
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2020

Differential privacy protection over deep learning: An investigation Differential privacy protection over deep learning: An investigation

of its impacted factors of its impacted factors

Ying LIN
Yunnan University

Ling-Yan BAO
Yunnan University

Ze-Minghui LI
Yunnan University

Shu-Sheng SI
Yunnan University

Chao-Hsien CHU
Singapore Management University, chchu@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Information Security Commons

Citation Citation
LIN, Ying; BAO, Ling-Yan; LI, Ze-Minghui; SI, Shu-Sheng; and CHU, Chao-Hsien. Differential privacy
protection over deep learning: An investigation of its impacted factors. (2020). Computers & Security. 99,
1-16.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5402

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5402&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5402&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5402&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Differential privacy protection over deep learning: An investigation of
its impacted factors

Ying Lina, Ling-Yan Baoa, Ze-Minghui Lia, Shu-Zheng Sia, Chao-Hsien Chub

a School of Software, Yunnan University, China

b School of Information Systems, Singapore Management University, Singapore

Published in Computers & Security, December 2021, 99, Article No. 102061, pp 1-16.
https://doi.org/10.1016/j.cose.2020.102061

Abstract

Deep learning (DL) has been widely applied to achieve promising results in many fields, but it still exists
various privacy concerns and issues. Applying differential privacy (DP) to DL models is an effective way to
ensure privacy-preserving training and classification. In this paper, we revisit the DP stochastic gradient
descent (DP-SGD) method, which has been used by several algorithms and systems and achieved good
privacy protection. However, several factors, such as the sequence of adding noise, the models used etc., may
impact its performance with various degrees. We empirically show that adding noise first and clipping second
will not only significantly achieve high accuracy, but also accelerate convergence. Rigorous experiments have
been conducted on three different datasets to train two popular DL models, Convolutional Neural Network
(CNN) and Long and Short-Term Memory (LSTM). For the CNN, the accuracy rate can be increased by 3%,
8% and 10% on average for the respective datasets, and the loss value is reduced by 18%, 14% and 22% on
average. For the LSTM, the accuracy rate can be increased by 18%, 13% and 12% on average, and the loss
value can be reduced by 55%, 25% and 23% on average. Meanwhile, we have compared the performance of
our proposed method with a state-of-the-art SGD-based technique. The results show that under the premise of
a reasonable clipping threshold, the proposed method not only has better performance, but also achieve ideal
privacy protection effects. The proposed alternative can be applied to many existing privacy preserving
solutions.

Keywords: Differential privacy, Privacy preserving, Deep learning, Stochastic gradient descent (SGD)

1. Introduction

With recent major advances in Artificial Intelligence (AI) and the computational capability of computers, DL
has achieved promising performance in many fields, such as data analytics, image classification, pattern
recognition and health care, but its wide application also makes it a natural target for attackers (Papernot et al.,
2016). In addition, its capability to capture and memorize elements of training data provides a convenient
pathway for an attacker to determine whether a particular data record is in the training dataset through
membership inference attack (Shokri et al., 2017). Hence, privacy assurance in DL has become a hot topic and
many researchers have proposed various privacy-aware DL mechanisms over the past few decades (Liu et al.,
2018).

☆ Corresponding author: On leave (2019-2020) from The Pennsylvania State University, University Park, PA
16802, USA. E-mail address: chu@ist.psu.edu (C.-H. Chu).

https://doi.org/10.1016/j.cose.2020.102061
mailto:chu@ist.psu.edu

2 c o m p u t e r s & s e c u r i t y 9 9 (2 0 2 0) 1 0 2 0 6 1

Privacy assurance in ML or DL commonly needs to ad-
dress the following issues (Shokri and Shmatikov, 2015 ;
Senavirathne and Torra, 2019): (1) privacy of the input data
used to test the model or get a prediction; (2) privacy of the
model itself; (3) privacy of the training data used to train

the model; and (4) privacy of the model’s output. Protecting
data means preventing sensitive information from exposure,
whereas, protecting the model usually means protecting the
model’s architecture and various parameters from illegal ac-
cess and modification. There are two main avenues to pro-
tect privacy in ML or DL. One is encryption, represented by
multi-party secure computing (Du and Atallah, 2001) and ho-
momorphic encryption (Rivest et al., 1978), to protect sensi-
tive information from exposure. Almost all of the encryption-
based solutions require a fair amount of communications be-
tween the participating parties, so they are communication-
bound (Badawi et al., 2018) and their ability to protect the neu-
ral networks themselves still remains an open problem. The
other solution is perturbation. Various perturbation methods
have been proposed for privacy protection. Input perturba-
tion adds noise to the training data, and subsequent calcula-
tions are based on the noise-added data. Objective perturba-
tion (Zhang et al., 2012 ; Phan et al., 2016 ; Phan et al., 2017) per-
turbs the objective function of the training model, which usu-
ally requires first deriving the approximate polynomial repre-
sentation, so it is nontrivial. Output perturbation adds noise
to the output of the model, such as in the PATE approach

(Papernot et al., 2016). Compared with the above three meth-
ods, gradient perturbation receives a lot of attention as it can

achieve DP guarantee even for nonconvex objectives. It is also
the focus of this study.

Usually, gradient perturbation perturbs the computed gra-
dients in each training step, and the whole training proce-
dure can by guaranteed by applying the composition property
(Dwork et al., 2006). In previous differentially private gradient
computing mechanisms, the procedure of clipping the gradi-
ent was commonly performed before the procedure of adding
noise. In this paper, we empirically found that changing the
sequence of gradient clipping and adding noise can not only
achieve high accuracy, but also accelerate convergence. More-
over, through our exploration and testing, we found that sev-
eral other factors such as the types of learning models used,
the gradient descent optimization methods, and model pa-
rameters etc., may impact the model’s final performance with

various degrees. As there has been no thorough analysis on

whether those factors would make a difference, we examine
these issues as well. Considering the trade-off between pri-
vacy protection and model utility, we use three metrics, con-
vergence, classification accuracy and level of privacy protec-
tion (a new proposed metric) to evaluate the model’s perfor-
mance.

The purposes of this study and our main contributions are:

(1) We propose a generic noisy gradient (NG) method to handle
the problem of privacy preserving DL. In NG, not only the
conventional stochastic gradient descent algorithm, but
also other adaptive gradient descent algorithms are taken

into consideration. In addition, the relative importance of
various parameters was studied. The efficiency and some

merits of the proposed method was verified by rigorous ex-
periments.

(2) By detailed empirical comparison experiments, we found

that in the category of perturbing gradients to protect pri-
vacy of DL model, the sequence of adding noise first and

clipping gradient second can achieve higher accuracy and

faster convergence speed than when clipping gradient first
and adding noise second. We give a detailed analysis on

why changing the process sequence can achieve such ef-
fects.

(3) We implement two popular DL models, CNN and LSTM,
with two different gradient descent optimization methods,
using three datasets to show the applicability of our pro-
posed method.

(4) We apply detailed statistical analysis methods to deter-
mine the impacts of various parameters, specifically the
impact of dataset, model, optimizer, noise, clipping , and se-
quence , on the privacy preserving DL model’s performance.

(5) In order to better study whether changing the process se-
quence would affect the model’s privacy protection effects,
we propose a new privacy protection metric called Total
Parameters Value Difference (TPVD) and investigate the
trade-off between privacy and utility under different pa-
rameter settings. Experimental results show that our pro-
posed metric can achieve a better privacy guarantee while
still obtaining higher utility by carefully calibrating input
parameters.

(6) We compare our proposed method with a state-of-the-art
SGD-based technique, which adaptively selects the clip-
ping threshold during the training process. The results
show that under the premise of a reasonable clipping
threshold, the method proposed in this paper not only has
better performance, but also achieve ideal privacy protec-
tion effects.

The rest of the paper is organized as follows: In Section 2 ,
we present existing work related to gradient perturbation

methods. In Section 3 , we present the preliminaries and tech-
nical background associated with this paper. In Section 4 , we
introduce our proposed algorithm and present experimental
setting. We present the experimental results, analyses and

compare our work with a state-of-the-art gradient perturba-
tion technique in Section 5 . In Section 6 , we use statistical
analysis methods to analyze the impacts of various factors
and parameters. In Section 7 , we provide further improve-
ments on privacy protection and discuss the implications. In

Section 8 , we conclude the paper and discuss future work.

2. Related work

The purpose of privacy preserving DL is to prevent adversaries
from inferring accurate personal information through inver-
sion attacks (Fredrikson et al., 2014 ; Fredrikson et al., 2015),
membership attacks (Shokri et al., 2017 ; Hayes et al., 2019)
or model extraction attacks (Tramèr et al., 2016 ; Wang and

Gong, 2018). Gradient perturbation (Zhao et al., 2019) is one
of the commonly used methods in privacy preserving DL.

