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Abstract 
 
Deep learning (DL) has been widely applied to achieve promising results in many fields, but it still exists 
various privacy concerns and issues. Applying differential privacy (DP) to DL models is an effective way to 
ensure privacy-preserving training and classification. In this paper, we revisit the DP stochastic gradient 
descent (DP-SGD) method, which has been used by several algorithms and systems and achieved good 
privacy protection. However, several factors, such as the sequence of adding noise, the models used etc., may 
impact its performance with various degrees. We empirically show that adding noise first and clipping second 
will not only significantly achieve high accuracy, but also accelerate convergence. Rigorous experiments have 
been conducted on three different datasets to train two popular DL models, Convolutional Neural Network 
(CNN) and Long and Short-Term Memory (LSTM). For the CNN, the accuracy rate can be increased by 3%, 
8% and 10% on average for the respective datasets, and the loss value is reduced by 18%, 14% and 22% on 
average. For the LSTM, the accuracy rate can be increased by 18%, 13% and 12% on average, and the loss 
value can be reduced by 55%, 25% and 23% on average. Meanwhile, we have compared the performance of 
our proposed method with a state-of-the-art SGD-based technique. The results show that under the premise of 
a reasonable clipping threshold, the proposed method not only has better performance, but also achieve ideal 
privacy protection effects. The proposed alternative can be applied to many existing privacy preserving 
solutions. 
 
Keywords: Differential privacy, Privacy preserving, Deep learning, Stochastic gradient descent (SGD) 
 
 
 
1. Introduction 
 
With recent major advances in Artificial Intelligence (AI) and the computational capability of computers, DL 
has achieved promising performance in many fields, such as data analytics, image classification, pattern 
recognition and health care, but its wide application also makes it a natural target for attackers (Papernot et al., 
2016). In addition, its capability to capture and memorize elements of training data provides a convenient 
pathway for an attacker to determine whether a particular data record is in the training dataset through 
membership inference attack (Shokri et al., 2017). Hence, privacy assurance in DL has become a hot topic and 
many researchers have proposed various privacy-aware DL mechanisms over the past few decades (Liu et al., 
2018). 
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Privacy assurance in ML or DL commonly needs to ad- 
dress the following issues ( Shokri and Shmatikov, 2015 ; 
Senavirathne and Torra, 2019 ): (1) privacy of the input data 
used to test the model or get a prediction; (2) privacy of the 
model itself; (3) privacy of the training data used to train 

the model; and (4) privacy of the model’s output. Protecting 
data means preventing sensitive information from exposure, 
whereas, protecting the model usually means protecting the 
model’s architecture and various parameters from illegal ac- 
cess and modification. There are two main avenues to pro- 
tect privacy in ML or DL. One is encryption, represented by 
multi-party secure computing ( Du and Atallah, 2001 ) and ho- 
momorphic encryption ( Rivest et al., 1978 ), to protect sensi- 
tive information from exposure. Almost all of the encryption- 
based solutions require a fair amount of communications be- 
tween the participating parties, so they are communication- 
bound ( Badawi et al., 2018 ) and their ability to protect the neu- 
ral networks themselves still remains an open problem. The 
other solution is perturbation. Various perturbation methods 
have been proposed for privacy protection. Input perturba- 
tion adds noise to the training data, and subsequent calcula- 
tions are based on the noise-added data. Objective perturba- 
tion ( Zhang et al., 2012 ; Phan et al., 2016 ; Phan et al., 2017 ) per- 
turbs the objective function of the training model, which usu- 
ally requires first deriving the approximate polynomial repre- 
sentation, so it is nontrivial. Output perturbation adds noise 
to the output of the model, such as in the PATE approach 

( Papernot et al., 2016 ). Compared with the above three meth- 
ods, gradient perturbation receives a lot of attention as it can 

achieve DP guarantee even for nonconvex objectives. It is also 
the focus of this study. 

Usually, gradient perturbation perturbs the computed gra- 
dients in each training step, and the whole training proce- 
dure can by guaranteed by applying the composition property 
( Dwork et al., 2006 ). In previous differentially private gradient 
computing mechanisms, the procedure of clipping the gradi- 
ent was commonly performed before the procedure of adding 
noise. In this paper, we empirically found that changing the 
sequence of gradient clipping and adding noise can not only 
achieve high accuracy, but also accelerate convergence. More- 
over, through our exploration and testing, we found that sev- 
eral other factors such as the types of learning models used, 
the gradient descent optimization methods, and model pa- 
rameters etc., may impact the model’s final performance with 

various degrees. As there has been no thorough analysis on 

whether those factors would make a difference, we examine 
these issues as well. Considering the trade-off between pri- 
vacy protection and model utility, we use three metrics, con- 
vergence, classification accuracy and level of privacy protec- 
tion (a new proposed metric) to evaluate the model’s perfor- 
mance. 

The purposes of this study and our main contributions are: 

(1) We propose a generic noisy gradient (NG) method to handle 
the problem of privacy preserving DL. In NG, not only the 
conventional stochastic gradient descent algorithm, but 
also other adaptive gradient descent algorithms are taken 

into consideration. In addition, the relative importance of 
various parameters was studied. The efficiency and some 

merits of the proposed method was verified by rigorous ex- 
periments. 

(2) By detailed empirical comparison experiments, we found 

that in the category of perturbing gradients to protect pri- 
vacy of DL model, the sequence of adding noise first and 

clipping gradient second can achieve higher accuracy and 

faster convergence speed than when clipping gradient first 
and adding noise second. We give a detailed analysis on 

why changing the process sequence can achieve such ef- 
fects. 

(3) We implement two popular DL models, CNN and LSTM, 
with two different gradient descent optimization methods, 
using three datasets to show the applicability of our pro- 
posed method. 

(4) We apply detailed statistical analysis methods to deter- 
mine the impacts of various parameters, specifically the 
impact of dataset, model, optimizer, noise, clipping , and se- 
quence , on the privacy preserving DL model’s performance. 

(5) In order to better study whether changing the process se- 
quence would affect the model’s privacy protection effects, 
we propose a new privacy protection metric called Total 
Parameters Value Difference (TPVD) and investigate the 
trade-off between privacy and utility under different pa- 
rameter settings. Experimental results show that our pro- 
posed metric can achieve a better privacy guarantee while 
still obtaining higher utility by carefully calibrating input 
parameters. 

(6) We compare our proposed method with a state-of-the-art 
SGD-based technique, which adaptively selects the clip- 
ping threshold during the training process. The results 
show that under the premise of a reasonable clipping 
threshold, the method proposed in this paper not only has 
better performance, but also achieve ideal privacy protec- 
tion effects. 

The rest of the paper is organized as follows: In Section 2 , 
we present existing work related to gradient perturbation 

methods. In Section 3 , we present the preliminaries and tech- 
nical background associated with this paper. In Section 4 , we 
introduce our proposed algorithm and present experimental 
setting. We present the experimental results, analyses and 

compare our work with a state-of-the-art gradient perturba- 
tion technique in Section 5 . In Section 6 , we use statistical 
analysis methods to analyze the impacts of various factors 
and parameters. In Section 7 , we provide further improve- 
ments on privacy protection and discuss the implications. In 

Section 8 , we conclude the paper and discuss future work. 

