)) where z is the number of vertices

in the query graph.

Skyline query Subgraph skyline queries raise when there are numerical values associated
with the vertices in the graph. A motivating scenario for this query is finding the points

World Wide Web

of interests (POIs) [150]. Suppose a traveler wants to visit a neighborhood that is close to
a park and a mall. In this scenario, locations can be represented as nodes and distances
between them can be modeled as edge weights in a neighborhood graph. There exists two
neighborhoods A and B that both satisfy this query, but A has shorter distance to park,
whereas B is closer to mall. Thus, both A and B should be returned since neither A nor
B dominates each other in terms of their distances to park and mall. The skyline query is
formalized as follows.

Definition 13 (Dominant Entity) Given two numeric entities u and v in a graph G with
the numeric attribute set A, u dominates v, denoted by u � v, if (1) for each attribute ai ,
σ(u, ai) ≤ σ(v, ai); (2) there exists at least one attribute aj such that σ(u, aj) < σ(v, aj).

Definition 14 (Subgraph Domination) Given two subgraphs G1 and G2 of G, G1 dom-
inates G2 if (1) G1 is isomorphic to G2 via a bijective function f without considering
numeric values. (2) vi � f (vi) for each numeric entity vi ∈ G1. (3) There exists at least
one numeric entity vj ∈ G1 such that vj ≺ f (vj).

Definition 15 (Subgraph Skyline) A subgraph G∗ ⊆ G is in the subgraph skyline if G∗ is
isomorphic to the query graph Q and is not dominated by any subgraphs G′ ⊆ G.

Subgraph skyline query aims to find the subgraph matches that are numerically signifi-
cant. Zheng et al. [233, 234] address three challenges in answering subgraph skyline query:
(1) dynamic skyline computation; (2) efficient querying on graphs; (3) reducing expensive
storage cost. In order to tackle these challenges, they partition the data space into grids and
compute skyline grid by grid. Lastly, they give an algorithm based on feature encoding to
answer the query. Pande et al. [150] study how to identify POIs in a city through subgraph
skyline queries, and simplify the problem of finding k skyline subgraphs to identifying
k-minimum spanning tree.

Why-not query On many occasions, the users cannot find desirable results by only provid-
ing a query graph to existing query processing engines. Why-not query is thus introduced
based on the assumption that undesirable results are due to imperfect query inputs. For
example, an initial subgraph pattern query submitted by a user may miss some important
subgraphs that are expected by the user [89]. Therefore, a why-not query [89] finds a better
query graph from the set of graphs returned by the initial query and another set of missing
graphs added by the users.

Definition 16 (Why-not Query) Given a collection of graphs G = {G1, . . . , Gk,Gk+1,

. . . , Gn}, where G1 = {G1, . . . , Gk} is retrieved from a query graph Q and G2 = {Gk+1,

. . . , Gn} is the set of missing graphs. A why-not query finds a new query graph Q∗ sat-
isfying that Q∗ = arg minQ′ λm(Q′,G) where λm(Q′,G) = max{λ(Q′,Gi)|Gi ∈ G}
and λ(Q′,Gi) = |E(Q′)| + |E(Gi)| − 2|E(mcs(Q′,Gi))|. mcs(Q′, Gi) is the maximum
common subgraph of Q′ and Gi [22].

Why-not query is first proposed for improving the keyword search experience in rela-
tional databases [178]. Islam et al. [89] expand the why-not query to subgraph pattern
matching. We note that why-not query requires to compute the maximum common sub-
graph (MCS), which is NP-hard [221]. To make the query tractable, Islam et al. employ a

World Wide Web

two-phase approach, i.e., candidate generation and selection, to approximate MCS compu-
tation for selecting the alternative query graphs.

Supergraphquery Subgraph pattern query is to retrieve subgraphs in the data graphs which
match a query graph. In contrast, supergraph query is defined as a reverse of subgraph
pattern query. If graph G′ is a subgraph of graph G, then G is a supergraph of G′. Hence,
supergraph query retrieves all graphs in a database such that the query graph is a supergraph
of them. Supergraph query could be used in a number of real-world applications [163,
226]. For example, chemists may want to predict possible properties of a new molecule by
identifying particular substructures of it. In this case, the chemists can process a supergraph
query using this molecule as query graph on the database of known substructures. Next, we
introduce several related works on supergraph query.

Zhang et al. [226] study how to answer supergraph query efficiently. They adopt a graph
encoding method called GVCode and propose an index structure GPTree based on GVCode
to speed up supergraph query processing. Shang et al. [163] focus on supergraph simi-
larity search. They transform MCS detection into supergraph detection problem. Zhang et
al. [227] study the supergraph search problem with a probability threshold. In this setting,
each edge in the database has an occurrence probability. The goal is to retrieve all the data
graphs that is probabilistic subgraph of the query graph over the given threshold.

Query input assistance Inputting a query graph structure could be complicated and
confusing for end users. There are several works proposed to ease this burden by pro-
viding user input assistance. Several studies [90, 144] devise solutions for users to
input exemplar results as a query to the graph database. Meanwhile, interactive systems
are built to facilitate users in exploring a large knowledge graph and forming mean-
ingful queries [45, 88]. Furthermore, due to the evolution of using machine learning
techniques for natural language processing (NLP), a plethora of researches have been devel-
oped that allow users to input queries in natural language, which will be discussed in
Section 8.

4.2 Summary

In this section, we have surveyed the subgraph pattern queries. The literature of this field
represents decades of work by researches from diverse areas. Most of the existing work
aims to strike a balance between the quality of the matching results and the performance
overhead. Moreover, the matching condition between a query pattern and a candidate sub-
graph only considers topology and attribute values. Thus, there appear to be future research
opportunities in the following directions:

– There have been recent surge of attributed graph embedding techniques that map a
subgraph structure to low-dimensional vectors [23, 68, 190]. It offers opportunities to
provide richer query semantics and better performance over traditional subgraph pattern
matching. For example, given one query pattern, one can embed the query pattern into
a query vector which is used to find the nearest neighbors as results among vectors that
are embedded from a number of subgraphs in the data graph.

– Many applications consider the temporal behavior of a graph pattern, e.g., emails and
instant messages in a communication network. For these temporal networks, times-
tamps are attached to all edges thus it implies the order of events occurs in the network.
To extend existing subgraph pattern matching queries, it is rather interesting to match

World Wide Web

a query pattern on a temporal network which considers the temporal order of the edges
in the query pattern [160, 171].

5 Aggregate query

In this section, we summarize existing studies on aggregate queries in attributed graphs.
The objective of aggregate queries is to generate summaries of input graphs to enable
multi-perspective analytics with varying granularities. We consider two kinds of aggre-
gate queries: (1) graph online analytical processing (Graph OLAP) that generates a
summary of the data graph based on a given aggregate condition; (2) egocentric aggre-
gate query that computes a summary for the neighborhood subgraph induced by a query
vertex.

5.1 Graph OLAP

Online analytical processing (OLAP) is a powerful tool for multi-dimensional analysis of
attributed graphs. OLAP can help us interactively view and analyze graph data from dif-
ferent perspectives and with multiple granularities. Specifically, graph OLAP returns an
aggregate graph by grouping the vertices and aggregating the edge weights of the input
graph(s) according to user-specified conditions.

Graph OLAP helps users draw insights from attributed graphs for information discovery
and decision making. Take the bibliography network as an example, let us consider a graph
of coauthor relations between authors. An OLAP operation on vertex attribute ‘affiliation’
generates a summary graph where the authors in the same institution is aggregated into
one vertex with the coauthor frequencies as edge weights. In this way, we can provide
an overview of the collaborations among institutions. Furthermore, we can further slice
the summary graph by edge attribute ‘year’ for analyzing the trend of collaborations over
time.

Existing studies generalize the concepts and operations of OLAP in data warehouses to
graph data, e.g., cube that constructs all possible combinations of aggregate attributes in
the graph, roll-up that provides an overview of the graph by aggregation, drill-down that
navigates the graph in more detailed levels of granularity, and slicing/dicing that extracts a
specific subset of data for analysis.

Chen et al. [25] first introduce online analytical processing (OLAP) on graph data. They
propose the graph OLAP framework that defines the multi-dimensional and multi-level
analysis on attributed graphs. Furthermore, they categorize OLAP queries into two types,
namely informational OLAP (I-OLAP) where the aggregation is performed on attributes
with the topology of data graph remaining unaffected and topological OLAP (T-OLAP)
where the topology of data graph is changed by aggregation. Zhao et al. [231] formally pro-
pose the Graph Cube model to support OLAP queries on attributed graphs. Moreover, they
introduce the Crossboid OLAP query that analyzes the relations between users grouped by
different attributes. Wang et al. [193] further extend the Graph Cube model to the Hyper
Graph Cube model by aggregating the graphs on both vertex and edge attributes at differ-
ent granularities. They propose a parallel graph OLAP system, namely, Pagrol, which is
implemented based on MapReduce and deployed on Apache Hadoop.

World Wide Web

Figure 6 An example for aggregate query on a property graph

Example 7 Let us consider the property graph in Figure 6. We show the lattice for Hyper
Graph Cube is the Cartesian product of the vertex attribute lattice and the edge attribute
lattice in Figure 7a. We provide the aggregate graph on attribute 〈B:Profession〉 where
COUNT(∗) is the aggregate function in Figure 7b. The aggregate graph has 3 vertices for 3
professions in the vertex attribute table. The weight of each vertex is the number of persons
with each profession. In addition, the edge weights are the numbers of edges between ver-
tices with different professions. Furthermore, we give an aggregate hyper graph on attribute
〈A:Gender,D:Type〉 in Figure 7c. The vertices in the data graph are grouped into two ver-
tices by gender: male (3) and female (2). Additionally, the edges are grouped into 4 weighted
edges by type. For example, “family:2” means that there are 2 edges of type “family”
between males and females.

Figure 7 Examples for hyper graph cube and aggregate graphs

World Wide Web

The other studies on graph OLAP are listed as follows. Qu et al. [154] introduce two
novel techniques named T-Distributiveness and T-Monotonicity for efficient T-OLAP pro-
cessing. Yin et al. [214] develop the HMGraph OLAP framework for multi-dimensional and
multi-labeled graphs. They introduce two operations named rotate and stretch to analyze the
relations between different types of entities. Beheshti et al. [13] extend SPARQL to support
multi-dimensional computation for OLAP in attributed graphs and deploy their system on
Apache Hadoop.

5.2 Egocentric aggregate query

Graph OLAP focuses on analyzing the properties of the entire graph from the global per-
spective. In this subsection, we consider the egocentric aggregate query which studies the
local properties of query vertices by analyzing their neighborhood subgraphs. Typically, an
egocentric aggregate query is restricted to the query vertex v’s h-hop neighborhoods that
are reachable from v via a path of length at most h. The objective is to provide the value of
an aggregate function within the neighborhood subgraph.

Yan et al. [203] first investigate the egocentric aggregate queries on attributed graphs.
Given a function f (u) ∈ [0, 1] that measures the individual relevance of a vertex u to a
given query and an aggregation function F(u) that is defined as the sum/average relevance
of the h-hop neighbors of a vertex u to the query, a neighborhood aggregation query aims
to find the top-k nodes with the highest scores of F(u).

Mondal and Deshpande [143] and Fan et al. [49] give a general definition of ego-
centric aggregate query on attributed graphs. Given an aggregate function F and a
query vertex v, an egocentric aggregate query returns the aggregate value F(v) that
is computed on the h-hop neighborhoods Nh(v) of v. Both of them consider that
the definitions could be extended to the dynamic setting where both graph structures
and attributes may change over time. Here is an example for egocentric aggregate
query.

Example 8 We consider the query vertex 4 in Figure 6 and the aggregate function F =
AVG(Salary). The aggregation is conducted on 1-hop neighborhoods. We can see the 1-hop
subgraph induced by vertex 4 contains vertices 2,3,4,5. According to the vertex attribute
table, we can compute the result of this egocentric aggregate query is AVG(Salary) =
$206, 250.

Mondal and Deshpande [143] propose an aggregation overlay graph based index
that shares pre-computed partial aggregate values among vertices w.r.t. a given aggre-
gate function for egocentric aggregate query processing. Fan et al. [49] propose the
Dense Block Index for egocentric aggregate query processing. Both indices are designed
for the dynamic setting where both graph topology and attributes may change over
time.

5.3 Summary

In this section, we have reviewed two types of aggregate queries on attributed graphs,
i.e., graph OLAP and egocentric aggregate query. Both query types aim to summarize an
attributed graph for analytics with multiple views. Graph OLAP focuses on the global prop-
erties of data graphs whereas egocentric aggregate query discovers the local properties of
query vertices.

World Wide Web

Independent of the literature on aggregate queries, graph summarization [125] has been
extensively studied as an important problem in graph mining. Similar to aggregate query,
the objective of graph summarization is also to generate a small summary graph of the
input graph. The difference is that graph summarization aggregates or simplifies the input
graph based on the topology property whereas aggregate query drives summary based on
the vertex and edge attributes. Therefore, an interesting direction is to combine the merits
of aggregate query and graph summarization: acquiring an overall picture of a graph from
the perspectives of both attributes and topology.