Many early research focused on using encryption to pre-
vent sensitive information from exposure. Dowlin et al.

c o m p u t e r s & s e c u r i t y 9 9 (2 0 2 0) 1 0 2 0 6 1 3

(Gilad-Bachrach et al., 2016) presented a method to convert
learned neural networks to CryptoNets , which can be ap-
plied to encrypted data to maintain data privacy and secu-
rity. Hesamifard et al., (2018) presented a framework, named

CryptoDL , for running deep neural network (DNN) algorithms
over encrypted data. Using this, data owners can send their
encrypted data to a cloud and then get an encrypted predic-
tion in return.

There have been several efforts in gradient perturbation

(Shokri and Shmatikov, 2015 ; Bassily et al., 2014 ; Abadi et al.,
2016 ; Song et al., 2013 ; Lee, 2017). Early research on SGD-
based gradient perturbation focused on adding noise to the
output of the standard Empirical Risk Minimization (ERM)
algorithm (Chaudhuri et al., 2011), which can produce pri-
vacy preserving approximations of classifiers. Song et al.,
(2013) proposed differentially private versions of single-point
SGD and mini-batch SGD, but this paper did not examine how

to track the privacy consumption of the entire training pro-
cess. Shokri and Shmatikov, (2015) implemented a distributed

selective stochastic gradient descent (DSSGD) method for col-
laborative DL. One key idea of DSSGD is that every participant
shares a fraction of the parameters with other participants,
which allows participants to benefit from other parties with-
out sharing their own data. To minimize parameters leakage,
they applied DP when updating parameters. However, if the
numbers of training epoch, sharing parameters and partici-
pants are large, this method may consume a large portion of
the privacy budget.

Abadi et al., (2016) improved the computational efficiency
of differential privacy SGD (DP-SGD) and proposed a privacy
accounting method called moments accountant to track cumu-
lative privacy loss. The DP-SGD algorithm clips the gradients
of the sample first to limit the sensitivity of each sample, and

then adds noise to the gradients in batches before applying
descent. Since this technique was proposed, it has been ex-
tended to a variety of situations. Our research work is also
based on this technique to compare the influence of several
factors that may impact the model’s performance such as the
sequence of adding noise, the types of models used, the gradi-
ent descent optimization methods, and the parameters of the
model.

Xie et al., (2018) proposed a differentially private Gener-
ative Adversarial Network (DP-GAN) by adding noise to the
gradients of the discriminator and then training a generator
with the differentially private discriminator. At the end of the
training, both discriminator and generator are DP. Acs et al.,
(2019) proposed a differentially private generative model (DP-
GM), which is a composition of private kernel k -means and

DP-SGD. In both private methods, the clipping threshold C was
adapted to the gradient update of every batch to ensure fast
convergence with small error. Yu et al., (2019) is also based

on DP-SGD, but the authors proposed some new techniques,
which effectively optimizes both model accuracy and privacy
loss analysis.

From the recent work on applying gradient perturbation

to achieve privacy, we can see that the work of DP-SGD

(Abadi et al., 2016) method is the cornerstone. To achieve a
trade-off between particular privacy vs. utility, some follow

up work was done by adaptively choosing parameters, such

as adaptively choosing clipping threshold C (Acs et al., 2019 ;

Mcmahan et al., 2018) or by using different DP mechanism,
such as f -differential privacy (Dong et al., 2019).

3. Preliminaries/Technical background

In this section, we briefly revisit some technical backgrounds
of DP and two popular DL models, CNN and LSTM, which lay
the foundation for our theoretical development.

3.1. Differential privacy (DP)

DP is defined in terms of the concept of adjacent databases,
that is, two datasets D and D ′ are adjacent if they differ
in at most one record. DP establishes a guarantee that a
randomized algorithm behaves similarly on the two adja-
cent databases. The ɛ -DP was proposed by Dwork in 2006
(Dwork et al., 2006) to protect or preserve privacy at differ-
ent levels of probability. This mechanism ensures that in-
serting or deleting a record in a data set does not affect any
calculated output. In addition, ɛ -DP is robust against hack-
ers who have auxiliary information. The ɛ -differential protec-
tion mechanism relies on incorporating random noise into the
data (Dwork et al., 2006). The injected noise should be care-
fully calibrated and it can be generated by different mecha-
nisms such as the Laplace mechanism (Dwork et al., 2006), the
Exponential mechanism (McSherry and Talwar, 2007) and the
Gaussian mechanism (Dwork and Roth, 2014). The Gaussian

mechanism is usually used in the gradient perturbation ap-
proach.

Definition 1 (ɛ -differential privacy (Dwork et al., 2006)) . A ran-
dom mechanism M provides ɛ -DP if for two adjacent databases
D and D ′ , and for all O ∈ range(M), the following inequality
holds:

P r (M (D) ∈ O) ≤ e ε P r (M (D ′) ∈ O) (1)

Where, the parameter ɛ is defined as the privacy budget,
which controls the privacy guarantee level. A lower ɛ means
stronger privacy guarantee and more perturbation. Sensitivity
determines how much perturbation is required for a random

mechanism M . Global sensitivity and local sensitivity are two
types of sensitivity that are employed in the DP.

Definition 2 (Global sensitivity (Dwork et al., 2006)) . Given a
function f : D → R d , for any two adjacent datasets D and D ′ , the
global sensitivity of f is defined as:

G S f =
max
D, D ′

∥∥ f (D) − f (D ′)
∥∥ (2)

Definition 3 (Local sensitivity (Dwork et al., 2006)) . Given a
function f : D → R d , for dataset D and its adjacent dataset D ′ ,
the local sensitivity of f on dataset D is defined as:

L S f =
max
D ′

‖ f (D) − f (D ′) ‖ (3)

Compared with the global sensitivity, local sensitivity is re-
lated to a specific database D , so it may result in information

4 c o m p u t e r s & s e c u r i t y 9 9 (2 0 2 0) 1 0 2 0 6 1

disclosure. In this paper, sensitivity refers to l 2 -global sensi-
tivity.

Definition 4 (l 2 -global sensitivity) . The l 2 -global sensitivity of a
function f is the maximum L 2 norm of the difference between

f (D) and f (D ′), i.e.:

L 2 f =
max
D, D ′

∥∥ f (D) − f (D ′)
∥∥

2 (4)

In some situations, it is possible that the ɛ -DP is broken with

probability δ, which is called the (ɛ , δ)-differential privacy.

Definition 5 ((ɛ , δ)- differential privacy (Dwork and Roth, 2014))
. A privacy mechanism M guarantees (ɛ , δ)- DP if for any two
adjacent databases D and D ′ , and for all O ∈ range (M), the fol-
lowing inequality holds:

Pr (M (D) ∈ O) ≤ e ε Pr (M (D ′) ∈ O) + δ (5)

The (ɛ , δ)-DP allows that the privacy loss does not exceed ɛ

with probability at most 1 − δ.

Definition 6 (Gaussian mechanism (Dwork and Roth, 2014)) . The
Gaussian mechanism with parameter σ is to add independent
and identically distributed (i.i.d.) Gaussian noise to a true out-
put of a function f whose value is a k -dimensional vector, de-
fined bellow:

M (D) = f (D) +
〈
x 1 , x 2 , . . . x k

〉
(6)

Where x 1 , x 2 , . . . x k are i.i.d. random variables drawn from

N (0, σ 2 I).

Theorem 1 (Dwork and Roth, 2014) . Let ɛ ∈ (0, 1), the Gaussian
mechanism with parameter σ >

√
2 ln (1 . 25 /δL 2 f /ε is (ɛ , δ) -DP .

According to Theorem 1, the Gaussian mechanism can

achieve (ɛ , δ)-DP guarantee as long as those parameters ɛ , δ
and σ meet the above inequality conditions.

3.2. Deep learning (DL)

DL is a subset of ML based on artificial neural networks. Its
learning methods can be either supervised, semi-supervised

or unsupervised, which allows a machine to be fed with

raw data and to automatically discover the representations
needed for detection or classification (LeCun et al., 2015). Many
applications of DL use feedforward neural networks, which

are composed of several layers of transformation of the form

F i (x) = g(W i • F i −1 (x)) , where the i th -layer F i takes the results
of previous layers F i −1 as inputs, W i is a matrix of the param-
eters and g represents the non-linear activation function. Let
Z (x) denote the output of the last layer (usually before the soft-
max), i.e., Z (x) = F n (x) , then the final output of the network is
F (x) = so ft max (Z (x)) . In this paper, we will use two popular
DLs, the CNN and LSTM, for exploration.

3.2.1. Convolutional neural network (CNN)
The CNN is a variation of a feedforward neural network,
which has shown excellent performance in many ML prob-
lems (Kandi et al., 2017). One processing step in a CNN is usu-
ally called a layer. The convolution layer, pooling layer, and

fully connected layer are three main types of layers in CNN

architectures.