2. Related work 

The purpose of privacy preserving DL is to prevent adversaries 
from inferring accurate personal information through inver- 
sion attacks ( Fredrikson et al., 2014 ; Fredrikson et al., 2015 ), 
membership attacks ( Shokri et al., 2017 ; Hayes et al., 2019 ) 
or model extraction attacks ( Tramèr et al., 2016 ; Wang and 

Gong, 2018 ). Gradient perturbation ( Zhao et al., 2019 ) is one 
of the commonly used methods in privacy preserving DL. 

Many early research focused on using encryption to pre- 
vent sensitive information from exposure. Dowlin et al. 
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( Gilad-Bachrach et al., 2016 ) presented a method to convert 
learned neural networks to CryptoNets , which can be ap- 
plied to encrypted data to maintain data privacy and secu- 
rity. Hesamifard et al., (2018) presented a framework, named 

CryptoDL , for running deep neural network (DNN) algorithms 
over encrypted data. Using this, data owners can send their 
encrypted data to a cloud and then get an encrypted predic- 
tion in return. 

There have been several efforts in gradient perturbation 

( Shokri and Shmatikov, 2015 ; Bassily et al., 2014 ; Abadi et al., 
2016 ; Song et al., 2013 ; Lee, 2017 ). Early research on SGD- 
based gradient perturbation focused on adding noise to the 
output of the standard Empirical Risk Minimization (ERM) 
algorithm ( Chaudhuri et al., 2011 ), which can produce pri- 
vacy preserving approximations of classifiers. Song et al., 
(2013) proposed differentially private versions of single-point 
SGD and mini-batch SGD, but this paper did not examine how 

to track the privacy consumption of the entire training pro- 
cess. Shokri and Shmatikov, (2015) implemented a distributed 

selective stochastic gradient descent (DSSGD) method for col- 
laborative DL. One key idea of DSSGD is that every participant 
shares a fraction of the parameters with other participants, 
which allows participants to benefit from other parties with- 
out sharing their own data. To minimize parameters leakage, 
they applied DP when updating parameters. However, if the 
numbers of training epoch, sharing parameters and partici- 
pants are large, this method may consume a large portion of 
the privacy budget. 

Abadi et al., (2016) improved the computational efficiency 
of differential privacy SGD (DP-SGD) and proposed a privacy 
accounting method called moments accountant to track cumu- 
lative privacy loss. The DP-SGD algorithm clips the gradients 
of the sample first to limit the sensitivity of each sample, and 

then adds noise to the gradients in batches before applying 
descent. Since this technique was proposed, it has been ex- 
tended to a variety of situations. Our research work is also 
based on this technique to compare the influence of several 
factors that may impact the model’s performance such as the 
sequence of adding noise, the types of models used, the gradi- 
ent descent optimization methods, and the parameters of the 
model. 

Xie et al., (2018) proposed a differentially private Gener- 
ative Adversarial Network (DP-GAN) by adding noise to the 
gradients of the discriminator and then training a generator 
with the differentially private discriminator. At the end of the 
training, both discriminator and generator are DP. Acs et al., 
(2019) proposed a differentially private generative model (DP- 
GM), which is a composition of private kernel k -means and 

DP-SGD. In both private methods, the clipping threshold C was 
adapted to the gradient update of every batch to ensure fast 
convergence with small error. Yu et al., (2019) is also based 

on DP-SGD, but the authors proposed some new techniques, 
which effectively optimizes both model accuracy and privacy 
loss analysis. 

From the recent work on applying gradient perturbation 

to achieve privacy, we can see that the work of DP-SGD 

( Abadi et al., 2016 ) method is the cornerstone. To achieve a 
trade-off between particular privacy vs. utility, some follow 

up work was done by adaptively choosing parameters, such 

as adaptively choosing clipping threshold C ( Acs et al., 2019 ; 

Mcmahan et al., 2018 ) or by using different DP mechanism, 
such as f -differential privacy ( Dong et al., 2019 ). 

3. Preliminaries/Technical background 

In this section, we briefly revisit some technical backgrounds 
of DP and two popular DL models, CNN and LSTM, which lay 
the foundation for our theoretical development. 

3.1. Differential privacy (DP) 

DP is defined in terms of the concept of adjacent databases, 
that is, two datasets D and D ′ are adjacent if they differ 
in at most one record. DP establishes a guarantee that a 
randomized algorithm behaves similarly on the two adja- 
cent databases. The ɛ -DP was proposed by Dwork in 2006 
( Dwork et al., 2006 ) to protect or preserve privacy at differ- 
ent levels of probability. This mechanism ensures that in- 
serting or deleting a record in a data set does not affect any 
calculated output. In addition, ɛ -DP is robust against hack- 
ers who have auxiliary information. The ɛ -differential protec- 
tion mechanism relies on incorporating random noise into the 
data ( Dwork et al., 2006 ). The injected noise should be care- 
fully calibrated and it can be generated by different mecha- 
nisms such as the Laplace mechanism ( Dwork et al., 2006 ), the 
Exponential mechanism ( McSherry and Talwar, 2007 ) and the 
Gaussian mechanism ( Dwork and Roth, 2014 ). The Gaussian 

mechanism is usually used in the gradient perturbation ap- 
proach. 

Definition 1 ( ɛ -differential privacy ( Dwork et al., 2006 )) . A ran- 
dom mechanism M provides ɛ -DP if for two adjacent databases 
D and D ′ , and for all O ∈ range( M ), the following inequality 
holds: 

P r ( M ( D ) ∈ O ) ≤ e ε P r ( M ( D ′ ) ∈ O ) (1) 

Where, the parameter ɛ is defined as the privacy budget, 
which controls the privacy guarantee level. A lower ɛ means 
stronger privacy guarantee and more perturbation. Sensitivity 
determines how much perturbation is required for a random 

mechanism M . Global sensitivity and local sensitivity are two 
types of sensitivity that are employed in the DP. 

Definition 2 (Global sensitivity ( Dwork et al., 2006 )) . Given a 
function f : D → R d , for any two adjacent datasets D and D ′ , the 
global sensitivity of f is defined as: 

G S f = 
max 
D, D ′ 

∥∥ f ( D ) − f ( D ′ ) 
∥∥ (2) 

Definition 3 ( Local sensitivity ( Dwork et al., 2006 )) . Given a 
function f : D → R d , for dataset D and its adjacent dataset D ′ , 
the local sensitivity of f on dataset D is defined as: 

L S f = 
max 
D ′ 

‖ f ( D ) − f ( D ′ ) ‖ (3) 

Compared with the global sensitivity, local sensitivity is re- 
lated to a specific database D , so it may result in information 
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disclosure. In this paper, sensitivity refers to l 2 -global sensi- 
tivity. 

Definition 4 ( l 2 -global sensitivity ) . The l 2 -global sensitivity of a 
function f is the maximum L 2 norm of the difference between 

f ( D ) and f ( D ′ ), i.e.: 

L 2 f = 
max 
D, D ′ 

∥∥ f ( D ) − f ( D ′ ) 
∥∥

2 (4) 

In some situations, it is possible that the ɛ -DP is broken with 

probability δ, which is called the ( ɛ , δ)-differential privacy. 

Definition 5 (( ɛ , δ)- differential privacy ( Dwork and Roth, 2014 )) 
. A privacy mechanism M guarantees ( ɛ , δ)- DP if for any two 
adjacent databases D and D ′ , and for all O ∈ range ( M ), the fol- 
lowing inequality holds: 

Pr ( M ( D ) ∈ O ) ≤ e ε Pr ( M ( D ′ ) ∈ O ) + δ (5) 

The ( ɛ , δ)-DP allows that the privacy loss does not exceed ɛ 

with probability at most 1 − δ. 

