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Chapter 3
Adaptive Resonance Theory (ART) for
Social Media Analytics

Abstract This chapter presents the ART-based clustering algorithms for social
media analytics in detail. Sections3.1 and 3.2 introduce Fuzzy ART and its clus-
tering mechanisms, respectively, which provides a deep understanding of the base
model that is used and extended for handling the social media clustering challenges.
Important concepts such as vigilance region (VR) and its properties are explained
and proven. Subsequently, Sects. 3.3–3.7 illustrate five types of ART variants, each
of which addresses the challenges in one social media analytical scenario, including
automated parameter adaptation, user preference incorporation, short text clustering,
heterogeneous data co-clustering and online streaming data indexing. The content
of this chapter is several prior studies, including Probabilistic ART [15] ( c©2012
IEEE. Reprinted, with permission, from [15]), Generalized Heterogeneous Fusion
ART [20] ( c©2014 IEEE. Reprinted, with permission, from [20]), Vigilance Adap-
tation ART [19] ( c©2016 IEEE. Reprinted, with permission, from [19]), and Online
Multimodal Co-indexing ART [17] (http://dx.doi.org/10.1145/2671188.2749362).

3.1 Fuzzy ART

Fuzzy ART, as briefed in Sect. 2.1.11, is featured in ART variants by its fuzzy oper-
ators and complement coding. It is the base model for the ART-based algorithms
proposed in this book. This section presents the Fuzzy ART algorithm in detail.

3.1.1 Clustering Algorithm of Fuzzy ART

The architecture of Fuzzy ART (Fig. 3.1) consists of input field F1 for receiving the
input patterns and category field F2 for the clusters. The generic network dynamics
of Fuzzy ART are described as follows.

© Springer Nature Switzerland AG 2019
L. Meng et al., Adaptive Resonance Theory in Social Media
Data Clustering, Advanced Information and Knowledge Processing,
https://doi.org/10.1007/978-3-030-02985-2_3
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46 3 Adaptive Resonance Theory (ART) for Social Media Analytics

Fig. 3.1 Fuzzy ART
architecture. c©2016 IEEE.
Reprinted, with permission,
from [19]

Input vectors: Let I = x denote the input pattern in input field F1.Min-max normal-
ization is adopted tomake the feature values of I be in [0, 1].With complement coding
[4], x is further concatenated with its complement vector x̄ such that I = [x, x̄].
Weight vectors: Let w j denote the weight vector associated with the j th cluster c j
( j = 1, ..., J ) in category field F2.
Parameters: The Fuzzy ART’s dynamics are determined by choice parameter α ∈
(0, 0.01], learning parameter β ∈ (0, 1] and vigilance parameter ρ ∈ (0, 1).

The clustering process of Fuzzy ART has three key steps:

1. Category Choice: For each input pattern I, Fuzzy ART calculates the choice
function for all the clusters in category field F2 and selects the most suitable
cluster (winner) c j∗ , which has the largest value. The choice function for the j th
cluster c j is defined by

Tj = T (c j , I) = |I ∧ w j |
α + |w j | , (3.1)

where the fuzzy AND operation ∧ is defined by (p ∧ q)i ≡ min(pi , qi ), and the
norm |.| is defined by |p| ≡ ∑

i pi .
2. Template Matching: The similarity between input pattern I and winner c j∗ is

evaluated using a match function Mj∗ , which is defined by

Mj∗ = M(c j∗ , I) = |I ∧ w j∗ |
|I| . (3.2)

If the winner satisfies the vigilance criteria such that Mj∗ ≥ ρ, a resonance
will occur, which leads to the prototype learning step. Otherwise, a new winner
will be selected among the rest of the clusters in the category field. If no winner
satisfies the vigilance criteria, a new cluster will be generated to encode the input
pattern.

3. Prototype Learning: If c j∗ satisfies the vigilance criteria, its corresponding
weight vector w j∗ will be updated through a learning function, defined by

ŵ j∗ = β(I ∧ w j∗) + (1 − β)w j∗ . (3.3)
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3.1.2 Algorithm Analysis

As observed, Fuzzy ART adopts the choice and match functions Tj and Mj∗ to mea-
sure the similarity between input patterns and clusters, and it uses a single ratio value,
i.e. the vigilance parameter ρ, to limit the intra-cluster similarity. This unsupervised
learning mechanism results in Fuzzy ART’s linear time complexity of O(n) and the
fast convergence speed. In practice, Fuzzy ART usually achieves a reasonable clus-
tering result in just the first epoch, and the cluster structure becomes stable in a few
epochs.

Below is a proof of the learning mechanism of Fuzzy ART.

Property 3.1 Using the category choice and template matching functions, each
input pattern is categorized into the cluster with the best matching feature distribu-
tion.

Proof Equation (3.1) shows that the similarity is calculated by the ratio of the inter-
section |I ∧ w j | and the corresponding cluster prototype |w j |. If the feature vector
is interpreted using a histogram, the most similar feature distribution produces the
largest value of |I∧w j |

|w j | . The choice function in this way measures to which degree
the cluster c j is a subset of the input pattern I. Thus, the category choice procedures
select the cluster from which the feature distribution is the most similar to that of the
input pattern.

Subsequently, the template matching procedure defined by Eq. (3.2) evaluates if
the selected winner matches well with the feature distribution of the input pattern,
controlled by the vigilance parameter ρ. With a reasonable setting of ρ, the clusters
that do not match the feature distribution of the input pattern are rejected.

If all the existing categories are not fit for the input pattern, a new cluster is
generated, and the prototypes are set by the features of the input pattern. In this way,
each input pattern will be grouped into the best matching cluster.

Property 3.2 The learning function defined by Eq. (3.3) incrementally identifies the
key features from the input patterns.

Proof The learning function defined by Eq. (3.3) consists of two components I ∧ w j∗

and w j∗ . The first component is the intersection between the input pattern and the
cluster prototype, and the secondone is the cluster prototype. It has been observed that
whatever the value of the learning rate β, the values of the new cluster prototype, for
each element of the weight feature vector w j∗,i , will not exceed the old one, making
|ŵ j∗ | ≤ |w j∗ |. That is, if the elements of the feature vector are inconsistent in values,
the prototype learns a small value. In this way, the cluster prototype learns from the
input pattern by suppressing the inconsistent features while preserving the key and
consistent ones.
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3.2 Geometric Interpretation of Fuzzy ART

This section presents an in-depth analysis of the clusteringmechanism of FuzzyART
by revealing its clustering behaviors in the feature space. The following sub-sections
illustrate how the addition of complement coding changes the clustering behaviors
of Fuzzy ART. The geometric interpretation of Fuzzy ART is also provided via an
introduction to the concept of vigilance region (VR). Based on the above discoveries,
an example is given to analyze the clustering dynamics of Fuzzy ART. Lastly, a
discussion on Fuzzy ART’s strengths and weaknesses in clustering is provided.

3.2.1 Complement Coding in Fuzzy ART

Complement coding [4] is employed in Fuzzy ART as a normalization method for
the input patterns, which prevents cases in which the values of the weight vector of a
cluster decrease to such a low level that the cluster is no longer representative of its
category, and thus a set of new clusters must be generated to encode input patterns
of this category; this is known as the problem of category proliferation.

However, complement coding prevents category proliferation by significantly
changing the clustering mechanism of Fuzzy ART, converting the shapes of the
clusters from open forms to hyper-octagons, termed vigilance regions (VRs) (see
Fig. 3.2). The changes are illustrated below with mathematical proofs.

3.2.1.1 Effect of Complement Coding on Category Choice

Choice function Eq. (3.1) evaluates the degree to which the weight vector w j of
cluster c j is a subset of input pattern I. By employing complement coding in the
ART learning system, weight vector w j is concatenated by two parts, namely, the
feature part that has the smallest value in each dimension among all the vertices
of the weight hyper-rectangle and the complement part, of which the complement
vector, in contrast to the feature part, has the largest value among vertices in each
dimension. For example, in a 2D feature space, as shown in Fig. 3.2, the feature
part of weight vector w j is point a, and the corresponding complement part is the
complement vector of point b.

With complement coding, it can be proven that the choice function essentially
evaluates the similarity between the input pattern and the weight hyper-rectangle of
the selected cluster.

Property 3.3 Given the input pattern I = (x, x̄), weight vectorw j = (a, b̄) of clus-
ter c j , and α ≈ 0, choice function Tj considers the similarities between the original
input pattern x and the weight hyper-rectangle of cluster c j .
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Fig. 3.2 Geometric display of a cluster and its vigilance regions (VRs) with and without com-
plement coding in Fuzzy ART in 2D space. Without complement coding, point a denotes the
weight vector of the cluster, and the corresponding VRs under vigilance parameters ρ = 0.75 and
ρ = 0.825 are VR3 and VR4, respectively, as indicated by the black line. With complement coding,
the weight vector is represented by the red rectangle with vertices a and b, and the corresponding
VRs under vigilance parameters ρ = 0.75 and ρ = 0.825 are represented by the red octagons VR1
and VR2, respectively. c© 2016 IEEE. Reprinted, with permission, from [19]

Proof

Tj = |I ∧ w j |
α + |w j |

= |x ∧ a| + |x̄ ∧ b̄|
|w j |

= |x ∧ a| + |x ∨ b|
|a + b̄|

= |a|
|a + b̄| · |x ∧ a|

α + |a| + |b̄|
|a + b̄| · |x ∨ b|

α + |b̄| . (3.4)

As shown in Eq. (3.4), the choice function evaluates both the degree to which a
is a subset of x and the degree to which x is a subset of b. The final choice value
is obtained by their weighted summation, which is normalized by their respective
norms.

Therefore, given x=(x1, . . . , xm), a = (a1, . . . , am) andb = (b1, . . . , bm), choice
function Tj achieves its maximum for c j when, for ∀i ∈ [1,m], ai ≤ xi ≤ bi . For
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example, in Fig. 3.2, the choice function for this cluster achieves its maximum when
the input pattern falls into the weight rectangle.

It may be concluded that the further the input pattern is from the weight hyper-
rectangle, the lower the value that the choice function achieves for the cluster. Given
that Eq. (3.1) and Eq. (3.2) share the same numerator, for ∀ε ∈ (0, 1), Tj = |I∧w j |

α+|w j | =
ε produces a VR-like hyper-octagon.

Therefore, with complement coding, the choice function evaluates the similarity
of the input pattern to the weight hyper-rectangle of the selected cluster c j .