(1) Convolutional layer : The convolutional layer is the major
building block used in a CNN. In a convolutional layer, mul-
tiple convolution kernels (filters) are used to extract fea-
tures from the raw input data. Convolution is a mathemat-
ical operation that computes the dot product between the
input and the entries of the filter, which produces an acti-
vation map of that filter. Stacking the activation maps for
all filters along the depth dimension forms the full output
volume of the convolution layer.

(2) Pooling layer : The pooling layer is used for down sampling
feature maps to reduce the number of parameters and

computations in the network. The pooling layer operates
independently on every depth slice of the input and resizes
it spatially by using two common pooling methods: average
pooling and max pooling . The output of the pooling layer is a
summarized version of the features detected in the input.

(3) Fully connected layer : In the fully connected layer, each neu-
ron receives input from every element of the previous layer.
A fully connected layer outputs a vector of length equal to
the number of neurons in the layer and is usually built in

the last layer of a CNN. This part is in principle the same
as a regular neural network.

3.2.2. Long short-term memory (LSTM)
Recurrent Neural Networks (RNN) have been widely used to
deal with variable-length sequence inputs with the output
being dependent on the previous computations. LSTM, pro-
posed by Hochreiter and Schmidhuber in 1997 (Hochreiter and

Schmidhuber, 1997), is a special kind of RNN. The key element
of LSTM is the cell state, which is controlled by three kinds
of gates: input, output and forget gates. The following equa-
tions give the step-by-step update for the current cell, where
σ stands for the sigmoid function and W f , W i , W c , W o , b f , b i , b c ,
b o are parameters of the network.

The first step in LSTM is that the forget gate reads the input
of h t−1 (the output of the previous unit) and x t (the input of
the current unit), and then outputs a value between 0 and 1 as
shown in (7). The next step includes two parts to decide what
new information needs to be stored in the cell state. Firstly, as
shown in (8), the input gate decides which values need to be
updated. Then as shown in (9), a tanh function generates ˜ C t .
Based on these previous steps, the old cell state C t−1 can be
updated to a new state C t as shown in (10). Finally, it is time to
decide the output value. As shown in (11), an output gate gets
o t to decide what parts of the cell state needs to be output,
then multiplies o t with a tanh function of the new state C t as
shown in (12), so that it only outputs the needed parts.

f t = σ
(
W f · [h t−1 , x t] + b f

)
(7)

i t = σ (W i · [h t−1 , x t] + b i) (8)

˜ C t = tanh (W c · [h t−1 , x t] + b c) (9)

C t = f t ∗C t−1 + i t ∗ ˜ C t (10)

c o m p u t e r s & s e c u r i t y 9 9 (2 0 2 0) 1 0 2 0 6 1 5

o t = σ (W o · [h t−1 , x t] + b o) (11)

h t = o t ∗ tanh (C t) (12)

3.3. Gradient descent optimization

In most DL models, the loss function L(W,X) is calculated as
the difference between the actual output and the predict out-
put. The gradient is the partial derivative of the loss function

with respect to weights. Gradient descent is one of the popu-
lar algorithms used to perform optimization by updating the
weights of the learning models. The weights are updated in

the opposite direction of the calculated gradient and this cy-
cle is repeated until reaching the minima of the loss function

as shown in (13).

W (k +1) = W (k) − ∂L (W, X)

∂ W (k)
(13)

Stochastic gradient descent (SGD) belongs to a type of con-
stant learning rate algorithms, which are the most widely
used to optimize function.

W (k +1) = W (k) − η∗ ∂L (W, X)

∂ W (k)
(14)

Where η is called the learning rate which is a hyper pa-
rameter that needs to be properly tuned. The challenge of us-
ing gradient descent is that their hyper parameters must be
defined in advance and they depend heavily on the type of
model and problem considered. Another problem is that the
same learning rate is applied to all parameter updates. Adap-
tive learning algorithms provide an alternative to the classical
SGD. They have per-parameter learning rate methods, which

provide heuristic approach without requiring expensive work
in manually tuning hyper parameters for the learning rate
schedule. Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012)
and Adam (Kingma and Ba, 2014) are the most widely used

adaptive gradient descent algorithms.

4. Materials and methods

4.1. The proposed noisy gradient (NG) algorithm

In this section, we formally present our mechanism; the
pseudo-code of Algorithm 1 outlines four basic steps in our

Algorithm 1 – Noisy Gradient (NG) Algorithm.

Input: examples { x 1 , x 2 , . . . x N }, Loss function, parameters: σ , L , C , T
1: Initialize w 0 randomly
2: For t ∈ T do
3: Take a random sample L t with sampling probability L/N

4: For each i ∈ L t , compute g i ← ∇ w t L (w t , x i)
5: ˜ g i ← g i + N (0 , σ 2 C 2 I)

6: g i ← ̃ g i /max (1 ,
‖ ̃ g i ‖ 2

C)
7: ˜ g t ← 1

L
∑

i g i
8: Optimizer.Apply_gradients(̃ g t)
9: End

mechanism. The main process of implementing the NG algo-
rithm includes the following steps:

First, we compute the gradient. This is achieved by select-
ing a random subset of examples and computing the gradi-
ent for each sample in this subset at every training step t .
Second, we add noise. This is achieved by adding Gaussian

noise to each gradient of a batch to obtain noised gradient.
Thirdly, we perform gradient clipping. If the L 2 norm for the
noised gradient exceeds the threshold value C , then the val-
ues in the vector will be rescaled, so that the L 2 norm of the
noised gradient equals C ; otherwise, keep the original noised

gradient unchanged. The final step is gradient optimization.
This is achieved by taking SGD, Adam, or other optimization

methods.

4.2. Theoretical rationality

Our proposed algorithm is based on the work in (Abadi et al.,
2016), which proposed a differentially private SGD (DP- SGD)
algorithm. The main difference between our proposed algo-
rithm and the DP-SGD is in the sequence of clipping gradient
and adding noise. The DP-SGD algorithm first clips every com-
puted gradient in a batch to ensure the L 2 norm of the gradient
is within a threshold C and then adds Gaussian noises to the
total sum of gradients in the batch. In our proposed algorithm,
we add Gaussian noises to each computed gradient in a batch

first and then clip the noised gradient to ensure the L 2 norm

of the noised gradient is within a threshold C . In our explo-
rations, we observed that although the L 2 norm of a gradient
is forced to a threshold C after the step of clipping in the DP-
SGD, the subsequent step of adding noise breaks this limit as
long as the random noise is large enough. Although noisy up-
dates help in finding new and better local minima, larger fluc-
tuations will cause the optimization algorithm to go beyond

the better local minima and continue overshooting close to
the desired exact minima. The modification of adding noise
before clipping can ensure the L 2 norm of the final gradient
stays within the threshold C even if adding a larger random

noise first.
Although our improved method only changes the sequence

of clipping and perturbation, compared with the DP-SGD, it
differs in that the noisy gradients updates is guaranteed to
be within a certain threshold. Adding noise into gradients
before clipping results in higher accuracy and faster con-
vergence than adding noise after gradient clipping. More-
over, adding bounded noise improves learning for DL mod-
els. This finding constitutes the main contribution of this pa-
per. In fact, adding random noise to the weights, gradient, and

the hidden units has also been used when training neural
networks (Graves, 2011 ; Blundell et al., 2015). In the work of
(Neelakantan et al., 2015), the authors empirically illustrated

that injecting noise into gradients guarantees stochasticity,
and can actually achieve lower training loss. They showed that
adding noise encourages active exploration of the parame-
ter space and gives the model more chances to escape local
minima or to traverse quickly through the stationary stage of
early learning. These features can result in lower training loss,
which helps to achieve a higher accuracy.

After adding random noise to the gradient, we apply gradi-
ent clipping. Gradient clipping was introduced in (Bengio et al.,

6 c o m p u t e r s & s e c u r i t y 9 9 (2 0 2 0) 1 0 2 0 6 1

2013) to avoid the gradient explosion problem. There are many
ways to compute gradient clipping. Two commonly used ap-
proaches are gradient norm clipping and gradient value clip-
ping. The proposed NG algorithm uses the first method. In

our approach, clipping noisy gradients to a certain thresh-
old not only avoids the problem of gradient explosion, but
also improves model’s convergence. Although the theory be-
hind it is still largely unknown, it is a fact that gradient clip-
ping helps in convergence. Many studies such as (Bottou, 1998 ;
Carmon et al., 2017) are striving to provide a theoretical ex-
planation for the effectiveness of gradient clipping in training
DNNs.

4.3. The construction of CNN and LSTM

4.3.1. CNN model
The CNN model we build for our experiments contains one
input layer, two convolutional layers, two pooling layers, one
fully connected layer, one dropout layer and an output layer.