6 Similarity search

In this section, we summarize existing studies on similarity search in heterogeneous infor-
mation network (HIN), a special type of attributed graphs where both vertices and edges
have multiple labels. Specifically, vertex labels denote the entity types while edge labels
represent different types of relationships between entities. For a query vertex v, a similarity
search returns the vertices that are highly similar to v. In different scenarios, the returned
vertices are either restricted to be the same type as v or a type different from v. In Figure 8,
we illustrate a bibliographic network. There are three vertex labels representing authors (cir-
cles), papers (squares), and venues (stars). There are four edge labels between vertices: (1)
colleague relation between two authors; (2) authored by relation between an author and a
paper; (3) cite relation between two paper; and (4) published on relation between a paper
and a venue.

Similarity search is a fundamental problem in real-world applications. For example,

– In social networks, it is used to discover highly similar persons for friend suggestion
and link prediction.

– In e-commerce networks, it finds the proximities between customers and products for
recommendation.

– In bibliography networks, it evaluates the similarities of authors for classification and
community detection.

The core of similarity search is the similarity measure for evaluating the proximity
between vertices. For non-attributed graphs, personalized PageRank [92] (PPR) and Sim-
Rank [91] are the most common similarity measures. However, they are entirely based on
the graph structures: PPR evaluates the probability starting from a query vertex to a target
vertex by randomly walking with restart; SimRank evaluates the similarity of two vertices
by their neighbors’ similarities. They do not consider the case that vertex and edge labels
have different semantic meanings. Exploiting the semantic information behind the vertex
and edge labels is crucial for similarity evaluation in attributed graphs. Therefore, similar-
ity measures in non-attributed graphs may not be adequate for attributed graphs since the
semantics of vertices and edges are ignored. In the following, we will not discuss the sim-
ilarity measures in non-attributed graphs and focus on the similarity measures in attributed
graphs.

Generally, existing methods for similarity search in attributed graphs can be divided
into two subcategories according to similarity measures: (1) Path-based approach: eval-
uate the similarities based on the label-constrained paths (a.k.a meta-paths) between
vertices; and (2) Graph embedding-based approach: embed vertices into a low-dimensional
vector space and using the similarity measures for vectors to evaluate the vertex
similarities.

World Wide Web

Figure 8 An example for bibliography network

6.1 Path-based similarity search

PathSim Sun et al. [173] propose a seminal work for similarly search in attributed graphs,
which is a meta path-based similarity measure called PathSim. PathSim can only eval-
uate the similarities between vertices with the same label. A meta-path is denoted as
P = 〈Lv0 , Le1 , Lv1 , · · · , Lem, Lvm〉 where Lvi

and Lei
specify the labels of the i-th vertex

and edge in the path respectively. We can see two vertices may be connected by multiple
meta-paths with different semantic meanings, which leads to different similarity scores.

Example 9 Let us take the bibliography network in Figure 8 as an example. In Figure 9a,
we give two examples for the meta-path APA (author-paper-author) that captures the co-
author relationships between authors. Here we ignore the edge labels since there is only one
type of edges between authors and papers. A path 〈A1 → P 1 → A2〉 is an APA path,
which means that A1 and A2 are co-authors on paper P 1. A meta-path V PAPV (venue-
paper-author-paper-venue) identifies the venues with a large number of common authors.
Note the edge labels are also omitted because of non-ambiguity. In Figure 9b, we show that
a path 〈V 1 → P 2 → A4 → P 3 → V 2〉 is an example for the V PAPV path. It represents
two venues V 1 and V 2 share the same author A4.

Given the notion of meta-paths, PathSim [173] is defined to evaluate the similarity
between two vertices of the same type.

Definition 17 (PathSim) Given a symmetric meta-path P , the PathSim between two
vertices x, y is defined by:

sim(u, v) = 2 × |{Pu�v : Pu�v ∈ P}|
|{Pu�u : Pu�u ∈ P}| + |{Pv�v : Pv�v ∈ P}|

where Pu�v is an instance of P between u and v, Pu�u is between u and u, and Pv�v is
between v and v.

Here a meta-path P is symmetric if P and its inverse path P−1 are identical.

Figure 9 Examples for meta-paths

World Wide Web

Example 10 We compute the PathSim score between A2 and A3 in Figure 8b using the
APA path. The number of APA paths between A2 and A3 is 1 because they collaborate
in one paper P 2. Moreover, the number of APA paths between A2 and A2 is 2 while the
number of APA paths between A3 and A3 is 1. Therefore, the PathSim score between A2
and A3 is sim(A2, A3) = 2×1

2+1 = 0.67.

PathSim evaluates the similarity by counting the number of a meta-path between two
vertices. PathSim has two important properties as a similarity measure: symmetricity, i.e.,
sim(u, v) = sim(v, u), and self-maximum, i.e., sim(u, u) = 1. Finally, as PathSim scores
can be efficiently computed by vector-matrix multiplication, efficient algorithms have been
proposed for online top-k PathSim similarity search.

Extensions of PathSim Following the seminal work of Sun et al., there have been a
proliferation of studies on improving the effectiveness and efficiency of PathSim.

One drawback of PathSim is that it can only be used for evaluating the similarity of
two vertices with the same label. To address this limitation, Shi et al. [164, 165] propose
HeteSim to evaluate the similarity between two vertices with different labels. HeteSim
is a path-constrained version of SimRank. It calculates the meeting probability of two
vertices along a certain meta-path. Moreover, the meta-paths used for HeteSim can be non-
symmetric so as to evaluate the similarity of any two vertices. For example, we show an
APV (author-paper-venue) meta-path in Figure 9c that can model the similarity between an
author and a venue: an author is more relevant to a venue if she publishes more papers on
that venue. HeteSim is also semi-metric and has the symmetric and self-maximum properties.
We can utilize existing methods for SimRank computation with meta-path-based pruning to
compute the HeteSim scores.

Another limitation of PathSim is that it assumes meta-paths are manually provided by
domain experts, which is not impractical for schema-rich networks (e.g., RDF graphs) with
thousands of vertex and edge types. Wang et al. [188] propose a relation-based similarity
measure called RelSim for schema-rich networks. They ask users to provide example pairs
of vertices with high proximities and automatically detect the latent semantic relation (LSR)
implied by the query. They devise an optimization model to efficiently learn LSR through
linear programming and perform similarity search using RelSim based on the learned LSR.

PathSim and its extensions typically require matrix chain multiplication for similarity
evaluation, which brings high computation overheads and scalability problems on massive
graphs. To address this issue, Gu et al. [69] propose a random path sampling-based measure
called RSSim for scaling up PathSim. They prose a Monte Carlo simulation to approximate
RSSim scores between vertices. Zhang et al. [222] propose the Pantherm framework for
top-k meta-path similarity search in massive graphs using random sampling. The results of
both studies show that their random sampling based approaches could achieve compelling
speedups over matrix chain multiplication without significantly affecting the accuracy for
the similarity scores.

Many approaches introduce richer semantics into PathSim so as to improve the effec-
tiveness of similarity evaluation. Yu et al. [217] investigate the user-guided similarity search
problem. In addition to input a query vertex, the user should provide one or more vertices
of the same type as guidance. U et al. [180] introduce supportive information (e.g., the
number of citations in bibliography networks) into PathSim. He et al. [77] incorporate tran-
sitive similarity and temporal dynamics into PathSim. Meng et al. [141] propose a similarity
measure called AvgSim that averages the similarity scores computed by a given meta-path
and its reverse path. Wang et al. [187] propose the distant meta-path similarity to capture

World Wide Web

the semantics between two distant (isolated) vertices, which is evaluated by the meta-path
similarities of their neighborhood vertices with the same label.

Other path-based methods Lao and Cohen [104, 105] propose a Path-Constrained Ran-
dom Walk (PCRW) model for proximity search. PCRW restricts the random walkers to
follow a particular sequence of labels away from the query vertices and adopts a super-
vised learning method to estimate path weights. Shi et al. [167] study path-based relevance
measure from a probabilistic perspective. They establish the probabilistic interpretation
of existing path-based relevance measures and propose to model cross-meta-path synergy.
They propose a novel relevance measure based on a generative model, which is data-driven
and tailored for each network, and develop an inference algorithm for the proposed mea-
sure. Conte et al. [35] propose a q-gram based similarity measure. For any vertex u, they
consider all the simple paths of length less than q landing in u. Each such simple path
will give rise to a q-gram by concatenating the labels of vertices along the path. Then, all
these q-grams constitutes a multiset L(u) of q-grams for vertex u. To compare the simi-
larity of vertex u and v, they adopt the Bray-Curtis similarity index BC(u, v) defined on
L(u) and L(v). Zhang et al. [223] attempt to represent the inter- and intra-type relationships
in a unified manner with a general relationship matrix (GRM) indicating the importance
of relationship between any two labels. Meng et al. [142] propose a method for diversified
top-k similarity search by combining diversification of vertex coverage with a dissimilarity
constraint.

From meta-paths to meta-subgraphs Fang et al. [62] propose a meta-subgraph-based
approach to semantic proximity search. Meta-subgraphs are more general than meta-paths
since it can jointly model multiple common structures between vertices. Each meta-
subgraph can be seen as a nonlinear combination of meta-paths, and is thus more expressive.
Furthermore, they propose a supervised method that can automatically identify the char-
acteristic meta-subgraph from the examples of query and answer vertices. Finally, they
design an efficient meta-subgraph matching algorithm for similarity computation. Huang
et al. [87] propose to use meta subgraph to measure the proximity between vertices. A
meta-subgraph is a directed acyclic graph (DAG) of vertex labels with edge labels connect-
ing in between. The basic idea for similarity measure is to enumerate the instances of the
meta subgraph from the query vertex and the most relevant vertices have higher chances
to be covered by the instances. Due to the high computational cost of subgraph matching,
they propose efficient indices and matching algorithms for similarity computation. Zhou
et al. [235] propose a stratified meta-structure which can be constructed automatically and
capture rich semantics. They design a similarity measure called SMSS based on stratified
meta-structure.

6.2 Graph embedding-based similarity search

Graph embedding is one of the most popular areas for graph representation learning. It
encodes the graph data into a low dimensional space that maximally preserves the graph
topology as well as the attribute information. In recent years, with the advent of deep neural
networks, there have been a surge of interest in graph embedding and its applications. As our
focus is graph query, we do not discuss the approaches to graph embedding here. Interested
readers can refer to [23, 68, 190] for extensive surveys of graph embedding techniques.
Next, we will introduce the relationship of graph embedding and similarity search.

World Wide Web

Graph vertex embedding is an indirect approach to evaluating the similarities of ver-
tices [23]. In Figure 10, we illustrate how graph vertex embedding works: each vertex of
the input graph is mapped to a vector in the embedding space and vertices with higher
proximities are closer to each other in the embedding space. In this way, we can evaluate
the similarity of two vertices by the distance between their embedding vectors, e.g., the
Euclidean distance and other similarity measures for vectors.

Embedding-based similarity search can implicitly encode graph structures and thus
lacks an explicit explanation of why two vertices are similar in the embedding space.
Moreover, most of the embedding approaches are designed for downstream machine
learning tasks on graphs, e.g., link prediction, vertex classification, knowledge com-
pletion, and so on. Recently, there are a few attempts on proximity embedding [126–
129] that directly embeds the connections between two vertices into vectors to com-
pute the similarity score. Compared with indirect embedding approaches, proxim-
ity embedding could achieve better accuracies on evaluating the similarities between
vertices.

6.3 Summary

In this section, we have surveyed existing literature on similarity search for attributed
graphs. Recent years have witnessed the success of path-based approaches to similarity
search. Despite the prevalence of path-based approaches, they suffer from three draw-
backs. First, most of these approaches ask users to provide explicit path patterns (e.g.,
meta-paths) for similarity search. Second, paths may be insufficient to capture the rich
semantics between vertices. Third, the semantic meanings are merely represented by simple
vertex and edge labels but richer and multi-dimensional attribute information is not con-
sidered yet. Despite the efforts to address these drawbacks [62, 87, 188], it still requires
future studies to improve the effectiveness of path-based approaches from the above three
aspects.

With the advent of deep learning techniques, graph embedding has attracted emerging
research interest recently. However, how graph embedding can be directly used for simi-
larity search is still largely unexplored. Furthermore, existing embedding methods require
heavy computation and thus cannot support online query processing. Therefore, another
possible direction is to improve the efficiency of graph embedding techniques so that they
can be applied to similarity search for online query processing. Finally, embedding-based
approaches suffer from the lack of human interpretable explanation. It is a promising direc-
tion to explore new graph embedding approaches that can explain the proximity relations
between vertices in the embedding space.

Figure 10 An illustration of graph vertex embedding

World Wide Web

7 Keyword search

Keyword search over attributed graphs is a user-friendly and flexible query mechanism,
powered by the integration of database (DB) and information retrieval (IR) techniques. It
has various real-world applications, some representatives of which are presented as follows.

– Keyword search on relational databases (RDB): Structured query language (SQL)
is a classical and powerful tool for querying RDB. However, it is not easy for users to
formulate SQL queries due to complex SQL syntax and the requirement of a thorough
understanding on database schema. To alleviate the problem, keyword search over RDB
is extensively studied in the last decades [1, 6, 30, 48, 110, 121, 133, 134]. These
approaches formalize RDB as an attributed graph and return tuples, which are typically
joined from multiple relations, as results to a keyword search. As there may exist many
tuples relevant to the query, some IR-style scoring functions are applied to rank the
results.

– Keyword search on knowledge graph (RDF): Resource Description Framework
(RDF) is initially introduced for conceptual description of Web information in a triple
form (sub, pred, obj). Recently, RDF has attracted much interest from both academic
and industrial communities due to the prevalence of large-scale knowledge bases, such
as DBPedia [3], Yago [172], Freebase [17], and Google Knowledge Graph4. RDF data
can be naturally formalized as attributed graphs. Many approaches are proposed for
keyword queries on RDF-based attributed graphs [42, 56, 72, 108, 146, 179, 207].

