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ABSTRACT
While mobile crowd-sourcing has become a game-changer
for many urban operations, such as last mile logistics and mu-
nicipal monitoring, we believe that the design of such crowd-
sourcing strategies must better accommodate the real-world
behavioral preferences and characteristics of users. To pro-
vide a real-world testbed to study the impact of novel mobile
crowd-sourcing strategies, we have designed, developed and
experimented with a real-world mobile crowd-tasking plat-
form on the SMU campus, called TA$Ker. We enhanced the
TA$Ker platform to support several new features (e.g., task
bundling, differential pricing and cheating analytics) and ex-
perimentally investigated these features via a two-month de-
ployment of TA$Ker, involving 900 real users on the SMU
campus who performed over 30,000 tasks. Our studies (i)
show the benefits of bundling tasks as a combined package,
(ii) reveal the effectiveness of differential pricing strategies
and (iii) illustrate key aspects of cheating (false reporting) be-
havior observed among workers.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous.

Author Keywords
crowd-sourcing, context-aware, empirical study; user
behaviour

INTRODUCTION
Mobile crowd-sourcing, involving the use of a volunteer
workforce to perform location-specific micro-tasks, has be-
come a powerful paradigm for a variety of urban services,
especially in densely-crowded cities such as Singapore. Such
a participatory model of task execution significantly reduces
operational cost and response latency, and is used for ser-
vices such as last-mile logistics (e-commerce package deliv-
ery services such as Amazon Flex1 in the US and Courex &
1http://flex.amazon.com/
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RocketUncle in Singapore), retail auditing (checking in-store
product placement and stock levels) and municipal monitor-
ing (reporting problems related to garbage, potholes, broken
streetlights via applications such as the OneService™App in
Singapore).

In spite of its promise, mobile crowd-sourcing faces several
operational challenges including: (i) the well-known problem
of worker skew (e.g., Musthag & Ganesan [14] showed that
80% of tasks are performed by a small minority of workers
who experience significantly longer detours); (ii) the problem
of workers often having low productivity (by often spend-
ing longer than expected travel time to complete tasks) and
(iii) the problem of veracity or truth discovery (as crowd-
sourced reports can be biased or fraudulent and must thus
be carefully corroborated). A variety of computational or
algorithmic techniques have been suggested to tackle these
challenges—e.g., to introduce “task bundling” as a way to
amortize the travel detour overhead over multiple collocated
tasks (initially pointed out in [14], and recently demonstrated
in [11]), or by employing aggregation-based techniques on
user-reported data to eliminate fraudulent reports and out-
liers (e.g., [10]). However, for large-scale adoption of mo-
bile crowd-sourcing, we believe that such algorithmic designs
must accommodate the real-world human behavioral choices,
preferences and artefacts of the workers. For example, most
models of differential task pricing in crowd-sourcing employ
elaborate game-theoretic solutions that involve workers be-
having as rational, non-cooperating agents, whereas the non-
rationality of human choices is well documented.

To specifically study, derive and leverage upon such human
behavioral insights, we have designed and deployed TA$Ker,
an experimental campus-scale crowd-sourcing platform (with
a client-side mobile App for both Android and iOS devices)
on the Singapore Management University (SMU) campus.
All tasks in TA$Ker presently involve some form of reporting
of the state of on-campus resources, such as “length of queue
in the food court”, “availability of a soda brand in a particu-
lar vending machine” and “cleanliness level of a specific toi-
let”. The deployment of an initial, limited version of TA$Ker
(with 80 participants over a trial period of 4 weeks) was pre-
viously described in [6], and helped validate a key insight
namely, that a centrally-coordinated, trajectory-aware model
of crowd-sourcing [2], that recommended tasks to users so
as to minimize the detour from their expected future trajec-
tory, was more effective than the traditional pull-based model
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(where workers simply select from the corpus of available
tasks in a completely de-centralized fashion).

In this paper, we report on the insights gained from a
significantly-expanded deployment of TA$Ker (specifically
TA$Kerv3, version 3 of the TA$Ker App2), with specific focus
on key aspects of the human behavioral response to different
parameters of mobile crowd-sourcing. More specifically, we
use a significantly larger study (involving 900 student users,
who performed 30,000+ tasks over a 2 month reporting pe-
riod) to study three key new aspects of crowd-sourcing oper-
ation:

• Bundling—this refers to task aggregation, where workers
must perform all tasks in a set to obtain payment. Our
studies help us to understand the worker response to the
tradeoff in aggregated vs. unit pricing of tasks, and to un-
derstand whether and how bundling helps improve the pro-
ductivity of choices made by the workers.
• Pricing—whereby the prices for tasks at different campus

locations were set differentially based on different strate-
gies. The studies reveal how worker choices (especially
the tradeoff between higher rewards vs. higher travel de-
tours) affect the overall spatial skew in the task completion
rate.
• Cheating—this refers to the tendency of workers to re-

port on the location-specific tasks without actually visiting
the location. Our studies help establish additional behav-
ioral and temporal factors that belie the simplistic notion of
credibility/trustworthiness being purely an intrinsic prop-
erty of an individual worker.

TA$Ker itself leverages upon SMU’s LiveLabs testbed in-
frastructure [12], which provides Wi-Fi based location track-
ing of all Wi-Fi enabled mobile devices on the SMU cam-
pus. To help support this expanded set of behavioral studies,
TA$Ker was also significantly enhanced to better predict the
movement trajectory prediction of workers on the campus.
We shall also describe these enhancements, and explain how
TA$Ker was able to maintain the superiority of the centrally-
coordinated task recommendation approach (over the alterna-
tive pull-based approach) even in the face of non-negligible
errors in the underlying location data and characteristic ran-
domness in the movement of students on the SMU campus.