The input layer of the CNN is set to 28 ×28 ×1 , which is con-
sistent with the picture format of the MNIST dataset. Convo-
lution layer is basically filtering the image with a smaller pixel
filter. We use 32 5 × 5 filters for the first convolution layer and

64 5 × 5 filters for the second convolution layer. For the im-
ages in the training set, filters step over the entire image. At
each step the window is moved by 1 stride. When constructing
CNNs, it is common to insert pooling layers after each convo-
lution layer. We select a pooling size to reduce the amount
of parameters by using the max-pooling method with strides
of 2 and kernel size of 2 . Finally, we construct two fully con-
nected layers at the end to classify our images. The first fully
connected layer uses 1024 neurons. It receives input from the
previous layer and those neurons are randomly dropped out
during training. The final fully connected layer uses 10 neu-
rons to represent which category the image belongs to.

As MNIST data input is a 1-dimensional vector of 784 fea-
tures (28 ×28 pixels), it can easily be reshaped in the input layer
to match the 28 ×28 ×1 requirement. However, for the CIFAR10
and SVHN datasets, because the image format of both data
sets is 32 ×32 ×3 , we first need an image format pre-processing
step to change it from a 32 ×32 ×3 color image to a 28 ×28 ×1
grayscale image in order to train these three different datasets
on a uniform CNN architecture.

4.3.2. LSTM model
For processing images, the input of the LSTM network model
constructed in this paper is a 28 ×28 gray image, which can

be viewed as a matrix with 28 rows and 28 columns. We ex-
pand the network in 28 time-steps so that in each time step,
we can enter a row of 28 pixels, thus inputting the image af-
ter 28 time-steps. In the hidden layer, a LSTM cell replaces the
common hidden unit in the RNN. We set a LSTM cell with the
number of units as 128 . The number of units in a LSTM cell
can be interpreted as analogous to a hidden layers from the
RNN. We set a batch size of 128 , which means that every time
step will be supplied with a respective row of 128 images. At
every time-step, each LSTM cell will generate a tensor of shape
[128, 128], but we are only concerned with the output of the fi-
nal time-step. Thus, in the last time-step, we will convert the

final output of shape [128,128] to [128, 10] so that the correct
class can be predicted.

To allow the image formats of CIFAR10 and SVHN to satisfy
the input requirement of the LSTM, we also need to do image
pre-processing work before training.

4.4. Datasets

To verify the effectiveness of our proposed technique,
we use three datasets, MNIST (LeCun, 1998), CIFAR10
(Krizhevsky et al., 2014) and SVHN (Netzer et al., 2011)
for experiments and testing. The MNIST has been widely
used as a standard ML benchmark in pattern recognition for
over two decades (Baldominos et al., 2019 ; Das, 2017). The
MNIST dataset includes 70,000 28 ×28 grayscale images of
handwritten digits from 0 to 9 , in which 60,000 are for training
and 10,000 for testing. The CIFAR-10 dataset includes 60,000
32 ×32 color images of ten different categories for airplanes,
cars, birds, cats, deer, dogs, frogs, horses, ships and trucks,
and each category has 6000 images. The SVHN is a real-world

image dataset, which includes over 600,000 digital images of
street view numbers, from which we use 100,000 for training
and 10,000 as test examples.

4.5. Performance metrics

Three metrics, convergence, classification accuracy and level
of privacy protection, are used to evaluate the model’s perfor-
mance.

4.5.1. Convergence
The loss function reflects the degree to which the model fits
the data. In general, the smaller the loss value, the better the
model fits the data. To better illustrate the difference between

the predicted value and the true value when we run differ-
ent optimization methods under privacy-preserving guaran-
tee, we use convergence as one of the performance metrics.

Definition 7 (Convergence) . Suppose L (W, X) is the loss function

of a DL model with parameters W and input. For any ɛ > 0,
for each t ∈ 0 , 1 , ...T − 1 , W t+1 = W t − η 1

| S t |
∑

i ∈ S t
L (W t , x i) , if it

satisfies with probability over the randomness of S 1 , S 2 , ..., S T :
L (W t , X) ≤ ɛ , then we say the loss function is convergent.

4.5.2. Classification accuracy
Although a few other metrics such as sensitivity, specificity,
accuracy, precision and F1 score have been used in assess-
ing the relative performance of ML/DL algorithms, we use ac-
curacy to measure classification accuracy in this paper. It is
the ratio of number of correct predictions to the total number
of input samples. The higher the classification accuracy, the
higher the model’s utility.

accuracy =
number o f correct predictions

t ot al number o f pred ictions mad e
(15)

4.5.3. Privacy protection

DP generally uses (ɛ , δ) as the metrics for privacy protection. In

this paper, we propose another metric, Total Parameters Value
Difference (TPVD) , to measure the privacy protection capability

c o m p u t e r s & s e c u r i t y 9 9 (2 0 2 0) 1 0 2 0 6 1 7

of our proposed algorithm, because we want to examine from

another perspective how the impact of adding noise in the
training process will affect the model itself. It is well known

that when the training process is over, the released weights
can be used to represent the DL model in some sense. Be-
cause of this, measuring the difference between the weights
obtained from a training process that has no privacy protec-
tion and the weights obtained from training with noise per-
turbation can better reflect the protection of the model itself.

Let W = (W 1 , W 2 , . . . W n) and W̄ = (W̄ 1 , W̄ 2 , . . . W̄ n) be the
weights of a DL model whose training process has no privacy
protection and has privacy protection respectively. Each com-
ponent W i or W̄ i is a matrix of some weights. Considering that
the value difference (VD) (Wang et al., 2006) is commonly used

to measure the level of data distortion between two matrices,
we use it to evaluate the level of data distortion between the
original matrix W i and its distorted counterpart W̄ i as shown

in (16).

V D i =

∥∥∥W i − W̄ i
∥∥∥

F ∥∥W i
∥∥

F

(16)

Where the ‖ W ‖ F is the Frobenius norm of a n ∗m -
dimensional matrix W . It is the sum of the absolute value
squared of each element in W as shown in (17):

‖ W ‖ F =

√ √ √ √
n ∑

j=1

m ∑

i =1

∣∣∣v j i
∣∣∣2 (17)

Based on the VD calculation of each component W i and

its counterpart W̄ i , we can get the TPVD between W and W̄ as
shown in (18):

T PV D =

∑ n
i =1 V D i

n
(18)

4.6. Experimental design

4.6.1. Experimental parameter settings
We design several experiments to compare and verify the per-
formance impacted by different factors. First, we consider the
sequence of adding noise, before or after gradient clipping,
as it can influence the convergence performance and predic-
tion accuracy of DL models. Second, to better demonstrate the
versatility of our proposed method, we use two DL models,
CNN and LSTM, and adopt two gradient descent optimization

methods, SGD and Adam, for evaluation. Parameters consid-
ered in the experiments include Gaussian noise scale σ and

clipping threshold C . Table 1 lists the key experimental factors
and their levels considered in the experimental design.

4.6.2. Hardware and software environment
Table 2 lists the hardware and software environment we used

in these experiments.

Table 1 – Experimental factors and their levels.

Experimental
Factors

Levels Values

Datasets 3 MNIST,
CIFAR10,
SVHN

DL models (M) 2 CNN, LSTM

Gradient descent
optimization
method (O)

2 SGD, Adam

Sequence of adding
noise (S)

2 Adding noise
then Clipping
(AC), Clipping
then Adding
noise (CA)

Parameter σ (N) 2 0.1, 0.5
Parameter C (C) 2 0.8, 1.4

Table 2 – Hardware and software environment.

OS Windows 10

RAM 16 G/8G

Graphics card GTX1070/GTX1060/GTX950
Graphics memory 8 G/4 G/2G

Python Python 3.6
IDE Pycharm 2018
Anaconda Anaconda 3.6
Tensorflow Tensorflow-1.11.0 GPU

Keras Version 2.2.4

5. Performance evaluation, results and

analyses

5.1. Experimental results with different parameter
settings

By setting different parameters, we conducted model training
under different parameter combinations. Tables 3–5 show the
experimental results by training on MNIST, CIFAR10 and SVHN

datasets respectively. The best result of each column is high-
lighted in boldface and the worst result is shown in red color
or italic format.

From the experimental results, we can see that both CNN

and LSTM achieved a high accuracy and a fast convergence
effect on the MNIST dataset. The training accuracy can be as
high as 97% even under perturbation. However, in contrast,
the performance on CIFAR10 and SVHN is not so good. The
reason is mainly because we performed image cropping and

grayscale processing to meet the input format requirements
of the CNN model and LSTM model constructed for this study.
However, we can still see that adding noise first and then clip-
ping second (AC) performs better than clipping first and then

adding noise (CA) no matter which dataset is used.
In general, for the CNN, the accuracy rate can be increased

by 3%, 8% and 10% on average for the respective datasets, and

the loss value is reduced by 18%, 14% and 22% on average. For
the LSTM, the accuracy rate can be increased by 18%, 13% and

8 c o m p u t e r s & s e c u r i t y 9 9 (2 0 2 0) 1 0 2 0 6 1

Table 3 – Training results on MNIST dataset.