3.2.1.2 Effect of Complement Coding on Template Matching

Match function Eq. (3.2) evaluates the degree to which the input pattern I is a subset
of weight vectorw j∗ of cluster c j∗ . In templatematching, input pattern I is considered
similar to the winner cluster c j∗ if

Mj∗ = |I ∧ w j∗ |
|I| ≥ ρ. (3.5)

The VR therefore is identified to show the extent to which an input pattern can be
categorized into a specific cluster. Given the weight vector w j∗ = (w1, . . . ,wm) of
cluster c j∗ , the vigilance parameter ρ, and an arbitrary input pattern I = (x1, . . . , xm)

in the Fuzzy ART system. If Fuzzy ART does not employ complement coding,
Eq. (3.5) is equivalent to

�m
i=1 min(xi ,wi ) − ρ�m

i=1xi ≥ 0. (3.6)

As shown in Fig. 3.2, when m = 2, Eq. (3.6) is an irregular polygon constructed
by three functions and the horizontal and vertical axes.

In contrast, if FuzzyART employs complement coding, the number of dimensions
of the feature space will be m

2 . Therefore, Eq. (3.5) can be expressed as

�m
i=1 min(xi ,wi ) ≥ mρ

2
. (3.7)

When m = 4, as shown in Fig. 3.2, the VR of c j∗ becomes a regular polygon,
namely, an octagon.

3.2.2 Vigilance Region (VR)

Section3.2.1 demonstrated the effect of complement codingonFuzzyART. It proved,
in particular, that with complement coding the VR of a cluster becomes a hyper-
octagon centered by the weight vector of the cluster, namely, the weight hyper-
rectangle.



3.2 Geometric Interpretation of Fuzzy ART 51

The shapes and functional behaviors of a VR depend on the use of complement
coding. As shown in Fig. 3.2, with complement coding, the weight vector can be
represented by a hyper-rectangle in the feature space. In this case, the VR is a hyper-
octagon centered by the weight hyper-rectangle, and it shrinks as the cluster size
expands (The behaviors of VR will be discussed in Sect. 3.2.3); otherwise, without
complement coding, the VR is an irregular hyper-polygon with axes.

The vigilance region (VR) of a cluster, calculated from the vigilance criteria,
is geometrically defined by a region associated to the cluster in the feature space,
and it essentially determines how a cluster in the Fuzzy ART system recognizes
similar patterns in the feature space. It also provides a geometric interpretation of the
vigilance criteria in FuzzyART that the input patterns falling intoVRs are considered
to be similar to the corresponding clusters.

The following section analyzes the properties of the weight hyper-rectangle and
VR of a cluster, which will be subsequently used to interpret the clustering process
of Fuzzy ART in Sect. 3.2.3.

Property 3.4 Given the weight vectorw j = (w1, . . . ,wm) of cluster c j in the Fuzzy
ART system with complement coding, the VR of c j consists of 3

m
2 − 1 hyper-planes.

Proof Similar to Eq. (3.4), given w j = (a1, . . . , am
2
, b̄1, . . . , b̄ m

2
), I = (x, x̄) =

(x1, . . . , x m
2
, x̄1, . . . , x̄ m

2
), Eq. (3.5) can by expressed as

�
m
2
i=1 min(xi , ai ) + �

m
2
i=1max(xi , bi ) ≥ mρ

2
. (3.8)

The m dimensional vector w j is a hyper-rectangle in the m
2 dimensional space,

and for ∀i ∈ [1, m
2 ], xi ∈ [0, ai ) ∪ [ai , bi ) ∪ [bi , 1]. Therefore, the feature space is

divided into 3
m
2 subsections.

Considering that Eq. (3.8) is an identical equation in the weight hyper-rectangle,
the number of hyper-planes for constructing the VR is 3

m
2 − 1.

Property 3.5 Patterns falling into the weight hyper-rectangle have the same value
of match function defined by Eq. (3.2).

Proof Given a cluster c j and its weight vector w j = (a1, . . . , am
2
, b̄1, . . . , b̄ m

2
) and

I = (x1, . . . , x m
2
, x̄1, . . . , x̄ m

2
) falling into the weight hyper-rectangle, it yields ∀i ∈

[1, m
2 ], ai ≤ xi ≤ bi .
In this case, according to Eq. (3.8), the value of the match function depends only

on weight vector w j such that |I ∧ w j∗ | = w j∗ . Therefore, all the patterns in the
weight hyper-rectangle have the same match value.

The situation may also be interpreted as all of those patterns having the same �1
distance to a and b, as

|x − a| + |x − b| =
∑

i

(xi − ai ) +
∑

i

(bi − xi )

=
∑

i

(xi − ai + bi − xi ) =
∑

i

(bi − ai ). (3.9)
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Property 3.6 Patterns falling into the weight hyper-rectangle of the winner do not
result in the expansion of the weight hyper-rectangle during the learning step defined
by Eq. (3.3).

Proof In Property 3.4, if I falls into the weight hyper-rectangle of cluster c j , |I ∧
w j∗ | = w j∗ . In this case, Eq. (3.3) is equivalent to

w(new)
j∗ = βw j∗ + (1 − β)w j∗ = w j∗ . (3.10)

Therefore, weight vector w j∗ undergoes no change after encoding input pattern I.

Property 3.7 The weight hyper-rectangle of a cluster reflects the cluster size, which
is controlled by the learning rate β.

Proof Given input pattern I = (x, x̄), winner c j∗ and its corresponding weight vector
w j∗ = (a, b̄), if I is categorized into c j∗ , w j∗ is updated according to Eq. (3.3) such
that

w(new)
j∗ = (a(new), b̄(new)) = β(I ∧ w j∗) + (1 − β)w j∗

= β((x, x̄) ∧ (a, b̄)) + (1 − β)(a, b̄)

= β(x ∧ a, x ∨ b) + (1 − β)(a, b̄)

= (β(x ∧ a) + (1 − β)a, β(x ∨ b) + (1 − β)b̄)). (3.11)

From Eq. (3.11), it is observed that the update of weight vector w j∗ is essentially
the movement of a and b towards the input pattern I. Specifically, a moves toward I
in the dimensions {i |xi < ai }, while bmoves toward I in the dimensions {i |xi > bi }.

Therefore, when learning parameter β equals 1, the weight hyper-rectangle of c j∗
covers all the patterns in c j∗ , which indicates the boundaries of c j∗ . When β < 1,
the weight hyper-rectangle expands toward the new patterns to some extent, making
it unable to cover all the patterns. However, the weight hyper-rectangle may reflect
the cluster size in a smaller scale.

Property 3.8 The VR shrinks as the weight hyper-rectangle expands to control the
minimum intra-cluster similarity.

Proof As demonstrated in Property 3.4, a VR in the m
2 dimensional space is con-

structed by 3
m
2 − 1 functions, each of which is calculated using Eq. (3.8). Given the

nature of the learning function defined by Eq. (3.3), which suppresses the values of
features, following the definitions in Property 3.4, it yields ∀i ∈ [1, m

2 ], a(new)
i ≤ ai

and b(new)
i ≥ bi . Therefore, after the weight hyper-rectangle expands, the constant

in the left part of Eq. (3.8) decreases. In this situation, functions in the subsections
either remain the same or move toward the weight hyper-rectangle.

Interestingly, if an input pattern I causes the weight hyper-rectangle of a clus-
ter c j to expand, the function of the VR in the subsection to which I belongs will
remain the same. Following the definitions in Property 3.4, if I causes the movement
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of a in the i th dimension, it yields xi ≤ a(new)
i < ai . However, for this dimension,

min(xi , a
(new)
i ) = xi . Therefore, the function of the VR in that subsection is not

related to the value of ai . A similar conclusion can be drawn regarding the move-
ment of b.

The shrinking of the VR can also be understood from another perspective. As the
VR indicates the boundaries that the weight hyper-rectangle expands toward in all
directions, when the weight hyper-rectangle expands in one direction, its distance
from the VR is determined by the function in that direction, and the functions in
other directions should shrink to meet this distance so that the updated VR remains
a regular hyper-octagon centered by the weight hyper-rectangle.

3.2.3 Modeling Clustering Dynamics of Fuzzy ART Using
VRs

Given the above properties of the weight hyper-rectangle and the VR, the clustering
process of Fuzzy ART can be interpreted using a 2D example, as shown in Fig. 3.3.

Figure 3.3a depicts the evolution of a cluster in Fuzzy ART with the sequential
presentation of I1(0.5, 0.6), I2(0.6, 0.5), I3(0.45, 0.45), and I4(0.43, 0.42), under
the learning parameter β = 1 and the vigilance parameter ρ = 0.825. When the
cluster has only one pattern I1, the weight rectangle R1 is situated exactly at point
I1. In this case, the corresponding VR1 is a square diamond centered by I1. After
the encoding of I2, R2 becomes a rectangle, and the corresponding VR becomes
an octagon, which satisfies Property 3.4. During the presentation of the subsequent
patterns, the weight rectangle expands to cover all of the patterns, which satisfies
Property 3.7. It is notable that I4 lies directly on the edge of VR3 and, after learning
from I4, VR4 overlaps with R4. Based on Properties 3.5 and 3.6, patterns falling into
R4 have the same match function value, and this cluster will no longer expand. Also,
the bottom-left edge of VR2-VR4, where I4 lies, never shrinks. This is because the
weight rectangle always expands in this direction, which can be interpreted by the
conclusion in Property 3.8.

Similarly, Fig. 3.3b shows the evolution of a cluster with the sequential presen-
tation of I1(0.5, 0.6), I2(0.6, 0.5), I3(0.45, 0.45), I4(0.4, 0.41), and I5(0.4, 0.41)
under β = 0.6 and ρ = 0.825. It is observed that, with a smaller learning parame-
ter β = 0.6, R1 expands toward I2, but it cannot cover both I1 and I2 as shown in
Fig. 3.3a. However, with a smaller sized R2, the corresponding VR2 covers a larger
region than that depicted in Fig. 3.3a. Contrary to the behavior illustrated in Fig. 3.3a,
a repeated presentation I5 of input pattern I4, as shown in Fig. 3.3b, still caused the
cluster to learn. Therefore, when β < 1, the continuous presentation of the same
pattern to the same cluster results in the gradual expansion of the weight rectangle
of the cluster towards the input pattern. However, the cluster rectangle cannot cover
that pattern due to the learning function of Fuzzy ART.



54 3 Adaptive Resonance Theory (ART) for Social Media Analytics

Fig. 3.3 2D example of the
evolution of a cluster in
Fuzzy ART under different
learning parameter values a
β = 1 and b β = 0.6. I1-I5
are the sequentially
presented data objects,
R1–R4 indicate the
expansion of the cluster’s
weight rectangle, and
VR1-VR4 indicate the
corresponding VRs. c© 2016
IEEE. Reprinted, with
permission, from [19]
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3.2.4 Discussion

The VR provides a geometric understanding of how Fuzzy ART works. As shown in
Fig. 3.2, without complement coding, the VR of Fuzzy ART in a 2D space is an open
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region, so the weight vector of the cluster denoted by point a may gradually move to
the origin, which causes category proliferation. With complement coding, as shown
in Fig. 3.3, the VR of a cluster in Fuzzy ART is a regular polygon, which shrinks as
the cluster size expands. Therefore, Fuzzy ART with complement coding tends to
partition the high-dimensional feature space into regions of hyper-rectangles.