– Keyword search on other graph-structured data: There are studies on keyword
search over XML documents [9, 70, 201] (tree-structured data), uncertain graphs [219],
and other data types [93, 152, 196, 218, 237]. As they are less relevant to attributed
graphs, we will not discuss them and encourage the interested readers to refer to other
surveys [107, 189].

There are existing survey papers on keyword search over relational databases [216],
XML data [107] and graph data [189]. However, they focus on specialized context, such
as relational and graph data, while we review the existing works in the perspective of the
more general attributed graph. Moreover, we focus on reviewing how the approaches for-
malize query semantics as substructures of the attributed graph. Based on this, we classify
existing methods into two categories, namely tree-based query semantics (Section 7.1) and
subgraph-based query semantics (Section 7.2).

7.1 Tree-based query semantics

In tree-based query semantics, an answer to a keyword search is defined by a tree extracted
from the attributed graph with respect to the query. Formally, given an attributed graph
G = (V ,E, �,L) and a set Q = {q1, q2, . . . , ql} of l keywords, an answer is defined as a
subtree T of G where the vertices in T contain all or a portion of keywords in Q.

7.1.1 Minimal total tree based semantics

The pioneer literature on keyword search over RDB, such as DBXplorer [1] and Dis-
cover [84], considers the minimal total tree based semantics defined as follows.

4https://developers.google.com/knowledge-graph/

https://developers.google.com/knowledge-graph/

World Wide Web

Definition 18 (Minimal Total Tree Semantics) Given an attributed graph G and a query Q,
a minimal total tree T M is defined as a subtree of G satisfying the following two conditions:
(1) total: each keyword qi ∈ Q must be contained in at least one vertex of T M; and (2)
minimal: any subtree of T M is not total.

Based on this semantics, DBXplorer [1] and Discover [84] introduce the minimal total
joining network of tuples (MTJNT) to model an answer to query Q.

Example 11 Figure 11 illustrates an example database where Figure 11a and 11b show
the schema and underlying tuples, respectively. Figure 11c illustrates the corresponding
attributed graph. Given two keywords “john, search”, the subtree 〈a1 − p1〉 is an MTJNT,
while 〈a1 − p1 − p6〉 is not because it does not satisfy the minimal condition.

Ranking issues of the MTJNTs are discussed in [83, 121, 133, 134] by introducing
various scoring functions, which can be classified into the following two categories.

1. IR-style scoring functions: These functions assign a score score(T M, Q) to an MTJNT
T M w.r.t. a query Q. To compute the score, some approaches [83, 121] consider each
vertex v in T M individually and compute score(T M, Q) = ∑

v∈T M score(v,Q). From
this equation, we can see that the essential issue is how to capture the relevance of a
vertex v with respect to the keywords in Q. This issue can be addressed by using IR-
style scoring schemes, such as the classic TF-IDF scheme. In the TF-IDF scheme, TF
captures the number of times each keyword q ∈ Q appears in the keyword (label) set
of vertex v (which could be further normalized by the size of keyword set), and IDF of
q is the inverse of the number of times q appears in all vertices in G. Moreover, other
approaches [133, 134] consider vertices in T M jointly by considering each tree T M as
a virtual document and computing score(T M,Q) as the relevance between Q and the
virtual document rather than individual tuples.

2. Structural scoring functions: The intuition of structural scoring function is to prefer a
tree with more compact structure. A straightforward way is to use the size of T M, i.e.,
the number of vertices in T M, to penalize large trees. However, as it will undesirably
affect moderate-size trees as well, Luo et al. [133, 134] introduce a more sophisticated
scheme for size penalization.

To compute all the MTJNTs, existing approaches [1, 83, 84, 121, 133, 134] reply on
the schema graph in Figure 11a. They formalize candidate network (CN) as a minimal
total tree over the schema graph, e.g., PAPER - WRITES - AUTHOR, and generate a com-
plete and duplication-free set of CNs with size not exceeding a pre-defined threshold. Then,
they evaluate the generated CNs by issuing the corresponding SQL queries to obtain the
MTJNTs.

7.1.2 Steiner tree based semantics

The query semantics discussed in the previous subsection is confined by the schema of
graph G, which may not be applied in more general schema-free graphs. Therefore, many
approaches [14, 43, 95, 97, 108, 116, 168, 209] are proposed for supporting keyword search
over graph, and consider a Steiner tree based query semantics.

Definition 19 (Steiner Tree Semantics) Given an attributed graph G and a query Q, let Si

denote the set of vertices containing keyword qi ∈ Q. An answer to Q is a rooted tree

World Wide Web

Figure 11 An example for keyword search over relational databases

T S that contains at least one node from each Si , and the weight w(T S) is
∑

e∈E(T S) w(e),

where E(T S) is the edge set of the tree and w(e) is the weight of each edge e in the tree5.

5Note that the original papers also consider the edge direction, e.g., an edge in database graph GDB with
a direction from foreign key to primary key. For ease of presentation, we omit the edge direction in this
subsection.

World Wide Web

Under this semantics, the problem of finding an optimal tree T S with the smallest
weight w(T S) is the classic minimum Steiner tree problem, which is proved as NP-
complete. Existing approaches have proposed various weighting schemes. The seminal
works BANKS-I [14] and BANKS-II [95] measure both node and edge weights.

– Edge weights: BANKS-I [14] and BANKS-II [95] associate a pre-defined weight to
each edge e in the graph G. Thus, given an answer tree T S, they define a score s(T S, qi)

as the sum of edge weights on the path from root of T S to the leaf containing keyword
qi , and then compute an aggregated score sE = ∑

qi∈Q s(T S, qi).
– Node weights: Node weights are introduced to capture node prestige, and several ran-

dom walk-based techniques, such as PageRank can be applied. Then, an aggregated
score sN is defined as the weight summation of leaf nodes and answer root of T S.

By combining both edge and node weights, BANKS-I [14] and BANKS-II [95] introduce
score s(T) = sE · sλ

N where λ is a tuning parameter to balance importance of edge and node
scores, which is usually set to 0.2.

Example 12 Consider three keywords {keyword, john, jim} over the attributed graph shown
in Figure 11c, where vertices that contain keywords are highlighted. It is not difficult to
find vertex p5 that has the shortest path to one vertex in each Si and thus forms an answer
tree. The semantics of the tree is “a john’s paper containing keyword that cites a jim’s
paper”. Given weighting schemes discussed previously, a score s(T) can be measured by
considering weights of both edges and nodes.

There have been many approaches [14, 43, 95, 97, 108, 116, 168, 209] proposed for
efficient minimum Steiner tree computation. The classic algorithm is backward search in
BANKS-I [14]. The basic idea is to start from the “keyword vertices”, i.e., S = ⋃

qi∈Q Si .
Then, it runs |S| instances of the Dijkstra’s shortest path algorithm starting from each vertex
in S in a reverse direction. The goal is to find the common vertices which have a shortest
path to at least one vertex in each Si . Answer trees can then be formed with the common
vertices as roots and keyword vertices as leaves. One drawback of backward search is that it
would explore an “unnecessarily” large number of vertices, and thus results in high explo-
ration overheads. Considering our example query {keyword, john, jim}, keyword is popular
that occurs in many vertices and a1 is a “hub” vertex that connects many other vertices.
Therefore, backward search may end up visiting nearly all the vertex in the graph. Obvi-
ously, a better exploration strategy is to start from “less popular” vertex a3. Then, after
explored p5, we start a forward exploration from p5 and can quickly find an answer tree.
Based on this intuition, BANKS-II [95] improves backward search and introduces bidi-
rectional search exploration. BLINKS [76] exploits distance precomputation and graph
partitioning to make bidirectional search more efficient. Graph summarization is further
introduced for search space pruning in [108]. Dynamic programming approaches [43, 116]
are proposed for exact minimum Steiner tree computation. Although they achieve good per-
formance empirically, they may suffer from exponential running time in the worst case.
Recently, parallelization [209] and hub labeling [168] are also considered for minimum
Steiner tree computation.

7.2 Subgraph-based query semantics

In the subgraph-based semantics, an answer to a keyword search is defined as a (pos-
sibly cyclic) subgraph extracted from the data graph G that contains all or a subset of

World Wide Web

query keywords. This section reviews two subgraph-based semantics, r-radius Steiner graph
and community-based semantics. Lastly, we discuss query graph assembly approaches that
return query graphs instead of subgraphs of G.

7.2.1 r-Radius Steiner graph based semantics

Li et al. [110] propose an r-radius Steiner graph-based semantics w.r.t. a query Q. The
definition of r-radius Steiner graph is based on the notions of centric distance and radius.
Given a graph G and a vertex v in G, the centric distance of v in G is the maximum of
the shortest distances from v to any vertices in G, and the radius of G is defined as the
minimum of the centric distances of all the vertices in G. A graph G is an r-radius graph
whose radius is exactly r . The r-radius Steiner graph is formally defined as below.

Definition 20 (r-Radius Steiner Graph) Given a query Q and a r-radius graph Gr, a vertex
v in Gr is called a content node if v directly contains the keywords in Q, while vertex s is
called a Steiner node if there exists two content nodes u and v such that s on the simple path
between u and v. An r-radius Steiner graph GS is defined as a subgraph of Gr that contains
the Steiner nodes and associated edges.

Li et al. [110] consider both IR-style and structural compactness-based scoring functions.
The IR-style function utilizes the TF-IDF scheme that measures keywords in Q and an
r-radius Steiner graph GS, while the structural compactness-based function prefers a GS

where content nodes are closely related in GS with shorter paths.

Example 13 Considering the example graph in Figure 11c, the centric distance of a1 is 3,
which corresponds to the path to p4. By considering centric distances of other vertices,
we know that radius of the graph is r = 3. Then, given two keywords “rdf, john”, we can
find a1 and p6 as content nodes, and p5 is a Steiner node as it exists in a simple path
between a1 and p6. Thus, the subgraph containing a1, p5 and p6 and their associated edges
is a r-Radius Steiner Graph. On the contrary, a Steiner tree semantics discussed previously
only takes 〈a1 − p6〉 as the result, which conveys less information of the r-radius Steiner
graph.

To efficiently compute r-radius Steiner graphs for a keyword search, Li et al. [110]
propose an approach that consists of both offline and online stages. In the offline stage,
the approach extracts r-radius graphs from graph G by using the adjacency matrix of
G, and constructs an inverted index that maps each keyword q to the set of r-radius
graphs containing q. As there may be a huge number of r-radius graphs and these
graphs may overlap with each other, it only considers the maximal r-radius graph which
is not a subgraph of other r-radius graphs. Given an online query Q, it first uses
the constructed index to obtain all the r-radius graphs that contain all or a portion of
keywords. Then, for each of such r-radius graphs, the approach generates an r-radius
Steiner graph by removing the non-Steiner nodes. Finally, it ranks the generated r-radius
Steiner graphs. To handle large graphs, Li et al. [110] also propose a graph partition
algorithm that clusters the r-radius graphs and partitions the whole graph based on the
clusters.

World Wide Web

7.2.2 Community based semantics

The r-radius Steiner graph semantics discussed in the previous subsection does not consider
the internal denseness of the returned subgraph, which is an important property under many
circumstances, such as epidemic prevention and information spreading [31]. To this end,
motivated by the community search over non-attributed graphs [194] (see [60] for a sur-
vey), another line of works discusses the community based semantics for keyword search in
attributed graphs. Various models for attributed community have been proposed.

Kargar et al. [96, 98] use the r-clique to model the attributed communities. Vertices
within an r-clique are densely connected with each other, and are associated with query
keywords. Formally, r-cliques are defined as below.

Definition 21 (r-Clique Semantics) Given an attributed graph G and a query Q, a vertex v

is called a content node if v contains at least one keyword in Q. An r-clique, denoted by GC

is a set of content nodes that together cover all keywords in Q while the shortest distance
between any content nodes is no larger than r .

To effectively rank r-cliques, a weighting scheme that considers the pairwise similarity
between any two vertices in an r-clique is proposed. Formally, let {v1, v2, . . . , vh} denote
the set of nodes in an r-clique GC. The weight of GC is calculated as

∑h
i=1

∑h
j=i+1

dist (vi, vj) where dist (vi, vj) is the shortest distance between nodes vi and vj . The-
oretically, Kargar et al. [96] prove that finding an r-clique with the smallest weight is
NP-hard. They first introduce an exact brand-and-bound algorithm for this problem. Since
the exact algorithm is slow when the number of keywords is large, they propose a 2-
approximation algorithm to find r-cliques in polynomial time. They further propose an
(l−1)-approximation algorithm that runs l times faster than the 2-approximation algorithm,
where l is the number of keywords, while achieving similar quality of results. In [27], two
heuristic approaches are proposed to find r-cliques for multiple keyword queries in a batch
manner. Furthermore, an extension of clique-based communities in attributed graphs is con-
sidered in [112]. Li et al. [112] propose the notion of keyword-based correlated networks
that extend the r-clique semantics to discover the correlations between different cliques for
a set of keywords.

The clique-based community models can return densely internal connected communities
w.r.t. query keywords, a strong constraint is imposed to the distance between any two ver-
tices within the result, thus clique-based models tend to find very small communities and
miss interesting communities with relatively large size. To this end, some other models that
impose more relaxed constraints are proposed.