Definition 6 ( Gaussian mechanism ( Dwork and Roth, 2014 )) . The 
Gaussian mechanism with parameter σ is to add independent 
and identically distributed ( i.i.d.) Gaussian noise to a true out- 
put of a function f whose value is a k -dimensional vector, de- 
fined bellow: 

M ( D ) = f ( D ) + 
〈
x 1 , x 2 , . . . x k 

〉
(6) 

Where x 1 , x 2 , . . . x k are i.i.d. random variables drawn from 

N (0, σ 2 I ). 

Theorem 1 ( Dwork and Roth, 2014 ) . Let ɛ ∈ (0, 1), the Gaussian 
mechanism with parameter σ > 

√ 
2 ln (1 . 25 /δL 2 f /ε is ( ɛ , δ) -DP . 

According to Theorem 1, the Gaussian mechanism can 

achieve ( ɛ , δ)-DP guarantee as long as those parameters ɛ , δ
and σ meet the above inequality conditions. 

3.2. Deep learning (DL) 

DL is a subset of ML based on artificial neural networks. Its 
learning methods can be either supervised, semi-supervised 

or unsupervised, which allows a machine to be fed with 

raw data and to automatically discover the representations 
needed for detection or classification ( LeCun et al., 2015 ). Many 
applications of DL use feedforward neural networks, which 

are composed of several layers of transformation of the form 

F i (x ) = g( W i • F i −1 (x ) ) , where the i th -layer F i takes the results 
of previous layers F i −1 as inputs, W i is a matrix of the param- 
eters and g represents the non-linear activation function. Let 
Z ( x ) denote the output of the last layer (usually before the soft- 
max), i.e., Z (x ) = F n (x ) , then the final output of the network is 
F (x ) = so ft max (Z (x )) . In this paper, we will use two popular 
DLs, the CNN and LSTM, for exploration. 

3.2.1. Convolutional neural network (CNN) 
The CNN is a variation of a feedforward neural network, 
which has shown excellent performance in many ML prob- 
lems ( Kandi et al., 2017 ). One processing step in a CNN is usu- 
ally called a layer. The convolution layer, pooling layer, and 

fully connected layer are three main types of layers in CNN 

architectures. 

(1) Convolutional layer : The convolutional layer is the major 
building block used in a CNN. In a convolutional layer, mul- 
tiple convolution kernels (filters) are used to extract fea- 
tures from the raw input data. Convolution is a mathemat- 
ical operation that computes the dot product between the 
input and the entries of the filter, which produces an acti- 
vation map of that filter. Stacking the activation maps for 
all filters along the depth dimension forms the full output 
volume of the convolution layer. 

(2) Pooling layer : The pooling layer is used for down sampling 
feature maps to reduce the number of parameters and 

computations in the network. The pooling layer operates 
independently on every depth slice of the input and resizes 
it spatially by using two common pooling methods: average 
pooling and max pooling . The output of the pooling layer is a 
summarized version of the features detected in the input. 

(3) Fully connected layer : In the fully connected layer, each neu- 
ron receives input from every element of the previous layer. 
A fully connected layer outputs a vector of length equal to 
the number of neurons in the layer and is usually built in 

the last layer of a CNN. This part is in principle the same 
as a regular neural network. 

3.2.2. Long short-term memory (LSTM) 
Recurrent Neural Networks (RNN) have been widely used to 
deal with variable-length sequence inputs with the output 
being dependent on the previous computations. LSTM, pro- 
posed by Hochreiter and Schmidhuber in 1997 ( Hochreiter and 

Schmidhuber, 1997 ), is a special kind of RNN. The key element 
of LSTM is the cell state, which is controlled by three kinds 
of gates: input, output and forget gates. The following equa- 
tions give the step-by-step update for the current cell, where 
σ stands for the sigmoid function and W f , W i , W c , W o , b f , b i , b c , 
b o are parameters of the network. 

The first step in LSTM is that the forget gate reads the input 
of h t−1 (the output of the previous unit) and x t (the input of 
the current unit), and then outputs a value between 0 and 1 as 
shown in (7). The next step includes two parts to decide what 
new information needs to be stored in the cell state. Firstly, as 
shown in (8), the input gate decides which values need to be 
updated. Then as shown in (9), a tanh function generates ˜ C t . 
Based on these previous steps, the old cell state C t−1 can be 
updated to a new state C t as shown in (10). Finally, it is time to 
decide the output value. As shown in (11), an output gate gets 
o t to decide what parts of the cell state needs to be output, 
then multiplies o t with a tanh function of the new state C t as 
shown in (12), so that it only outputs the needed parts. 

f t = σ
(
W f · [ h t−1 , x t ] + b f 

)
(7) 

i t = σ ( W i · [ h t−1 , x t ] + b i ) (8) 

˜ C t = tanh ( W c · [ h t−1 , x t ] + b c ) (9) 

C t = f t ∗C t−1 + i t ∗ ˜ C t (10) 
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o t = σ ( W o · [ h t−1 , x t ] + b o ) (11) 

h t = o t ∗ tanh ( C t ) (12) 

3.3. Gradient descent optimization 

In most DL models, the loss function L(W,X) is calculated as 
the difference between the actual output and the predict out- 
put. The gradient is the partial derivative of the loss function 

with respect to weights. Gradient descent is one of the popu- 
lar algorithms used to perform optimization by updating the 
weights of the learning models. The weights are updated in 

the opposite direction of the calculated gradient and this cy- 
cle is repeated until reaching the minima of the loss function 

as shown in (13). 

W ( k +1 ) = W ( k ) − ∂L ( W, X ) 

∂ W ( k ) 
(13) 

Stochastic gradient descent (SGD) belongs to a type of con- 
stant learning rate algorithms, which are the most widely 
used to optimize function. 

W ( k +1 ) = W ( k ) − η∗ ∂L ( W, X ) 

∂ W ( k ) 
(14) 

Where η is called the learning rate which is a hyper pa- 
rameter that needs to be properly tuned. The challenge of us- 
ing gradient descent is that their hyper parameters must be 
defined in advance and they depend heavily on the type of 
model and problem considered. Another problem is that the 
same learning rate is applied to all parameter updates. Adap- 
tive learning algorithms provide an alternative to the classical 
SGD. They have per-parameter learning rate methods, which 

provide heuristic approach without requiring expensive work 
in manually tuning hyper parameters for the learning rate 
schedule. Adagrad ( Duchi et al., 2011 ), Adadelta ( Zeiler, 2012 ) 
and Adam ( Kingma and Ba, 2014 ) are the most widely used 

adaptive gradient descent algorithms. 

4. Materials and methods 

4.1. The proposed noisy gradient (NG) algorithm 

In this section, we formally present our mechanism; the 
pseudo-code of Algorithm 1 outlines four basic steps in our 

Algorithm 1 – Noisy Gradient (NG) Algorithm. 