The geometric interpretation of Fuzzy ART is also helpful for deducing and
improving its limitations. First, given that the VR of a new cluster is usually much
larger than the weight rectangle of the cluster and shrinks quickly after encoding the
subsequent patterns, it may be difficult to cover a group of patterns using a single
cluster, even if the VR covers all of the patterns. Secondly, a small VR may result in
the generation of multiple clusters to cover a group of patterns. Thirdly, a large VR
may incur an incorrect categorization of patterns, as the sequence of input patterns is
unknown. Therefore, the performance of Fuzzy ART depends greatly on the value of
vigilance parameter ρ, and the clustering results may differ with different sequences
of input patterns.

3.3 Vigilance Adaptation ARTs (VA-ARTs) for Automated
Parameter Adaptation

Clustering web multimedia data available on social websites has drawn much atten-
tion for social community discovery [16, 21], collective behavior analysis [27] and
underlying topic discovery [15, 26]. However, the large-scale and complex nature of
social media data raises the need to scale clustering techniques for big data and make
them capable of automatically identifying data clusters with few empirical settings.

Fuzzy Adaptive Resonance Theory (Fuzzy ART) is a promising clustering using
only the vigilance parameter ρ as a threshold for intra-cluster similarity. There have
been studies in the literature on the adaptation or elimination of the vigilance param-
eter in the ART-based algorithms. But these studies introduce additional parameters,
such as the number of clusters [9, 10] or the class labels for supervised learning
[1, 3]. Therefore, adapting the vigilance parameter in ART under a pure clustering
scenario without any additional information remains a challenge.

This section describes such an approach, called vigilance adaptation ART (VA-
ART), originally investigated in [18, 19], which allows clusters to have their own
ρ values and make them self-adaptable by leveraging the distribution of vigilance
regions (VRs) in the feature space. Three variants of VA-ART will be discussed,
including AM-ART, CM-ART, and HI-ART, which are named after their adopted
methods for adapting the vigilance parameter ρ, i.e. the activation maximization
rule (AMR), the confliction minimization rule (CMR), and the hybrid integra-
tion rule (HIR).

The following sub-sections discuss the three VA-ARTs and include an experimen-
tal analysis of four real-world social media datasets. It is observed that AM-ART,
CM-ART, and HI-ART are more robust than Fuzzy ART to the initial vigilance
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Fig. 3.4 A 2D example of
how AMR adapts the
vigilance parameters of two
clusters in Fuzzy ART with
complement coding. c©
2016 IEEE. Reprinted, with
permission, from [19]
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value, and they usually achieve better or comparable performance and a much faster
speed than state-of-the-art clustering algorithms that also do not require a predefined
number of clusters, which have been discussed in Sect. 2.5.3.

3.3.1 Activation Maximization Rule

The Activation Maximization Rule (AMR) comes from the observation that, with
a small vigilance value, input patterns are likely to incur resonances for the same
cluster. Alternatively, a large vigilance value may cause the input patterns for all
clusters in the categoryfield to reset, requiring the creationof a newcluster. Therefore,
AMRis proposed to restrain the continuous activationof the samecluster andpromote
the activation of clusters that usually incur resets.

Specifically, AMR adapts the vigilance parameter ρ j∗ of the winner c j∗ when

(1) Resonance occurs: ρ̂ j∗ = (1 + σ)ρ j∗ ;
(2) Reset occurs: ρ̂ j∗ = (1 − σ)ρ j∗ .

The restraint parameter σ ∈ [0, 1] controls the degree to which the vigilance
parameter increases or decreases. With a small σ , AMR incurs small changes in the
vigilance values of clusters, so the performance ofARTmay still depend on the initial
value of the vigilance parameter. In contrast, a large σ may help to make AM-ART
more robust to the initial vigilance value but may result in unstable vigilance values
of clusters, which could increase the risk of pattern mis-categorization.

Figure 3.4 illustrates how AMR works. C1 and C2 are two clusters with different
values of vigilance parameters. When the input pattern I is presented, C2 is the
first winner. However, C2 incurs a reset due to its small VR. Subsequently, the next
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winner, C1, encodes input pattern I. Without AMR, the VR of C2 remains the same,
and that of C1 shrinks from VR1 to VR2. Therefore, if another input pattern close
to I is presented, it will be mis-categorized to C1 again. However, with AMR, the
VR of C2 expands from VR1 to VR2, and that of C1 shrinks from VR1 to VR3. In
this case, C2 can successfully encode input pattern I. If the initial vigilance value
is large, AMR may increase the VRs of clusters to alleviate the over-generation of
clusters. Therefore, AMR may help to improve the clustering performance of Fuzzy
ART when the initial vigilance value is not suitable.

Notably, AMR may also help to even out the sizes of two very close clusters
by quickly shrinking the VR of the cluster that encodes more patterns, which may
help to prevent the generation of small clusters and the over-generalization of cluster
weights.

3.3.2 Confliction Minimization Rule

The Confliction Minimization Rule (CMR) minimizes the overlap between VRs
of close clusters to produce better cluster boundaries. CMR is based on the idea
that, in Fuzzy ART, the incorrect recognition of patterns is usually caused by a
small vigilance value, so the VR of a cluster may cover patterns from other classes.
Therefore, well-partitioned boundaries between clusters can minimize the risk of
mis-categorization.

Specifically, CMR in Fuzzy ART has three key steps:

1. Candidate Selection: Select all winner candidates Cw = {c j |Mj ≥ ρ} in cate-
gory field F2 through the match function defined by Eq. 3.2. If no candidates are
selected, CMR stops;

2. Winner Identification: Identify the winner c j∗ from all candidates through the
choice function defined by Eq. 3.1 such that j∗ = argmax j Tj ;

3. Confliction Minimization: Update the vigilance parameters of all winner candi-
dates except the winner {c j |c j ∈ Cw ∧ j = j∗} using ρ̂ j = Mj + Δ (Δ ≈ 0 is a
positive value).

CMR requires Fuzzy ART to first identify all winner candidates to the input pattern
through the match function. After the winner is identified in the second step, the
vigilance values of all other candidates are increased to slightly higher than their
respective match values. In this way, the winner is more likely to encode the subse-
quent input patterns that are close to the current input pattern, and the overlap between
the VRs of those candidates will decrease. However, when the initial vigilance value
is high, unlike AMR, CMR cannot alleviate the over-generation of clusters.

Contrary to AMR, which requires no changes to the clustering procedures of
Fuzzy ART, CMR requires a change in the sequence of category choice and template
matching steps. Therefore, to employ CMR in Fuzzy ART, the category choice and
template matching steps should be replaced using the CMR procedures.
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Fig. 3.5 2D example of how
CMR adapts the vigilance
values of clusters in order to
reduce overlap between their
VRs. c© 2016 IEEE.
Reprinted, with permission,
from [19]
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Figure 3.5 illustrates the ability of CMR to reduce the overlap between the VRs
of clusters. C1-C3 are three clusters with corresponding VRs denoted by VR1, and
I is an input pattern falling in the overlap between the VRs of all the clusters. C2
encodes the input pattern I, and its VR shrinks from VR1 to VR2. Without CMR, the
overlap between all three clusters does not decrease. While with CMR, the VRs of
C1 and C3 shrink from VR1 to VR2 accordingly. Therefore, the overlap undergoes
significant reduction. However, the improved VRs still cannot scale the boundaries
between the clusters well because Fuzzy ART cannot decide which cluster best fits
the patterns falling within the overlapping areas based on existing knowledge learned
from the patterns.

3.3.3 Hybrid Integration of AMR and CMR

AMR and CMR are inspired by different considerations for ART and have differ-
ent mechanisms when embedding in ART, so they cannot be simply combined into
a single framework. However, the ideas of AMR and CMR can be simultaneously
integrated. Specifically, AMR essentially rewards the clusters that have larger choice
values than the winner but incur resets due to a large vigilance value, while penaliz-
ing the clusters that incur resonances to avoid a potentially low vigilance value. In
contrast, CMR minimizes the overlap between the VRs of clusters. Therefore, the
objectives of both AMR and CMR could be achieved using a single framework.

The implementation of the hybrid method, called the Hybrid Integration Rule
(HIR), may follow the procedures of either AMR or CMR. Following AMR, after
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the winner is identified, HIR will subsequently discover all the winner candidates
and apply CMR to minimize the overlap of their VRs. Following CMR, after the
winner is identified, HIR will subsequently search for all the clusters with choice
values that are equal to or greater than the winner and decrease their vigilance values
according to AMR.

For time efficiency, HIR is implemented according to the procedures of CMR, as
listed below:

1. Candidate Selection: Select all winner candidates Cw = {c j |Mj ≥ ρ} in cate-
gory field F2 through the match function Eq. 3.2. If no candidates are selected,
for ∀c j ∈ F2, set ρ̂ j = (1 − σ)ρ j , and HIR stops;

2. Winner Identification: Identify the winner c j∗ from all candidates through the
choice function Eq. 3.1 such that j∗ = argmax j Tj . Set ρ̂ j∗ = (1 + σ)ρ j∗ ;

3. Confliction Minimization: Update the vigilance parameters of all winner candi-
dates {c j |c j ∈ Cw ∧ j = j∗}, except the winner, through ρ̂ j = Mj + Δ;

4. Activation Maximization: Search in the remaining clusters to identify the set
of clustersRc = {c j |c j ∈ F2 ∧ c j /∈ Cw ∧ Tj ≥ Tj∗ } and for ∀c j ∈ Rc, set ρ̂ j =
(1 − σ)ρ j .

HIR identifies all the neighboring clusters of the input pattern tominimize the overlap
of their VRs while simultaneously increasing the vigilance value of the winner and
decreasing those values of the clusters that have equal or larger choice values but
incur resets. Therefore, HIR takes advantage of both AMR and CMR.

3.3.4 Time Complexity Analysis

Given an input pattern x, Fuzzy ART undergoes the procedures including

1. Complement coding: that augments I = x to I = [x, x̄]. It has a time complexity
of O(n f ), where n f denotes the number of features.

2. Cluster matching: that performs category choice and template matching proce-
dures through

Tj = T (c j , I) = |I ∧ w j |
α + |w j | ,

Mj∗ = M(c j∗ , I) = |I ∧ w j∗ |
|I| ,

which are defined in Eqs. (3.1)–(3.2) and have a time complexity of O(ncn f ),
respectively. nc denotes the number of clusters.

3. Prototype learning: that either creates a new cluster c j with a weight vector
w j = I or updates the weights ŵ j∗ of the winning cluster c j∗ by
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ŵ j∗ = β(I ∧ w j∗) + (1 − β)w j∗ ,

which is defined in Eq. (3.3) and has a time complexity of O(n f ).

Therefore, given ni input patterns, the overall time complexity of Fuzzy ART is
O(nincn f ).