N1 (0.1) N2 (0.5)

Factors Accuracy Convergence Accuracy Convergence

M1O1C1S1 0.9662 0.1407 0.8684 0.9671
M1O1C1S2 0.9334 0.4919 0.8569 1.1841
M1O1C2S1 0.9714 0.1002 0.9119 0.6684
M1O1C2S2 0.9492 0.4387 0.9049 0.9732
Baseline (No Noise) 0.9839 0.0267
M1O2C1S1 0.9467 0.1481 0.9136 0.1899
M1O2C1S2 0.9213 0.2019 0.8729 0.2620
M1O2C2S1 0.9472 0.1353 0.9432 0.1881
M1O2C2S2 0.9373 0.2031 0.8595 0.2149
Baseline (No Noise) 0.9794 0.036
M2O1C1S1 0.9297 0.2280 0.8203 0.6098
M2O1C1S2 0.7734 0.7170 0.6016 1.2670
M2O1C2S1 0.9063 0.3620 0.7891 0.7453
M2O1C2S2 0.7500 0.7319 0.6328 1.2508
Baseline (No Noise) 0.9921 0.0282
M2O2C1S1 0.9375 0.1918 0.8125 0.6638
M2O2C1S2 0.8203 0.7099 0.5625 1.3434
M2O2C2S1 0.8438 0.3687 0.8125 0.7325
M2O2C2S2 0.8437 0.5022 0.6328 1.2798
Baseline (No Noise) 0.9843 0.03

Table 4 – Training results on CIFAR10 dataset.

N1 (0.1) N2 (0.5)

Factors Accuracy Convergence Accuracy Convergence

M1O1C1S1 0.2942 2.1561 0.2858 2.2064
M1O1C1S2 0.2042 2.3759 0.1443 2.4367
M1O1C2S1 0.3181 2.0627 0.2794 2.1856
M1O1C2S2 0.2155 2.2955 0.1705 2.4608
Baseline (No Noise) 0.313 2.0764
M1O2C1S1 0.4272 1.8739 0.2627 2.0944
M1O2C1S2 0.4034 1.6298 0.2850 2.1836
M1O2C2S1 0.4147 1.8396 0.2864 2.1372
M1O2C2S2 0.2585 2.1574 0.2585 2.1574
Baseline (No Noise) 0.6757 0.3431
M2O1C1S1 0.33 1.999 0.38 1.9848
M2O1C1S2 0.2 2.198 0.15 2.2612
M2O1C2S1 0.24 2.0408 0.19 2.2414
M2O1C2S2 0.2 2.1963 0.1 2.5285
Baseline (No Noise) 0.41 1.6709
M2O2C1S1 0.35 1.8632 0.28 2.1646
M2O2C1S2 0.16 2.1291 0.16 2.4350
M2O2C2S1 0.27 1.9748 0.28 2.1646
M2O2C2S2 0.16 2.2182 0.16 2.4350
Baseline (No Noise) 0.45 1.6502

12% on average, and the loss value can be reduced by 55%, 25%

and 23% on average.
In order to compare the impact on the model’s privacy pro-

tection capability under different parameter settings, we com-
pute the TPVD values, which can visually reflect the pertur-
bation effects on a trained model. The following calculation

results are based on the data collected from training on the
MNIST dataset. The calculations based on the other two train-
ing datasets are similar.

Table 6 shows the values of a set of TPVD results and ac-
curacy under different clipping size C and sequence. It can be

seen that adding noise before gradient clipping (AC) really im-
proves the accuracy of the model when the other parameter
settings are the same. However, the TPVD values of AC are
lower than those of CA. For example, the accuracy and TPVD

value are 91.36% and 2.1489 respectively when the noise is 0.5,
clipping size is 0.8, model is CNN, optimizer is Adam, and sequence
is AC. However, the accuracy and TPVD value are 87.29% and

2.3202 respectively when the parameters are the same except
for the sequence being CA. It is obvious that the TPVD value in-
creases as the clipping size increases. The larger the clipping
size, the larger the TPVD value. According to the definition of

c o m p u t e r s & s e c u r i t y 9 9 (2 0 2 0) 1 0 2 0 6 1 9

Table 5 – Training results on SVHN dataset.

N1 (0.1) N2 (0.5)

Factors Accuracy Convergence Accuracy Convergence

M1O1C1S1 0.2565 2.2249 0.2987 2.1233
M1O1C1S2 0.2221 2.2271 0.1893 2.4867
M1O1C2S1 0.2094 2.1836 0.2161 2.3241
M1O1C2S2 0.1 2.4208 0.1941 2.4219
Baseline (No Noise) 0.3213 2.1124
M1O2C1S1 0.4219 1.7289 0.2578 2.0687
M1O2C1S2 0.2422 2.0998 0.1641 2.3081
M1O2C2S1 0.3281 1.9632 0.2813 2.0384
M1O2C2S2 0.1875 2.1340 0.1953 2.2913
Baseline (No Noise) 0.6172 0.8306
M2O1C1S1 0.4141 1.7556 0.2188 2.2073
M2O1C1S2 0.1719 2.2120 0.2266 2.2381
M2O1C2S1 0.3281 1.9177 0.3047 2.0124
M2O1C2S2 0.2578 2.0276 0.1953 2.2098
Baseline (No Noise) 0.7031 0.8331
M2O2C1S1 0.4219 1.7289 0.2578 2.0696
M2O2C1S2 0.2422 2.0998 0.1641 2.3081
M2O2C2S1 0.3281 1.9632 0.2578 2.0686
M2O2C2S2 0.1875 2.1340 0.1641 2.3081
Baseline (No Noise) 0.7344 0.8391

Table 6 – TPVD and accuracy results under different parameters setting with MNIST.

Evaluation Model CNN (Adam) LSTM (Adam)

(Noise, Clipping) (0.5,0.8) (0.5,1.4) (0.5,0.8) (0.5,1.4)
Accuracy AC 91.36% 94.32% 81.25% 81.25%

CA 87.29% 85.95% 56.25% 63.28%

TPVD AC 2.1489 2.2032 1.1411 1.1512
CA 2.3202 2.3716 1.1627 1.1347

TPVD, the larger the TPVD value, the better the perturbation

effect on the weights.

5.2. Visualization of selected experiments results

We plot and depict various results in the figures below. We
only show a portion of the results for illustration. Fig. 1 de-
picts accuracy and loss values under different sequences with

the MNIST dataset,σ of 0.5, C of 1.4, CNN model , and Adam op-
timizer . Fig. 2 depicts accuracy and loss values under differ-
ent sequences with the CIFAR10 dataset,σ of 0.1, C of 0.8, CNN

model , and Adam optimizer . Fig. 3 depicts accuracy and loss val-
ues under different sequences with the SVHN dataset,σ of 0.1,
C of 1.4, CNN model , and Adam optimizer .

In Figs. 1-3 , (a) depicts the accuracy results and (b) depicts
the loss values. No matter which parameters are used, the

Fig. 1 – Accuracy and loss values of training MNIST dataset under different sequences.

10 c o m p u t e r s & s e c u r i t y 9 9 (2 0 2 0) 1 0 2 0 6 1

Fig. 2 – Accuracy and loss values of training CIFAR10 dataset under different sequences.

Fig. 3 – Accuracy and loss values of training SVHN dataset under different sequences.

model with no privacy protection (normal) has the higher ac-
curacy and the faster convergence speed than the model with

privacy protection. The reason is obvious, as the gradient de-
scent is a reliable process when there is no perturbation on

the gradient. From Figs. 1-3 (a), we can see that the accuracy
values under the sequence of AC are higher than the accuracy
values under the sequence of CA, which means the sequence
of AC can bring higher accuracy. It is the same for the loss val-
ues under the sequence of AC, loss values are smaller than

the loss values under the sequence of CA, which means the
sequence of AC can bring faster convergence speed.

5.3. Comparison with a state-of-the-art SGD-based

approach

As discussed in Section 2 , there has been a lot of work in

designing differentially private gradient perturbation algo-
rithms for training ML models. SGD and its variations such

as Adam, Adagrad and Adadelta are modified to provide pri-
vacy protection. But many of those approaches, including
ours, set a fixed clipping threshold throughout the learn-
ing process. At present, some work such as (Thakkar et al.,
2019 ; Pichapati et al., 2019) are trying to adaptively set hyper-
parameters for obtaining good utility. In this section, we com-

pare our work with a state-of-the-art adaptive gradient clip-
ping technology.

To adaptively adjust the value of the clipping thresh-
old, (Thakkar et al., 2019) proposed a quantile clipping strat-
egy, which obtains the clipping threshold for the next round

by computing the quantile of the current round’s gradients.
(Thakkar et al., 2019) applied this strategy separately to two
methods as flat clipping and per-layer clipping . Flat clipping
adaptively calculates an overall clipping threshold C and clips
the concatenation of all layers. Per-layer clipping calculates a
per-layer clipping threshold C j for each layer j and clips each

layer separately. As (Thakkar et al., 2019) proposed, this strat-
egy mainly considers the two settings of federated SGD and

federated averaging, which are different from our setting of
centralized learning. For comparison, we implemented differ-
entially private learning with an adaptive clipping algorithm

according to the quantile clipping strategy, which is shown in

Algorithm 2 . The main process of Algorithm 2 includes four
steps: firstly, computing gradient; secondly, adaptively com-
puting quantile clip threshold; thirdly, gradient clipping in flat
clipping or per-layer clipping; finally, gradient optimization.