The d-CORE based community model are proposed by Fang et al. [57, 59], which is
formally defined as below.

Definition 22 (d-CORE Semantics) Given a data graph G, a positive integer d , a query
node v, and a set of keywords Q, a d-CORE Gcore is a subgraph of G satisfying the fol-
lowing properties: (1) Gcore is connected and contains v; (2) for each node u of Gcore,
the degree of u in Gcore is at least d; (3) the size of L(Gcore,Q) is maximal where
L(Gcore,Q) = ⋂

u∈Gcore(L(u) ∩ Q) is the set of keywords in Q shared by all nodes in
Gcore.

World Wide Web

The community search problem based on d-CORE requires to enumerate all the d-
COREs of G. In [57, 59], Fang et al. propose a Core Label tree (CL-tree) index that
organizes d-COREs and keywords into a tree structure for efficient online community search.
Very recently, core-based community models have been considered for heterogeneous
information networks [61], where both vertices and edges are associated with attributes.

It is easy to see that no explicit constraint is imposed to the distance between vertices
within a d-CORE, and for any d , the distance between vertices can be any large. Thus,
the d-CORE model tends to find communities with large sizes. However, this could lead to
another issue called the free-rider effect [198] and include undesired vertices in the result
community.

To this end, other models based on d-TRUSS is proposed. The d-TRUSS ensures the inter-
nal denseness through high order structures, i.e. triangles, in the network and can impose a
relaxed constraint on the distance between vertices. The formally definition is presented as
below.

Definition 23 (d-TRUSS Semantics) Given a data graph G, and a positive integer d , a
d-TRUSS is a subgraph Gtruss of G satisfies the following properties: (1) Gtruss is con-
nected; (2) for each edge e = (v1, v2) in Gtruss, e is endorsed by at least d − 2 common
neighbors of v1 and v2.

The diameter of a connected d-TRUSS with n vertices is bounded by
⌊

2n−2
d

⌋
. Based on

the concept of d-TRUSS, Huang and Lakshmanan [86] and Zhu et al. [239, 240] propose the
(d, r)-TRUSS and minimum dense truss based community semantics for keyword search on
attributed graphs, respectively.

Definition 24 ((d, r)-TRUSS Semantics) Given a data graph G, positive integers d, r , a set
of query nodes Vq , and a set of keywords Q, a (d, r)-TRUSS Gtruss+ is a subgraph of G

satisfies the following properties: (1) Gtruss+ is a d-TRUSS containing all nodes in Vq ;
(2) for each vertex v in Gtruss+, the maximum length of a shortest path from v to any
query node vq ∈ Vq is at most r; (3) score(Gtruss+,Q) is maximal among all subgraphs

satisfying Properties (1) and (2), where score(Gtruss+,Q) = ∑
q∈Q

|Vq∩V (Gtruss+)|2
V (Gtruss+)

and
Vq is the set of nodes in G containing keyword q.

Definition 25 (MINIMUM DENSE TRUSS Semantics) Given a data graph G and a set of
keywords Q, the MINIMUM DENSE TRUSS Gtruss∗ is a subgraph of G satisfies the fol-
lowing properties: (1) For each keyword q ∈ Q, there exists a vertex v ∈ V (Gtruss∗) such
that q ∈ l(v); (2) Gtruss∗ is the d-TRUSS such that d is maximized among all subgraphs
satisfying Property (1) and |V (Gtruss∗)| is minimized.

Theoretically, the problems of finding (d, r)-TRUSS and minimum dense truss are both
NP-hard [86]. Huang and Lakshmanan [86] propose an index that integrates structural truss-
ness with attributed trussness, together with greedy heuristic algorithms, to compute an
approximate (d, r)-TRUSS efficiently. Zhu et al. [239, 240] propose an hybrid index together
with a top-down search algorithm that can return an exact MINIMUM DENSE TRUSS. But
the proposed algorithm could run in exponential time. Very recently, truss-based commu-
nity model is extended to directed graphs [123]. Since the problem is still NP-hard, an
index based on truss decomposition together with efficient 2-approximation algorithms are
proposed for community search on directed graphs.

World Wide Web

All the models discussed above impose strict topological constraint on the community
and will miss interesting results with more complex structure. Recently, Chen et al. [26]
propose the concept of contextual community. Instead of ensuring the structure cohe-
siveness through strict topological constraint, the contextual community is the subgraph
that maximizes the contextual density. Formally, the contextual community is defined as
below.

Definition 26 (CONTEXTUAL COMMUNITY Semantics) Given a data graph G and a set
of keywords Q, the contextual community Gctx is the connected subgraph of G that

maximizes the score function ρ(Gctx) =
∑

�∈Tri(Gctx) T S(,Q)+∑
e∈E(Gctx) ES(e,Q)

|V (Gctx)| where

Tri(Gctx) is the set of triangles in Gctx and E(Gctx) is the set of edges in Gctx. The edge
contextual score for an edge e = (u, v) is defined as ES(e,Q) = |Q ∩ l(u)| + |Q ∩ l(v)|,
and the triangle contextual score for an triangle 	 = (u, v, w) is defined as T S(�,Q) =∑

e∈{(u,v),(u,w),(v,w)} ES(e,Q).

To obtain contextual communities efficiently, Chen et al. [26] first propose an exact algo-
rithm based on an iterative optimization framework and then propose a 1

3 -approximation
algorithm to further improve the efficiency.

In addition to the aforementioned works, other related studies focus on community
search over graphs with different types of attributes. For example, [28, 58] deal with
spatial graphs where each vertex is associated with a location. The attributed commu-
nity search over spatial graphs finds the community that is densely connected in terms
of network topology, and vertices within the community should also be spatially close
to each other. Liu et al. [124] further propose a vertex-centric attributed community that
takes into account both spatial information and keywords associated with vertices. Influ-
ential community search [16, 113, 115] has also been studied. It uses the influence of
each vertex as the attribute and its goal is to find communities with high outer influence,
which is useful for applications such as advertisement placement. Temporal community
search, which aims to find communities that are both topologically and temporally cohesive,
is studied in [117]. A combination of community search with skyline search on multi-
valued graphs is studied in [114]. It aims to find communities that are not dominated
by any other community in terms of multi-dimensional numerical attributes. Neverthe-
less, these works are less relevant to keyword search on attributed graphs, and thus we
do not elaborate on them in this survey. Interested readers may refer to [60] for more
details.

7.2.3 Query graph assembly

Most approaches discussed so far directly return subgraphs containing keywords as answers.
On the contrary, some approaches [48, 72, 108, 179, 207] focus on assembling query graphs
as intermediate results. Then, they interpret each query graph as a structured query (e.g.,
SPARQL for RDF data and SQL for RDB) to retrieve the final results. Note that if no
structural query language is available for the attributed graph G, the query graph can retrieve
the answers in G using subgraph pattern matching techniques.

Tran et al. [179] propose a query graph assembly approach over the RDF data. Given
an RDF-based knowledge graph as illustrated in Figure 12a, the approach first extracts a
summary graph, which is essentially the schema of the whole graph. Given a keyword query,
the approach “augments” keywords to the summary graph.

World Wide Web

Figure 12 An example for keyword search over knowledge graphs

Example 14 Figure 12a shows an example of RDF-based knowledge graph, where each
vertex represents an entity (e.g., r1 and u1), a type (e.g., Researcher and Institute) or a
literal (e.g., “Donald Knuth” and “MIT”), and each edge represents a triple in RDF, say (r1,
name, “Donald Knuth”). Figure 12b shows such an example for summary graph with the
type vertices (in gray color) as well as their associated edges. Given an example query
“turing, stanford, 1974”, the keywords turing, stanford and 1974 are augmented to the name
of AWARD, the name of UNIVERSITY and the year of AWARDRECORD respectively.

It is not difficult to see that an augmented summary graph corresponds to a query graph
that can be interpreted to a SPARQL query for retrieving the final results. Tran et al. [179]
introduce the scoring functions to quantify the goodness of augmented summary graphs that
considers path length, popularity and keyword matching scores. Moreover, for efficiently

World Wide Web

generating query graphs, Tran et al. [179] devise index structures that map keywords to type
vertices and develop graph exploration algorithms using the aforementioned backward and
bidirectional search to generate top-k query graphs.

Some follow-ups, such as [72, 108, 207] propose more sophisticated techniques, such as
graph summarization [108], path pattern index [207] and graph embedding based scoring
functions [72]. Fan et al. [48] propose an interactive query graph generation approach, called
SQL Suggestion for RDB. The approach is user-friendly and can suggest SQL queries effi-
ciency as users type in keywords. It can support a broad range of SQL queries, including
aggregations, grouping and ranges.

7.3 Summary

In this section, we have surveyed a wide range of techniques for keyword query on attributed
graphs. Most of the existing works aim to extract the query semantics behind the simple
query keywords, and focus on the following aspects.

– Answer formalization: Existing methods define various structures to formalize an
answer w.r.t. to a keyword query, such as minimal total tree, Steiner tree, r-radius
Steiner graph, r-Clique, d-CORE, and (d, r)-TRUSS. Answer formalization is a core
component in keyword query over attributed graphs.

– Ranking function: As a keyword query may be relevant to many substructures, rank-
ing functions are extensively studied. Most of the existing methods borrow ideas from
the IR community to apply scoring functions, such as TF-IDF and more sophisticated
schemes.

– Top-k algorithm: To give online gratification to users, existing methods study efficient
top-k algorithms. This is a very challenging task due to the complex answer structures
and ranking functions. Existing works focus on devising effective index structures and
bound estimation techniques to quickly compute top-k answers.

By applying the above techniques, most keyword query approaches may focus on effec-
tive mechanism for balancing the trade-off between usability and expressiveness. Thus,
there appears to be future research opportunities in the following directions. First, many
deep learning models have been adopted in the IR community, and have shown supe-
riority over traditional scoring functions. Thus, it may be promising to borrow these
models for better capturing relevance between keywords and answer structures. Sec-
ond, most of the existing works do not consider the feedback from end-users. Thus,
it calls for an interactive mechanism to ask users to help refine the results. Third, as
attributed graphs become increasingly large, many memory-based solutions need to be
re-designed.

8 Natural language question answering

Recently, natural language question answering (NLQA) over attributed graphs has attracted
much attention. Unlike keyword search in the previous section, NLQA takes a natural lan-
guage question as the input, and aims at finding exact answers to the question from an
attributed graph. NLQA provides a more user-friendly mechanism than keyword search.

Example 15 Consider an example attributed graph shown in Figure 13a, which is essentially
a knowledge-based RDF graph as discussed in Section 7. Given a natural language question

World Wide Web

Figure 13 An example of natural language question answering over knowledge graphs

“who was married to an actor that plays in Philadelphia?”, NLQA directly finds “Melanie
Griffin” as an answer from the graph to give user gratification.

World Wide Web

Although easy to use, NLQA is much more challenging than keyword query due to the
complexities of natural language questions. First, the phrases in a natural language ques-
tion may be very ambiguous that correspond to various semantics in an attributed graph.
For example, Figure 13b illustrates the potential mappings from a phrase in our example
question to our example attributed graph. We can see that “actor” could either be a concep-
tual type ACTOR or indicates a BOOK instance “An Actor Prepares”. The phrase “play in”
may indicate various edge labels, such as actIn or playIn. The noun “Philadelphia” may be
either a Film, a BASKETBALLTEAM or a CITY. Second, unlike keyword query, the phrases
in a natural language question have strong correlation with each other. For instance, given
that “actor” is mapped a type ACTOR, the verb phrase “play in” is more like to be associated
with edge label actIn rather than playIn, although the latter is more similar to the phrase lit-
erally. Third, the structure of the attributed graph is usually complex and schema-less, thus
making the inference over attributed graph very challenging.

This section reviews the core techniques to address these challenges. We note that there
exist extensive studies on NLQA [7, 41, 102, 213]. We focus on the factoid question
answering over attributed graphs, which is formally defined as follows.

Definition 27 (Factoid Question Answering) Given an attributed graph G and a natural
language question Q, factoid question answering finds subgraphs in graph G, each of which
matches the semantics of Q.

For example, the subgraph annotated with the red circle in Figure 13a is an answer to our
example question “who was married to an actor that plays in Philadelphia?”.

We broadly classify existing approaches to factoid question answering into two cate-
gories. The first category query graph construction approaches [3, 131, 147, 206, 242] focus
on “translating” the natural language question into a structural query. Then, the structural
query can be executed over the attributed graph to retrieve the final answers. See Section 8.1
for more details. The second category is end-to-end question answering approaches [29,
44, 211] that develop deep learning models that directly extract subgraphs from G without
taking query graph construction as an intermediate step.

8.1 Query graph construction

The basic idea of query graph construction is to interpret the natural language question
into a query graph that corresponds to a pattern against the data graph G. Then, the
query graph can be used to retrieve all subgraphs that match the corresponding pattern
as answers. For example, Figure 13c illustrates a query graph interpreted from our exam-
ple natural language question. We can see that it is essentially a logic form that assigns
variables, such as x and y, to a subgraph of G. Note that this section focuses on the tech-
niques for query graph construction. The step of using query graph to retrieve answers
can be implemented by mapping the query graph into a SPARQL query or resorting to
the subgraph pattern query techniques in Section 4. We first review the approaches to
general query construction in Section 8.1.1, and then discuss triple query construction in
Section 8.1.2.

8.1.1 General query graph construction

In general, given a natural language question Q, existing techniques for query graph
construction apply a pipeline consisting of the following three stages.

