
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2012

A novel unbalanced tree structure for low-cost authentication of A novel unbalanced tree structure for low-cost authentication of

streaming content on mobile and sensor devices streaming content on mobile and sensor devices

Thivya KANDAPPU
Singapore Management University, thivyak@smu.edu.sg

Vijay SIVARAMAN

Roksana BORELI

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Citation Citation
1

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5377&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5377&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5377&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

A Novel Unbalanced Tree Structure for
Low-Cost Authentication of Streaming Content

on Mobile and Sensor Devices
Thivya Kandappu†∗, Vijay Sivaraman†, Roksana Boreli∗

† School of Electrical Engineering & Telecommunications, UNSW, Sydney, Australia.
∗ NICTA, Sydney, Australia.

Emails: {t.kandappu@student.unsw.edu.au, vijay@unsw.edu.au, roksana.boreli@nicta.com.au}

Abstract—We consider stored content being streamed to a
resource-poor device (such as a sensor node or a mobile phone),
and address the issue of authenticating such content in real-
time at the receiver. Per-packet digital signatures incur high
computational cost, while per-block signatures impose high
delays. A Merkle hash tree combines the benefits of the two
by having a single signature per-block (at the root of the tree),
while allowing immediate per-packet verification by following
a hash-path logarithmic in the number of packets. In this
paper we explore how the structure of the Merkle tree can be
adapted to improve playback performance for streaming content.
We make three specific contributions: First, we develop a new
unbalanced authentication tree structure called the α-leaf tree
that is a generalisation of the Merkle tree. We derive several key
properties of this tree, highlighting the impact of the imbalance
parameter α. Second, we present a theoretical model to quantify
the benefits of our unbalanced tree structure in reducing start-
up delays for streaming applications by optimally readjusting
the burden of authentication across packets. Third, we validate
via simulation the suitability of our scheme to two representative
applications, namely audio streaming to a low-cost sensor device
and video streaming to a mobile phone, and demonstrate that
start-up delays can be reduced without affecting stall rates. We
believe our authentication tree structure is of importance both
theoretically, as a generalisation of the Merkle hash tree, as well
as practically, for applications requiring real-time verification of
streaming content.

Index Terms—Content Authentication, Digital Signature,
Merkle Tree.

I. INTRODUCTION

Entertainment content is increasingly being streamed to user
devices ranging from computers and televisions to mobile
phones and wearable media-players. Sandvine’s Spring 2011
report [1] shows that streaming entertainment (e.g. from Net-
Flix) now accounts for nearly half of all Internet traffic in
the US. Mobile devices are increasingly consuming streaming
content too, with YouTube reporting over 200 million views
per-day from such devices [2]. Given this staggering growth
in consumption of streaming content on a wide range of
user devices with varying communication, computing, and
storage capabilities, an important question concerns the ability
to validate the content in real-time. Authentication is needed
to establish the trustworthiness of the source and content of
the received messages, protecting against misleading content
injected by a masquerading server or tampering by a mali-

cious participant in the peer-to-peer network redistributing the
content [3]. The problem is particularly challenging on low-
cost mobile devices that are inherently resource-poor, yet more
vulnerable to attack over the insecure and potentially lossy
wireless channel.

Existing content delivery systems support elementary au-
thentication services of the sign-all type [4], [5], [6], wherein
packets are individually signed by their source. Since packets
can be individually verified immediately upon receipt, this ap-
proach is fast in terms of playback at the receiver. However, it
incurs high computation overhead, since a stream consisting of
n packets requires n signature verifications at the receiver. One
way to mitigate this overhead is by amortizing the signature
over several packets, such as the sign-block approach used
in [7] for 3D streaming. However, such a scheme introduces
authentication delay, since the receiver has to wait for the
entire block before being able to verify the content, and is not
loss resilient, since even one packet missing from the block
renders the whole block unverifiable at the receiver.

Merkle hash trees [8] combine the benefits of the sign-all
and sign-block approach by building a binary hash tree on a
block of packets and signing only the root. Only one digital
signature verification is required per-block, while individual
packets can be verified by hashing along the authentication
path from the leaf of the tree to the root containing the digital
signature. Since the digital signature (which has typically one
to two orders of magnitude greater computational cost than
hashing [9]) is performed only once per-block, its cost is
amortised over the block. Further, the authentication path for
each packet (logarithmic in the number of packets in the block)
can be embedded with the packet, allowing for immediate
verification that is resilient to packet loss.