Key contributions: Our paper uses an updated version of
TA$Ker, containing support for (i) tasks with different (start,
end) intervals, (ii) tasks specified either individually or as
fixed-size bundles, and (iii) differential task pricing. Using
this newer version, we make the following contributions:

• Effectiveness of Differential Pricing & Bundling Strate-
gies: We experimentally study both novel task pricing and
bundling strategies. For pricing, we first show that flat pric-
ing of tasks does indeed result in spatial skews for com-
pleted tasks, mirroring the skew in the spatial distribution
of students across the campus. We then demonstrate that
a simple inverse density based pricing strategy, where task
rewards were defined to be inversely proportional to the

2For the rest of this paper, TA$Ker will refer to the TA$Kerv3 version
of the platform

popularity (number of occupants) of different university
locations, not only effectively counters such spatial skews
(we get a 5-fold reduction in the variance of the task com-
pletion rate) but also significantly increases the fair sharing
of rewards among workers.
For bundling, we show that workers prefer bundled tasks
(i.e., a set of tasks that must all be performed to earn the
payment specified for the task bundle), completing bun-
dled tasks with an average completion rate that is ∼ 19%
higher than atomic tasks, even though both types of tasks
are almost equally offered. Moreover, this preference for
bundled tasks is manifested even though the per-task re-
ward (total bundle reward divided by the number of tasks
in the bundle) is 75% of that for an individual atomic
task. This preference can be explained by observing that
task bundling improved worker productivity, with a worker
earning 77% ($0.20) more per minute of additional detour,
compared to individual tasks.
• Cheating Characteristics: We empirically demonstrate

that the tendency to cheat (i.e., generate false crowd-
tasking reports without visiting the specified task location)
has both intrinsic (individual personality-based) and con-
textual (based on properties of the tasks) factors. In par-
ticular, (a) workers tended to generate a larger proportion
of false reports for the latter tasks executed in a bundle (as
the potential loss of rewards gets larger with every task per-
formed accurately) and (b) tighter time windows for tasks
lead to disproportionately more cheating (80% of cheat-
ing occurred on tasks with execution time windows less
than 90 minutes, even though these tasks constituted only
50% of the overall task pool). Accordingly, truth discov-
ery mechanisms in crowd-sourcing need to be modified to
take into account such dependence on the task performance
sequence and associated execution time windows.
• Practical Trajectory-Aware Recommendation for Time-

Constrained Tasks: By deploying the TA$Ker platform,
we also show how its trajectory-aware task recommenda-
tion engine can accurately predict worker trajectories (even
though the location tracking system is not fine-grained) via
the estimation of key reference locations. We demonstrate
that such a practical recommendation strategy is effective,
even when task execution time windows were limited to
30 minutes: it can assign tasks to users with an average of
only 3 mins detour, compared to alternative strategies that
generate detours of 6 mins.

We emphasize again that TA$Ker is an active, long-running
experimental platform, involving thousands of student par-
ticipants. While it allows us to study novel crowd-sourcing
strategies only at campus-scale, we anticipate that the behav-
ioral insights will help improve the design of future city-scale
mobile crowd-sourcing services.

TA$KER DEPLOYMENT & STUDY DETAILS
Before diving into the details of the experimental studies,
we first outline the key relevant characteristics of TA$Ker,
a campus-based mobile crowd-tasking platform where con-
senting student workers use the TA$Ker mobile application to
retrieve and perform a wide variety of on-campus, location-
based, reporting tasks. As a quick summary, the SMU cam-



pus consists of 4 five-storey academic buildings and a library,
connected via an underground concourse, and is used by a
student population of roughly 9000 students affiliated with 6
schools.

Figure 1 illustrates the overall functional architecture of
TA$Ker. As described in [6], in addition to the TA$Ker mobile
App, the TA$Ker backend system includes the following key
components: (a) Route Predictor, that predicts an individual
user’s movement trajectory based on her historical movement
traces; (b) Task Recommender, that suggests tasks (from the
overall pool of available tasks) which best match (i.e., mini-
mize the additional detour overhead) the predicted trajectory
of an individual worker; (c) Task Management Portal, that al-
lows TA$Ker administrators to create, modify and monitor the
set of available tasks (as well as set task prices or specify task
bundles), (d) Database & Results Validator, which stores the
responses received from the users and validates the integrity
of the responses by comparing the location of the specified
task and the locations visited by the worker, and (e) Results
Analyzer, which analyzes the contents of executed tasks to
provide deeper understanding of the behavioral interaction by
crowd-workers with the TA$Ker App.

Figure 1. TA$Ker framework - architecture

Task Types & Execution Windows
As mentioned before, TA$Ker is primarily used as a means
to crowd-source reports on the status of various locations and
events on campus. Each such task is associated with a specific
validity period and a time window–i.e., an interval (Ts,Te),
such that the task is required to be executed after time Ts and
prior to time Te. For the study period considered in this pa-
per, tasks were assigned to one of three different 3-hour time
windows: (a) morning (9am, 12noon); (b) noon (12noon,
3pm), and (c) afternoon (3pm, 6pm). These three time win-
dows were roughly aligned to the 3 distinct undergraduate
course times, and thus can be expected to correspond to the
schedules of individual students. A task validity period can
span any duration more than 15 minutes but less than 3 hours
within the corresponding time window.

To provide an accurate report, an individual worker is thus
required to visit the task’s specified location within the stipu-
lated task validity period (Ts,Te). Tasks defined over a specific
period would expire once the subsequent time window starts

(and thus no longer be visible on the TA$Ker mobile App,
irrespective of whether the worker had accepted the task as-
signment or not).