World Wide Web

– Phrase Mapping extracts phrases (sequences of tokens) from question Q that are
potentially mapped to the semantic items, i.e., vertex and edge labels, in graph G.

– Disambiguation chooses the most likely semantic item for each phrase from the
candidate space.

– Query Graph Construction creates a query graph containing all the mapped and
disambiguated semantic items. The query graph is used to retrieve final answers.

Figure 13 provides an example of the stages. Figure 13b illustrates the stages of phrase
mapping and disambiguation, while Figure 13c shows query graph construction and result
retrieval. Following the pipeline, existing works focus on developing various techniques for
the first two stages, which pose tougher challenges than the last stage. The remaining of the
section reviews and compares these works.

Yahya et al. [3] develop a framework, called DEANNA that comprises a full suite of
the above stages. The framework uses multiple detectors for detecting phrases of different
types. For noun phrase detection (such as conceptual types and entities), they use a detec-
tor that utilizes a dictionary which is constructed as part of attributed graphs, independently
of NLQA task. For relation detection, it leverages REVERB [47], a tool that automatically
identifies and extracts binary relationships from English sentences. After the phrases are
detected, each phrase is mapped to a set of semantic items in the attributed graph. Such
mapping process also relies on a dictionary that maps a phrase to vertex labels or textual
patterns of edge labels. Given the mapping results, the framework formalizes disambigua-
tion as an integer linear program (ILP). To solve ILP, it constructs a disambiguation graph
that encodes all possible mappings and defines an objective function that maximizes the
joint quality of the mappings over entities, types and relations. After that, once phrases are
mapped to unique semantic items, they can construct query graph and retrieve the final
answers. Clearly, one limitation of the DEANNA framework is that it heavily relies on the
dictionaries, which are external resources of the framework.

To address the limitation, many approaches are proposed to automatically construct a
mapping between phrases and semantic items in attributed graphs, rather than relying on
external dictionaries. Zou et al. [242] propose to automatically map edge labels in attributed
graphs to their natural language paraphrases. For example, edge label actIn in Figure 13a
can be mapped to “play in” in natural language expressions. They utilize a triple-based
dependency-parsing approach PATTY [145]. The approach considers each edge, denoted by
(s, p, o) in the attributed graph, where s and o are associated vertices and p is an edge label,
e.g., (Antonio Banderas, actIn, Philadelphia). It retrieves all the sentences in a natural lan-
guage corpus that mentions both s and o, and applies a dependency parser to each retrieved
sentence. Then, the shortest paths between s and o in the dependency parsing result are
selected as the paraphrases of relation p. Using this approach, Zou et al. [242] construct
a paraphrase dictionary. During the online stage, an input question is parsed into a depen-
dency tree where relation phrases are recognized with the help of the paraphrase dictionary.
Moreover, for disambiguation, they consider the structure of attributed graphs, e.g., star-like
subgraphs containing mapped edge labels.

Yang et al. [206] propose an embedding-based approach to mapping phrases to semantic
items in attributed graphs. The idea is to first collect pairs of edge labels and their para-
phrases as training data, and then represent both natural language phrases and semantic
items into numeric vectors. Let C denote a set of n-grams of an input question that are the
lexical representations of entities, P denote a set of predicates in the graph corresponding
to relations extracted by PATTY, and T denote a set of types in the attributed graph. The
approach considers a training triple as w = [c, t, p], where each feature (c ∈ C, t ∈ T , p ∈

World Wide Web

P) is encoded in the embedding-based representation. Using the training triples, it learns
the semantic mappings of C − T , C − P , and T − P based on relation-predicate pairs and
question pattern-predicate pairs.

Besides mapping construction, disambiguation is also challenging due to the inherent
ambiguity of natural language expressions. Most of the approaches [131, 147] utilize the
NLP techniques for disambiguation. In contrast, Zou et al. [242] take a lazy approach and
push down the disambiguation to the query evaluation stage. They allow that phrases in
input question mapped to multiple semantic items in an attributed graph, and resolve the
ambiguity at the time when answers of the queries are found. To speed up the performance,
they use PATTY to build a paraphrase dictionary that records the semantic equivalence
between relation phrases and predicates.

He et al. [78] propose a method based on Markov Logic Networks (MLNs) [159]. They
formalize the knowledge to resolve the ambiguities in the first stage as first-order logic
clauses in an MLN. In the framework of MLN, all clauses will have an interactive effect
and solve the problem together across all stages as a unified process. In this way, the results
in each stage can be globally optimized. For example, for phrase detection, they do not
use the dictionary or dependency parser which may cause a problem of low coverage. To
avoid missing useful phrases, they retain all n-grams as phrase candidates, and then use
predefined rules to filter. To improve phrase mapping, they apply different techniques for
different types of phrases: they employ anchor, redirection and disambiguation information
from Wikipedia for noun phrase mapping, and utilize the resources from PATTY for relation
mapping.

To further improve the performance, some approaches propose to make use of other
potentially relevant text data, outside the KB, which could supplement the available infor-
mation. Savenkov et al. [158] introduce a new system, Text2KB, that enriches question
answering using external text data. Text2KB utilizes Web search results, community ques-
tion answering and general text document collection data, to alleviate the three challenges
in NLQA.

On the other hand, to improve generalization ability, the concept of query template is
introduced to directly model the internal structure of the question [38, 182, 183]. A query
template specifies query’s select or ask clause, its filter and aggregation functions, as well
as the number and form of its triples, and a specific query can be instantiated by mapping
phrases to the template.

8.1.2 Triple query construction

As a special case of NLQA, triple query is used to express a natural language question
that is composed of an entity mention and a binary relation description, and the answer
to this question would be an entity that has the relation with the entity. In practice, triple
query is usually a popular question answering requirement, and thus many approaches
introduce techniques to address this query form. Different from general query graph con-
struction, these approaches do not need to explicitly generate complete semantic structures
for input questions, and some latest technologies, such as convolutional neural networks
(CNN) and recurrent neural networks (RNN) with Gated Recurrent Units (GRU) can be
leveraged.

Bao et al. [8] treat NLQA as a machine translation procedure. They parse each input
question, and answers of the span covered by each parser cell are considered the translations
of that cell. The final answers can be obtained from the root cell. Yih et al. [212] pro-
pose a semantic similarity method using CNN. The method trains two semantic similarity

World Wide Web

models: one measures the similarity of entity mentions with entities in attributed graphs and
the other measures the similarity of relation patterns and relations in attributed graphs. By
using a general semantic similarity model to measure two pairs mentioned above, they can
construct the triple query to find the answer with higher precision. Note that this method
splits the question into mention-pattern pairs, but it is only applicable for simple questions.
Furthermore, Denis et al. [132] propose RNN with GRU containing a nested word/character-
level question encoder which allows for handling out-of-vocabulary and rare word problems
while still being able to exploit word-level semantics. Using this method, they can better
handle synonyms and find better matches between words in the question and entities or
predicates in the graph.

8.2 End-to-end question answering

Query graph construction relies on complicated natural language processing pipelines with
respect to some specific domains (e.g., domain-dependent dictionaries or NLP tools), and
may encounter difficulties when adapting to new domains. To address this issue, many end-
to-end question answering approaches [29, 44, 211] have been proposed recently. The basic
idea is to model question answering as a classification problem where the pair of input
question and each candidate answer is regarded as an instance in the classification problem.
Based on this idea, the approaches focus on addressing the following two key problems.

1) Feature extraction extracts features from the natural language question. To this end,
Yao et al. [211] use a dependency parser to convert a question into a question graph.
Li et al. [44] utilize word embeddings (i.e., vector representation) to represent question
words, while Chen et al. [29] further improve the techniques by considering position-
aware influence of question words.

2) Classification model identifies the correct answers. Yao et al. [211] leverage a back-off
probability estimation model to classify whether each candidate answer is appropriate
for the question. Li et al. [44] introduce a deep learning-based model, the multi-column
convolutional neural networks (CNNs). Chen et al. [29] propose a Positional Atten-
tion based RNN (RNN-POA) model, which models the position-aware influence of the
question word for answer’s attentive representations.

As this survey does not focus on deep learning, we encourage the interested readers to refer
to original papers.

8.3 Summary

Natural language question answering returns answers in attributed graphs to natural lan-
guage questions. The essential challenges are how to understand questions and how to
bridge the gap between natural language and structural semantics of attributed graphs. In
this section, we review two mainstream methods to address the challenge.

– Query graph construction-based approaches focus on interpreting a natural language
question into a structural query graph, which is then used to retrieve answers. The main
challenge is how to cope with the diversification of natural language. Existing works
apply advanced NLP tools, such as relation extraction, dependency parser, and graph
embedding.

World Wide Web

– End-to-end query answering-based approaches directly match subgraphs as answers
with respect to a natural language question. To this end, many deep learning mod-
els, such as CNN and RNN, have been applied to understand the semantics of natural
language questions.

However, most of the existing works assume a fixed and pre-defined set of lexical triggers
which limit their domains and scalability capability. Thus, the future research opportunities
may fall into the following directions. First, it is still very challenging to develop open-
domain question answering over attributed graphs. Thus, there may be many research topics,
such as open-domain relation paraphrase learning, open-domain query construction, etc.
Second, it calls for a dialog mechanism for NLQA to incorporate user’s feedback. There
may be many research issues in the mechanism, such as how to position the “errors” in
initial query graphs, how to recommend correction options to refine the queries, and how to
assure efficiency.

9 Conclusion

Attributed graphs are ubiquitously adopted for modeling complex structures with rich
semantics in many real-world scenarios. In recent years, a great variety of queries on
attributed graphs have been proposed to meet the demand for knowledge and informa-
tion extraction in numerous data-intensive applications. In this survey, we have reviewed
existing studies on typical attributed graph queries. First, we provided a taxonomy of typ-
ical attributed graph queries according to query inputs and outputs. Then, we presented
motivating applications and summarized formulations for each category of queries. Finally,
we compared different approaches proposed for each query category in terms of how
their formulations affect the result quality and discussed the technical challenges of query
processing.

We also pointed out several promising future research directions, some of which were
common across different categories of attributed graph queries. The first one is to pro-
vide assistance to help end-users design queries effectively. In particular, structured graph
queries are often expressed in the form of declarative languages, e.g., SQL and SPARQL,
which are difficult to understand by non-expert users, and thus it is an important task
to assist non-expert users to specify their queries. The second one is to devise interac-
tive query interfaces to collect user feedback so as to improve the quality of query results
incrementally. The third one is to support attributed graph queries in dynamic, streaming,
and distributed settings since real-world graph data is often highly dynamic, available as
a stream, or too large to fit in a single machine. The fourth one is to exploit the com-
putation power of modern hardwares such as GPUs and FPGA for accelerating attributed
graph query processing. The fifth one is to incorporate machine learning (ML) approaches
into attributed graph queries. Although ML-based methods have been adopted for unstruc-
tured queries, e.g., graph embedding for similarity search and NLP techniques for NLQA,
very little effort has been made to exploit the potential of ML techniques for structured
queries.

We believe that this survey can serve as a guidance for end-users to choose appropriate
queries in their application scenarios as well as a good starting point for new researchers
who want to work in this field.

World Wide Web

Acknowledgments This research is supported by the Ministry of Education, Singapore, under its Aca-
demic Research Fund Tier 2 (Award No.: MOE2019-T2-2-065), NSF of China (62072461, 61632016,
U1911203, 61925205, U1711261), the Research Funds of Renmin University of China (18XNLG18),
Huawei, and TAL Education.