Input: examples { x 1 , x 2 , . . . x N }, Loss function, parameters: σ , L , C , T 
1: Initialize w 0 randomly 
2: For t ∈ T do 
3: Take a random sample L t with sampling probability L/N 

4: For each i ∈ L t , compute g i ← ∇ w t L ( w t , x i ) 
5: ˜ g i ← g i + N ( 0 , σ 2 C 2 I ) 

6: g i ← ̃  g i /max ( 1 , 
‖ ̃ g i ‖ 2 

C ) 
7: ˜ g t ← 1 

L 
∑ 

i g i 
8: Optimizer.Apply_gradients( ̃  g t ) 
9: End 

mechanism. The main process of implementing the NG algo- 
rithm includes the following steps: 

First, we compute the gradient. This is achieved by select- 
ing a random subset of examples and computing the gradi- 
ent for each sample in this subset at every training step t . 
Second, we add noise. This is achieved by adding Gaussian 

noise to each gradient of a batch to obtain noised gradient. 
Thirdly, we perform gradient clipping. If the L 2 norm for the 
noised gradient exceeds the threshold value C , then the val- 
ues in the vector will be rescaled, so that the L 2 norm of the 
noised gradient equals C ; otherwise, keep the original noised 

gradient unchanged. The final step is gradient optimization. 
This is achieved by taking SGD, Adam, or other optimization 

methods. 

4.2. Theoretical rationality 

Our proposed algorithm is based on the work in ( Abadi et al., 
2016 ), which proposed a differentially private SGD (DP- SGD) 
algorithm. The main difference between our proposed algo- 
rithm and the DP-SGD is in the sequence of clipping gradient 
and adding noise. The DP-SGD algorithm first clips every com- 
puted gradient in a batch to ensure the L 2 norm of the gradient 
is within a threshold C and then adds Gaussian noises to the 
total sum of gradients in the batch. In our proposed algorithm, 
we add Gaussian noises to each computed gradient in a batch 

first and then clip the noised gradient to ensure the L 2 norm 

of the noised gradient is within a threshold C . In our explo- 
rations, we observed that although the L 2 norm of a gradient 
is forced to a threshold C after the step of clipping in the DP- 
SGD, the subsequent step of adding noise breaks this limit as 
long as the random noise is large enough. Although noisy up- 
dates help in finding new and better local minima, larger fluc- 
tuations will cause the optimization algorithm to go beyond 

the better local minima and continue overshooting close to 
the desired exact minima. The modification of adding noise 
before clipping can ensure the L 2 norm of the final gradient 
stays within the threshold C even if adding a larger random 

noise first. 
Although our improved method only changes the sequence 

of clipping and perturbation, compared with the DP-SGD, it 
differs in that the noisy gradients updates is guaranteed to 
be within a certain threshold. Adding noise into gradients 
before clipping results in higher accuracy and faster con- 
vergence than adding noise after gradient clipping. More- 
over, adding bounded noise improves learning for DL mod- 
els. This finding constitutes the main contribution of this pa- 
per. In fact, adding random noise to the weights, gradient, and 

the hidden units has also been used when training neural 
networks ( Graves, 2011 ; Blundell et al., 2015 ). In the work of 
( Neelakantan et al., 2015 ), the authors empirically illustrated 

that injecting noise into gradients guarantees stochasticity, 
and can actually achieve lower training loss. They showed that 
adding noise encourages active exploration of the parame- 
ter space and gives the model more chances to escape local 
minima or to traverse quickly through the stationary stage of 
early learning. These features can result in lower training loss, 
which helps to achieve a higher accuracy. 

After adding random noise to the gradient, we apply gradi- 
ent clipping. Gradient clipping was introduced in ( Bengio et al., 
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2013 ) to avoid the gradient explosion problem. There are many 
ways to compute gradient clipping. Two commonly used ap- 
proaches are gradient norm clipping and gradient value clip- 
ping. The proposed NG algorithm uses the first method. In 

our approach, clipping noisy gradients to a certain thresh- 
old not only avoids the problem of gradient explosion, but 
also improves model’s convergence. Although the theory be- 
hind it is still largely unknown, it is a fact that gradient clip- 
ping helps in convergence. Many studies such as ( Bottou, 1998 ; 
Carmon et al., 2017 ) are striving to provide a theoretical ex- 
planation for the effectiveness of gradient clipping in training 
DNNs. 

4.3. The construction of CNN and LSTM 

4.3.1. CNN model 
The CNN model we build for our experiments contains one 
input layer, two convolutional layers, two pooling layers, one 
fully connected layer, one dropout layer and an output layer. 

The input layer of the CNN is set to 28 ×28 ×1 , which is con- 
sistent with the picture format of the MNIST dataset. Convo- 
lution layer is basically filtering the image with a smaller pixel 
filter. We use 32 5 × 5 filters for the first convolution layer and 

64 5 × 5 filters for the second convolution layer. For the im- 
ages in the training set, filters step over the entire image. At 
each step the window is moved by 1 stride. When constructing 
CNNs, it is common to insert pooling layers after each convo- 
lution layer. We select a pooling size to reduce the amount 
of parameters by using the max-pooling method with strides 
of 2 and kernel size of 2 . Finally, we construct two fully con- 
nected layers at the end to classify our images. The first fully 
connected layer uses 1024 neurons. It receives input from the 
previous layer and those neurons are randomly dropped out 
during training. The final fully connected layer uses 10 neu- 
rons to represent which category the image belongs to. 

As MNIST data input is a 1-dimensional vector of 784 fea- 
tures ( 28 ×28 pixels), it can easily be reshaped in the input layer 
to match the 28 ×28 ×1 requirement. However, for the CIFAR10 
and SVHN datasets, because the image format of both data 
sets is 32 ×32 ×3 , we first need an image format pre-processing 
step to change it from a 32 ×32 ×3 color image to a 28 ×28 ×1 
grayscale image in order to train these three different datasets 
on a uniform CNN architecture. 

4.3.2. LSTM model 
For processing images, the input of the LSTM network model 
constructed in this paper is a 28 ×28 gray image, which can 

be viewed as a matrix with 28 rows and 28 columns. We ex- 
pand the network in 28 time-steps so that in each time step, 
we can enter a row of 28 pixels, thus inputting the image af- 
ter 28 time-steps. In the hidden layer, a LSTM cell replaces the 
common hidden unit in the RNN. We set a LSTM cell with the 
number of units as 128 . The number of units in a LSTM cell 
can be interpreted as analogous to a hidden layers from the 
RNN. We set a batch size of 128 , which means that every time 
step will be supplied with a respective row of 128 images. At 
every time-step, each LSTM cell will generate a tensor of shape 
[ 128, 128 ], but we are only concerned with the output of the fi- 
nal time-step. Thus, in the last time-step, we will convert the 

final output of shape [ 128,128 ] to [ 128, 10 ] so that the correct 
class can be predicted. 

To allow the image formats of CIFAR10 and SVHN to satisfy 
the input requirement of the LSTM, we also need to do image 
pre-processing work before training. 

4.4. Datasets 

To verify the effectiveness of our proposed technique, 
we use three datasets, MNIST ( LeCun, 1998 ), CIFAR10 
( Krizhevsky et al., 2014 ) and SVHN ( Netzer et al., 2011 ) 
for experiments and testing. The MNIST has been widely 
used as a standard ML benchmark in pattern recognition for 
over two decades ( Baldominos et al., 2019 ; Das, 2017 ). The 
MNIST dataset includes 70,000 28 ×28 grayscale images of 
handwritten digits from 0 to 9 , in which 60,000 are for training 
and 10,000 for testing. The CIFAR-10 dataset includes 60,000 
32 ×32 color images of ten different categories for airplanes, 
cars, birds, cats, deer, dogs, frogs, horses, ships and trucks, 
and each category has 6000 images. The SVHN is a real-world 

image dataset, which includes over 600,000 digital images of 
street view numbers, from which we use 100,000 for training 
and 10,000 as test examples. 