Task Types: Reflecting the wide variety of tasks, and the
natural modality for reporting such tasks, TA$Ker associates
each task with one of four “task types”: (a) Discrete Valued
Multiple Choice, where the user has to select an option from a
predefined set of values. For example, Do the green bins near
“Pick and Bite” need to be emptied? Yes—No; (b) Counting
based, where the user has to provide an input by selecting
from a pre-specified set of numerical values. For example,
How many people are queuing at the Western food stall ; (c)
Picture based, where the user has to upload task-relevant im-
ages. For example, a task to check the level of crowdedness
at the student recreational area would require the worker to
take a picture of that public space; (d) Free text based, where
the user provides free-form textual responses. For example,
Tell us the price of Toni and Guy shampoo at Watsons.

Experiment Study Details
To support the studies performed in this paper, TA$Ker was
deployed over a 8 week period, September 23 - November
20, 2015 (with tasks being available only on working week-
days). During this period, a total of 900 students opted to
participate in the study (which had been previously approved
by SMU’s Institutional Review Board (IRB)). The users were
divided randomly into two equal sized-groups: (a) the “push”
group were able to view only a smaller set of tasks, selected
by the Task Recommender component, that were best aligned
to their predicted movement over the corresponding 3 hour
window, whereas (b) the “pull” group were able to view all
available tasks and had to select an appropriate subset from
this entire list. (The only exception was a 2 week period, ex-
plained shortly, when differential pricing was activated.)

Moreover, to ensure fairness (and to avoid one undesirable
possibility of students skipping classes to perform available
tasks and earn money), each worker (in both the “push” and
“pull” groups) could only execute Max tasks in any 3 hour
window (Max was set to 3 for all the weeks except week 5 &
6 where it was increased to 6).

As part of the study, we trialled 3 different experiments:
(a) Exp 1: Incentive mechanisms, which studied two dif-
ferent differential location-dependent pricing strategies for
tasks (based on visitor density and historical task acceptance
rates), (b) Exp 2: Task Bundling, where users were offered
the chance to perform individual vs. bundled tasks, and thus a
chance to amortize their mobility cost, but with lower per-task
reward, and (c) Exp 3: Preference based recommendation,
which aims to improve the experience of the participants by
recommending the tasks not only in their predicted trajectory
but also as per their preferred types of tasks (e.g., multiple
choice question, free-text based, counting based and photo
taking tasks). The details of the conducted experiments are
listed in Table. 1, and required us to make the following care-
ful changes to the TA$Ker server’s functionality:

• During the 2-week period when we experimented with dif-
ferential pricing, we deliberately stopped generating proac-



Table 1. Summary of experimental study.
Week Experiment Max - Task allowance No. of registered No. of active No. of responses

per timewindow users users received
1 Flat pricing 3 170 85 472
2 Flat Pricing 3 290 156 1320
3 Incentive - Algo.I 3 613 338 3633
4 Incentive - Algo.II 3 779 453 7068
5 Bundling 6 817 293 5355
6 Bundling 6 835 278 7083
7 User preference recommendation 3 850 254 3507
8 User preference recommendation 3 900 224 3831

tive recommendations for the push group. This is due to the
fact that our recommendation engine aims to optimize the
total earnings of all the users; hence, if activated, it would
preferentially recommend only the higher priced tasks to
the users of the push group, effectively biasing the trials.
• During week 5 & 6 (the period of the “bundling studies”),

we tweaked the recommendation engine to preferentially
pick bundled tasks (in spite of lower per-task reward) for
recommendations by adjusting the total detour cost for vis-
iting all locations within the task bundle, so as to increase
the reward earned per-task-per-minute of detour. Through-
out the trial, the bundles we offered comprised tasks be-
longing to the same floor level of a building. The size of
the bundle is fixed (4 tasks) and the per-task reward value
is lower than those of the atomic ones. Each user was al-
lowed to perform 6 tasks (either a combination of 1 bundle
and 2 atomic tasks or just 6 atomic tasks) in a time window.
• During weeks 7 & 8 (the study of “user-preference based

recommendations”), we first computed task type prefer-
ence scores (per worker) for each of the 4 task types,
by dividing the number of tasks completed for the type
by the total number of tasks completed by the worker.
The Task Recommender was then modified to weigh each
task incentive according to its task type preference score
(thereby preferentially recommending task types that the
user prefers).

MODELING ROUTINE DAILY TRIPS OF STUDENTS
We applied a state-of-the-art route prediction algorithm de-
scribed in [6], on location traces of all the participating stu-
dents, to predict their expected trajectories in a time window.
The location data is collected through the LiveLabs indoor lo-
cation service [7], which uses server-side Wi-Fi fingerprint-
ing techniques to track the on-campus location of all persons
(i.e., their mobile device), as long as their Wi-Fi interface
is enabled. Due to well-known limitations of such server-
side location tracking, the location service currently offers
medium-grained granularity (errors are typically ±6−8 me-
ters) and latency (the period between successive location up-
dates from individual devices is around 2 - 4 minutes).

The route prediction algorithm first transforms the raw data
to routes. It extracts reference locations, in which users stays
more in a given time segment (in this paper we consider 30
minute time segments); it then formulates the movement pat-
tern of a user in a given time window as a transition graph and
finds the best probable k routes (represented as a sequence of

reference locations), based on the past traces of movement
trajectory of the worker. The real walk paths are generated by
applying standard shortest path algorithm for all connected
reference location pairs. In Fig. 2(a), we plot how k value af-
fects the number of transitions covered per user basis (in pri-
mary Y -axis, we plot the fraction of users who have more than
50% of the transition coverage for various number of paths
considered). The same figure also depicts how the k value af-
fects the transitions covered in total for the whole system (in
the secondary Y -axis we plot the fraction of total transition
coverage of the system). The value of k in our experiments is
set to 5, as the top 5 routes can explain more than 50% of all
transitions for 85% of users.