AM-ART requires the vigilance values of the selected winners to be adapted,
incurring a time complexity of O(nc); CM-ART reverses the procedures of cate-
gory choice and template matching and adapts the vigilance parameter values of all
winner candidates, of which the time complexity is O(nc); HI-ART integrates the
procedures of AM-ART and CM-ART. Therefore, the three VA-ARTs have the same
time complexity as Fuzzy ART, i.e. O(nincn f ).

3.3.5 Experiments

This section presents an experimental study of VA-ARTs using real-world social
media datasets to illustrate (1) how the Fuzzy ART variants work, (2) how to select
suitable parameters, (3) what properties the VA-ARTs have, and (4) how their clus-
tering performance is compared with state-of-the-art ones.

3.3.5.1 Datasets

To evaluate the consistency in the performance of VA-ARTs for clustering different
types of social media data, four real-world social media datasets are selected for
experiments, including

• NUS-WIDE dataset [6] consists of 269,648 Flickr images with their raw sur-
rounding text and ground-truth labels from 81 concepts. 10,800 images were used
in total from nine classes, including dog, bear, cat, bird, flower, lake, sky, sunset,
and wedding, each of which contains 1,200 images. Each image was represented
as a 426-D vector by concatenating three types of visual features, including Grid
ColorMoment (225 features), EdgeDirectionHistogram (73 features) andWavelet
Texture (128 features).

• 20 Newsgroups dataset [13] consists of approximately 20,000 messages from
20 different netnews newsgroups, each of which contains nearly 1,000 docu-
ments. 9,357 documents were collected from 10 classes, including alt.atheism,
comp.graphics, comp.windows.x, rec.sport.baseball, rec.sport.hockey, sci.med,
sci.space, misc.forsale, talk.politics.guns, and talk.politics.misc, from the pro-
cessed MATLAB version of the 20news-bydate dataset.1 Regarding the feature
extraction, any words that occurred less than 30 times were filtered, and each doc-

1http://qwone.com/~jason/20Newsgroups/.
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ument was represented by a bag-of-words vector of 6,823 features, weighted by
the term frequency-inverse document frequency (tf-idf) algorithm.

• Corel5K dataset [7] consists of 4,999 images from 50 equal-sized classes. The
whole dataset was utilized for experiments, and 426 visual features were extracted
for image representation, as used in the NUS-WIDE dataset.

• BlogCatalog dataset [28] consists of the friendship network and the raw blog
data (blog content, category, and tags) of 88,784 social network users. A polished
version of the dataset was used as processed in [16]. Specifically, the blog content
of 10,000 users from 10 equal-sized classes was collected, including travel, music,
writing, sports, shopping, computers, finance, film, fashion, and books. By filtering
the infrequent words, each user is represented by a 5685-D vector, of which the
features are weighted by the tf-idf algorithm.

3.3.5.2 Parameter Selection

Like Fuzzy ART, the proposed VA-ARTs, i.e. AM-ART, CM-ART, and HI-ART,
share the parameters α, β, and ρ. Beyond those, AM-ART has the restraint parameter
σ , CM-ARThas the parameterΔ, andHI-ARThas both.α = 0.01,β = 0.6,σ = 0.1,
and Δ = 0.01 are consistently used throughout the experiments. Such settings have
been demonstrated in past efforts [16, 18, 25] to make the Fuzzy ART variants
achieve robust performance.

The vigilance parameter ρ is essentially a ratio value that controls the minimum
intra-cluster similarity of patterns, so its value is data-dependent. However, an empir-
icalmethod [16] has shown that a suitable value ofρ typically results in the generation
of a few small clusters with tens of patterns, typically 10% of the total number of the
generated clusters. The experiments conducted in this section followed this method
to select the initial value of ρ.

3.3.5.3 Robustness to Vigilance Parameter

This section evaluates the performance of AM-ART, CM-ART, and HI-ART on
improving the robustness of Fuzzy ART to the vigilance parameter ρ. The perfor-
mance was measured in terms of purity [30] and the number of clusters generated.
Here, purity measures how well the algorithm recognizes the data objects of the
same class, and the number of clusters measures how well the algorithm partitions
the dataset with the lowest network complexity. The performance of the NUS-WIDE
and 20 Newsgroups datasets were reported in Fig. 3.6, and similar observations were
found in the experiments on the Corel5K and BlogCatalog datasets.

As shown in Fig. 3.6a, when ρ < 0.4, AM-ART, CM-ART, and HI-ART per-
formed much better in purity and identified more clusters than Fuzzy ART. When
ρ > 0.7, all algorithms achieved a comparable performance; however, as shown
in Fig. 3.6b, the higher purity was achieved by increasing the network complexity.
Meanwhile, AM-ART andHI-ART generated significantly fewer clusters than Fuzzy
ART and CM-ART. These findings indicated that AMR, CMR, and HIR enabled the
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Fig. 3.6 Sensitivity of AM-ART, CM-ART, HI-ART, and Fuzzy ART to the vigilance parameter
ρ measured by purity and the number of generated clusters on the NUS-WIDE (a and b) and the
20 Newsgroups (c and d) datasets. c© 2016 IEEE. Reprinted, with permission, from [19]

proposed algorithms to be more robust than Fuzzy ART to the vigilance parameter,
especially when the initial vigilance value is low. AMR can effectively simplify the
generated cluster network when the initial vigilance value is high. More importantly,
HI-ART has the advantage of both AM-ART and CM-ART, which demonstrates the
viability of developing hybrid methods for vigilance adaptation. Similar findings can
be observed in Fig. 3.6c, d.

A case study was further conducted to provide a deeper understanding of how the
proposed algorithms work by analyzing the clusters generated by each algorithm. As
shown in Fig. 3.7a, b, under ρ = 0.2, AM-ART, CM-ART and HI-ART identified
more smaller clusters with better coherence than Fuzzy ART. These facts explain
the lower performance of Fuzzy ART. In contrast, as illustrated in Fig. 3.7c, d, when
ρ = 0.9, all algorithms generated clusters of similar quality, while HI-ART and AM-
ART generated far fewer small clusters than CM-ART and Fuzzy ART. This explains
why they can generate fewer clusters than the other algorithms and demonstrates the
effectiveness of AMR in simplifying the network with a high vigilance value.
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Fig. 3.7 Distributions of clusters generated by AM-ART, CM-ART, HI-ART, and Fuzzy ART on
the NUS-WIDE dataset in terms of cluster size and average pattern-centroid distance under ρ = 0.2
(a and b) and ρ = 0.9 (c and d). c© 2016 IEEE. Reprinted, with permission, from [19]

3.3.5.4 Convergence Analysis

This section presents a study on the convergence property of theVA-ARTs algorithms
and Fuzzy ART. Their performance on the NUS-WIDE and the 20 Newsgroups
datasets under ρ = 0.7 and 0.6, respectively, was reported, and similar findings were
observed on the other datasets.

As shown in Fig. 3.8, all algorithms experienced large changes during the first
six rounds. This circumstance is likely due to the generation of new clusters. CM-
ART and HI-ART usually obtain comparable convergence speeds, which are faster
than AM-ART and Fuzzy ART. This is because CMR promotes shrinking of the
VRs of neighboring clusters by reducing their overlap, resulting in the fast stabi-
lization of cluster assignments. AM-ART usually converges slower than Fuzzy ART,
because AMR increases the vigilance value of the competitive winner candidates and
decreases that of the winner so that patterns may jump across those winner candi-
dates when they are presented multiple times. HI-ART converged faster than Fuzzy
ART during the first rounds of iterations due to CMR but achieved a convergence
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Fig. 3.8 Convergence analysis of AM-ART, CM-ART, HI-ART, and Fuzzy ART measured by the
change in weights and the number of patterns moving across clusters in each iteration on the NUS-
WIDE (a and b) and 20 Newsgroups (c and d) datasets. c© 2016 IEEE. Reprinted, with permission,
from [19]

speed similar to that of Fuzzy ART after the network became stable due to AMR.
Interestingly, in contrast to its performance on the NUS-WIDE dataset, AM-ART
converged faster than Fuzzy ART on the 20 Newsgroups dataset. This may be due
to the larger dispersion of patterns in the feature space, which caused the increased
size of the VRs to have less of an effect.

3.3.5.5 Clustering Performance Comparison

This section compares the clustering performance of AM-ART, CM-ART, and HI-
ART to existing clustering approaches that also automatically identify the number of
clusters in data, including DBSCAN, affinity propagation, Clusterdp, and fuzzy ART.
All algorithms were implemented in MATLAB. Hierarchical and genetic clustering
approaches are not considered here because they require heavy computation and are
not scalable for large-scale datasets.
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Min-max normalization was applied to the datasets because the ART-based
algorithms required the input values to be in the range of [0, 1]. Experimental results
indicated that the normalization of data had an unobvious effect on the performance
of other algorithms. To ensure a fair comparison, practical parameter tuning strategies
were utilized for the algorithms. For DBSCAN, the minimum cluster size minPts
was determined by evaluating the sizes of the small clusters generated by Fuzzy ART
under high vigilance values ρ ∈ [0.7, 0.9]. Subsequently, the method suggested in
[8] was followed to select the search radius ε, namely, to plot the k-distance graph
(k is the value ofminPts) and choose the “bend” value. For Affinity propagation, the
preference value pwas selected using theMATLABfunction “preferenceRange.m”.2

The values of damp f act , convits and maxits were first set to the suggested values
by the authors and then changed with respect to the preference value p to ensure
convergence. For Clusterdp, the search radius dc was set to the value of ε used in
DBSCAN as both have the samemeaning, and the cluster centers were selected from
the decision graph that produced the best performance.

Three external clustering performance measures were used, including purity [30],
class entropy [11] and the Rand index [29]. Purity evaluates the precision aspect, i.e.,
how well an algorithm recognizes patterns belonging to the same class, and a higher
value indicates better performance. Class entropy evaluates the recall aspect, i.e., how
well an algorithm partitions the dataset with the minimum number of clusters, and
a lower value indicates better performance. The Rand index considers both aspects.
Internal performance measures, such as the sum-of-squared error (SSE), were not
used because they make assumptions based on cluster shapes, so they are not suitable
to evaluate the performance of DBSCAN and Clusterdp.

The performance of each algorithm was first reported under different parameter
settings in terms of the Rand index on all datasets, which provides an overall picture
of the performance of each algorithm. Specifically, for the ART-based algorithms,
the curve of performance was plotted as a function of the vigilance parameter ρ; for
DBSCAN, the curve was plotted as a function of the minimum cluster size minPts;
for Affinity Propagation, the curve was plotted as a function of the preference value
p; for Clusterdp, the curve was plotted as a function of the search radius dc. The other
parameters of each algorithm were fixed or tuned as aforementioned so that the best
performance was achieved under each condition of the functions. Additionally, for
DBSCAN and the ART-based algorithms whose results may be affected by the input
data sequence, the performance was the mean value obtained by repeating the exper-
iments ten times with different sequences of patterns, while that of Affinity Propa-
gation and Clusterdp was obtained in a single run. The results are shown in Fig. 3.9.
To facilitate the comparison, the x-axis values of each algorithm were normalized
to be in the range of [0, 1]. The performance of the ART-based algorithms typi-
cally increased with respect to the increase in the vigilance value ρ, which indicated
that better performance can be achieved by setting a higher intra-cluster similarity
threshold to some extent. However, a vigilance value that is too high would result in
a deteriorated performance by the high network complexity, as shown in Fig. 3.9a, b.