4.5. Performance metrics 

Three metrics, convergence, classification accuracy and level 
of privacy protection, are used to evaluate the model’s perfor- 
mance. 

4.5.1. Convergence 
The loss function reflects the degree to which the model fits 
the data. In general, the smaller the loss value, the better the 
model fits the data. To better illustrate the difference between 

the predicted value and the true value when we run differ- 
ent optimization methods under privacy-preserving guaran- 
tee, we use convergence as one of the performance metrics. 

Definition 7 ( Convergence) . Suppose L ( W, X ) is the loss function 

of a DL model with parameters W and input. For any ɛ > 0, 
for each t ∈ 0 , 1 , ...T − 1 , W t+1 = W t − η 1 

| S t | 
∑ 

i ∈ S t 
L ( W t , x i ) , if it 

satisfies with probability over the randomness of S 1 , S 2 , ..., S T : 
L ( W t , X ) ≤ ɛ , then we say the loss function is convergent. 

4.5.2. Classification accuracy 
Although a few other metrics such as sensitivity, specificity, 
accuracy, precision and F1 score have been used in assess- 
ing the relative performance of ML/DL algorithms, we use ac- 
curacy to measure classification accuracy in this paper. It is 
the ratio of number of correct predictions to the total number 
of input samples. The higher the classification accuracy, the 
higher the model’s utility. 

accuracy = 
number o f correct predictions 

t ot al number o f pred ictions mad e 
(15) 

4.5.3. Privacy protection 

DP generally uses ( ɛ , δ) as the metrics for privacy protection. In 

this paper, we propose another metric, Total Parameters Value 
Difference (TPVD) , to measure the privacy protection capability 
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of our proposed algorithm, because we want to examine from 

another perspective how the impact of adding noise in the 
training process will affect the model itself. It is well known 

that when the training process is over, the released weights 
can be used to represent the DL model in some sense. Be- 
cause of this, measuring the difference between the weights 
obtained from a training process that has no privacy protec- 
tion and the weights obtained from training with noise per- 
turbation can better reflect the protection of the model itself. 

Let W = ( W 1 , W 2 , . . . W n ) and W̄ = ( W̄ 1 , W̄ 2 , . . . W̄ n ) be the 
weights of a DL model whose training process has no privacy 
protection and has privacy protection respectively. Each com- 
ponent W i or W̄ i is a matrix of some weights. Considering that 
the value difference (VD) ( Wang et al., 2006 ) is commonly used 

to measure the level of data distortion between two matrices, 
we use it to evaluate the level of data distortion between the 
original matrix W i and its distorted counterpart W̄ i as shown 

in (16). 

V D i = 

∥∥∥W i − W̄ i 
∥∥∥

F ∥∥W i 
∥∥

F 

(16) 

Where the ‖ W ‖ F is the Frobenius norm of a n ∗m - 
dimensional matrix W . It is the sum of the absolute value 
squared of each element in W as shown in (17): 

‖ W ‖ F = 

√ √ √ √ 
n ∑ 

j=1 

m ∑ 

i =1 

∣∣∣v j i 
∣∣∣2 (17) 

Based on the VD calculation of each component W i and 

its counterpart W̄ i , we can get the TPVD between W and W̄ as 
shown in (18): 

T PV D = 

∑ n 
i =1 V D i 

n 
(18) 

4.6. Experimental design 

4.6.1. Experimental parameter settings 
We design several experiments to compare and verify the per- 
formance impacted by different factors. First, we consider the 
sequence of adding noise, before or after gradient clipping, 
as it can influence the convergence performance and predic- 
tion accuracy of DL models. Second, to better demonstrate the 
versatility of our proposed method, we use two DL models, 
CNN and LSTM, and adopt two gradient descent optimization 

methods, SGD and Adam, for evaluation. Parameters consid- 
ered in the experiments include Gaussian noise scale σ and 

clipping threshold C . Table 1 lists the key experimental factors 
and their levels considered in the experimental design. 

4.6.2. Hardware and software environment 
Table 2 lists the hardware and software environment we used 

in these experiments. 

Table 1 – Experimental factors and their levels. 

Experimental 
Factors 

Levels Values 

Datasets 3 MNIST, 
CIFAR10, 
SVHN 

DL models (M) 2 CNN, LSTM 

Gradient descent 
optimization 
method (O) 

2 SGD, Adam 

Sequence of adding 
noise (S) 

2 Adding noise 
then Clipping 
(AC), Clipping 
then Adding 
noise (CA) 

Parameter σ (N) 2 0.1, 0.5 
Parameter C (C) 2 0.8, 1.4 

Table 2 – Hardware and software environment. 

OS Windows 10 

RAM 16 G/8G 

Graphics card GTX1070/GTX1060/GTX950 
Graphics memory 8 G/4 G/2G 

Python Python 3.6 
IDE Pycharm 2018 
Anaconda Anaconda 3.6 
Tensorflow Tensorflow-1.11.0 GPU 

Keras Version 2.2.4 

5. Performance evaluation, results and 

analyses 

5.1. Experimental results with different parameter 
settings 

By setting different parameters, we conducted model training 
under different parameter combinations. Tables 3–5 show the 
experimental results by training on MNIST, CIFAR10 and SVHN 

datasets respectively. The best result of each column is high- 
lighted in boldface and the worst result is shown in red color 
or italic format. 

From the experimental results, we can see that both CNN 

and LSTM achieved a high accuracy and a fast convergence 
effect on the MNIST dataset. The training accuracy can be as 
high as 97% even under perturbation. However, in contrast, 
the performance on CIFAR10 and SVHN is not so good. The 
reason is mainly because we performed image cropping and 

grayscale processing to meet the input format requirements 
of the CNN model and LSTM model constructed for this study. 
However, we can still see that adding noise first and then clip- 
ping second (AC) performs better than clipping first and then 

adding noise (CA) no matter which dataset is used. 
In general, for the CNN, the accuracy rate can be increased 

by 3%, 8% and 10% on average for the respective datasets, and 

the loss value is reduced by 18%, 14% and 22% on average. For 
the LSTM, the accuracy rate can be increased by 18%, 13% and 
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Table 3 – Training results on MNIST dataset. 

N1 (0.1) N2 (0.5) 

Factors Accuracy Convergence Accuracy Convergence 

M1O1C1S1 0.9662 0.1407 0.8684 0.9671 
M1O1C1S2 0.9334 0.4919 0.8569 1.1841 
M1O1C2S1 0.9714 0.1002 0.9119 0.6684 
M1O1C2S2 0.9492 0.4387 0.9049 0.9732 
Baseline (No Noise) 0.9839 0.0267 
M1O2C1S1 0.9467 0.1481 0.9136 0.1899 
M1O2C1S2 0.9213 0.2019 0.8729 0.2620 
M1O2C2S1 0.9472 0.1353 0.9432 0.1881 
M1O2C2S2 0.9373 0.2031 0.8595 0.2149 
Baseline (No Noise) 0.9794 0.036 
M2O1C1S1 0.9297 0.2280 0.8203 0.6098 
M2O1C1S2 0.7734 0.7170 0.6016 1.2670 
M2O1C2S1 0.9063 0.3620 0.7891 0.7453 
M2O1C2S2 0.7500 0.7319 0.6328 1.2508 
Baseline (No Noise) 0.9921 0.0282 
M2O2C1S1 0.9375 0.1918 0.8125 0.6638 
M2O2C1S2 0.8203 0.7099 0.5625 1.3434 
M2O2C2S1 0.8438 0.3687 0.8125 0.7325 
M2O2C2S2 0.8437 0.5022 0.6328 1.2798 
Baseline (No Noise) 0.9843 0.03 

Table 4 – Training results on CIFAR10 dataset. 