TRAJECTORY-AWARE RECOMMENDATION ENGINE
As mentioned previously, to support the experimental stud-
ies, half of the workers were allocated to the “push” cate-
gory, where the TA$Ker backend generates task recommen-
dations to individual workers, based on a worker’s predicted
“routine” routes (using techniques described in ([2] and [3]).
There are three important categories of information that need
to be sent to the recommendation engine: (1) the spatial lay-
out of the campus (modeled as a network of location nodes),
(2) a set of workers (each with a detour time limit, predicted
trajectories and preferences), and (3) a set of tasks (each
with a location, validity time-window, execution time, and
reward).

Mathematically speaking, the recommendation problem is
formulated as an integer linear programming (ILP) model,
which is essentially a variant of constrained routing problem.
In this model, each task must be recommended to either η

workers, or not at all if it’s not possible. The objective is
to maximize normalized expected reward from all workers,
considering task-specific and worker-specific constraints un-
der route uncertainties. To solve the problem scalably, we im-
plemented a Lagrangian relaxation (LR) heuristic that obtains
an approximate solution but with significantly lower compu-
tational time (minutes instead of hours). TA$Ker’s Task Rec-
ommender component was, however, enhanced to tackle the
novel feature of task-specific ‘validity time windows’.

Incorporate task validity time window: A task validity
time-window is defined as the period during which the task
must be performed. To accommodate such task validity time-
windows, changes are made to the routing sub-problems of
the LR heuristic developed in prior work. Now, in each
worker-route level routing sub-problem, worker’s routines



(a) Prediction accuracy (b) A sample user schedule for a day (c) Error in recommendations
Figure 2. Figures depicting (a) prediction accuracy of the route generator, (b) An example scenario of a user who has different schedules throughout
the day and some tasks to perform and (c) error in recommending tasks (measured in minutes)

and tasks have to be spatio-temporally connected across the
planning horizon. For example, assume a worker has a rou-
tine route that starts from School of Economics (SOE) at 9
am and then heads to School of Information Systems (SIS)
before 9:30 am because of the class there from 9:30 am to
10:00 am. SOE and SIS are considered as two routine nodes,
constrained by time-windows as well. Hence, he can per-
form the tasks T1 and T2 which lie in between the two routine
nodes SOE and SIS. Fig. 2(b) depicts a better illustration of
such routine schedules of a worker. The rectangles represent
the routine nodes and availability of the user at those loca-
tions while the ovals denote various tasks, their validity time
period and time taken to perform tasks. Thus, this worker
can only deviate and perform the tasks during his free time
between these two routine nodes. A task can only be consid-
ered if the worker is able to arrive at its location no later than
its expiration time (Te). The extra detour is redefined as the
extra time caused by servicing the tasks.

Evaluating the performance of the recommendation en-
gine: It is natural to ask: given the inherent location er-
rors and movement uncertainties of workers on the campus,
can our recommendation strategy generate useful task rec-
ommendations? To establish this efficacy, we compute the
accuracy of two distinct recommendation strategies: (a) Our
proposed strategy where the recommendations take into ac-
count each worker’s individual predicted trajectories, vs. (b)
A Trajectory-oblivious strategy, where each worker is first as-
signed one of 5 “representative trajectories” (each of which
traverses all the floors of one of the 5 campus buildings),
and the centralized recommendation algorithm is then exe-
cuted on these synthetic trajectories. The recommendation
error is then computed in terms of the “detour distance” to
a task’s location, with this detour being defined as the min-
imum distance to the task location, from all reference lo-
cations that the worker actually visits during the task’s va-
lidity period. For example, assume that the recommended
task T1 (with location l1) is valid during (10:00am, 10:30am)
and the observed series of stay locations during this period is
{X ,Y,Z}. The minimum needed detour is then computed as
min{d(X , l1),d(Y, l1),d(Z, l1)}.
Fig. 2(c) plots the average error (detour overheads across all
users) vs. task validity window for these two strategies. We
see that, in practice, the error (average detour overhead) is ap-
prox. 2.5 times lower, compared to the Trajectory-oblivious
approach. More specifically, for validity windows of 15 min-
utes, our recommendation error is less than 3 minutes (equiv-

alent to travel times between floors of the same building),
while the Trajectory-oblivious approach has an error of over
8 minutes (equivalent to the time needed to visit a location
three buildings away). We also can see that in general, as the
task validity period increases, the error in recommendation
decreases, as the additional slackness in time enables us to
better predict a worker’s precise trajectory.

PRIMARY OBSERVATIONS FROM STUDY
Before focusing on each of the 3 key specific behavioral as-
pects of mobile crowd-sourcing that we studied, we present
some high-level observations on the behavior of participants
during the study.

More than 30,000 tasks were completed during the 8 week
study period. (See Table 1 for the number of tasks com-
pleted, on a weekly basis; active users are defined as those
who have completed at least one task during the correspond-
ing week.) To provide data for corroboration, each task could
be performed by up to 3 distinct workers.

Figure 3. Total rewards earned - CDF.

Demographics
The pool of active users are mainly contributed by: (a) gender
- female (55%), (b) school - the university’s School of Busi-
ness (38%) and (c) freshmen - new undergraduate students
(47.8%). We also observed the persistence of the super-agent
phenomenon – a relatively small core-group of users who
generate a disproportionately large fraction of task responses.
Fig. 3 shows that 25% of active agents are responsible for
80% of total earnings or total tasks done on TA$Ker.

Situational Factors
Most popular location: Our campus library building in-
cludes many prime locations where many student activities
are usually carried out (and thus exhibit highest occupancy



counts), which explains why most number of the tasks (35%)
were completed in this building.

Most productive time window: The largest share (36%)
of completed tasks occurred during the second time window
(12pm – 3pm). Considering the fact that the first and last
time windows are the peak-hours for lectures, it’s not sur-
prising that the second time window accounts for more tasks
completed. This result is consistent with the findings in [1],
which reported that crowd-workers preferred to perform tasks
outside their core business hours.