2http://genes.toronto.edu/index.php?q=affinity%20propagation.
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Furthermore, HI-ART and CM-ART usually outperform AM-ART and Fuzzy ART
when the vigilance value is low, consistent with this book’s findings as presented in
Sect. 3.3.5.3. It is notable that Fuzzy ART achieved a very low performance when
ρ < 0.3, which was caused by the fact that all patterns in the Corel5K dataset were
clustered into a single cluster. In contrast, AM-ART achieved an improved perfor-
mance on this case while CM-ART and HI-ART had a big improvement over Fuzzy
ART. Compared with the ART-based algorithms, DBSCAN could achieve a stable
performance when the values of minPts were near the best setting. However, it was
observed that the best parameter value varied with different datasets, and the best
performance of DBSCANwas typically lower than these achieved by the ART-based
algorithms. Affinity Propagation could perform comparably to the ART-based algo-
rithms and achieved a more stable performance under different parameter settings,
especially in Fig. 3.9a, d. However, the performance of Affinity Propagation could
fluctuate a lot, as shown in Fig. 3.9b, c, making it difficult to manually select the best
parameter settings. Clusterdp typically performed the worst among all algorithms.
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Fig. 3.9 Clustering performance comparison of the proposed algorithms and four baseline algo-
rithms under different parameter settings measured by the Rand index on the a NUS-WIDE, b 20
Newsgroups, c Corel5K and d BlogCatalog datasets. c© 2016 IEEE. Reprinted, with permission,
from [19]
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Although a fairly stable performance was achieved in Fig. 3.9a, its best performance
is almost 10% lower than those achieved by other algorithms. This could be caused by
the noisy features of the patterns so that the neighboring relationship between patterns
belonging to the same cluster may not be well-reflected by the calculated distance.
Additionally, Clusterdp suffered from the problem of selecting qualified cluster cen-
ters from the decision graph on all datasets. In the experiments conducted, almost
all patterns were in a mass while few of them satisfied the requirements of having
many neighbors and a long distance to other more qualified cluster centers.

A case study was further conducted on the best clustering results of all algorithms
achieved in Fig. 3.9 by comparing their performances in terms of purity, class entropy,
and the Rand index. For DBSCAN and the ART-based algorithms, the means and
standard derivations obtained from ten runs were reported, and their differences were
further measured by the t-test. As shown in Table 3.1, the proposed CM-ART and
AM-ART typically obtained the best performances across all datasets in terms of
purity and the Rand index, which was usually significantly better than that achieved
by DBSCAN, Affinity Propagation, and Clusterdp at the significant level p = 0.001.
Fuzzy ART usually performs comparably to the proposed algorithms and exhibits
the best performance on the Corel5K dataset in terms of purity and the Rand index.
However, it did not perform significantly differently than CM-ART at the significant
level p = 0.1. It was observed thatAffinity Propagation andDBSCANusually obtain
the best performance of class entropy, which indicated that theART-based algorithms
may have to generatemore clusters to guarantee a higher quality of clusters. Thismay
be due to the irregular distributions of patterns in the feature space resulted by the
noisy patterns. Furthermore, the proposed AM-ART, CM-ART, and HI-ART usually
achieve a performance that is not significantly different to the best performance in
terms of class entropy at the significant level p = 0.05. The above findings revealed
that the proposed algorithms usually performbetter than or comparable to the existing
algorithms in terms of purity and the Rand index, and also perform reasonably well
in terms of class entropy.

3.3.5.6 Case Study on Noise Immunity

The noisy and diverse nature of social media data raises a challenge for the robustness
of clustering algorithms to noise. Here, noise is not only defined by the noisy patterns
that are isolated from clusters of the same class, but also defined by the noisy features
that result in the noisy or ill-representedpatterns. This section reports the performance
of VA-ARTs and the baselines on noisy data.

To quantitatively evaluate the effectiveness of these algorithms on noisy data,
a widely used method was followed to add noise to different proportions of the
original data to produce noisy datasets at different noisy levels. Specifically, the
Matlab function y = awgn(x, snr) was used to add additive white Gaussian noise
to the data collected from the NUS-WIDE dataset, where x and y are the original
and the generated noisy data patterns respectively, and snr is the signal-to-noise
ratio. snr = 20 was empirically set to ensure that the generated noisy patterns would
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Fig. 3.10 Performance of AM-ART, CM-ART, HI-ART, and the algorithms in comparison on
noisy data generated from the NUS-WIDE dataset. c© 2016 IEEE. Reprinted, with permission,
from [19]

generally blur, but not break, the original distribution of patterns to a certain extent.
For each class of data patterns, the same number of patterns was randomly selected
to add noise. In total, ten noisy datasets were generated with different proportions of
noisy patterns.

The average performance of all algorithms obtained from ten runs on the original
and ten noisy datasets were reported in Fig. 3.10. Regarding the ART-based algo-
rithms, Fuzzy ART has a relatively stable decrease in performance when applied
to noisier datasets while AM-ART, CM-ART, and HI-ART behave differently. AM-
ARTandHI-ARTshowamuchbetter robustness thanFuzzyART, especiallyHI-ART
whose performance is almost not affected by the noisy patterns; while the perfor-
mance of CM-ART fluctuates on different noisy datasets. An investigation of the
generated cluster structures found that the performance of Fuzzy ART decreased
mainly because of the increase in the generated clusters, while the clusters generated
by Fuzzy ART still had a high quality in terms of precision; AM-ART and HI-ART
alleviate this case by generating higher-quality, but much fewer, clusters than Fuzzy
ART; the performance of CM-ART was affected by the case when the noisy patterns
were selected as cluster centers. This produced much more complex cluster bound-
aries and resulted in the over-generation of clusters. However, by incorporating both
AMR and CMR, HI-ART can largely alleviate this problem. In comparison, the
performance of DBSCAN, Affinity Propagation, and Clusterdp also decreased and
fluctuated along with the increase in the percentage of noisy data. It demonstrated
the robustness of the proposed AM-ART and HI-ART to noise.
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Fig. 3.11 Time cost of AM-ART, CM-ART, HI-ART, and the algorithms in comparison on the
NUS-WIDE dataset. c© 2016 IEEE. Reprinted, with permission, from [19]

3.3.5.7 Time Cost Comparison

This section presents an evaluation on the time cost of the proposed algorithms and
the baselines on the NUS-WIDE dataset with respect to the increase in the number of
input patterns. Specifically, to ensure an unbiased evaluation, the 10,800 patterns in
the dataset were divided into 10 subsets, each of which contained 1,080 patterns of
equally sized subsets from the nine classes and tested the time cost of each algorithm
by incrementally adding a subset at each time. To ensure a fair comparison, the
parameter settings of each algorithm followed those used in the previous section, but
they were slightly tuned to force them to generate the same number of clusters. All
algorithms were run on a 3.40GHz Intel(R) Core (TM) i7-4770 CPU with 16GB
RAM. Figure 3.11 illustrates that, compared with Affinity Propagation, DBSCAN
and Clusterdp, the time cost of the four ART-based algorithms was much faster and
increased slightly as the number of input patterns increased. It is notable that AM-
ART, CM-ART, HI-ART and Fuzzy ART were able to cluster 10,800 patterns in 6 s.
This demonstrates the scalability of the ART-based algorithms for big social media
datasets. Moreover, the largest difference in their time cost was only less than 0.2 s,
which demonstrates that the incorporation of AMR, CMR and HIR into Fuzzy ART
incurs little computation.
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3.4 User Preference Incorporation in Fuzzy ART

In social media analytics, clustering is usually used as a tool to discover the informa-
tion that is of interest to users. However, the diverse needs and subjective knowledge
of users may result in different needs for the clustering results. As discussed in
Sect. 2.2, group and pairwise label constraints are commonly-used for gathering
additional information for semi-supervised clustering. However, most of the exist-
ing algorithms incorporate such information for either learning new representation,
distance measures of data or making the cluster assignment of the data objects as
close to the user preferences as possible. Therefore, user preferences may not be
obvious in the final clustering results of these algorithms.

This section illustrates an architecture extended from Fuzzy ART to incorporate
user preferences, which essentially creates predefined clusters to partition the feature
space before clustering happens. Beyond that, we show that this architecture not only
incorporates the user-provided information to enhance the clustering quality, but also
provides the flexibility for users to directly control the degree of topic mining, thus
creating the user-desired clustering results. In a real-world application, Chaps. 4 and 5
will illustrate how to incorporate suchmethods into ART-based clustering algorithms
and how it improves the performance.

3.4.1 General Architecture

Figure 3.12 depicts the general architecture of the extended Fuzzy ART for incorpo-
rating user preference. As observed, it has two channels, where xa received by the left
channel is the data object’s feature vector, and xb is the vector of user preferences.
Specifically, xb is a multi-hot vector, encoding user-provided semantic labels for
the given data object. The provided semantic labels may be class labels, descriptive
tags etc. Notably, the preference channel has a direct match rather than the two-way
similarity measure, because the preference vector is used as a guide for the splitting
and merging of data clusters.

Fig. 3.12 The architecture of two-channel Fuzzy ART for incorporating user preferences
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Taking advantage of the incremental clustering nature of Fuzzy ART, this archi-
tecture incorporates such user preferences by creating pre-defined clusters using both
feature and preference vectors. Its general procedures include

1. Selecting one or more data objects belonging to the same group, with Ii =
{I1, . . . , In} the normalized feature vectors, and provides the corresponding
semantic labels Gi = {g1, . . . , gp}.

2. Given the clustersC = {c1, . . . , c j } in category field F2 and the semantic lexicon
G , xa and xb are constructed. xa = mean(I1, . . . , In). Obtaining the new lexicon
Ĝ = G

⋃
Gi = {g1, . . . , gm}, xb = [x1, . . . , xm], where xi = 1 if gi ∈ Gi and

xi = 0 otherwise.
3. Applying complement coding to xa such that xa = [xa, 1 − xa], and presenting

xa and xb to the input field F1.
4. Using the match function, i.e. Eq. (3.2), to select the clustersCw passing vigilance

criteria according to xb.
5. Using the choice and match functions, i.e. Eqs. (3.1) and (3.2), to find the best-

matching cluster c j∗ according to xa .
6. If c j∗ exists, updating cluster weights by w j∗ = meanIi∈c j∗ (Ii ). Otherwise, creat-

ing a new cluster c with wa = xa and wb = xb.
7. Repeating the above procedures until all user-specified groups of data objects are

presented.