N1 (0.1) N2 (0.5) 

Factors Accuracy Convergence Accuracy Convergence 

M1O1C1S1 0.2942 2.1561 0.2858 2.2064 
M1O1C1S2 0.2042 2.3759 0.1443 2.4367 
M1O1C2S1 0.3181 2.0627 0.2794 2.1856 
M1O1C2S2 0.2155 2.2955 0.1705 2.4608 
Baseline (No Noise) 0.313 2.0764 
M1O2C1S1 0.4272 1.8739 0.2627 2.0944 
M1O2C1S2 0.4034 1.6298 0.2850 2.1836 
M1O2C2S1 0.4147 1.8396 0.2864 2.1372 
M1O2C2S2 0.2585 2.1574 0.2585 2.1574 
Baseline (No Noise) 0.6757 0.3431 
M2O1C1S1 0.33 1.999 0.38 1.9848 
M2O1C1S2 0.2 2.198 0.15 2.2612 
M2O1C2S1 0.24 2.0408 0.19 2.2414 
M2O1C2S2 0.2 2.1963 0.1 2.5285 
Baseline (No Noise) 0.41 1.6709 
M2O2C1S1 0.35 1.8632 0.28 2.1646 
M2O2C1S2 0.16 2.1291 0.16 2.4350 
M2O2C2S1 0.27 1.9748 0.28 2.1646 
M2O2C2S2 0.16 2.2182 0.16 2.4350 
Baseline (No Noise) 0.45 1.6502 

12% on average, and the loss value can be reduced by 55%, 25% 

and 23% on average. 
In order to compare the impact on the model’s privacy pro- 

tection capability under different parameter settings, we com- 
pute the TPVD values, which can visually reflect the pertur- 
bation effects on a trained model. The following calculation 

results are based on the data collected from training on the 
MNIST dataset. The calculations based on the other two train- 
ing datasets are similar. 

Table 6 shows the values of a set of TPVD results and ac- 
curacy under different clipping size C and sequence. It can be 

seen that adding noise before gradient clipping (AC) really im- 
proves the accuracy of the model when the other parameter 
settings are the same. However, the TPVD values of AC are 
lower than those of CA. For example, the accuracy and TPVD 

value are 91.36% and 2.1489 respectively when the noise is 0.5, 
clipping size is 0.8, model is CNN, optimizer is Adam, and sequence 
is AC. However, the accuracy and TPVD value are 87.29% and 

2.3202 respectively when the parameters are the same except 
for the sequence being CA. It is obvious that the TPVD value in- 
creases as the clipping size increases. The larger the clipping 
size, the larger the TPVD value. According to the definition of 



c o m p u t e r s  &  s e c u r i t y  9 9  ( 2 0 2 0 )  1 0 2 0 6 1  9 

Table 5 – Training results on SVHN dataset. 

N1 (0.1) N2 (0.5) 

Factors Accuracy Convergence Accuracy Convergence 

M1O1C1S1 0.2565 2.2249 0.2987 2.1233 
M1O1C1S2 0.2221 2.2271 0.1893 2.4867 
M1O1C2S1 0.2094 2.1836 0.2161 2.3241 
M1O1C2S2 0.1 2.4208 0.1941 2.4219 
Baseline (No Noise) 0.3213 2.1124 
M1O2C1S1 0.4219 1.7289 0.2578 2.0687 
M1O2C1S2 0.2422 2.0998 0.1641 2.3081 
M1O2C2S1 0.3281 1.9632 0.2813 2.0384 
M1O2C2S2 0.1875 2.1340 0.1953 2.2913 
Baseline (No Noise) 0.6172 0.8306 
M2O1C1S1 0.4141 1.7556 0.2188 2.2073 
M2O1C1S2 0.1719 2.2120 0.2266 2.2381 
M2O1C2S1 0.3281 1.9177 0.3047 2.0124 
M2O1C2S2 0.2578 2.0276 0.1953 2.2098 
Baseline (No Noise) 0.7031 0.8331 
M2O2C1S1 0.4219 1.7289 0.2578 2.0696 
M2O2C1S2 0.2422 2.0998 0.1641 2.3081 
M2O2C2S1 0.3281 1.9632 0.2578 2.0686 
M2O2C2S2 0.1875 2.1340 0.1641 2.3081 
Baseline (No Noise) 0.7344 0.8391 

Table 6 – TPVD and accuracy results under different parameters setting with MNIST. 

Evaluation Model CNN (Adam) LSTM (Adam) 

(Noise, Clipping) (0.5,0.8) (0.5,1.4) (0.5,0.8) (0.5,1.4) 
Accuracy AC 91.36% 94.32% 81.25% 81.25% 

CA 87.29% 85.95% 56.25% 63.28% 

TPVD AC 2.1489 2.2032 1.1411 1.1512 
CA 2.3202 2.3716 1.1627 1.1347 

TPVD, the larger the TPVD value, the better the perturbation 

effect on the weights. 

5.2. Visualization of selected experiments results 

We plot and depict various results in the figures below. We 
only show a portion of the results for illustration. Fig. 1 de- 
picts accuracy and loss values under different sequences with 

the MNIST dataset,σ of 0.5, C of 1.4, CNN model , and Adam op- 
timizer . Fig. 2 depicts accuracy and loss values under differ- 
ent sequences with the CIFAR10 dataset,σ of 0.1, C of 0.8, CNN 

model , and Adam optimizer . Fig. 3 depicts accuracy and loss val- 
ues under different sequences with the SVHN dataset,σ of 0.1, 
C of 1.4, CNN model , and Adam optimizer . 

In Figs. 1-3 , (a) depicts the accuracy results and (b) depicts 
the loss values. No matter which parameters are used, the 

Fig. 1 – Accuracy and loss values of training MNIST dataset under different sequences. 
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Fig. 2 – Accuracy and loss values of training CIFAR10 dataset under different sequences. 

Fig. 3 – Accuracy and loss values of training SVHN dataset under different sequences. 

model with no privacy protection (normal) has the higher ac- 
curacy and the faster convergence speed than the model with 

privacy protection. The reason is obvious, as the gradient de- 
scent is a reliable process when there is no perturbation on 

the gradient. From Figs. 1-3 (a), we can see that the accuracy 
values under the sequence of AC are higher than the accuracy 
values under the sequence of CA, which means the sequence 
of AC can bring higher accuracy. It is the same for the loss val- 
ues under the sequence of AC, loss values are smaller than 

the loss values under the sequence of CA, which means the 
sequence of AC can bring faster convergence speed. 

5.3. Comparison with a state-of-the-art SGD-based 

approach 

As discussed in Section 2 , there has been a lot of work in 

designing differentially private gradient perturbation algo- 
rithms for training ML models. SGD and its variations such 

as Adam, Adagrad and Adadelta are modified to provide pri- 
vacy protection. But many of those approaches, including 
ours, set a fixed clipping threshold throughout the learn- 
ing process. At present, some work such as ( Thakkar et al., 
2019 ; Pichapati et al., 2019 ) are trying to adaptively set hyper- 
parameters for obtaining good utility. In this section, we com- 

pare our work with a state-of-the-art adaptive gradient clip- 
ping technology. 