Favourite type of the tasks: Interestingly, the “multiple-
choice question” type was the most popular task category
among the participants (56% of the completed tasks belong to
this category – as a proportion of tasks posted), while picture-
based tasks were least popular (only 4.5% of completed tasks
belong to this category – as a proportion of total tasks). One
explanation for this might be the task execution time: the
average task execution time for picture-taking tasks is three
times longer compared to multiple-choice tasks.

Nature of task acceptance: Push class users accept the tasks
well ahead in time (around 70 minutes prior to the task ex-
piration) and perform them within 16 minutes, while the pull
class users behave more opportunistically by accepting tasks
only 36 minutes prior to the task expiration time and perform
them within 6 minutes (the differences are statistically signif-
icant: p < 0.001).

DIFFERENTIAL PRICING & ITS EFFECTS
We first study the impact of variable task pricing (weeks 3 &
4), comparing the observed outcomes against our initial flat
pricing strategy (weeks 1 & 2). Note that all tasks during
these 4 weeks were atomic–i.e., there were no bundled tasks.

Designing Incentive Mechanisms
While a variety of differential task pricing mechanisms have
been proposed, we focus on two relatively simple, easy-to-
implement differential pricing approaches, both of which are
dependent primarily on the location attribute of tasks: (a) The
Density-based (popularity of location) approach prices tasks
in inverse proportion to the relative popularity (crowdedness)
of individual task locations, whereas (b) The History (task
acceptance rate) based approach computes the cumulative ac-
ceptance rate of tasks in a given location to date, and prices
tasks in inverse proportion to this acceptance rate. Roughly
speaking, both approaches seek to even out the spatial skews
observed in task acceptance/completion, by preferentially in-
creasing the rewards offered in less-popular locations (either
a smaller set of visiting workers or places where workers tend
to perform tasks less).

To ensure a fair comparison among different approaches,
all task rewards are constrained to lie within a range de-
fined by two fixed parameters: (1) Cmin: the minimum re-
ward for any task, and (2) Cmax: the maximum permitted
reward for any task. Variable task rewards are then defined
by an additive “incentive” component W via the relationship
Price=Cmin+W , where the tunable incentive component sat-
isfies the relationship: (0≤W ≤ (Cmax−Cmin)).

Density Based
This approach ties the incentive to the popularity (count of
visitors) of the location. For each task, the price is set by first
finding, from historical location traces, the average number of
unique workers (during the specified 3-hour time window) in
that particular location. This measure of a location’s intrin-
sic popularity is then normalized by the worker count over
all possible locations across the entire campus. We adopt a
reverse-density based pricing mechanism, with the aim of in-
creasing the likelihood that workers will undertake additional
detours to visit less-frequent places and perform tasks with
greater rewards. Specifically, the variable incentive W (de-
scribed above) is set as follows:

W =
(Omax−Ul)∗ (Cmax−Cmin)

Omax
, (1)

where Omax represents the maximum occupancy (visitor
count) across all locations and Ul defines the expected num-
ber of TA$Ker workers at location l.

Historical Task Acceptance Based
This mechanism determines incentives based on the histori-
cal task acceptance rate at a particular task location. Instead
of focusing on the overall workers’ visit count, it factors in
the intrinsic differences in task acceptance propensity across
different locations. For example, certain locations (e.g., in
the underground concourse) may be purely transit passages
(which workers simply rush through on the way to their next
class) or allow less distractions (e.g., the library); such lo-
cations may have a lower task acceptance rate, even if the
number of visitors is high. For this approach, we first find
out (from historical data) the completion rate of the tasks in
that particular location, and then normalize this by the max-
imum task acceptance rate observed across all campus loca-
tions. Specifically, we adjust the incentive W by:

W =
(pmax− rl)∗ (Cmax−Cmin)

pmax
, (2)

where pmax represents the maximum task completion rate
(across all locations), and rl defines the completion rate at
task location l.

Note: We calculate the Spearman correlation coefficient for
the rankings of the locations (for each time window) via these
2 (density-based and historical) approaches, and then aver-
aged over the 15 (5 days, 3 windows/day) distinct coeffi-
cients. The average ρ = 0.202, with a two-tailed p = 0.002,
meaning that these two strategies do rank the campus loca-
tions very differently (the difference is statistically signifi-
cant).

Experimental Results
In this section, we evaluate these two differential pricing
mechanisms vs. the usual ‘uniform pricing’ model (no loca-
tion dependence) on two aspects of fairness: (1) skewness of
task completion rate among various campus locations and (2)
fairness of rewards earned by the workers. The data we ob-
tained from weeks 1 and 2 were used as baseline (to observe
both visitors’ count and task completion rates under uniform



(a) Most Popular Locations (b) Least Popular Locations (c) Pricing vs. Worker Reward Distribution
Figure 4. Task completion rate in (a) most and (b) least popular locations, and reward skew among workers

pricing), whereas weeks 3 and 4 were used to implement the
Density and Historical based approaches, respectively.

Smoothing out task completion skews: We first studied the
distribution of task completion rate among all campus loca-
tions during weeks 1 and 2 (flat pricing) and observed it to be
highly skewed (fairness value computed as 0.2) towards most
popular/crowded locations. Figure 4(a) and 4(b) depict the
task completion rates of the ten most and least crowded loca-
tions, for the three different pricing approaches. We can see
that both the location density and completion rate approaches
help to reduce the skew in task completion rates (i.e., make
the rates more uniform) for both more-popular/visited and
less-popular/uninhabited locations. Moreover, we compute
the overall fairness index for completion rates (across all lo-
cations) using Jain’s fairness index [5]: the fairness index for
flat, density-based and history-based approaches were 0.2,
0.36 and 0.35, respectively. Additionally, while the overall
variation in task completion rates was 0.01 under flat pricing,
it reduced to 0.002 (a 5 fold reduction) under the density-
based pricing approach.