3.4.2 Geometric Interpretation

The above approach proposed for Fuzzy ART to incorporate user preferences works
by partitioning the feature space using the user-specified data groups in the pre-
clustering stage. The matching in the channel of xb provides users with direct control
over the degree of fine-grained topicmining, determined byρb . Additionally, it allows
users to flexibly present one group of data objects in multiple rounds of selection.
Data objects in the channel of xa serve as seeds to partition the feature space, and
ρa controls the degree of the generalization power of clusters, where data groups
with vigilance regions (VRs) far away from each other will result in the generation
of multiple clusters to encode their respective feature distributions.

The incorporation of user preferences makes Fuzzy ART a semi-supervised learn-
ing algorithm, which takes in the user preferences in the form of prior knowledge to
initialize a cluster structure before clustering. Essentially, the user may identify data
groupings wherein the data objects in the same group are deemed to be similar to
each other. As such, these predefined clusters can then be treated as a user-defined
projection from the feature space to the category space. During the subsequent clus-
tering process, these user-defined clusters can be further generalized by recognizing
and learning from similar input patterns, while new clusters can still be created auto-
matically for novel patterns dissimilar to the existing clusters. By incorporating user
preferences, the predefined clusters help create better cluster structures than those
use only pure data driven clustering.
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Fig. 3.13 An example illustrating the influence of user preferences on the clustering results of
Fuzzy ART. a One possible clustering result of Fuzzy ART—original data shown on the left while
the result is on the right; b Changes in clustering result after receiving user preferences, i.e. the
“triangle,” “rectangle” and “diamond”

Figure 3.13 gives an example that geometrically shows how this approach works
and is able tomake users in-the-loop to obtain desired clusters. Specifically, Fig. 3.13a
shows a typical clustering result of Fuzzy ART on the data points in the feature
space. As observed, without user preference, Fuzzy ART incrementally processes
the data objects and partitions them according to the predefined distancemeasures. In
contrast, as shown in Fig. 3.13b, with the user-specified data objects in three classes
(i.e. the “triangle,” “rectangle” and “diamond”), the data objects that were originally
partitioned in two clusters (in Fig. 3.13a) are clustered together with the connection
of “triangles,” while those originally in the same cluster are separated due to the
“rectangle” and “diamond”.

3.5 Probabilistic ART for Short Text Clustering

Images shared on social networking websites are usually diverse, making it difficult
to organize or search using the images themselves. As shown in Fig. 3.14, images
in the same class, even of the same semantics, can have very different appearances,
because of color difference, angle of photo capturing, and background context etc.
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Fig. 3.14 An example on two sets of images with surrounding text (after filtering stop words)
shared on social networking websites. The words shared across the two sets are circled

Luckily, these images are usually accompanied by rich surrounding text such as a
title and user comments, which may describe their semantics. This motivates the
tag-based approach for image clustering [22].

However, as observed in Fig. 3.14, such text is typically short and noisy—because
of personal knowledge and interests. The surrounding text left by users may be quite
diverse and even irrelevant. Another problem is that the words in the surrounding
text usually appear only once, and the small number of keywords may be buried
by much noisier words. More importantly, some meaningful words may be shared
by different categories. This may cause difficulties when measuring the similarity
between such images. Currently, the two challenges remaining in this task include
the identification of keywords for data clusters and the robustness to noisy words.

This section describes a Fuzzy ART variant, i.e. Probabilistic ART, for short text
clustering. Unlike Fuzzy ART, which updates cluster weights by depressing unstable
feature values, it models the representation, i.e. weight vector, of clusters using the
probabilistic distribution of word occurrences. To achieve this, Probabilistic ART
does not employ complement coding, and it has a new learning function. Chapter 4
will further describe how to use it as one of the core algorithms for tag-based web
image organization. This algorithm may be applied to other scenarios, such as tweet
mining.

3.5.1 Procedures of Probabilistic ART

Probabilistic ART shares the procedures of FuzzyART, i.e. category choice, template
matching, and prototype learning,which are detailed in Sect. 3.1.However, it has own
data representation and prototype learning methods, making the above procedures
have different meanings, as illustrated below:

• Data Representation: Given a word lexicon of all distinct words from short text
G = {g1, . . . , gm} and the word list of a data object G = {g1, . . . , gp}, Proba-
bilistic ART represent the data object using a multi-hot vector x = [x1, . . . , xm],
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defined as

xi =
{
1 i f xi ∈ G

0 otherwise
.

Note that complement coding is not used, since the learning function changes and
the theory of vigilance regions (VRs) does not apply here.

This representation is a point in the textual feature space of m dimensions, and
more common words in two given vectors lead to a shorter distance. Traditional
methods for word weighting, such as tf-idf or word/neural embedding are not
adopted, because words with short text cannot provide sufficient statistical infor-
mation [12], which may result in feature vectors with a flat distribution and low
values.

• Similarity Measure: Probabilistic ART also uses the choice and match functions
(Eqs. (3.1) and (3.2)) for selecting the best-matching cluster c j∗ . However, consid-
ering that the two functions measure the intersection of vector histograms and the
cluster weight vector is modeled by the probability of occurrences, the similarity
measure used in Probabilistic ART essentially measures the degree of the match
in terms of the keywords of clusters, instead of using the theory of VR.

• Prototype Modeling: As aforementioned, Probabilistic ART models the cluster
prototype, i.e. weight vector, using the probability of word occurrences. It makes
the cluster weight w of cluster c j a word distribution, reflecting the importance of
words to c j . In this way, the keywords, or semantics, of a data cluster are naturally
obtained during the clustering process. The following section, i.e. Sect. 3.5.2,
explains why the learning function of Fuzzy ART fails in this case and illustrates
the derivation of the learning function for the cluster weight ŵ.

3.5.2 Probabilistic Learning for Prototype Modeling

As demonstrated in Property 3.2 of Sect. 3.1.2, the learning function of Fuzzy ART,
i.e. Eq. (3.3), models cluster prototypes by stably suppressing the rare and unstable
components while preserving the key and frequent ones. However, when learning
from the multi-hot features of short text, a set of noise-induced mismatched words
will erode the values of the key ones in the cluster weights. Besides, the sub-key
words cannot be preserved, which may lead to the generation of extra clusters that
represent the same topics.

Based on the above consideration, Probabilistic ART uses a new learning function
that models cluster weights using probabilistic distribution of word occurrences, so
that the weights of noisy words are suppressed while the key and sub-key ones are
preserved.

Given a cluster c j with a cluster weight vector w j = [wj,1, . . . ,wj,m] and l data
objects therein, denoted asT = {t1,…, tl} where ti = [ti,1, . . . , ti,m], the probability
of occurrence of the kth word tk in cluster c j can be calculated by its frequency:
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wj,k = p(tk |c j ) =
∑l

i=1 ti,k
l

. (3.12)

In this way, the weight prototype of cluster c j is represented by the probability of
word occurrences, i.e. w j = [p(t1|c j ), . . . , p(tm |c j )].

Subsequently, the sequential factor is introduced and denoted in Eq. 3.12 by
pl(tk |c j ) as the state for time l. Assuming a new data object tl+1 is assigned to
cluster c j , the relationship between the states of time l and l + 1 can be derived by

pl+1(tk |c j ) =
∑l+1

i=1 ti,k
l + 1

= l

l + 1
pl(tk |c j ) + tl+1,k

l + 1
. (3.13)

As such, the general form of learning function for wj,k is defined by

ŵ j,k = l

l + 1
wj,k + tl+1,k

l + 1
, (3.14)

where l is the number of data objects in cluster c j , and tl+1,k is the kth element of the
input data object tl+1. Considering tl+1,k equals either 0 or 1, the learning function
for cluster weight w j = [wj,1, . . . ,wj,m] can be further simplified as

ŵ j,k =
{

ηwj,k, tl+1,k = 0

η(wj,k + 1
l ), otherwise

, (3.15)

where η = l
l+1 .

3.6 Generalized Heterogeneous Fusion ART (GHF-ART)
for Heterogeneous Data Co-Clustering

Social media data is usually associated with rich meta-information, such as an article
with images included or a video with a textual description and user comments. Such
heterogeneous data describes the single data object in different views, naturally
leading to the question: Is it possible to more effectively represent the data objects
by utilizing multimodal data instead of a single modality?

Existing studies, as described in Sect. 2.3, typically treat it as a multi-objective
optimization problem, i.e. finding the cluster partition that leads to minimized objec-
tive function values across different modalities. However, the increased computa-
tional complexity incurred by multimodal features and the method for weighting the
heterogeneous feature modalities are still open challenges.

This section describes Generalized Heterogeneous Fusion ART (GHF-ART) as a
solution for clustering data objects represented by multimodal features. Compared
to related work, GHF-ART stands out due to its linear time complexity, weighting
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Fig. 3.15 The architecture of Generalized Heterogeneous Fusion ART. Vigilance connections are
omitted for visual simplicity. c© 2014 IEEE. Reprinted, with permission, from [20]

method for feature modalities and the ability to use multiple clusters to encode data
objects that are similar in partial feature modalities. Chapters 5 and 6 will illustrate
usingGHF-ART for clustering compositemultimedia data objects and heterogeneous
social networks.

3.6.1 General Architecture

Generalized Heterogeneous Fusion ART (GHF-ART) is a variant of Fusion ART
that shares its architecture, as shown in Fig. 3.15. As observed, this architecture has
multiple input fields and just one category field, and it is a general architecture for
simultaneously learning with multimodal feature mappings. It extends Fusion ART
[24] (see Sect. 2.3.6) from two aspects: First, GHF-ART allows different feature
channels to have their own data representation and cluster weight learning functions;
secondly, an unsupervised method, called robustness measure, is utilized to weight
feature modalities in the overall similarity measure. These extensions make GHF-
ART able to receive a different type of data pattern in each input feature channel and
to fuse different types of features for an effective similarity measure.

Whereas most current algorithms [2, 5, 14, 23] employ global optimization
methods for heterogeneous data fusion, GHF-ART performs heterogeneous data
co-clustering using a multi-channel self-organizing neural network, i.e. Fusion ART.
In essence, GHF-ART simultaneously learns the multi-dimensional mappings across
multiple feature spaces to the category space. The clustering process of GHF-ART
thus incrementally partitions input feature spaces and maps them to the category
space, forming regions of clusters. The vigilance parameters ρk for each independent
channel allow GHF-ART to threshold the minimum intra-cluster similarity across
feature channels, making it different from existing algorithms which may group the
data objects that are similar in most feature channels but dissimilar in a few ones.
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3.6.2 Clustering Procedures

The clustering procedures of GHF-ART follow the general procedures of ART, i.e.
category choice, template matching, and prototype learning, but they also extend the
base functions to handle multimodal feature channels. Additionally, an update on the
weight values for different feature channels is performed after the cluster assignment
of each input data object. The details are illustrated below:

1. Data Representation: Let I = {xk |Kk=1} denote the normalized multi-channel
input data object, where xk is the feature vector for the kth feature channel. Note
that, with complement coding [4], xk in the input field F1 is further augmented
with a complement vector x̄k such that x̄k = 1 − xk .