To adaptively adjust the value of the clipping thresh- 
old, ( Thakkar et al., 2019 ) proposed a quantile clipping strat- 
egy, which obtains the clipping threshold for the next round 

by computing the quantile of the current round’s gradients. 
( Thakkar et al., 2019 ) applied this strategy separately to two 
methods as flat clipping and per-layer clipping . Flat clipping 
adaptively calculates an overall clipping threshold C and clips 
the concatenation of all layers. Per-layer clipping calculates a 
per-layer clipping threshold C j for each layer j and clips each 

layer separately. As ( Thakkar et al., 2019 ) proposed, this strat- 
egy mainly considers the two settings of federated SGD and 

federated averaging, which are different from our setting of 
centralized learning. For comparison, we implemented differ- 
entially private learning with an adaptive clipping algorithm 

according to the quantile clipping strategy, which is shown in 

Algorithm 2 . The main process of Algorithm 2 includes four 
steps: firstly, computing gradient; secondly, adaptively com- 
puting quantile clip threshold; thirdly, gradient clipping in flat 
clipping or per-layer clipping; finally, gradient optimization. 

Three datasets MNIST, CIFAR10 and SVHN are used to train 

the CNN model. The CNN model has the same architecture in 

the previously discussed experiments. For comparison, we set 
our clipping threshold to 0.04 and 1.4 (via pilot tests). Further- 
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Fig. 4 – Accuracy of training on three datasets. 

more, we also train the CNN model with no privacy protec- 
tion as a reference. In these experiments, the quantile is set to 
0.5 and the Adam optimizer is used. The experimental results 
show that by setting a reasonable constant C , our method is 
superior to the adaptive quantile clipping method mentioned 

in ( Thakkar et al., 2019 ) in terms of loss convergence and accu- 
racy. As shown in Figs. 4 and 5 , our proposed method achieves 
good performance when C is set 0.04, as the green lines show 

in the figures. However, we also find that as the threshold C 

gradually increases, the performance of our proposed method 

gradually approaches that of the benchmark method. 
We also compared the TPVD values of our proposed 

method and the benchmark methods, see Table 7 . As can 

see that although the TPVD value of our proposed method is 
smaller than that of the benchmark adaptive clipping method, 
its performance is far better. For example, when C is set to 
0.04 , although the TPVD value is 1.5095 , which is smaller than 

adaptive clipping’s 1.9679 and 2.2126 , the accuracy reaches 
84.43% , which is much higher than adaptive clipping’s 20.57% 

and 19.31% . 

Algorithm 2 – Differentially Private Learning with Adap- 
tive Clipping. 

Input: examples { x 1 , x 2 , . . . x N }, Loss function, parameters: σ , L, T, 
quantile 
1: Begin 
2: Initialize w 0 randomly 
3: For t ∈ T do 
4: Take a random sample L t with sampling probability L/N 

5: For each i ∈ L t , compute g i ← ∇ w t L ( w t , x i ) 
6: Quantile_ C = get_quantile_norm (quantile) 

7: 
−
g i = ClippingFn(g i , Quantile_C) // FlatClip or PerlayerClip 

8: ˜ g t ← 1 
L ( 

∑ 
i g i + N (0 , σ 2 C 2 I ) 

9: Optimizer.apply_gradients( ̃  g t ) 
10: End 
11: Function FlatClip( �, C) 
12: �′ = �/ max ( 1 , ‖ �‖ 2 

C ) 
13: Return ( �′ ) 
14: Function PerlayerClip( �, C) 
15: C(j) = 

‖ �‖ 2 
m 

16: For each layer j ∈ | m | do 

17: �′ (j) = �(j) / max ( 1 , ‖ �( j) ‖ 2 
C ( j ) ) 

18: Return( �′ ) 

6. Analyses of impacted factors - Statistical 
Analysis 

To further evaluate the relationship of the accuracy and con- 
vergence results with other different factors, we performed 

the following statistical analysis with SPSS 24.0 ( Cor, 2016 ). 

6.1. Normality test 

When working with a sample of data, the normality test can 

be used to decide whether to use parametric or nonparamet- 
ric statistical methods. Parametric statistical methods assume 
that the data has a specific distribution, commonly a nor- 
mal distribution. If a data sample is not normally distributed, 
then nonparametric statistical methods must be used. There- 
fore, we first need to test whether our experimental data are 
in a normal distribution or not. There are many normality 
test methods available, such as the Shapiro-Wilk test, the 
Anderson-Darling test and the Kolmogorov-Smirnov test, etc. 
Considering that the Shapiro-Wilk test is a powerful test in 

most situation and it is appropriate for smaller samples of 
data, we decided to use the Shapiro-Wilk test as our numerical 
means of assessing normality. 

6.1.1. Accuracy 
First, the Shapiro-Wilk normality test was performed on de- 
pendent variable accuracy with other independent variables 
dataset, model, optimizer, noise, clipping and sequence . The test 
statistics are shown in Table 8 . The null hypothesis for this 
test of normality is that the data are normally distributed , and 

the null hypothesis is rejected if the p-value (Sig.) is below 

0.05 . We can see that all the p-values are below 0.05 except for 
when the dataset is CIFAR10, so we can reject the hypothesis 
and conclude that the variable accuracy is not normally dis- 
tributed except for the situation when the dataset is CIFAR10. 

6.1.2. Convergence 
Second, the Shapiro-Wilk normality test was performed on 

dependent variable convergence with other independent vari- 
ables dataset, model, optimizer, noise, clipping and sequence . The 
test results are shown in Table 9 . We can see that the p-value 
0 .334 and 0 .335 when the dataset is CIFAR10 and SVHN. In 

other cases, the p-values are all less than 0.05 . Therefore, we 
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Fig. 5 – Loss values of training on three datasets. 

Table 7 – TPVD and accuracy results trained on different datasets. 

Datasets 
Performance 
Metric 

Per-layer 
adaptive 
clipping 

Flat 
adaptive 
clipping 

Our method 

C = 0.04 
Our method 

C = 1.4 
Normal 

MNIST Accuracy 72.85% 86.64% 97.10% 94.32% 97.74% 

TPVD 2.6466 2.4850 1.7926 2.2032 –
CIFAR10 Accuracy 17.95% 21.26% 48.84% 31.98% 49.05% 

TPVD 1.7629 1.7164 1.4575 1.4718 –
SVHN Accuracy 19.31% 20.57% 84.43% 25% 84.12% 

TPVD 2.2126 1.9679 1.5095 1.6518 –

Table 8 – Normality test for accuracy. 

Factor Level Statistics df Sig. 

Dataset MNIST .852 32 .000 
CIFAR10 .960 32 .268 
SVHN .929 32 .036 

Model CNN . 767 48 .000 
LSTM . 834 48 .000 

Optimizer SGD .798 48 .000 
Adam .806 48 .000 

Noise 0.1 .807 48 .000 
0.5 .791 48 .000 

Clipping 0.8 .818 48 .000 
1.4 .792 48 .000 

Sequence AC .772 48 .000 
CA .765 48 .000 

Table 9 – Normality test for convergence. 

Factor Level Statistics df Sig. 