In this paper we explore if it is possible to improve upon
the Merkle tree for use in authenticating streaming content.
Since the Merkle tree is organised as a balanced binary tree,
each packet has the same authentication delay. For example,
an audio clip of say 1000 packets would be organised as
a Merkle tree of height 10. On a low-cost receiver (e.g.
a sensor node running TinyOS), each hash takes around 5
ms, and traversing the authentication path would therefore
require roughly 50 ms, contributing to increased playback
delay. Our proposal is to generalise the Merkle tree to make

it unbalanced, such that authentication paths are short for
initial packets, and progressively get longer for later packets.
This has two advantages: (a) It allows faster authentication
of the initial packets, so playback can start earlier, improving
user experience. Later packets can afford to have a longer
authentication path (and hence higher authentication delay),
since they do not have an immediate deadline for playback.
(b) Users do not often watch entire streaming content. Studies
of viewer abandonment trends [10] show that a third of viewers
abandon playback within 30 seconds, and over half of video
views are abandoned within 90 seconds. In such situations,
shifting the authentication burden from initial to later packets
(by gradually increasing authentication path length) can help
reduce the authentication cost incurred prior to abandonment.

In the context of developing a scheme suited to real-
time authentication of streaming content, our contributions are
threefold:

1) We develop a novel authentication tree structure called the
α-leaf tree, which is a generalized (unbalanced) version
of the Merkle hash tree. The parameter α determines the
degree of imbalance, enabling a range of choice from a
balanced tree to a linear chain. We derive several key
properties of this structure, such as tree height, path
lengths, and path stretch. We also highlight a specific case
of the α-leaf tree, called the Fibonacci-leaf tree, that is
of special interest later in the paper.

2) We develop an analytical model that quantifies the effi-
cacy of the α-leaf tree structure in real-time authentica-
tion of streaming content. We demonstrate that adjusting
tree imbalance (via parameter α) can reduce playback
delay for required playback performance, though it in-
creases average computational cost for authentication.
Our model allows easy evaluation of this trade-off for
given system parameters.

3) We validate our model via simulation for two realistic
scenarios, corresponding to audio streaming to a sensor
device and video streaming to a mobile phone, and show
that tree imbalance can be leveraged to substantially
reduce start-up delays for given stall rate (or equivalently
reduce stall rates for given start-up delay) compared to
the balanced Merkle tree, demonstrating its value for
practical application.

The rest of the paper is organized as follows. Section II
describes background and related work. The structure and
properties of the α-leaf tree are explained in Section III, while
a model to analyse its performance is developed in Section IV.
Our simulation study is detailed in Section V, and the paper
is concluded in Section VI.

II. BACKGROUND AND RELATED WORK

We briefly review existing schemes for authenticating data
flows received over an untrusted network. The performance
metrics we specifically focus on include:
• Stalls during playback - Once playback of the streaming

content commences, the number of times the playback

stalls (due to packets not being received or received
packets not yet being authenticated) should be minimised
in order to achieve good user experience.

• Start-up delay - This is the time, measured from receipt
of the first packet, at which playback can commence. This
delay should be as small as possible, but not so small that
the playback keeps stalling at the receiver due to absence
of authenticated content.

• Tolerance to Packet losses - The higher the dependency
that the authentication scheme imposes among packets,
the greater the impact of packet loss on verifiability of
received content. It is desirable for the authentication
scheme to be robust to packet loss.

• Authentication overhead - The communication cost (in
units of bytes per packet) and computation overheads
(in units of CPU load) that the authentication scheme
imposes on the receiver should be kept low.

One common way to verify data integrity is to let the sender
sign every packet using digital signatures [11]. This scheme is
resilient to packet loss as each packet is independently verified.
However, digital signature verification is an expensive opera-
tion incurring high communication and computation overhead
on a per-packet basis at the receiver.

To mitigate this overheads the sender can divide the stored
content into blocks, and append a signature to each block, as
was done for 3D streaming in [7]. However, the receiver has to
obtain the entire block before any packet can be verified hence
incurs a delay before playback, and lacks loss resilience, as
one lost packet in a block renders it unverifiable.

In hash chaining [12], the sender computes the hash of each
piece and concatenates it with the preceding piece and the first
piece is then digitally signed, constituting a commitment to the
entire content. The receiver only needs to verify the signature
for the first piece. This scheme lacks resilience to loss, since
even one missing piece at the receiver makes all subsequent
pieces unverifiable. One time and fast signature schemes such
as [13], [14], [15] can reduce computation and communication
overhead, but they are only secure for a short period of time
[16].