Three datasets MNIST, CIFAR10 and SVHN are used to train

the CNN model. The CNN model has the same architecture in

the previously discussed experiments. For comparison, we set
our clipping threshold to 0.04 and 1.4 (via pilot tests). Further-

c o m p u t e r s & s e c u r i t y 9 9 (2 0 2 0) 1 0 2 0 6 1 11

Fig. 4 – Accuracy of training on three datasets.

more, we also train the CNN model with no privacy protec-
tion as a reference. In these experiments, the quantile is set to
0.5 and the Adam optimizer is used. The experimental results
show that by setting a reasonable constant C , our method is
superior to the adaptive quantile clipping method mentioned

in (Thakkar et al., 2019) in terms of loss convergence and accu-
racy. As shown in Figs. 4 and 5 , our proposed method achieves
good performance when C is set 0.04, as the green lines show

in the figures. However, we also find that as the threshold C

gradually increases, the performance of our proposed method

gradually approaches that of the benchmark method.
We also compared the TPVD values of our proposed

method and the benchmark methods, see Table 7 . As can

see that although the TPVD value of our proposed method is
smaller than that of the benchmark adaptive clipping method,
its performance is far better. For example, when C is set to
0.04 , although the TPVD value is 1.5095 , which is smaller than

adaptive clipping’s 1.9679 and 2.2126 , the accuracy reaches
84.43% , which is much higher than adaptive clipping’s 20.57%

and 19.31% .

Algorithm 2 – Differentially Private Learning with Adap-
tive Clipping.

Input: examples { x 1 , x 2 , . . . x N }, Loss function, parameters: σ , L, T,
quantile
1: Begin
2: Initialize w 0 randomly
3: For t ∈ T do
4: Take a random sample L t with sampling probability L/N

5: For each i ∈ L t , compute g i ← ∇ w t L (w t , x i)
6: Quantile_ C = get_quantile_norm (quantile)

7:
−
g i = ClippingFn(g i , Quantile_C) // FlatClip or PerlayerClip

8: ˜ g t ← 1
L (

∑
i g i + N (0 , σ 2 C 2 I)

9: Optimizer.apply_gradients(̃ g t)
10: End
11: Function FlatClip(�, C)
12: �′ = �/ max (1 , ‖ �‖ 2

C)
13: Return (�′)
14: Function PerlayerClip(�, C)
15: C(j) =

‖ �‖ 2
m

16: For each layer j ∈ | m | do

17: �′ (j) = �(j) / max (1 , ‖ �(j) ‖ 2
C (j))

18: Return(�′)

6. Analyses of impacted factors - Statistical
Analysis

To further evaluate the relationship of the accuracy and con-
vergence results with other different factors, we performed

the following statistical analysis with SPSS 24.0 (Cor, 2016).

6.1. Normality test

When working with a sample of data, the normality test can

be used to decide whether to use parametric or nonparamet-
ric statistical methods. Parametric statistical methods assume
that the data has a specific distribution, commonly a nor-
mal distribution. If a data sample is not normally distributed,
then nonparametric statistical methods must be used. There-
fore, we first need to test whether our experimental data are
in a normal distribution or not. There are many normality
test methods available, such as the Shapiro-Wilk test, the
Anderson-Darling test and the Kolmogorov-Smirnov test, etc.
Considering that the Shapiro-Wilk test is a powerful test in

most situation and it is appropriate for smaller samples of
data, we decided to use the Shapiro-Wilk test as our numerical
means of assessing normality.

6.1.1. Accuracy
First, the Shapiro-Wilk normality test was performed on de-
pendent variable accuracy with other independent variables
dataset, model, optimizer, noise, clipping and sequence . The test
statistics are shown in Table 8 . The null hypothesis for this
test of normality is that the data are normally distributed , and

the null hypothesis is rejected if the p-value (Sig.) is below

0.05 . We can see that all the p-values are below 0.05 except for
when the dataset is CIFAR10, so we can reject the hypothesis
and conclude that the variable accuracy is not normally dis-
tributed except for the situation when the dataset is CIFAR10.

6.1.2. Convergence
Second, the Shapiro-Wilk normality test was performed on

dependent variable convergence with other independent vari-
ables dataset, model, optimizer, noise, clipping and sequence . The
test results are shown in Table 9 . We can see that the p-value
0 .334 and 0 .335 when the dataset is CIFAR10 and SVHN. In

other cases, the p-values are all less than 0.05 . Therefore, we

12 c o m p u t e r s & s e c u r i t y 9 9 (2 0 2 0) 1 0 2 0 6 1

Fig. 5 – Loss values of training on three datasets.

Table 7 – TPVD and accuracy results trained on different datasets.

Datasets
Performance
Metric

Per-layer
adaptive
clipping

Flat
adaptive
clipping

Our method

C = 0.04
Our method

C = 1.4
Normal

MNIST Accuracy 72.85% 86.64% 97.10% 94.32% 97.74%

TPVD 2.6466 2.4850 1.7926 2.2032 –
CIFAR10 Accuracy 17.95% 21.26% 48.84% 31.98% 49.05%

TPVD 1.7629 1.7164 1.4575 1.4718 –
SVHN Accuracy 19.31% 20.57% 84.43% 25% 84.12%

TPVD 2.2126 1.9679 1.5095 1.6518 –

Table 8 – Normality test for accuracy.

Factor Level Statistics df Sig.

Dataset MNIST .852 32 .000
CIFAR10 .960 32 .268
SVHN .929 32 .036

Model CNN . 767 48 .000
LSTM . 834 48 .000

Optimizer SGD .798 48 .000
Adam .806 48 .000

Noise 0.1 .807 48 .000
0.5 .791 48 .000

Clipping 0.8 .818 48 .000
1.4 .792 48 .000

Sequence AC .772 48 .000
CA .765 48 .000

Table 9 – Normality test for convergence.

Factor Level Statistics df Sig.

Dataset MNIST .890 32 .003
CIFAR10 .963 32 .334
SVHN .963 32 .335

Model CNN . 781 48 .000
LSTM . 834 48 .000

Optimizer SGD .816 48 .000
Adam .786 48 .000

Noise 0.1 .784 48 .000
0.5 .808 48 .000

Clipping 0.8 .818 48 .000
1.4 .800 48 .000

Sequence AC .769 48 .000
CA .797 48 .000

can conclude that the variable convergence is not normally dis-
tributed except for the situation when the dataset is CIFAR10
and SVHN.

6.2. Significance test

After the normality test, we study the effect of different fac-
tors on the results of accuracy and convergence , so we carry out
the Mann-Whitney U test and the Kruskal-Wallis H test. Both

tests can determine whether two or more groups come from

the same distribution under the assumption that the shapes
of the underlying distributions are the same. We only report
the results of the Mann-Whitney U Test here, as the results of
Kruskal-Wallis H test led to the same conclusion.

The Mann-Whitney U test tests a null hypothesis that two
samples come from the same population. If the p-value is less
than 0.05 , then the null hypothesis is rejected.

6.2.1. Accuracy
The test results are shown in Table 10 . As can be seen, the p-
value of different factors are all greater than 0.05 except for
the factor sequence ; thus, we can conclude that there is a sig-
nificant difference between the accuracy for the AC sequence
compared with the CA sequence.

6.2.2. Convergence
The test results are shown in Table 11 . When we examine the
factors of model, optimizer, clipping and sequence , the p-values
are greater than 0.05 , and when we examine the factor noise ,
the p-value is less than 0.05 . Thus, we can conclude there is a
significant difference between the convergence of the groups of
different noise.

c o m p u t e r s & s e c u r i t y 9 9 (2 0 2 0) 1 0 2 0 6 1 13

Table 10 – The Mann-Whitney U test for accuracy.

Factor Level Mann-Whitney U Wilcoxon W Z-value P-value

Model CNN 970 2146 −1.334 0.182
LSTM

Optimizer SGD 1247 2423 .696 0.486
Adam

Noise 0.1 935 2111 −1.590 0.112
0.5

Clipping 0.8 1076.5 2252.5 −0.553 0.580
1.4

Sequence AC 678 1854 −3.474 0.001
CA

Table 11 – The Mann-Whitney U test for convergence.

Factor Level Mann-Whitney U Wilcoxon W Z-value P-value

Model CNN 1160 2336 0.059 0.953
LSTM

Optimizer SGD 915.50 2091.50 −1.733 0.083
Adam

Noise 0.1 1497 2673 2.528 0.011
0.5

Clipping 0.8 1189.5 2365.5 0.275 0.580
1.4

Sequence AC 678 1854 −3.474 0.783
CA

Table 12 – The accuracy and TPVD with different clipping size C .