Dataset MNIST .890 32 .003 
CIFAR10 .963 32 .334 
SVHN .963 32 .335 

Model CNN . 781 48 .000 
LSTM . 834 48 .000 

Optimizer SGD .816 48 .000 
Adam .786 48 .000 

Noise 0.1 .784 48 .000 
0.5 .808 48 .000 

Clipping 0.8 .818 48 .000 
1.4 .800 48 .000 

Sequence AC .769 48 .000 
CA .797 48 .000 

can conclude that the variable convergence is not normally dis- 
tributed except for the situation when the dataset is CIFAR10 
and SVHN. 

6.2. Significance test 

After the normality test, we study the effect of different fac- 
tors on the results of accuracy and convergence , so we carry out 
the Mann-Whitney U test and the Kruskal-Wallis H test. Both 

tests can determine whether two or more groups come from 

the same distribution under the assumption that the shapes 
of the underlying distributions are the same. We only report 
the results of the Mann-Whitney U Test here, as the results of 
Kruskal-Wallis H test led to the same conclusion. 

The Mann-Whitney U test tests a null hypothesis that two 
samples come from the same population. If the p-value is less 
than 0.05 , then the null hypothesis is rejected. 

6.2.1. Accuracy 
The test results are shown in Table 10 . As can be seen, the p- 
value of different factors are all greater than 0.05 except for 
the factor sequence ; thus, we can conclude that there is a sig- 
nificant difference between the accuracy for the AC sequence 
compared with the CA sequence. 

6.2.2. Convergence 
The test results are shown in Table 11 . When we examine the 
factors of model, optimizer, clipping and sequence , the p-values 
are greater than 0.05 , and when we examine the factor noise , 
the p-value is less than 0.05 . Thus, we can conclude there is a 
significant difference between the convergence of the groups of 
different noise. 
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Table 10 – The Mann-Whitney U test for accuracy. 

Factor Level Mann-Whitney U Wilcoxon W Z-value P-value 

Model CNN 970 2146 −1.334 0.182 
LSTM 

Optimizer SGD 1247 2423 .696 0.486 
Adam 

Noise 0.1 935 2111 −1.590 0.112 
0.5 

Clipping 0.8 1076.5 2252.5 −0.553 0.580 
1.4 

Sequence AC 678 1854 −3.474 0.001 
CA 

Table 11 – The Mann-Whitney U test for convergence. 

Factor Level Mann-Whitney U Wilcoxon W Z-value P-value 

Model CNN 1160 2336 0.059 0.953 
LSTM 

Optimizer SGD 915.50 2091.50 −1.733 0.083 
Adam 

Noise 0.1 1497 2673 2.528 0.011 
0.5 

Clipping 0.8 1189.5 2365.5 0.275 0.580 
1.4 

Sequence AC 678 1854 −3.474 0.783 
CA 

Table 12 – The accuracy and TPVD with different clipping size C . 

Model Performance Sequence C = 0.001 C = 0.04 C = 1.4 C = 10 C = 100 Normal 

CNN Accuracy AC 98.08% 97.10% 94.32% 88.38% 30.47% 97.74% 

CA 84.94% 85.29% 85.95% 88.04% 71.82% - 
TPVD AC 1.5440 1.7926 2.2032 2.3400 2.3550 –

CA 2.3466 2.3546 2.3716 2.7681 2.1589 –
LSTM Accuracy AC 69.53% 89.06% 81.25% 48.43% 21.09 99.21% 

CA 62.5% 57.81% 63.28% 41.40% 14.0% - 
TPVD AC 0.9898 1.0212 1.1512 1.1596 1.1520 –

CA 0.8761 1.1927 1.1347 1.0972 1.1288 –

7. Further improvements on privacy 

protection 

According to the experimental results, although our proposed 

method does improve the convergence effect and the accu- 
racy of the DL model, its parameters perturbation effects are 
not as good as clipping before adding noise. In this section, we 
further improve our approach to make it have a better pertur- 
bation effect while still maintaining high utility. 

The biggest difference between AC and CA is that AC can 

limit the stochasticity of noised gradients by clipping, whereas 
CA can increase the stochasticity of gradients by adding noise. 
Thus, based on the idea that bigger gradient norm clipping bound 
means bigger stochasticity of gradients , we make a hypothesis: 
“The TPVD values increases as the clipping size increases while still 
maintaining an acceptable accuracy .”

In order to verify this hypothesis, we gradually increase the 
clipping size under the same parameter settings where the 
noise is 0.5 , the optimizer is Adam, and the dataset is MNIST. 
The experimental results are shown in Table 12 . We can see 
that the TPVD value increases as the clipping size increases 

no matter under AC or CA. Under the same clipping threshold, 
the accuracy of AC is higher than that of CA. Compared with 

the CA sequence, with the increase of clipping size, we get a 
gradually increased TPVD value and finally achieve roughly 
the same perturbation effects while still maintain a high ac- 
curacy. To confirm this finding, we performed similar experi- 
ments under other parameter settings and still obtained the 
same results. We should also note that as C increases and af- 
ter exceeding a certain threshold, the accuracy of the training 
model will also decrease. We can see that after the thresh- 
old exceeds 10 , whether it is AC or CA, the accuracy decreases 
rapidly, so we cannot blindly pursue privacy protection and 

ignore utility. 

8. Conclusions and discussions 

DP has shown promise in protecting or preserving data and 

model privacy in ML applications. Applying DP to DL is a grow- 
ing trend. Different methods have been proposed to address 
the privacy protection issues, focusing on objective function 
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or output or gradient. The basic blueprint for designing a dif- 
ferentially private additive-noise mechanism usually consists 
of several steps: identifying the functions that need to be per- 
turbed; choosing parameters of additive noise; and analysing 
privacy. Although there have been many studies aiming to 
solve the privacy protection problem in DL, there have been no 
studies devoted to examining the effect of different factors. 

Adding noise to gradient computation usually involves 
bounding gradients first and then adding noise. We propose 
a contrary method of adding noise first and then bounding 
gradients based on our theoretical analyses and empirical ob- 
servations. We compare the performance between those two 
methods. To further explore the applicability of the proposed 

ideas, we also test several other factors which may impact a 
model’s performance. To the best of our knowledge, this study 
is the first to attempt to explore and quantitatively identify 
their relative impacts. 

Extensive experimental evaluations and statistical anal- 
yses validated the effectiveness of our proposed modifica- 
tion. Firstly, the detailed experimental results showed that 
changing the sequence of adding noise and clipping can re- 
ally achieve higher accuracy and faster convergence than the 
original, even under different parameter settings. In princi- 
ple, our proposed method can be applied to various optimiza- 
tion algorithms. Secondly, comparison with a state-of-the-art 
technique showed that our proposed method can achieve bet- 
ter performance by setting a reasonable clipping threshold. 
Thirdly, through extensive statistical analyses, the results in- 
dicate that: (1) the factors of dataset and sequence are signif- 
icant to accuracy ; (2) the factors of dataset and noise are sig- 
nificant to convergence and the results of our statistical anal- 
yses also indicate that changing sequence can achieve satis- 
factory accuracy; (3) the TPVD metric proposed in this paper 
as a privacy protection metric for DL models can better re- 
flect the perturbation effects on learned weights; (4) under the 
same parameter settings, carefully increasing the clipping size 
can achieve roughly the same perturbation effect on learned 

weights while still maintaining an acceptable accuracy. This 
finding verifies that adding bounded noise can improve learn- 
ing for DL models 

Several opportunities exist for further research. For exam- 
ple, like other attempts, we still need to provide a rigorous 
theoretical proof as to why sequence plays such an important 
role on a model’s performance. In the future, we also intend 

to explore the use of adaptive selection of parameters in our 
method. 
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