2. Category Choice: Given a cluster c j with weight vectors {wk
j |Kk=1}, the choice

function used in GHF-ART measures the weighted average of similarities across
the K feature channels, defined as

T (c j , I) =
K∑

k=1

γ k
|xk ∧ wk

j |
α + |wk

j |
, (3.16)

where γ k , called the contribution parameter, is the weight value for the kth fea-
ture channel. γ k = 1

K makes T (c j , I) average the similarities across all feature
channels. The following sub-section illustrates how to use the robustness measure
to make γ k be self-adaptable.

3. TemplateMatching: After identifying the cluster with the highest value, denoted
as the winner c j∗ , the multi-channel version of the match function is used to
evaluate to which degree the input pattern I is a subset of c j∗ in terms of each
feature channel k, defined as

M(c j∗ , xk) = |xk ∧ wk
j∗ |

|xk | . (3.17)

Note that in GHF-ART, a resonance occurs only when the match values of all the
K feature channels satisfy the vigilance criteriaM(c j∗ , xk) ≥ ρk (k = 1, . . . , K ).
Otherwise, a reset occurs to select a new winner from the rest of the clusters in
the category field F2.

4. Prototype Learning: As aforementioned, GHF-ART allows different feature
channels to have their own data representation and learning functions, making
it possible to learn effective feature distribution for pattern representation of each
feature modality. As such, when input features in all the feature channels satisfy
the vigilance criteria, their corresponding weight vectors wk

j∗ (k = 1, . . . , K )
are updated through the respective learning functions, which can be the original
learning function of ART, i.e. Eq. (3.3), for images and text articles, or that of
Probabilistic ART, i.e. Eq. (3.15), for short text.
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5. Adaptive Feature Weighting: In addition to prototype learning, the assignment
of an input pattern also leads to the update of feature channel weights, i.e. the
contribution parameters γ k , using the robustness measure as described in the
following Sect. 3.6.3.

3.6.3 Robustness Measure for Feature Modality Weighting

The contribution parameter γ k specifies the weighting factor given to each feature
channel during the category choice process. Intuitively, the feature channel which
is more robust in distinguishing the classes of the patterns should have a higher
weight. It motivates the development of a “robustness measure” to learn data-specific
robustness of feature modalities from the input data itself rather than following an
empirical setting.

3.6.3.1 General Method

A robust feature modality consistently reveals the common features shared by the
data objects of the same class, which is why the robustness of feature modalities can
be measured by the intra-cluster scatters, i.e. the distance between cluster weights
and features of the data objects therein. Consider a cluster c j with weight vectors
{w1

j , . . . ,w
K
j } and its members I = {I1, . . . , IL} where Ii = {x1i , . . . , xKi } for i =

1, . . . , L , the intra-cluster scatter, termedDifference, for the kth feature vector is first
defined as follows:

Dk
j =

1
L

∑
l |wk

j − xkl |
|wk

j |
. (3.18)

Subsequently, the overall difference of one feature vector can be evaluated by
averaging the difference of all the clusters, defined by:

Dk = 1

J

∑

j

Dk
j , (3.19)

where J is the number of clusters. Therefore, the robustness of the kth feature modal-
ity can be measured by

Rk = exp(−Dk). (3.20)

When Dk is 0, Rk becomes 1, indicating that this feature modality can properly
represent data objects belonging to the same class. In contrast, when Dk is very
large, Rk approaches zero. This expression implies that the feature modality with a
higher difference is not robust and is less reliable. Thus, in a normalized form, the
contribution parameter γ k for the kth feature channel can be expressed by
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γ k = Rk

∑K
k=1 R

k
. (3.21)

This equation shows the rule for tuning the contribution parameter during the
clustering process. Initially, the contribution parameter is given by equal weights
based on the intuition that the powers of all features are the same. Subsequently, the
value of γ k changes along with the encoding of the input patterns.

3.6.3.2 Incremental Version of Robustness Measure

The update of the contribution parameters γ k using the robustness measure occurs
after each resonance, i.e. the cluster assignment for each input data object. As such,
Eqs. (3.18)–(3.21) are computationally expensive. This incurs the need for an incre-
mental method that updates γ k based on the values of the last round.

GHF-ART encodes input data by either updating the existing cluster weights or
creating a new cluster. These two actions produce different levels of changes to
Difference and Robustness. Therefore, the update functions are considered in two
cases:

• Resonance in an existing cluster: Assume the input data object is assigned to an
existing cluster c j with L data objects. In this case, only the change of Dk

j should
be considered. Based on Eq. (3.18), the Difference for the kth feature channel of
cluster c j is computed by

D̂k
j =

1
L+1

∑L+1
l=1 |ŵk

j − xkl |
|ŵk

j |

= 1

(L + 1)|ŵk
j |

(

L∑

l=1

|wk
j − xkl + ŵk

j − wk
j | + |ŵk

j − xkL+1|). (3.22)

The next important step is to introduce |Dk
j | to Eq. (3.22) by separating out |wk

j −
xkl |. It leads to the problem of determining whether wk

j − xkl and ŵk
j − wk

j share
the same positive or negative signs.

Solving this problem requires tricks obtained from data distribution and the
corresponding learning functions. For example, the learning function of ART, i.e.
Eq. (3.3), teaches that |ŵk

j | < |wk
j |, and in most cases |wk

j | < |xkl |when the cluster
weights become stable. In this case, Eq. (3.22) can be approximated using

D̂k
j ≤ 1

(L + 1)|ŵk
j |

(
L∑

l=1

|wk
j − xkl | + L|ŵk

j − wk
j | + |ŵk

j − xkL+1|
)

≤ η

|ŵk
j |

(|wk
j |Dk

j + |wk
j − ŵk

j | + 1

L
|ŵk

j − xkL+1|). (3.23)

where η = L
L+1 .
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Similarly, as in the short text clustering scenario described in Sect. 3.5, it is
known that x is usually sparse, keywords possess only a small portion and the
learning function, i.e. Eq. (3.15), models the probability of word occurrences. As
such, when the cluster weights become stable, they are likely to have |wk

j | < |xkl |
and |ŵk

j | < |wk
j |, since |xkl | contains multiple 1’s and |wk

j | usually have the weights
of sub-key and noisy words decreased.

After the update for all the feature channels, the new contribution parameters
γ k can then be obtained by calculating Eqs. (3.18)–(3.21). In this way, the com-
putational complexity reduces from O(nin f ) to O(n f ), where n f denotes the
dimension of the feature channels and ni denotes the number of documents.

• Generation of new cluster: When generating a new cluster, the Difference of
the other clusters remain unchanged. Therefore, the addition of a new cluster
just introduces a proportion change to the Robustness, according to Eq. (3.19).
Considering the robustness Rk (k = 1, . . . , K ) for all the feature channels, the
update equation for the kth feature channel is defined as:

γ̂ k = R̂k

∑K
k=1 R̂

k
= (Rk)

J
J+1

∑K
k=1(R

k)
J

J+1

, (3.24)

3.6.4 Time Complexity Analysis

GHF-ART has been demonstrated to have a linear time complexity of O(nincn f ) in
[20], where ni is the number of data objects, nc is the number of clusters and n f is
the number of feature dimensions.

Specifically, it depends on the following two steps:

1. Search for suitable clusters: that calculates the choice and match functions by

T (c j , I) =
K∑

k=1

γ k
|xk ∧ wk

j |
α + |wk

j |
,

M(c j∗ , xk) = |xk ∧ wk
j∗ |

|xk | ,

which are defined in Eqs. (3.16)–(3.17) and have a time complexity of O(ncn f ).
2. Update of contribution parameters: that contains two cases: (1) the input pat-

tern is grouped into one of the existing clusters, and (2) a new cluster is generated
for the input pattern. As illustrated in Sect. 3.6.3, for the first case, the new con-
tribution parameter is calculated by Eqs. (3.19)–(3.21) and Eq. (3.23). The time
complexity of Eq. (3.23) is O(n f ) and that of Eqs. (3.19)–(3.21) is O(1). For
the second case, the contribution parameter is updated according to Eq. (3.24),
of which the time complexity is O(1).
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3.7 Online Multimodal Co-indexing ART (OMC-ART)
for Streaming Multimedia Data Indexing

The retrieval of social media data plays an important role in social network services,
such as searching for image boards of interest on Pinterest, finding answers to Python
programming questions on Github community portal, or looking for products on
e-commerce websites. An intractable issue for this task is the processing of contin-
uous incoming data, which will create a great burden to re-generating the indexing
base, i.e. vector representation of data, for the search engine. Another challenge is
the effective representation of multimedia data with multimodal information, which
has been intensively discussed in both Sects. 2.3 and 3.6.

This section discusses Online Multimodal Co-indexing ART (OMC-ART) which
tackles the aforementioned challenges using a clustering approach. By extending
GHF-ART with the online learning capability, OMC-ART incrementally processes
the input multimodal data object and generates a two-layer hierarchical indexing
base. The first layer is the clusters with generalized feature distribution and the key
features of the data objects therein, while the second one includes data objects as
leaves. Compared to related work, OMC-ART does not require any ground-truth
information and can perform online learning of streaming data for updating the
existing indexing base without re-visiting past data for re-creation. Chapter 7 will
show how to use OMC-ART to build search engines that are capable of online
indexing multimodal data and retrieving them flexibly using image, text or both.

3.7.1 General Procedures

Online Multimodal Co-indexing Adaptive Resonance Theory (OMC-ART) is a vari-
ant of GHF-ART with the advantages of low time complexity, effective multimodal
data fusion, an incremental clusteringmanner and no need for a predefined number of
clusters. Beyond that, OMC-ART incorporates an online data normalization method
to be able to perform online learning, and it manipulates the cluster structure to make
it an indexing base for effective and efficient searches.

Besides the general steps of GHF-ART, OMC-ART introduces two more steps
for the online adaptation of cluster structures and the creation of an indexing base,
as illustrated below:

1. Data Representation: OMC-ART uses the same method as GHF-ART for data
representation, i.e. I = {xk |Kk=1} for a multi-channel input data object, and it
applies complement coding to the channels following the Fuzzy ART clustering
theories. Note that the min/max values for each entry of xk , denoted by xmin and
xmax , are identified and compared with those of past data objects. New min/max
values will incur an update on xmin and xmax , and I will be normalized using the
new min/max values x̂min and x̂max .
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2. OnlineNormalization: If xmin and xmax are updated, past data objects andweight
vectors need to be updated too.Adirect re-computation for updatedweight vectors
is time consuming. To solve this problem, OMC-ART adopts an online normal-
ization method, without information loss, to perform an incremental update of
the vectors of past data objects and weight values. The details are presented in
Sect. 3.7.2.