References

1. Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: enabling keyword search over relational databases.
In: SIGMOD, p 627 (2002)

2. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J.L., Vrgoc, D.: Foundations of modern query
languages for graph databases. ACM Comput. Surv. 50(5), 68:1–68:40 (2017)

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: A nucleus for a
Web of open data. In: ISWC, pp 722–735 (2007)

4. Azimov, R., Grigorev, S.: Context-free path querying by matrix multiplication. In: GRADES-NDA, pp
5:1–5:10 (2018)

5. Bai, Y., Wang, C., Ying, X.: Para-g: Path pattern query processing on large graphs. World Wide Web
20(3), 515–541 (2017)

6. Balmin, A., Hristidis, V., Papakonstantinou, Y.: ObjectRank: Authority-based keyword search in
databases. In: VLDB, pp 564–575 (2004)

7. Baltadzhieva, A., Chrupala, G.: Question quality in community question answering forums: a survey.
SIGKDD Explor. Newsl. 17(1), 8–13 (2015)

8. Bao, J.-W., Duan, N., Zhou, M., Zhao, T.: Knowledge-based question answering as machine translation.
In: ACL, pp 967–976 (2014)

9. Bao, Z., Zeng, Y., Jagadish, H.V., Ling, T.W.: Exploratory keyword search with interactive input. In:
SIGMOD, pp 871–876 (2015)

10. Barrett, C.L., Bisset, K.R., Holzer, M., Konjevod, G., Marathe, M.V., Wagner, D.: Engineering label-
constrained shortest-path algorithms. In: AAIM, pp 27–37 (2008)

11. Barrett, C.L., Jacob, R., Marathe, M.V.: Formal-language-constrained path problems. SIAM J. Comput.
30(3), 809–837 (2000)

12. Barthélemy, M.: Spatial networks. Phys. Rep. 499(1), 1–101 (2011)
13. Beheshti, S.-M.-R., Benatallah, B., Nezhad, H.R.M., Allahbakhsh, M.: A framework and a language

for on-line analytical processing on graphs. In: WISE, pp 213–227 (2012)
14. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword searching and browsing

in databases using BANKS. In: ICDE, pp 431–440 (2002)
15. Bi, F., Chang, L., Lin, X., Qin, L., Zhang, W.: Efficient subgraph matching by postponing cartesian

products. In: SIGMOD, pp 1199–1214 (2016)
16. Bi, F., Chang, L., Lin, X., Zhang, W.: An optimal and progressive approach to online search of top-k

influential communities. PVLDB 11(9), 1056–1068 (2018)
17. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph

database for structuring human knowledge. In: SIGMOD, pp 1247–1250 (2008)
18. Bonchi, F., Gionis, A., Gullo, F., Ukkonen, A.: Distance oracles in edge-labeled graphs. In: EDBT, pp

547–558 (2014)
19. Bonifati, A., Ciucanu, R., Lemay, A.: Learning path queries on graph databases. In: EDBT, pp 109–

120 (2015)
20. Bonnici, V., Giugno, R.: On the variable ordering in subgraph isomorphism algorithms. IEEE/ACM

Trans. Comput. Biology Bioinform. 14(1), 193–203 (2017)
21. Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D.E., Ferro, A.: A subgraph isomorphism algorithm

and its application to biochemical data. BMC Bioinforma. 14(S-7), S13 (2013)
22. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. Pattern

Recognit. Lett. 19(3-4), 255–259 (1998)
23. Cai, H., Zheng, V.W., Chang, K.C.-C.: A comprehensive survey of graph embedding: Problems,

techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)
24. Cao, Y., Jiang, T., Girke, T.: A maximum common substructure-based algorithm for searching and

predicting drug-like compounds. Bioinformatics 24(13), 366–374 (2008)
25. Chen, C., Yan, X., Zhu, F., Han, J., Yu, P.S.: Graph OLAP: Towards online analytical processing on

graphs. In: ICDM, pp 103–112 (2008)

World Wide Web

26. Chen, L., Liu, C., Liao, K., Li, J., Zhou, R.: Contextual community search over large social networks.
In: ICDE, pp 88–99 (2019)

27. Chen, L., Liu, C., Yang, X., Wang, B., Li, J., Zhou, R.: Efficient batch processing for multiple keyword
queries on graph data. In: CIKM, pp 1261–1270 (2016)

28. Chen, L., Liu, C., Zhou, R., Li, J., Yang, X., Wang, B.: Maximum co-located community search in large
scale social networks. PVLDB 11(10), 1233–1246 (2018)

29. Chen, Q., Hu, Q., Huang, J.X., He, L., An, W.: Enhancing recurrent neural networks with positional
attention for question answering. In: SIGIR, pp 993–996 (2017)

30. Chen, Y., Wang, W., Liu, Z.: Keyword-based search and exploration on databases. In: ICDE, pp 1380–
1383 (2011)

31. Chen, Y.-C., Zhu, W.-Y., Peng, W.-C., Lee, W.-C., Lee, S.-Y.: CIM: community-based influence
maximization in social networks. ACM Trans. Intell. Syst. Technol. 5(2), 25:1–25:31 (2014)

32. Cheng, J., Yu, J.X., Ding, B., Yu, P.S., Wang, H.: Fast graph pattern matching. In: ICDE, pp 913–922
(2008)

33. Cheng, J., Zeng, X., Yu, J.X.: Top-k graph pattern matching over large graphs. In: ICDE, pp 1033–1044
(2013)

34. Chondrogiannis, T., Bouros, P., Gamper, J., Leser, U.: Exact and approximate algorithms for finding
k-shortest paths with limited overlap. In: EDBT, pp 414–425 (2017)

35. Conte, A., Ferraro, G., Grossi, R., Marino, A., Sadakane, K., Uno, T.: Node similarity with q-grams for
real-world labeled networks. In: KDD, pp 1282–1291 (2018)

36. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC, pp 151–158 (1971)
37. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm for matching

large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1367–1372 (2004)
38. Cui, W., Xiao, Y., Wang, H., Song, Y., Hwang, S.-W., Wang, W.: KBQA: Learning question answering

over QA corpora and knowledge bases. PVLDB 10(5), 565–576 (2017)
39. Dey, S.C., Cuevas-Vicenttı́n, V., Köhler, S., Gribkoff, E., Wang, M., Ludäscher, B.: On implementing

provenance-aware regular path queries with relational query engines. In: EDBT/ICDT Workshops, pp
214–223 (2013)

40. Dibbelt, J., Pajor, T., Wagner, D.: User-constrained multimodal route planning. ACM J. Exp. Algorith-
mics 19(1), 3.2:1–3.2:19 (2014)

41. Diefenbach, D., López, V., Singh, K.D., Maret, P.: Core techniques of question answering systems over
knowledge bases: a survey. Knowl. Inf. Syst. 55(3), 529–569 (2018)

42. Ding, B., Wang, H., Jin, R., Han, J., Wang, Z.: Optimizing index for taxonomy keyword search. In:
SIGMOD, pp 493–504 (2012)

43. Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding top-k min-cost connected trees in
databases. In: ICDE, pp 836–845 (2007)

44. Dong, L., Wei, F., Zhou, M., Xu, K.: Question answering over freebase with multi-column convolu-
tional neural networks. In: ACL-IJCNLP, pp 260–269 (2015)

45. Du, B., Zhang, S., Cao, N., Tong, H.: FIRST: Fast interactive attributed subgraph matching. In: KDD,
pp 1447–1456 (2017)

46. Dutta, S., Nayek, P., Bhattacharya, A.: Neighbor-aware search for approximate labeled graph matching
using the chi-square statistics. In: WWW, pp 1281–1290 (2017)

47. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: EMNLP,
pp 1535–1545 (2011)

48. Fan, J., Li, G., Zhou, L.: Interactive SQL query suggestion: Making databases user-friendly. In: ICDE,
pp 351–362 (2011)

49. Fan, Q., Wang, Z., Chan, C.-Y., Tan, K.-L.: Towards neighborhood window analytics over large-scale
graphs. In: DASFAA, pp 201–217 (2016)

50. Fan, W.: Graph pattern matching revised for social network analysis. In: ICDT, pp 8–21 (2012)
51. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y.: Adding regular expressions to graph reachability and pattern

queries. In: ICDE, pp 39–50 (2011)
52. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y.: Graph pattern matching: From intractable to

polynomial time. PVLDB 3(1), 264–275 (2010)
53. Fan, W., Li, J., Ma, S., Wang, H., Wu, Y.: Graph homomorphism revisited for graph matching. PVLDB

3(1), 1161–1172 (2010)
54. Fan, W., Wang, X., Wu, Y.: Performance guarantees for distributed reachability queries. PVLDB 5(11),

1304–1315 (2012)
55. Fan, W., Wang, X., Wu, Y.: Diversified top-k graph pattern matching. PVLDB 6(13), 1510–1521 (2013)
56. Fang, L., Sarma, A.D., Yu, C., Bohannon, P.: REX: Explaining relationships between entity pairs.

PVLDB 5(3), 241–252 (2011)

World Wide Web

57. Fang, Y., Cheng, R., Chen, Y., Luo, S., Hu, J.: Effective and efficient attributed community search.
VLDB J. 26(6), 803–828 (2017)

58. Fang, Y., Cheng, R., Li, X., Luo, S., Hu, J.: Effective community search over large spatial graphs.
PVLDB 10(6), 709–720 (2017)

59. Fang, Y., Cheng, R., Luo, S., Hu, J.: Effective community search for large attributed graphs. PVLDB
9(12), 1233–1244 (2016)

60. Fang, Y., Huang, X., Qin, L., Zhang, Y., Zhang, W., Cheng, R., Lin, X.: A survey of community search
over big graphs. VLDB J. 29(1), 353–392 (2020)

61. Fang, Y., Yang, Y., Zhang, W., Lin, X., Cao, X.: Effective and efficient community search over large
heterogeneous information networks. PVLDB 13(6), 854–867 (2020)

62. Fang, Y., Lin, W., Zheng, V.W., Wu, M., Chang, K.C.-C., Li, X.: Semantic proximity search on graphs
with metagraph-based learning. In: ICDE, pp 277–288 (2016)

63. Fard, A., Nisar, M.U., Miller, J.A., Ramaswamy, L.: Distributed and scalable graph pattern matching:
models and algorithms. Int. J. Big Data 1(1), 1–14 (2014)

64. Fard, A., Nisar, M.U., Ramaswamy, L., Miller, J.A., Saltz, M.: A distributed vertex-centric approach
for pattern matching in massive graphs. In: BigData, pp 403–411 (2013)

65. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern recognition in the last
10 years. Int. J. Pattern Recognit. Artif. Intell. 28(1), 1450001 (2014)

66. Gallagher, B.: Matching structure and semantics: A survey on graph-based pattern matching. In: AAAI
FS-06-02, pp 45–53 (2006)

67. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal. Appl. 13(1), 113–129
(2010)

68. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: A survey. Knowl.-
Based Syst. 151, 78–94 (2018)

69. Gu, Q., Zhang, C., Sun, T., Ji, Y., Hu, Z., Qiu, X.: Path sampling based relevance search in
heterogeneous networks. In: BigCom, pp 453–463 (2016)

70. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked keyword search over XML
documents. In: SIGMOD, pp 16–27 (2003)

71. Guo, L., Deng, Y., Liao, K., He, Q., Sellis, T., Hu, Z.: A fast algorithm for optimally finding partially
disjoint shortest paths. In: IJCAI, pp 1456–1462 (2018)

72. Han, S., Zou, L., Yu, J.X., Zhao, D.: Keyword search on RDF graphs - A query graph assembly
approach. In: CIKM, pp 227–236 (2017)

73. Han, W.-S., Lee, J., Lee, J.-H.: Turboiso: towards ultrafast and robust subgraph isomorphism search in
large graph databases. In: SIGMOD, pp 337–348 (2013)

74. Harris, S., Seaborne, A., Prud’hommeaux, E.: Sparql 1.1 query language. W3C Recommendation
21(10), 778 (2013)

75. Hassan, M.S., Aref, W.G., Aly, A.M.: Graph indexing for shortest-path finding over dynamic sub-
graphs. In: SIGMOD, pp 1183–1197 (2016)

76. He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keyword searches on graphs. In: SIGMOD, pp
305–316 (2007)

77. He, J., Bailey, J., Zhang, R.: Exploiting transitive similarity and temporal dynamics for similarity search
in heterogeneous information networks. In: DASFAA, pp 141–155 (2014)

78. He, S., Liu, K., Zhang, Y., Xu, L., Zhao, J.: Question answering over linked data using first-order logic.
In: EMNLP, pp 1092–1103 (2014)

79. Hellings, J.: Conjunctive context-free path queries. In: ICDT, pp 119–130 (2014)
80. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite graphs.

In: FOCS, pp 453–462 (1995)
81. Höffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngomo, A.-C.N.: Survey on challenges of

question answering in the semantic Web. Semantic Web 8(6), 895–920 (2017)
82. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
83. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient IR-style keyword search over relational

databases. In: VLDB, pp 850–861 (2003)
84. Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword search in relational databases. In: VLDB,

pp 670–681 (2002)
85. Huan, J., Bandyopadhyay, D., Wang, W., Snoeyink, J., Prins, J., Tropsha, A.: Comparing graph rep-

resentations of protein structure for mining family-specific residue-based packing motifs. J. Comput.
Biol. 12(6), 657–671 (2005)

86. Huang, X., Lakshmanan, L.V.S.: Attribute-driven community search. PVLDB 10(9), 949–960 (2017)
87. Huang, Z., Zheng, Y., Cheng, R., Sun, Y., Mamoulis, N., Li, X.: Meta structure: Computing relevance

in large heterogeneous information networks. In: KDD, pp 1595–1604 (2016)

World Wide Web

88. Hung, H.H., Bhowmick, S.S., Truong, B.Q., Choi, B., Zhou, S.: QUBLE: towards blending interactive
visual subgraph search queries on large networks. VLDB J. 23(3), 401–426 (2014)

89. Islam, M.S., Liu, C., Li, J.: Efficient answering of why-not questions in similar graph matching. IEEE
Trans. Knowl. Data Eng. 27(10), 2672–2686 (2015)

90. Jayaram, N., Khan, A., Li, C., Yan, X., Elmasri, R.: Querying knowledge graphs by example entity
tuples. IEEE Trans. Knowl. Data Eng. 27(10), 2797–2811 (2015)

91. Jeh, G., Widom, J.: SimRank: a measure of structural-context similarity. In: KDD, pp 538–543 (2002)
92. Jeh, G., Widom, J.: Scaling personalized Web search. In: WWW, pp 271–279 (2003)
93. Jiang, M., Fu, A.W.-C., Wong, R.C.-W.: Exact top-k nearest keyword search in large networks. In:

SIGMOD, pp 393–404 (2015)
94. Jin, R., Hong, H., Wang, H., Ruan, N., Xiang, Y.: Computing label-constraint reachability in graph

databases. In: SIGMOD, pp 123–134 (2010)
95. Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar, H.: Bidirectional

expansion for keyword search on graph databases. In: VLDB, pp 505–516 (2005)
96. Kargar, M., An, A.: Keyword search in graphs: Finding r-cliques. PVLDB 4(10), 681–692 (2011)
97. Kargar, M., An, A.: Efficient top-k keyword search in graphs with polynomial delay. In: ICDE, pp

1269–1272 (2012)
98. Kargar, M., An, A.: Finding top-k,r-cliques for keyword search from graphs in polynomial delay.