Fairer rewards among workers: Figure 4(c) plots the
histogram of total rewards earned per worker, when flat,
density-based and task-acceptance-based incentive mecha-
nisms were respectively employed. We see that the vari-
able pricing schemes significantly also improve the fairness
measure across workers, as it reduces the number of workers
earning less than $10, and in general improving the kurtosis
of the reward distribution curve. The computed fairness index
for the users for flat, density-based and history-based pricing
are 0.25, 0.48 and 0.49 respectively.

BUNDLING TASKS
We next study the implications of task bundling–i.e., offer-
ing workers a set of tasks that must all be successfully com-
pleted to receive payment. Task bundling appears to be an
increasingly important element of real-world mobile crowd-
sourcing, where it is often economically unviable to offer
the high per-task rewards needed to induce worker partici-
pation. Instead, aggregated tasks offer workers the incentive
of overall higher rewards (thus increasing their willingness)
at the benefit of lower detours, while offering task owners the
promise of lower per-task payouts.

To study the effect of such bundling, we offered a corpus of
bundled, as well as atomic, tasks during weeks 5 & 6. For our
studies, (a) each bundle had 4 tasks, (b) the price per unit task
in a bundle was varied (along with the price for individual

tasks to make sure that increased per task price of a bundle
does not influence a user’s choice) in a sawtooth pattern (see
Figure 5(a)), reaching a maximum of $0.75 per task, on days
5 & 6 of the 10-day study period, and (c) all tasks in any
bundle were constrained to be on the same floor of the same
building.

Note: Due to the tight schedule of the students, we assume
that they can spare around 30 minutes in each time window
to perform tasks. Hence, we choose the number of tasks in
a bundle to be 4, allowing students to choose 2 more atomic
tasks – resulting in 30 minutes task performance time (we
assume each task would take at most 5 minutes to reach the
location and perform).

Preference for Bundles: In Figure 5(b), in the primary Y-
axis, we plot the variation in the proportion of bundle-based
tasks (as a fraction of the overall tasks) completed per day
over the 10-day period. We see that this proportion closely
tracks the variation in the price-per-bundled task over the
same period. We also plot (in Figure 5(b), secondary Y-axis)
the ratio between completed bundle tasks vs. atomic tasks
(both normalized over number of tasks posted in each cate-
gory). We observe that except the day 1 (first data point of
the secondary Y-axis) bundles are always preferred, yielding
a ratio greater than 1. Our analysis show that the average daily
variation in task completion rate between bundles and atomic
tasks is 19%, implying that bundled-tasks are favoured over
atomic ones during the 2 week period.

Detour Overhead: This quantifies the additional cost in
travel that is incurred by the user while performing a cer-
tain task. To measure the detour, we first need to identify the
neighboring stay locations (both prior to and after the task
performance) in which he stays for a significant amount of
time (in our case, more than 4 minutes) to calculate the addi-
tional time needed to deviate from the shortest path between
these two locations. If Z is the task location, we analyze the
location traces to find the reference (stay) points before (say
X) and after visiting (say Y ) the task location Z. The detour
time is then (tX ,Z + tZ,Y )− tX ,Y , where tx,y denotes the travel
time between locations x and y.

In Fig. 5(c), we show the histogram of maximum detour in-
curred by a user during the flat pricing study (week 1 & 2) vs.
bundling study (week 6 & 7) vs. the variable pricing study
(week 3 & 4). We can see that bundling promotes detour ef-
ficiency: 80% of the workers incurred less than 15 minutes
of total detour during this period. In contrast, by increasing



(a) Bundle Pricing Variation (b) Ratio (Bunding to Individual) - Completion
Rate

(c) Max. detour for Task Performance

Figure 5. Bundled Tasks: (a) reward variation, (b) ratio of completed tasks vs. time and (c) maximum detour incurred while performing a task

the preference for out-of-the-way tasks, variable pricing in-
creases the detour overhead: 70% of the users incurred more
than 15 minutes of worst-case detour during week 3 & 4.

Productivity/Detour Efficiency: To measure a worker’s pro-
ductivity, we define detour efficiency as the amount of re-
wards he earns per minute of task-related detour. In Fig. 6(a)
we plot the productivity of the users in push and pull classes.
Overall (across the entire study), we found that push class
users had higher detour efficiency ($0.38 per minute), which
a t-test confirmed to be significantly higher (p < 0.001) than
the detour efficiency of users in the pull class ($0.15 per
minute). This re-confirmed our starting premise: centrally-
coordinated, trajectory-aware recommendations are more
efficient than the current purely de-centralized approach.
Moreover, aggregated across all users, we found that this de-
tour efficiency increased further for bundled tasks ($0.46 per
minute of detour) compared to the detour efficiency of indi-
vidual tasks ($0.26 per minute) offered in weeks 1&2 (we
depicted this in Fig. 6(b)). Additionally, by regressing the
detour overhead on the reward value (across all users), we
observe (please refer to Table. 2) that a unit increment ($1)
in the reward value would generate an increase of 3.6 mins in
the detour undertaken.

(a) Push vs. Pull users (b) Bundle vs. Individual tasks
Figure 6. User detour efficiency (a) push vs. pull class and (b)offering
bundles vs. atomic tasks

Table 2. Regression Table.
Coefficients Estimate Std. Error t value pr(>| t |)

Rewards 3.60 0.08 43.37 < 2e-16 ***
Constant 2.24 0.10 21.55 < 2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 *

USER CHEATING BEHAVIOUR
Understanding the behavioral factors behind the generation
of incorrect reports is an important part of a platform that
uses a de-centralized pool of workers. We now use the results
of our experimental studies to analyze two distinct dimen-
sions of such “cheating”: (a) using our unique continuous in-
door location tracking capability to identify instances where

a worker performs a reporting task without actually visiting
the location, and (b) where a worker’s reports conflicts with
that reported by a majority of other peer workers.