Model Performance Sequence C = 0.001 C = 0.04 C = 1.4 C = 10 C = 100 Normal

CNN Accuracy AC 98.08% 97.10% 94.32% 88.38% 30.47% 97.74%

CA 84.94% 85.29% 85.95% 88.04% 71.82% -
TPVD AC 1.5440 1.7926 2.2032 2.3400 2.3550 –

CA 2.3466 2.3546 2.3716 2.7681 2.1589 –
LSTM Accuracy AC 69.53% 89.06% 81.25% 48.43% 21.09 99.21%

CA 62.5% 57.81% 63.28% 41.40% 14.0% -
TPVD AC 0.9898 1.0212 1.1512 1.1596 1.1520 –

CA 0.8761 1.1927 1.1347 1.0972 1.1288 –

7. Further improvements on privacy

protection

According to the experimental results, although our proposed

method does improve the convergence effect and the accu-
racy of the DL model, its parameters perturbation effects are
not as good as clipping before adding noise. In this section, we
further improve our approach to make it have a better pertur-
bation effect while still maintaining high utility.

The biggest difference between AC and CA is that AC can

limit the stochasticity of noised gradients by clipping, whereas
CA can increase the stochasticity of gradients by adding noise.
Thus, based on the idea that bigger gradient norm clipping bound
means bigger stochasticity of gradients , we make a hypothesis:
“The TPVD values increases as the clipping size increases while still
maintaining an acceptable accuracy .”

In order to verify this hypothesis, we gradually increase the
clipping size under the same parameter settings where the
noise is 0.5 , the optimizer is Adam, and the dataset is MNIST.
The experimental results are shown in Table 12 . We can see
that the TPVD value increases as the clipping size increases

no matter under AC or CA. Under the same clipping threshold,
the accuracy of AC is higher than that of CA. Compared with

the CA sequence, with the increase of clipping size, we get a
gradually increased TPVD value and finally achieve roughly
the same perturbation effects while still maintain a high ac-
curacy. To confirm this finding, we performed similar experi-
ments under other parameter settings and still obtained the
same results. We should also note that as C increases and af-
ter exceeding a certain threshold, the accuracy of the training
model will also decrease. We can see that after the thresh-
old exceeds 10 , whether it is AC or CA, the accuracy decreases
rapidly, so we cannot blindly pursue privacy protection and

ignore utility.

8. Conclusions and discussions

DP has shown promise in protecting or preserving data and

model privacy in ML applications. Applying DP to DL is a grow-
ing trend. Different methods have been proposed to address
the privacy protection issues, focusing on objective function

14 c o m p u t e r s & s e c u r i t y 9 9 (2 0 2 0) 1 0 2 0 6 1

or output or gradient. The basic blueprint for designing a dif-
ferentially private additive-noise mechanism usually consists
of several steps: identifying the functions that need to be per-
turbed; choosing parameters of additive noise; and analysing
privacy. Although there have been many studies aiming to
solve the privacy protection problem in DL, there have been no
studies devoted to examining the effect of different factors.

Adding noise to gradient computation usually involves
bounding gradients first and then adding noise. We propose
a contrary method of adding noise first and then bounding
gradients based on our theoretical analyses and empirical ob-
servations. We compare the performance between those two
methods. To further explore the applicability of the proposed

ideas, we also test several other factors which may impact a
model’s performance. To the best of our knowledge, this study
is the first to attempt to explore and quantitatively identify
their relative impacts.

Extensive experimental evaluations and statistical anal-
yses validated the effectiveness of our proposed modifica-
tion. Firstly, the detailed experimental results showed that
changing the sequence of adding noise and clipping can re-
ally achieve higher accuracy and faster convergence than the
original, even under different parameter settings. In princi-
ple, our proposed method can be applied to various optimiza-
tion algorithms. Secondly, comparison with a state-of-the-art
technique showed that our proposed method can achieve bet-
ter performance by setting a reasonable clipping threshold.
Thirdly, through extensive statistical analyses, the results in-
dicate that: (1) the factors of dataset and sequence are signif-
icant to accuracy ; (2) the factors of dataset and noise are sig-
nificant to convergence and the results of our statistical anal-
yses also indicate that changing sequence can achieve satis-
factory accuracy; (3) the TPVD metric proposed in this paper
as a privacy protection metric for DL models can better re-
flect the perturbation effects on learned weights; (4) under the
same parameter settings, carefully increasing the clipping size
can achieve roughly the same perturbation effect on learned

weights while still maintaining an acceptable accuracy. This
finding verifies that adding bounded noise can improve learn-
ing for DL models

Several opportunities exist for further research. For exam-
ple, like other attempts, we still need to provide a rigorous
theoretical proof as to why sequence plays such an important
role on a model’s performance. In the future, we also intend

to explore the use of adaptive selection of parameters in our
method.

Credit author statement

Ying LIN, the lead author, is responsible for conceptualization,
funding acquisition, project administration, resources, super-
vision and writing - original draft of the paper.

LING-YAN BAO is responsible for data curation, formal
analysis, investigation and implementation of the privacy-
preserving algorithm.

ZE-MINGHUI LI is responsible for investigation and visual-
ization of experimental data.

SHU-ZHENG SI is responsible for investigation, methodol-
ogy, and software implementation of codes for privacy metrics
and conducting the experiment.

Chao-Hsien Chu, the corresponding author, is responsible
for conceptualization, structuring the paper, validation, writ-
ing - review & editing, and ensuring the overall accuracy and

quality of the paper.

Declaration of Competing Interest

None.

Acknowledgments

This work is partially financed to the first author by (1) the
Data Driven Software Engineering Research Innovation Team

of Yunnan Province (No.2017HC012); (2) the project of Key
Laboratory for Software Engineering of Yunnan Province (No.
2017SE102). Our deepest gratitude goes to the two anonymous
reviewers and editor for their careful review and comments
and thoughtful suggestions that have helped improve this pa-
per substantially.

R E F E R E N C E S

Abadi M , et al . Deep learning with differential privacy.
Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security. ACM, 2016 .
Acs G , et al . Differentially Private Mixture of Generative Neural

Networks. IEEE Trans Knowl Data Eng 2019;31(6):1109–21 .
Badawi, A.A., et al., The AlexNet moment for homomorphic

encryption: HCNN, the first homomorphic CNN on encrypted

data with GPUs. arXiv preprint arXiv: 1811.00778 , 2018.
Baldominos A , Saez Y , Isasi P . A survey of handwritten character

recognition with mnist and emnist. Applied Sciences
2019;9(15):3169 .

Bassily R , Smith A , Thakurta A . In: 2014 IEEE 55th Annual
Symposium on Foundations of Computer Science. Private
empirical risk minimization: efficient algorithms and tight
error bounds. IEEE; 2014 .

Bengio Y , Boulanger-Lewandowski N , Pascanu R . In: 2013 IEEE
International Conference on Acoustics, Speech and Signal
Processing. Advances in optimizing recurrent networks. IEEE;
2013 .

Blundell, C., et al., Weight uncertainty in neural networks. arXiv
preprint arXiv: 1505.05424 , 2015.

Bottou L . Online learning and stochastic approximations. On-line
learning in neural networks 1998;17(9):142 .

Carmon Y , et al . Lower bounds for finding stationary points i.
Math Program 2017:1–50 .

Chaudhuri K , Monteleoni C , Sarwate AD . Differentially Private
Empirical Risk Minimization. J. Mach. Learning Res.
2011;12:1069–109 .

Cor I . IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY,
USA: IBM Corp.; 2016 .

Das T . Machine Learning algorithms for Image Classification of
hand digits and face recognition dataset. Mach Learn

2017;4(12):640–9 .
Dong, J., A. Roth, and W. Su, Gaussian Differential Privacy. arXiv:

Learning, 2019.

http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0023
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0023
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0023
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0028
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0028
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0028
http://arxiv.org/abs/arXiv:1811.00778
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0050
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0050
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0050
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0050
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0022
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0022
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0022
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0022
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0044
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0044
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0044
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0044
http://arxiv.org/abs/arXiv:1505.05424
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0045
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0045
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0046
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0046
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0046
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0026
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0026
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0026
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0026
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0055
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0055
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0051
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0051

c o m p u t e r s & s e c u r i t y 9 9 (2 0 2 0) 1 0 2 0 6 1 15

Du W , Atallah MJ . Secure multi-party computation problems and

their applications: a review and open problems. Proceedings
of the 2001 workshop on New security paradigms. ACM, 2001 .

Duchi J , Hazan E , Singer Y . Adaptive subgradient methods for
online learning and stochastic optimization. Journal of
Machine Learning Research 2011;12(Jul):2121–59 .

Dwork C , Roth A . The algorithmic foundations of differential
privacy, 9; 2014. p. 211–407 .