Knowl. Inf. Syst. 43(2), 249–280 (2015)
99. Katsarou, F., Ntarmos, N., Triantafillou, P.: Performance and scalability of indexed subgraph query

processing methods. PVLDB 8(12), 1566–1577 (2015)
100. Khan, A., Li, N., Yan, X., Guan, Z., Chakraborty, S., Tao, S.: Neighborhood based fast graph search in

large networks. In: SIGMOD, pp 901–912 (2011)
101. Khan, A., Wu, Y., Aggarwal, C.C., Yan, X.: NeMa: Fast graph search with label similarity. PVLDB

6(3), 181–192 (2013)
102. Khashabi, D., Khot, T., Sabharwal, A., Roth, D.: Question answering as global reasoning over semantic

abstractions. In: AAAI, pp 1905–1914 (2018)
103. Koschmieder, A., Leser, U.: Regular path queries on large graphs. In: SSDBM, pp 177–194 (2012)
104. Lao, N., Cohen, W.W.: Fast query execution for retrieval models based on path-constrained random

walks. In: KDD, pp 881–888 (2010)
105. Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-constrained random walks.

Mach. Learn. 81(1), 53–67 (2010)
106. Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In: KDD, pp 467–476

(2009)
107. Le, T.N., Ling, T.W.: Survey on keyword search over XML documents. SIGMOD Rec. 45(3), 17–28

(2016)
108. Le, W., Li, F., Kementsietsidis, A., Duan, S.: Scalable keyword search on large RDF data. IEEE Trans.

Knowl. Data Eng. 26(11), 2774–2788 (2014)
109. Lee, J., Han, W.-S., Kasperovics, R., Lee, J.-H.: An in-depth comparison of subgraph isomorphism

algorithms in graph databases. PVLDB 6(2), 133–144 (2012)
110. Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: EASE: an effective 3-in-1 keyword search method for

unstructured, semi-structured and structured data. In: SIGMOD, pp 903–914 (2008)
111. Li, J., Cao, Y., Ma, S.: Relaxing graph pattern matching with explanations. In: CIKM, pp 1677–1686

(2017)
112. Li, J., Liu, C., Islam, M.S.: Keyword-based correlated network computation over large social media.

In: ICDE, pp 268–279 (2014)
113. Li, J., Wang, X., Deng, K., Yang, X., Sellis, T., Yu, J.X.: Most influential community search over large

social networks. In: ICDE, pp 871–882 (2017)
114. Li, R.-H., Qin, L., Ye, F., Yu, J.X., Xiao, X., Xiao, N., Zheng, Z.: Skyline community search in multi-

valued networks. In: SIGMOD, pp 457–472 (2018)
115. Li, R.-H., Qin, L., Yu, J.X., Mao, R.: Influential community search in large networks. PVLDB 8(5),

509–520 (2015)
116. Li, R.-H., Qin, L., Yu, J.X., Mao, R.: Efficient and progressive group steiner tree search. In: SIGMOD,

pp 91–106 (2016)
117. Li, R.-H., Su, J., Qin, L., Yu, J.X., Dai, Q.: Persistent community search in temporal networks. In:

ICDE, pp 797–808 (2018)
118. Liang, J., Ajwani, D., Nicholson, P.K., Sala, A., Parthasarathy, S.: What links alice and bob?: Matching

and ranking semantic patterns in heterogeneous networks. In: WWW, pp 879–889 (2016)
119. Liptchinsky, V., Satzger, B., Zabolotnyi, R., Dustdar, S.: Expressive languages for selecting groups

from graph-structured data. In: WWW, pp 761–770 (2013)

World Wide Web

120. Liu, C., Chen, C., Han, J., Yu, P.S.: GPLAG: detection of software plagiarism by program dependence
graph analysis. In: KDD, pp 872–881 (2006)

121. Liu, F., Yu, C.T., Meng, W., Chowdhury, A.: Effective keyword search in relational databases. In:
SIGMOD, pp 563–574 (2006)

122. Liu, G., Zheng, K., Wang, Y., Orgun, M.A., Liu, A., Zhao, L., Zhou, X.: Multi-constrained graph pattern
matching in large-scale contextual social graphs. In: ICDE, pp 351–362 (2015)

123. Liu, Q., Zhao, M., Huang, X., Xu, J., Gao, Y.: Truss-based community search over large directed graphs.
In: SIGMOD, pp 2183–2197 (2020)

124. Liu, Q., Zhu, Y., Zhao, M., Huang, X., Xu, J., Gao, Y.: VAC: vertex-centric attributed community
search. In: ICDE, pp 937–948 (2020)

125. Liu, Y., Safavi, T., Dighe, A., Koutra, D.: Graph summarization methods and applications: A survey.
ACM Comput. Surv. 51(3), 62:1–62:34 (2018)

126. Liu, Z., Zheng, V.W., Zhao, Z., Li, Z., Yang, H., Wu, M., Ying, J.: Interactive paths embedding for
semantic proximity search on heterogeneous graphs. In: KDD, pp 1860–1869 (2018)

127. Liu, Z., Zheng, V.W., Zhao, Z., Yang, H., Chang, K.C.-C., Wu, M., Ying, J.: Subgraph-augmented path
embedding for semantic user search on heterogeneous social network. In: WWW, pp 1613–1622 (2018)

128. Liu, Z., Zheng, V.W., Zhao, Z., Zhu, F., Chang, K.C.-C., Wu, M., Ying, J.: Semantic proximity search
on heterogeneous graph by proximity embedding. In: AAAI, pp 154–160 (2017)

129. Liu, Z., Zheng, V.W., Zhao, Z., Zhu, F., Chang, K.C.-C., Wu, M., Ying, J.: Distance-aware dag
embedding for proximity search on heterogeneous graphs. In: AAAI, pp 2355–2362 (2018)

130. Livi, L., Rizzi, A.: The graph matching problem. Pattern Anal. Appl. 16(3), 253–283 (2013)
131. López, V., Fernández, M., Motta, E., Stieler, N.: PowerAqua: Supporting users in querying and

exploring the semantic Web. Semantic Web 3(3), 249–265 (2012)
132. Lukovnikov, D., Fischer, A., Lehmann, J., Auer, S.: Neural network-based question answering over

knowledge graphs on word and character level. In: WWW, pp 1211–1220 (2017)
133. Luo, Y., Lin, X., Wang, W., Zhou, X.: Spark: top-k keyword query in relational databases. In: SIGMOD,

pp 115–126 (2007)
134. Luo, Y., Wang, W., Lin, X., Zhou, X., Wang, J., Li, K.: SPARK2: Top-k keyword query in relational

databases. IEEE Trans. Knowl. Data Eng. 23(12), 1763–1780 (2011)
135. Lyu, B., Qin, L., Lin, X., Chang, L., Yu, J.X.: Scalable supergraph search in large graph databases. In:

ICDE, pp 157–168 (2016)
136. Ma, S., Cao, Y., Fan, W., Huai, J., Wo, T.: Capturing topology in graph pattern matching. PVLDB 5(4),

310–321 (2011)
137. Ma, T., Yu, S., Cao, J., Tian, Y., Al-Dhelaan, A., Al-Rodhaan, M.: A comparative study of subgraph

matching isomorphic methods in social networks. IEEE Access 6, 66621–66631 (2018)
138. Medeiros, C.M., Musicante, M.A., da Costa, U.S.: Efficient evaluation of context-free path queries for

graph databases. In: SAC, pp 1230–1237 (2018)
139. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases. SIAM J. Comput. 24(6),

1235–1258 (1995)
140. Meng, C., Cheng, R., Maniu, S., Senellart, P., Zhang, W.: Discovering meta-paths in large heteroge-

neous information networks. In: WWW, pp 754–764 (2015)
141. Meng, X., Shi, C., Li, Y., Zhang, L., Wu, B.: Relevance measure in large-scale heterogeneous networks.

In: APWeb, pp. 636–643 (2014)
142. Meng, Z., Shen, H.: Dissimilarity-constrained node attribute coverage diversification for novelty-

enhanced top-k search in large attributed networks. Knowl.-Based Syst. 150, 85–94 (2018)
143. Mondal, J., Deshpande, A.: EAGr: supporting continuous ego-centric aggregate queries over large

dynamic graphs. In: SIGMOD, pp 1335–1346 (2014)
144. Mottin, D., Lissandrini, M., Velegrakis, Y., Palpanas, T.: Exemplar queries: Give me an example of

what you need. PVLDB 7(5), 365–376 (2014)
145. Nakashole, N., Weikum, G., Suchanek, F.M.: PATTY: A taxonomy of relational patterns with semantic

types. In: EMNLP-CoNLL, pp 1135–1145 (2012)
146. Namaki, M.H., Wu, Y., Zhang, X.: GExp: Cost-aware graph exploration with keywords. In: SIGMOD,

pp 1729–1732 (2018)
147. Napolitano, G., Usbeck, R., Ngomo, A.-C.N.: The scalable question answering over linked data (SQA)

challenge 2018. In: SemWebEval, pp 69–75 (2018)
148. Nolé, M., Sartiani, C.: Regular path queries on massive graphs. In: SSDBM, pp 13:1–13:12 (2016)
149. Pacaci, A., Bonifati, A., Özsu, M.T.: Regular path query evaluation on streaming graphs. In: SIGMOD,

pp 1415–1430 (2020)
150. Pande, S., Ranu, S., Bhattacharya, A.: SkyGraph: Retrieving regions of interest using skyline subgraph

queries. PVLDB 10(11), 1382–1393 (2017)

World Wide Web

151. Peng, Y., Zhang, Y., Lin, X., Qin, L., Zhang, W.: Answering billion-scale label-constrained reachability
queries within microsecond. PVLDB 13(6), 812–825 (2020)

152. Qiao, M., Qin, L., Cheng, H., Yu, J.X., Tian, W.: Top-k nearest keyword search on large graphs. PVLDB
6(10), 901–912 (2013)

153. Qin, L., Yu, J.X., Chang, L.: Diversifying top-k results. PVLDB 5(11), 1124–1135 (2012)
154. Qu, Q., Zhu, F., Yan, X., Han, J., Yu, P.S., Li, H.: Efficient topological OLAP on information networks.

In: DASFAA, pp 389–403 (2011)
155. Ranu, S., Hoang, M.X., Singh, A.K.: Answering top-k representative queries on graph databases. In:

SIGMOD, pp 1163–1174 (2014)
156. Ren, X., Wang, J.: Exploiting vertex relationships in speeding up subgraph isomorphism over large

graphs. PVLDB 8(5), 617–628 (2015)
157. Rice, M.N., Tsotras, V.J.: Graph indexing of road networks for shortest path queries with label

restrictions. PVLDB 4(2), 69–80 (2010)
158. Savenkov, D., Agichtein, E.: When a knowledge base is not enough: Question answering over

knowledge bases with external text data. In: SIGIR, pp 235–244 (2016)
159. Schoenfisch, J., Meilicke, C., von Stülpnagel, J., Ortmann, J., Stuckenschmidt, H.: Root cause analysis

in it infrastructures using ontologies and abduction in markov logic networks. Inf. Syst. 74(Part 2),
103–116 (2018)

160. Semertzidis, K., Pitoura, E.: Top-k durable graph pattern queries on temporal graphs. IEEE Trans.
Knowl. Data Eng. 31(1), 181–194 (2019)

161. Shang, H., Lin, X., Zhang, Y., Yu, J.X., Wang, W.: Connected substructure similarity search. In:
SIGMOD, pp 903–914 (2010)

162. Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hardness: an efficient algorithm for testing
subgraph isomorphism. PVLDB 1(1), 364–375 (2008)

163. Shang, H., Zhu, K., Lin, X., Zhang, Y., Ichise, R.: Similarity search on supergraph containment. In:
ICDE, pp 637–648 (2010)

164. Shi, C., Kong, X., Huang, Y., Yu, P.S., Wu, B.: HeteSim: A general framework for relevance measure
in heterogeneous networks. IEEE Trans. Knowl. Data Eng. 26(10), 2479–2492 (2014)

165. Shi, C., Kong, X., Yu, P.S., Xie, S., Wu, B.: Relevance search in heterogeneous networks. In: EDBT,
pp 180–191 (2012)

166. Shi, C., Li, Y., Zhang, J., Sun, Y., Yu, P.S.: A survey of heterogeneous information network analysis.
IEEE Trans. Knowl. Data Eng. 29(1), 17–37 (2017)

167. Shi, Y., Chan, P.-W., Zhuang, H., Gui, H., Han, J.: PReP: Path-based relevance from a probabilistic
perspective in heterogeneous information networks. In: KDD, pp 425–434 (2017)

168. Shi, Y., Cheng, G., Kharlamov, E.: Keyword search over knowledge graphs via static and dynamic hub
labelings. In: WWW, pp 235–245 (2020)

169. Shikha, A., Junhu, W., Md. Saiful Islam: Modular Decomposition-Based Graph Compression for Fast
Reachability Detection. Data Sci. Eng. 4(3), 193–207 (2019)

170. Sommer, C.: Shortest-path queries in static networks. ACM Comput. Surv. 46(4), 45:1–45:31
(2014)

171. Song, C., Ge, T., Chen, C.X., Wang, J.: Event pattern matching over graph streams. PVLDB 8(4), 413–
424 (2014)

172. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW, pp 697–
706 (2007)

173. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: Meta path-based top-k similarity search in
heterogeneous information networks. PVLDB 4(11), 992–1003 (2011)

174. Sun, Z., Wang, H., Wang, H., Shao, B., Li, J.: Efficient subgraph matching on billion node graphs.
PVLDB 5(9), 788–799 (2012)

175. Tabei, Y., Tsuda, K.: Kernel-based similarity search in massive graph databases with wavelet trees. In:
SDM, pp 154–163 (2011)

176. Tian, Y., McEachin, R.C., Santos, C., States, D.J., Patel, J.M.: SAGA: a subgraph matching tool for
biological graphs. Bioinformatics 23(2), 232–239 (2007)

177. Tong, H., Faloutsos, C., Gallagher, B., Eliassi-Rad, T.: Fast best-effort pattern matching in large
attributed graphs. In: KDD, pp 737–746 (2007)

178. Tran, Q.T., Chan, C.-Y.: How to conquer why-not questions. In: SIGMOD, pp 15–26 (2010)
179. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates for efficient

keyword search on graph-shaped (RDF) data. In: ICDE, pp 405–416 (2009)
180. U, L.H., Yao, K., Mak, H.F.: PathSimExt: Revisiting pathsim in heterogeneous information networks.