Per-user “Trust Index”
We compute a trust index in two ways: using a novel location-
based technique and the classical corroboration-based meth-
ods used in most truth discovery analysis.

Location based: Whenever a worker executes a task (i.e.,
submits a report), we compute the distance Dloc(i, j) between
the location associated with task j and the closest reported lo-
cation of user i (the worker who performed the task), within
the task validity period. Given the lack of fine-grained lo-
cation information, we then map each such completed task
into a binary per-task trust metric that is ‘0’ if the user i was
not present in the building associated with task j, ‘1’ other-
wise. For any given time period, the final Trust Index for user
i, denoted by Trust(i), and computed as Trust(i) = T i

nc/T i
tot ,

where, T i
nc is the number of tasks performed while located in

the same building as the task location, and T i
tot denotes the

total number of tasks performed by worker i.

Corroboration-based: This approach uses the fact that many
of our tasks were assigned to multiple workers simultane-
ously. In particular, nearly 33.5% of the responses have been
submitted by 3 people. For such tasks, we declare an exe-
cuted task to be un-trustworthy if its value lies well outside
the range reported by the other workers.

(a) Trust Index (b) Bundle Sequence
Figure 7. Cheating: (a) Trust index distribution (b) Sequence in
bundling task impacts cheating
Fig. 7(a) shows a histogram depicting the distribution of
trust index values among all workers, over the eight-week
study period, for both location based verification and the
corroboration-based techniques. Through the location based



verification we observe that approximately 71% of users
emerged out to be trustworthy, with Trust(.) scores of 60%
and above. We also find out that approximately 5.5% of the
users have cheated in almost every task they submitted (an
“intrinsic property”). In contrast, the corroboration-based ap-
proach is more optimistic: 92% of the users turn out to be
trustworthy with the Trust(.) score of 60% or higher. More-
over, on careful analysis, we observed (as expected) a strong
correlation between these values on a per-task basis: approx.
84% of tasks instances reported as cheating by the majority-
voting approach also turned out to be generated by users who
were not located at the task location. However, our obser-
vations suggest that truth discovery via corroboration-based
approaches may not be adequate, as users can generate ac-
ceptable reports even without visiting the specified task loca-
tion.

Demographic Influences: We additionally discovered some
interesting demographic influences on such cheating behav-
ior, namely: (a) male workers had a higher tendency to cheat
(submit reports without visiting the task location) than fe-
male workers, and (b) first-year (freshmen) students had a
disproportionately higher rate of cheating (38% of cheating
instances, normalized by the differences in participation rates
across students from all years of study).

Impact of Task Characteristics
We also studied whether such cheating behavior was influ-
enced by other task-related parameters, such as the time va-
lidity for task execution, the type of task etc.

Tightness of task validity window: We observed that 80%
of the cheated tasks have task execution window (the (start,
end) duration) less than 90 minutes. In general, we suspect
that the larger the time window, the higher the chance for the
worker to actually visit that location, and thus the lower the
likelihood of generating false reports.

Bundle tasks sequence: For bundled tasks, we also see that
a users’ tendency to cheat depends on the sequence of execu-
tion inside the bundle. Possibly reflecting the larger loss in
rewards if they fail to complete just the last (or the last two)
tasks, workers generate a larger proportion of false reports for
the latter tasks executed in the bundle (see Fig. 7(b)). We find
that when the users perform the first two tasks of a bundle,
the majority of the responses (> 65%) received were within
2 minutes distance from the task location. However, for the
latter part of the bundle (3rd & 4th tasks), the majority of the
responses (> 80%) submitted were 6 minutes away from the
task’s building (i.e., submitted from a different building).

Discrete Valued Multiple choice: We observed that the mul-
tiple choice based tasks had the highest incidence of cheating
behavior, accounting for approx. 60% of the total cheating
instances. Counting based tasks came next, constituting 26.4
% of the total tasks cheated upon. In contrast, tasks such as
“photo uploading”, which require considerably higher inde-
pendent effort from the worker, are seen to have lower likeli-
hood of cheating.

DISCUSSION
In this section, we first provide a high-level background (i.e.,
context) of the deployment of our mobile crowd-sourcing ap-
plication at SMU campus, and then describe how the same
platform can be leveraged to build a smart campus.

Contextualizing Our Study
The SMU campus consists of 4 distinct academic buildings,
1 library, plus 1 administrative building (this is rarely utilized
by students). Each of the 4 academic buildings is 5 storeys
in height, with a per-floor area varying between 1500-2500
m2 and consists principally of faculty offices, research labs,
teaching classrooms and various group-study rooms. The li-
brary is 4 floors in height, with a per-floor area of approx.
2750 m2. The library building is adjacent to the campus food
court, and also contains additional food & beverage outlets–
as such, it is the heart of the campus, and is the most heavily
trafficked building. In Table 3, we tabulate the average daily
occupancy count and fraction of tasks completed, for each
building of the campus. During the trial period we posted 4
different types of tasks – the number of posted and completed
tasks and average task execution time for each type is tabu-
lated in Table 4.

Table 3. Occupancy and completion rate - building wise.
Buildings Average Daily Fraction of tasks

occupancy count completed (normalized)
Information Systems 4185 26.23%

Economics 5105 11.75%
Library 7831 35.19%

Accountancy 4870 11.50%
Business 6334 15.32%

Table 4. Task type statistics breakdown.
Task type Tasks posted Tasks completed Execution time

(in secs)
Multiple-choice 20777 19110 16

Counting 18937 8732 38
Text-based 18028 2903 62

Photo 1808 135 57

We note our study was performed on a single indoor urban
campus, and that additional deployments may be needed to
study whether these insights can be generalized to city-scale
deployments. However, some of our campus-level character-
istics are quite similar to observations made in prior city-scale
crowdsourcing work. For example, [4] showed that there was
a spatial skew in task completion rates in city-scale crowd-
sourcing; this is similar to the skews that we observed on our
campus.