3. Cluster Generation: OMC-ART follows the same procedures of GHF-ART to
create data clusters, i.e. category choice, template matching, prototype learning
and adaptive feature weighting, as described in Sect. 3.6.2.

4. Salient Feature Discovery: The clusters of OMC-ART serve as a natural two-
layer hierarchical indexing base of data objects, where the first layer contains
cluster weights reflecting the feature distribution of the data objects therein, while
the second layer includes data objects in their respective clusters. As such, the
salient features of each cluster can facilitate quick targeting of search queries.
Section 3.7.3 describes the criteria for identifying the salient features of clusters
after the clustering process.

3.7.2 Online Normalization of Features

GHF-ART may not be directly applicable to online learning because the min-max
normalization requires themaximum andminimum values of each feature to normal-
ize the feature vectors of the data objects so they have values in [0, 1]. To address this
issue, OMC-ART employs an online adaptation method that updates the normalized
feature distribution vectors x of the data objects and cluster weights w to exactly
what they should be when an input data object incurs a change in such values, as
respectively defined by Eqs. (3.25) and (3.26) below,

x̂ = xmax − xmin

x̂max − x̂min
x + xmin − x̂min

x̂max − x̂min
, (3.25)

ŵ = xmax − xmin

x̂max − x̂min
w + xmin − x̂min

x̂max − x̂min
, (3.26)

where x and x̂ denote the feature vector of a data object and its updated version,
respectively. Similar definitions apply tow and ŵ, xmin and x̂min , and xmax and x̂max .

OMC-ART may handle data streams in both a single or a batch of data objects.
As an online algorithm, the initial maximum and minimum values x(1)

max and x(1)
min

should be carefully considered when the first data stream has only one data object. In
this case, without the loss of generalization, x(1)

max = x(0) and x(1)
min = x(0) − 1, where

x(0) is the original value of x without normalization. Below presents the proof of
Eqs. (3.25) and (3.26).



84 3 Adaptive Resonance Theory (ART) for Social Media Analytics

Theorem 3.1 Considering a feature x of the data object x that has been normalized
by N rounds of maximum and minimum values {x (n)

max , x
(n)
min}Nn=1, the value of x with

n round of normalization x (n) can be inferred directly by that of x (n−1) by Eq. (3.25).

Proof Given x (n)
max and x (n)

min ,

x (n) = x (0) − x (n)
min

x (n)
max − x (n)

min

, (3.27)

x (n−1) = x (0) − x (n−1)
min

x (n−1)
max − x (n−1)

min

. (3.28)

By substituting x (0) in Eq. (3.27) and using the expression of x (0) derived from
Eq. (3.28),

x (n) = x (n−1)
max − x (n−1)

min

x (n)
max − x (n)

min

x (n−1) + x (n−1)
min − x (n)

min

x (n)
max − x (n)

min

. (3.29)

Theorem 3.2 Without loss of generalization, given a weight w of the weight vector
w of cluster c, denoted by w(N ), which learns from a set of feature values {xn}Nn=1 of
N data objects and has been updated N times using the min/max values, denoted by
{x (N )

max , x
(N )
min}Nn=1. If a new input data object dN+1 introduces x (N+1)

max and x (N+1)
min , the

adapted weight value w(N+1) can be derived by Eq. (3.26).

Proof Suppose cluster c is the first cluster generated by Fuzzy ART, the weight
vector w of c is thus set by

w(1) = x (1)
1 . (3.30)

According to the learning function of Fuzzy ART, i.e. Eq. (3.3), the value of w after
the presentation of x (n)

n is

w(n) =
{
w(n−1) i f x (n)

n−1 ≥ w(n−1)

(1 − β)w(n−1) + βx (n)
n otherwise

. (3.31)

Based on the above Eqs. (3.30) and (3.31), it can be inferred that

w(N ) = c1x
(N )
1 + · · · + cN x

(N )
N , (3.32)

where ci is a real-valued coefficient computed by the multiplication of 0, β, and
1 − β, and c1 + · · · + cN = 1. Therefore, when x (N+1)

max and x (N+1)
min are introduced,

w(N+1) = c1x
(N+1)
1 + · · · + cN+1x

(N+1)
N+1 . (3.33)
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By denoting Eq. (3.29) by x (n) = a(n)x (n−1) + b(n), Eq. (3.33) is further derived as

w(N+1) = a(N+1)(c1x
(N )
1 + · · · + cN x

(N )
N ) + (c1 + · · · + cN )b(N+1)

= a(N+1)w(N ) + b(N+1). (3.34)

This proof also holds for any algorithms that update cluster weights using a linear
combination of the data objects therein, such as Probabilistic ART using Eq. (3.15)
for short text clustering.

3.7.3 Salient Feature Discovery for Generating Indexing
Base of Data

The cluster structure produced by OMC-ART can serve as a natural indexing base
where each cluster contains data objects belonging to the same topic, and the cluster
weights reveal the importance of the features of the individual clusters. It is achieved
by both the use of vigilance parameter ρk , which does not limit the number of clus-
ters but thresholds the intra-cluster similarity, and the incorporation of the learning
functions of Fuzzy ART and Probabilistic ART which discover the key features by
preserving or increasing the values of the key features while decreasing those of the
noisy features.

In the scenario of a multimedia search, a query may first search for the matching
clusters sharing similar feature/topic distributions, instead of the whole database.
Selecting salient features for query matching is an important step, which may save
the computation and avoid matching with noisy features. Given a cluster c j with
weight vectors {wk

j }Kk=1 produced by OMC-ART, the set of salient features for each
channel k, denoted by K k

j , is obtained based on the following criterion:

K k
j =

{

f km |wk
j,m >

1

M

M∑

i=1

wk
j,i

}

, (3.35)

where f km is the mth feature of the kth feature channel, and M is the corresponding
number of features.

The proposed criterion selects the features with values above average as the key
features. It follows the idea that the high dimensional features are usually sparse
and noisy, especially for the surrounding text of images. Therefore, the proposed
method may filter the features, providing little information, while keeping those that
are useful for indicating the difference between clusters.
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3.7.4 Time Complexity Analysis

OMC-ART has been proven to have a total time complexity of O(nincn f ) in [17],
where ni denotes the number of data objects, nc denotes the number of clusters and
n f denotes the total number of features.

As described in Sect. 3.7.1, given a stream of totally ni data objects, OMC-ART
has three key steps:

1. Online normalization of features: that applies min-max normalization to the
input data, which has a total time complexity of O(nin f ) for all data. A change
in the bound values of features xmax and xmin will incur a computational cost of
O((ni + nc)n f ) in the worst case for updating the values of past data and cluster
weights, as defined in Eqs. (3.25)–(3.26).

2. Clustering using GHF-ART: that has been demonstrated in Sect. 3.6.4 to have
an overall time complexity of O(nincn f ).

3. Indexingbased generation: that updates the existing indexing basewith the input
data and the new cluster weights, which has a time complexity of O((ni + nc)n f ).

3.8 Discussion

This chapter presents a theoretical analysis of Fuzzy ART, an implementation of
adaptive resonance theory (ART) with fuzzy operators, and a class of Fuzzy ART
variants for addressing the challenges in social media data clustering. Fuzzy ART is
chosen as the base model mainly because of its low time complexity, model exten-
sibility, no need to set the number of clusters and incremental clustering manner,
making it possible to handle big and complex social media data streams of hetero-
geneous types of information.

The theoretical interpretation of Fuzzy ART using vigilance region (VR) in
Sect. 3.2 first offers a deep understanding of how this algorithm works and what its
limitations are for clustering. Subsequently, in the following sections, the extensions
of Fuzzy ART are illustrated, which respectively address the following problems:

1. How to make the hyper-parameters that require manual settings
self-adaptable: It essentially requires a clustering algorithm to be able to identify
the shared key features of data groups and partition them in the feature space with
clusters of suitable shapes and intra-cluster scatters. Section 3.3 describes how
to make clusters created by Fuzzy ART have their own threshold, i.e. vigilance
parameter ρ, for intra-cluster similarity, using the theory of VR.

2. How to produce clusters according to users’ preferences: It requires not
only semi-supervised learning, which incorporates the association between data
objects into consideration, but also generating the clusters that users want to
obtain. Section 3.4 presents a solution based on a two-channel Fuzzy ART, which
uses the user-provided seeding data groups to partition the feature space as pre-
defined clusters and expand them during the clustering process.
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3. How to cluster short text having little statistical information: It requires the
ability of a clustering algorithm to identify the keywords/semantics of data groups
andmodel the individual group’s semantic distribution. Section 3.5 presents Prob-
abilistic ART, which adopts new data representation and learning functions to
discover the features of data clusters and model their semantic distributions, i.e.
weight vectors, using the probability of word occurrences.

4. How to fuse multimodal information to cluster composite multimedia data
objects: It requires a clustering algorithm with the ability to find appropriate rep-
resentations and similaritymeasures for heterogeneous data and fuse the decisions
of individual data modality for the overall similarity measure. Section 3.6 intro-
duces the Generalized Heterogeneous Fusion ART (GHF-ART), which allows
different feature modalities to have their own feature representation and learn-
ing methods and uses a method to adaptively weight different feature channels
when fusing similarities measured by different channels for the overall similarity
measure.

5. How to index streaming multimodal data for retrieval: It requires a cluster-
ing algorithm to be able to perform online learning and index multimodal data
with efficient representations, i.e. an indexing base. Section 3.7 describes the
Online Multimodal Co-indexing ART (OMC-ART), which extends GHF-ART
by including the online learning capability and builds the indexing base using the
generated cluster structure.

Compared to the existing approaches in the literature, the ART-based algorithms
are superior in terms of linear time complexity and light parameter tuning. By using
the two-way similarity measure and the intra-cluster similarity threshold ρ, they do
not need the manual setting of the number of clusters and can produce a reasonable
cluster structure even in the first epoch of data presentation. The theory of adaptive
resonance has a fast, simple and extensible learning mechanism, making it a proper
base model for incorporating new theories and approaches to address social media
clustering challenges. Part II will illustrate how to use the algorithms introduced in
this chapter to address problems in real-world social media mining tasks.

Beyond the ART variants and their target scenarios as described in this chapter,
the advances of social tools for online communication and the development of novel
machine learning and natural language processing techniques will lead to new chal-
lenges and requirements for clustering algorithms. These changes will boost the
development of newARTvariants incorporatingwith newmethods to further improve
the fundamental theory of ART for clustering, such as the over-generation of small
clusters when the data representation is noisy; or with new theories on data embed-
ding, such as word2vector and deep learning, to help with improved data representa-
tion to alleviate data sparsity and noisy feature problems. However, these algorithms
may also encounter challenges when learning from social media data, requiring in-
depth investigation and research.
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