In: WAIM, pp 38–42 (2014)
181. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)

World Wide Web

182. Unger, C., Bühmann, L., Lehmann, J., Ngomo, A.-C.N., Gerber, D., Cimiano, P.: Template-based
question answering over RDF data. In: WWW, pp 639–648 (2012)

183. Unger, C., Cimiano, P.: Pythia: Compositional meaning construction for ontology-based question
answering on the semantic Web. In: NLDB, pp 153–160 (2011)

184. Vachik, S., Dave, B.Z., Pin-Yu, C., Mohammad Al, H.: Neural-Brane: Neural Bayesian Personalized
Ranking for Attributed Network Embedding. Data Sci. Eng. 4(2), 119–131 (2019)

185. Valstar, L.D.J., Fletcher, G.H.L., Yoshida, Y.: Landmark indexing for evaluation of label-constrained
reachability queries. In: SIGMOD, pp 345–358 (2017)

186. Wadhwa, S., Prasad, A., Ranu, S., Bagchi, A., Bedathur, S.: Efficiently answering regular simple path
queries on large labeled networks. In: SIGMOD, pp 1463–1480 (2019)

187. Wang, C., Song, Y., Li, H., Sun, Y., Zhang, M., Han, J.: Distant meta-path similarities for text-based
heterogeneous information networks. In: CIKM, pp 1629–1638 (2017)

188. Wang, C., Sun, Y., Song, Y., Han, J., Song, Y., Wang, L., Zhang, M.: RelSim: Relation
similarity search in schema-rich heterogeneous information networks. In: SDM, pp 621–629
(2016)

189. Wang, H., Aggarwal, C.C.: A survey of algorithms for keyword search on graph data. In: Managing
and Mining Graph Data, pp 249–273, Springer (2010)

190. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: A survey of approaches and
applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

191. Wang, X., Smalter, A.M., Huan, J., Lushington, G.H.: G-hash: towards fast kernel-based similarity
search in large graph databases. In: EDBT, pp 472–480 (2009)

192. Wang, X., Wang, S., Xin, Y., Yang, Y., Li, J., Wang, X.: Distributed pregel-based provenance-
aware regular path query processing on RDF knowledge graphs. World Wide Web 23(3), 1465–1496
(2020)

193. Wang, Z., Fan, Q., Wang, H., Tan, K.-L., Agrawal, D., Abbadi, A.E.: Pagrol: Parallel graph OLAP over
large-scale attributed graphs. In: ICDE, pp 496–507 (2014)

194. Wang, Z., Wang, W., Wang, C., Gu, X., Li, B., Meng, D.: Community focusing: Yet another query-
dependent community detection. In: AAAI, pp 329–337 (2019)

195. Wood, P.T.: Query languages for graph databases. SIGMOD Rec. 41(1), 50–60 (2012)
196. Wu, Y., Yang, S., Srivatsa, M., Iyengar, A., Yan, X.: Summarizing answer graphs induced by keyword

queries. PVLDB 6(14), 1774–1785 (2013)
197. Wu, Y., Yang, S., Yan, X.: Ontology-based subgraph querying. In: ICDE, pp 697–708 (2013)
198. Wu, Y., Jin, R., Li, J., Zhang, X.: Robust local community detection: On free rider effect and its

elimination. PVLDB 8(7), 798–809 (2015)
199. Xin, Y., Wang, X., Jin, D., Wang, S.: Distributed efficient provenance-aware regular path queries on

large RDF graphs. In: DASFAA, pp 766–782 (2018)
200. Xin, W., Lele, C., Qiang, X., Yajun, Y., Jianxin, L., Junhu, W., Yunpeng, C.: Efficient Subgraph

Matching on Large RDF Graphs Using MapReduce. Data Sci. Eng. 4(1), 24–43 (2019)
201. Xu, Y., Papakonstantinou, Y.: Efficient keyword search for smallest LCAs in XML databases. In:

SIGMOD, pp 537–538 (2005)
202. Yan, J., Yin, X.-C., Lin, W., Deng, C., Zha, H., Yang, X.: A short survey of recent advances in graph

matching. In: ICMR, pp 167–174 (2016)
203. Yan, X., He, B., Zhu, F., Han, J.: Top-k aggregation queries over large networks. In: ICDE, pp 377–380

(2010)
204. Yan, X., Yu, P.S., Han, J.: Graph indexing: A frequent structure-based approach. In: SIGMOD, pp 335–

346 (2004)
205. Yan, X., Yu, P.S., Han, J.: Substructure similarity search in graph databases. In: SIGMOD, pp 766–777

(2005)
206. Yang, M.-C., Duan, N., Zhou, M., Rim, H.-C.: Joint relational embeddings for knowledge-based

question answering. In: EMNLP, pp 645–650 (2014)
207. Yang, M., Ding, B., Chaudhuri, S., Chakrabarti, K.: Finding patterns in a knowledge base using

keywords to compose table answers. PVLDB 7(14), 1809–1820 (2014)
208. Yang, S., Han, F., Wu, Y., Yan, X.: Fast top-k search in knowledge graphs. In: ICDE, pp 990–1001

(2016)
209. Yang, Y., Agrawal, D., Jagadish, H.V., Tung, A.K.H., Wu, S.: An efficient parallel keyword search

engine on knowledge graphs. In: ICDE, pp 338–349 (2019)
210. Yang, Z., Fu, A.W.-C., Liu, R.: Diversified top-k subgraph querying in a large graph. In: SIGMOD, pp

1167–1182 (2016)

World Wide Web

211. Yao, X., Durme, B.V.: Information extraction over structured data: Question answering with freebase.
In: ACL, pp 956–966 (2014)

212. Yih, W.-T., He, X., Meek, C.: Semantic parsing for single-relation question answering. In: ACL, pp
643–648 (2014)

213. Yih, W.-T., Ma, H.: Question answering with knowledge base, Web and beyond. In: NAACL-HLT, pp
8–10 (2016)

214. Yin, M., Wu, B., Zeng, Z.: HMGraph OLAP: a novel framework for multi-dimensional heterogeneous
network analysis. In: DOLAP, pp 137–144 (2012)

215. Yu, J.X., Cheng, J.: Graph reachability queries: A survey. In: Managing and Mining Graph Data, pp
181–215, Springer (2010)

216. Yu, J.X., Qin, L., Chang, L.: Keyword search in relational databases: A survey. IEEE Data Eng. Bull.
33(1), 67–78 (2010)

217. Yu, X., Sun, Y., Norick, B., Mao, T., Han, J.: User guided entity similarity search using meta-path
selection in heterogeneous information networks. In: CIKM, pp 2025–2029 (2012)

218. Yuan, Y., Lian, X., Chen, L., Yu, J.X., Wang, G., Sun, Y.: Keyword search over distributed graphs with
compressed signature. IEEE Trans. Knowl. Data Eng. 29(6), 1212–1225 (2017)

219. Yuan, Y., Wang, G., Chen, L., Wang, H.: Efficient keyword search on uncertain graph data. IEEE Trans.
Knowl. Data Eng. 25(12), 2767–2779 (2013)

220. Yuan, Y., Wang, G., Wang, H., Chen, L.: Efficient subgraph search over large uncertain graphs. PVLDB
4(11), 876–886 (2011)

221. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: On approximating graph edit
distance. PVLDB 2(1), 25–36 (2009)

222. Zhang, J., Tang, J., Ma, C., Tong, H., Jing, Y., Li, J., Luyten, W., Moens, M.-F.: Fast and flexible top-k
similarity search on large networks. ACM Trans. Inf. Syst. 36(2), 13:1–13:30 (2017)

223. Zhang, M., Wang, J., Wang, W.: HeteRank: A general similarity measure in heterogeneous information
networks by integrating multi-type relationships. Inf. Sci. 453, 389–407 (2018)

224. Zhang, S., Li, S., Yang, J.: GADDI: distance index based subgraph matching in biological networks.
In: EDBT, pp 192–203 (2009)

225. Zhang, S., Yang, J., Jin, W.: SAPPER: Subgraph indexing and approximate matching in large graphs.
PVLDB 3(1), 1185–1194 (2010)

226. Zhang, S., Li, J., Gao, H., Zou, Z.: A novel approach for efficient supergraph query processing on graph
databases. In: EDBT, pp 204–215 (2009)

227. Zhang, W., Lin, X., Zhang, Y., Zhu, K., Zhu, G.: Efficient probabilistic supergraph search. IEEE Trans.
Knowl. Data Eng. 28(4), 965–978 (2016)

228. Zhang, X., Özsu, M.T.: Correlation constraint shortest path over large multi-relation graphs. PVLDB
12(5), 488–501 (2019)

229. Zhang, X., Feng, Z., Wang, X., Rao, G., Wu, W.: Context-free path queries on RDF graphs. In: ISWC,
pp 632–648 (2016)

230. Zhao, P., Han, J.: On graph query optimization in large networks. PVLDB 3(1), 340–351 (2010)
231. Zhao, P., Li, X., Xin, D., Han, J.: Graph cube: on warehousing and OLAP multidimensional networks.

In: SIGMOD, pp 853–864 (2011)
232. Zhao, X., Xiao, C., Lin, X., Liu, Q., Zhang, W.: A partition-based approach to structure similarity

search. PVLDB 7(3), 169–180 (2013)
233. Zheng, W., Lian, X., Zou, L., Hong, L., Zhao, D.: Online subgraph skyline analysis over knowledge

graphs. IEEE Trans. Knowl. Data Eng. 28(7), 1805–1819 (2016)
234. Zheng, W., Zou, L., Lian, X., Hong, L., Zhao, D.: Efficient subgraph skyline search over large graphs.

In: CIKM, pp 1529–1538 (2014)
235. Zhou, Y., Huang, J., Li, H., Sun, H., Peng, Y., Xu, Y.: A semantic-rich similarity measure in

heterogeneous information networks. Knowl.-Based Syst. 154, 32–42 (2018)
236. Zhu, G., Lin, X., Zhu, K., Zhang, W., Yu, J.X.: TreeSpan: efficiently computing similarity all-matching.

In: SIGMOD, pp 529–540 (2012)
237. Zhu, Q., Cheng, H., Huang, X.: I/O-efficient algorithms for top-k nearest keyword search in massive

graphs. VLDB J. 26(4), 563–583 (2017)
238. Zhu, Y., Qin, L., Yu, J.X., Cheng, H.: Finding top-k similar graphs in graph databases. In: EDBT, pp

456–467 (2012)
239. Zhu, Y., Zhang, Q., Qin, L., Chang, L., Yu, J.X.: Querying cohesive subgraphs by keywords. In: ICDE,

pp 1324–1327 (2018)
240. Zhu, Y., Zhang, Q., Qin, L., Chang, L., Yu, J.X.: Cohesive subgraph search using keywords in large

networks. IEEE Trans. Knowl. Data Eng. (2020)

World Wide Web

241. Zou, L., Chen, L., Özsu, M.T.: Distance-join: Pattern match query in a large graph database. PVLDB
2(1), 886–897 (2009)

242. Zou, L., Huang, R., Wang, H., Yu, J.X., He, W., Zhao, D.: Natural language question answering over
RDF: a graph data driven approach. In: SIGMOD, pp 313–324 (2014)

243. Zou, L., Xu, K., Yu, J.X., Chen, L., Xiao, Y., Zhao, D.: Efficient processing of label-constraint
reachability queries in large graphs. Inf. Syst. 40, 47–66 (2014)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

YanhaoWang1 ·Yuchen Li2 · Ju Fan3 ·Chang Ye2 ·Mingke Chai3

Yanhao Wang
yanhao.wang@helsinki.fi

Yuchen Li
yuchenli@smu.edu.sg

Chang Ye
changye.2020@phdcs.smu.edu.sg

Mingke Chai
cmk@ruc.edu.cn

1 Department of Computer Science, University of Helsinki, Helsinki, 00560, Finland
2 School of Information Systems, Singapore Management University, Singapore, 178902, Singapore
3 Key Lab of Data Engineering and Knowledge Engineering (DEKE) and Information School,

Renmin University of China, Beijing, 100872, China

mailto: yanhao.wang@helsinki.fi
mailto: yuchenli@smu.edu.sg
mailto: changye.2020@phdcs.smu.edu.sg
mailto: cmk@ruc.edu.cn

	A survey of typical attributed graph queries
	Citation