Dwork C , et al . In: Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Our
data, ourselves: privacy via distributed noise generation.
Springer; 2006a .

Dwork C , et al . In: Theory of cryptography conference. Calibrating
noise to sensitivity in private data analysis. Springer; 2006b .

Fredrikson M , et al . In: USENIX Security Symposium. Privacy in

Pharmacogenetics: an End-to-End Case Study of Personalized
Warfarin Dosing; 2014 .

Fredrikson M , Jha S , Ristenpart T . Model inversion attacks that
exploit confidence information and basic countermeasures.
Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security. ACM, 2015 .
Gilad-Bachrach R , et al . In: International Conference on Machine

Learning. Cryptonets: applying neural networks to encrypted

data with high throughput and accuracy; 2016 .
Graves A . In: Advances in neural information processing systems.

Practical variational inference for neural networks; 2011 .
Hayes J , et al . LOGAN: membership inference attacks against

generative models. Proceedings on Privacy Enhancing
Technologies 2019;2019(1):133–52 .

Hesamifard E , et al . Privacy-preserving machine learning as a
service. Proceedings on Privacy Enhancing Technologies
2018;2018(3):123–42 .

Hochreiter S , Schmidhuber J . Long short-term memory. Neural
Comput 1997;9(8):1735–80 .

Kandi H , Mishra D , Gorthi SRS . Exploring the learning capabilities
of convolutional neural networks for robust image
watermarking. Computers & Security 2017;65:247–68 .

Kingma, D.P. and J. Ba, Adam: a method for stochastic
optimization. arXiv preprint arXiv: 1412.6980 , 2014.

Krizhevsky, A., V. Nair, and G. Hinton, The cifar-10 dataset. online:
http://www.cs.toronto.edu/kriz/cifar.html , 2014.55.

LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. nature,
2015.521(7553): p. 436.

LeCun, Y., The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/ , 1998.

Lee J . In: 2017 International Conference on New Trends in

Computing Sciences (ICTCS). Differentially Private Variance
Reduced Stochastic Gradient Descent; 2017 .

Liu Q , et al . A survey on security threats and defensive
techniques of machine learning: a data driven view. IEEE
access 2018;6:12103–17 .

Mcmahan, B., et al., A General Approach to Adding Differential
Privacy to Iterative Training Procedures. arXiv: Learning, 2018.

McSherry F , Talwar K . In: Foundations of Computer Science, 2007.
FOCS’07. 48th Annual IEEE Symposium on. Mechanism design

via differential privacy. IEEE; 2007 .
Neelakantan, A., et al., Adding gradient noise improves learning

for very deep networks. arXiv preprint arXiv: 1511.06807 , 2015.
Netzer, Y., et al., Reading digits in natural images with

unsupervised feature learning. 2011.
Papernot, N., et al., Towards the science of security and privacy in

machine learning. arXiv preprint arXiv: 1611.03814 , 2016.
Papernot, N., et al., Semi-supervised knowledge transfer for deep

learning from private training data. arXiv preprint
arXiv: 1610.05755 , 2016.

Phan N , et al . In: Thirtieth AAAI Conference on Artificial
Intelligence. Differential privacy preservation for deep

auto-encoders: an application of human behavior prediction;
2016 .

Phan N , Wu X , Dou D . Preserving differential privacy in

convolutional deep belief networks. Mach Learn

2017;106(9–10):1681–704 .
Pichapati, V., et al., AdaCliP: adaptive clipping for private SGD.

arXiv preprint arXiv: 1908.07643 , 2019.
Rivest RL , Adleman L , Dertouzos ML . On data banks and privacy

homomorphisms. Foundations of secure computation

1978;4(11):169–80 .
Senavirathne N , Torra V . Integrally private model selection for

decision trees. Computers & Security 2019;83:167–81 .
Shokri R , Shmatikov V . Privacy-preserving deep learning.

Proceedings of the 22nd ACM SIGSAC conference on computer
and communications security. ACM, 2015 .

Shokri R , et al . In: 2017 IEEE Symposium on Security and Privacy
(SP). Membership inference attacks against machine learning
models. IEEE; 2017 .

Song S , Chaudhuri K , Sarwate AD . In: 2013 IEEE Global Conference
on Signal and Information Processing. Stochastic gradient
descent with differentially private updates. IEEE; 2013 .

Thakkar, O., G. Andrew, and H.B. McMahan, Differentially private
learning with adaptive clipping. arXiv preprint
arXiv: 1905.03871 , 2019.

Tramèr F , et al . In: 25th {USENIX} Security Symposium ({USENIX}
Security 16). Stealing machine learning models via prediction

apis; 2016 .
Wang B , Gong NZ . In: 2018 IEEE Symposium on Security and

Privacy (SP). Stealing hyperparameters in machine learning.
IEEE; 2018 .

Wang J , et al . In: IKE. Selective Data Distortion via Structural
Partition and SSVD for Privacy Preservation. Citeseer; 2006 .

Xie, L., et al., Differentially Private Generative Adversarial
Network. arXiv: Learning, 2018.

Yu L , et al . In: IEEE symposium on security and privacy.
Differentially Private Model Publishing for Deep Learning;
2019 .

Zeiler, M.D., ADADELTA: an adaptive learning rate method. arXiv
preprint arXiv: 1212.5701 , 2012.

Zhang J , et al . Functional mechanism: regression analysis under
differential privacy. Proceedings of the VLDB Endowment
2012;5(11):1364–75 .

Zhao J , Chen Y , Zhang W . Differential Privacy Preservation in

Deep Learning: challenges, Opportunities and Solutions. IEEE
Access 2019;7:48901–11 .

Ying Lin an associate professor in Yunnan University, China. She
received the B.S. degree in Applied Mathematics from Shanghai
Jiaotong University, China, in 1996, and the M.S. degree in Com-
puter Software and Theory from Yunnan University, China in 2004.
She received the Ph.D. degree in System Analysis and Integration

from Yunnan University in 2013. Her research interests include
network security, privacy protection, machine learning and arti-
ficial intelligent for security.

Ling-Yan Bao is an undergraduate student of department of Infor-
mation Security in Yunnan University, China. His-research inter-
ests include machine Learning and privacy preserving deep learn-
ing. He has won the 5th “Internet + " provincial golden medal dur-
ing his studying period.

Ze-Minghui Li is an undergraduate student of department of In-
formation Security in Yunnan University, China. His-research in-
terests include privacy preserving deep learning and network se-
curity.

Shu-Zheng Si is an undergraduate student of department of In-
formation Security in Yunnan University, China. He has got Na-

http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0006
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0006
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0006
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0038
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0038
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0038
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0038
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0034
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0034
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0034
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0013
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0013
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0013
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0032
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0032
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0032
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0015
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0015
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0015
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0015
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0020
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0020
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0020
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0041
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0041
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0016
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0016
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0016
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0021
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0021
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0021
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0036
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0036
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0036
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0036
http://arxiv.org/abs/arXiv:1412.6980
http://www.cs.toronto.edu/kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0025
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0025
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0003
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0003
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0003
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0033
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0033
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0033
http://arxiv.org/abs/arXiv:1511.06807
http://arxiv.org/abs/arXiv:1611.03814
http://arxiv.org/abs/arXiv:1610.05755
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0011
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0011
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0011
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0011
http://arxiv.org/abs/arXiv:1908.07643
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0007
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0007
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0007
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0007
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0004
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0004
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0004
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0024
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0024
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0024
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0024
http://arxiv.org/abs/arXiv:1905.03871
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0017
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0017
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0017
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0018
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0018
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0018
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0052
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0052
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0052
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0029
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0029
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0029
http://arxiv.org/abs/arXiv:1212.5701
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0009
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0009
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0009
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0019
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0019
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0019
http://refhub.elsevier.com/S0167-4048(20)30334-5/sbref0019

16 c o m p u t e r s & s e c u r i t y 9 9 (2 0 2 0) 1 0 2 0 6 1

tional Scholarship, Yunnan Provincial Government Scholarship,
and Yunnan Provincial-Level Merit Student during his studying
period. His-research interests include machine Learning, adver-
sarial examples and differential privacy.

Chao-Hsien Chu is a professor of Information Sciences and Tech-
nology at the Pennsylvania State University, USA. His-research in-
terests include (1) Cybersecurity and Privacy Assurance; (2) Inter-
net of Things; and (3) Big Data analytics. He has published more

than 190 papers; many of them are in top-ranking journals such

as IEEE Transactions on Information Forensics & Security, IEEE
Transactions on Dependable and Secure Computing, Computers
& Security, INFORMS Journal on Computing; or proceeding includ-
ing USENIX Security, ACM Conference on CCS, IEEE Conference
on Computer Communications (INFOCOM) etc. Six of his papers
have received the Best Paper Award from major societies, includ-
ing IEEE, Decision Sciences Institute, European Operational Re-
search Society, etc.

	Differential privacy protection over deep learning: An investigation of its impacted factors
	Citation

	Reference