Smart Campus
Besides providing insights into worker behavior, the TA$Ker
deployment also helps us to target the partial development of
a smart campus, where a volunteer student population is used
to perform continuous sensing of campus resources. To il-
lustrate the possibilities, we focus on two specific tasks–that
report on the cleanliness of all the (a) restrooms and (b) rub-
bish bins.

With current tasks in TA$Ker providing reports on the sta-
tus of various on-campus resources, we show that TA$Ker



can be successfully used to crowd-source live reports on
the status of campus facilities: (1) restrooms in all the five
buildings (around 30) via a binary-valued task (clean/not
clean), (2) rubbish bins (around 50) via a binary-valued task
(empty/full), (3) vending machines (around 10) via a binary-
valued task (stock available or not), (4) corridors (events and
happenings) via free-form text and (5) the lawns on the cam-
pus (freshness). We are successfully able to collect reports on
cleanliness of the restrooms and rubbish bins, every 15 and
30 minutes, respectively.

RELATED WORK
There are already several notable systems that have demon-
strated values of mobile crowd-sourcing. Systems such as
mCrowd [22] , Twitch crowdsourcing [19] and Slide-to-
X [18] provide a platform to enable various crowd-sourcing
tasks. The most visible examples such as Uber and Grab, pro-
vide a platform for willing “part-time drivers” to offer rides
to passengers. Several other applications enable smart citi-
zen monitoring by using crowd-sourcing for, e.g., detecting
potholes [9], mapping noise [15] and pollution in urban ar-
eas [16], monitoring road traffic [17, 13], etc. Several in-
stances of paid mobile crowd-sourcing start-ups have also
emerged commercially including FieldAgent3, GigWalk4,
and NeighborFavor5. They pay workers a few dollars for
price checks, product placement checks in stores, location
aware surveys, and so on. TA$Ker focuses on two core
problems of all these systems, (1) assigning or recommend-
ing location-specific tasks to workers, and (2) exploring the
relationship between worker behavior (accept/reject a task,
falsely submitting a response, etc.) and attributes of the tasks
(rewards, location of the task, etc.)

Task Recommendation: Workers on existing mobile crowd-
sourcing service platforms have to browse through list of
tasks, which is usually sorted by proximity. As the number of
available tasks increases, the job of manually selecting such
tasks smartly becomes more challenging. Some researchers
[14] believe that such mental burden might be the reason why
super-agent phenomenon emerges.

The TA$Ker platform [6] is meant to allow real-world exper-
imentation on various issues that might be of interest to both
practitioners and researchers. There are other similar efforts:
for example, Kim [8] has recently created a proximity-based
delivery task recommendation engine that alerts workers of
suitable tasks if workers are close to a package center.

Worker Behavior: From system operator’s perspective, it is
important to study the relationship between worker behavior
and task attributes; however, there are only very limited aca-
demic studies on this topic. Alt et al. [1] discovered a vari-
ety of worker preferences, including preference for perform-
ing tasks before and after business hours or involving rela-
tively simple chores (e.g., taking pictures). More recently,
Thebault-Spieker [4] conducted studies on the relationship
between task pricing and location, at city-scale, and showed

3http://www.fieldagent.net
4http://www.gigwalk.com
5http://www.favordelivery.com

that workers preferred to perform tasks with lower detours
and that were outside economically-disadvantaged areas.

Task Specification: Significant recent work has applied al-
gorithmic approaches to improve the efficiency of mobile
crowd-sourcing. For example, the CCS framework [21] for
mobile crowd-sensing applies the principles of compressive
sensing to discover correlations among different sensed data,
whereas the CCS-TA framework [20] applies Bayesian infer-
encing to select a smaller set of tasks (& task locations) from
which the data for missing tasks can be interpolated; both
approaches reduce the amount of explicitly collected crowd-
sensed data. Our focus has thus far been on matching work-
ers to the set of available tasks; in the future, the approaches
above be integrated to jointly perform task selection and task
recommendation in a trajectory-aware fashion.

CONCLUSIONS AND FUTURE WORK
To provide better understanding of how workers perform
mobile crowd-sourcing tasks, we have built and deployed
TA$Ker, an experimental crowd-sourcing platform (front-
ended by a mobile App), on the SMU campus. The stud-
ies reported here involved a pool of 900 student volunteers,
who performed over 30,000 total tasks over a deployment
period of 8 weeks. On the systems side, we showed that
TA$Ker could indeed be effectively deployed on a campus,
and that a trajectory-aware recommendation strategy can out-
perform the current pull-based approach, notwithstanding the
real-world limitations of errors in location tracking and tra-
jectory prediction.

Our experimental studies revealed three insights about human
behavioral responses. First, we showed the importance of
task bundling for real-world crowd-sourcing: workers pre-
fer bundled tasks over atomic ones despite the lower per-
task reward, and in fact, improve their productivity (money
earned per unit of additional detour) by 77% by performing
such bundled tasks. Second, we found that a simple inverse-
density differential pricing model to be adequate in signifi-
cantly improving the fairness in task completion rates across
different campus locations (fairness improving by a factor of
1.25 compared to flat pricing schemes). Finally, we estab-
lished that the tendency to generate incorrect reports (with-
out visiting the task location) is affected by both intrinsic
and contextual factors. Workers tended to cheat on the latter-
performed tasks in a bundle; smaller execution windows for
tasks led to more cheating (80% of the cheating occurred on
tasks with validity windows less than 90 minutes).

In ongoing work, we continue to use TA$Ker to explore
other facets of mobile crowd-sourcing, including individual
vs. group incentive strategies (permitting workers to band to-
gether to execute larger task bundles) and understanding the
price elasticity of task bundles.
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