SAIDA [17] uses erasure codes to amortize a signature over
multiple packets. A block of n packets carries the encoded
digests and signature of the block. The signature and digests
are recoverable, if the receiver gets a minimum of ne packets
(ne ≤ n). Redundancy added to the data adds to computation
and communication overheads, and incurs delay in the event
of packet loss, since the receiver has to wait to receive at
least ne packets to retrieve and authenticate the lost packet.
An enhancement to SAIDA, called eSAIDA [18], reduces the
overhead at the expense of reducing the resilience to loss.

Perig et al. proposed TESLA [19] and EMSS [20] for se-
cure multicast. TESLA uses MAC, generated using symmetric
keys, to authenticate packets. The key used for generating the
MACs during an epoch is revealed at a later epoch, and can be
authenticated by verifying that it fits in the hash chain of keys.
Though this scheme has low computation and communication
overheads and is robust to packet loss, it requires loose time

(a) α = 0 (b) α = 0.5

ROOT

1

2

3 4

5 6 7

9 10 11 12 13
. . . .

15

8

14

16 17 18 20 19 21 22 23 24 25 26 27

(c) α = 0.25

ROOT

1

2

3 4

5 6 7

8 9 10 11 12
. . . .

13 14 15 16 17 20 19 18
. . . .

(d) Fibonacci-leaf tree

Fig. 1. Structure of α-leaf tree for (a) α = 0 (b) α = 0.5 (c) α = 0.25 and (d) Fibonacci-leaf tree

synchronisation, and precludes redistribution of content by
third-party servers (as in a peer-to-peer scenario). The schemes
proposed in [20], [21] and [22] use a combination of hash
functions and digital signatures to authenticate packets. They
tolerate packet loss by sending multiple hashes with each
packet and achieve relatively high verification rates at the cost
of increased overhead and delayed authentication.

Wong and Lam studied content authentication in [23] for
lossy multicast flows. They proposed Merkle hash tree [8]
which builds a binary tree over a block of data packets. The
hash of each data packet constitutes a leaf in the tree, and
each internal node of the tree is obtained by concatenating the
children and hashing the result. Only the root of the tree is
digitally signed. With each data packet, its authentication path,
namely the hashes from the leaf to the root, are transmitted. At
the receiver, the signature of the root only needs to be verified
once per tree. Thereafter, each received packet is verified by
validating its hash path from its leaf position in the tree to the
root (the number of hash operations is therefore logarithmic in
the number of packets in the block). The Merkle tree has low
cost and low delay, while being resilient to loss [24]. Karpinski
et al. proposed skewed Merkle trees in [25], in order to extend
the Merkle tree traversal algorithms without additional time
and memory resources. They showed that extra nodes can
be appended to a balanced Merkle tree without changing the
time and space bounds of the traversal algorithm. In what
follows, we generalise the Merkle tree structure and make it
more suitable for real-time streaming applications.

III. THE α-LEAF AUTHENTICATION TREE

We now introduce our novel authentication unbalanced tree
structure called the α-leaf tree, which is a generalisation of the
Merkle hash tree. An α-leaf tree is an unbalanced structure,
where the parameter α, 0 ≤ α ≤ 0.5, denotes the degree
of imbalance. The motivation for the unbalanced tree is to
provide shorter authentication paths for initial packets, so that
they can be verified faster and playback can start quicker, while
shifting the authentication burden towards latter packets, that
can take more time to authenticate as they are not immediately
needed for playback. As a secondary advantage, an imbalanced
tree offers lower overall authentication cost when the user
abandons the streaming data mid-stream (which happens very
frequently as discussed earlier).

A. Constructing the α-leaf tree

The α-leaf tree is constructed such that the path length
(from leaf to the root) gets progressively larger as we scan
the leaves left to right. We achieve this as follows: suppose
the tree has height h, where levels are numbered from top
(level-0) to bottom (level-h). At any level i (0 < i < h),
fraction α of the nodes (the leftmost ones) are made leaves,
while the remaining (1−α) fraction of the nodes are expanded
to have two children. As we will see below, this yields a tree
whose imbalance can be controlled via the parameter α.

Specifically, the α-leaf tree (where 0 ≤ α ≤ 0.5) of height
h is constructed as follows: The root (level-0) node has two
children. If the number of nodes at level-i is denoted by Ni,
then for 0 < i < h, the leftmost NL

i (= bαNic) of these
nodes are made as leaves, while each of the remaining N I

i (=
Ni − bαNic) nodes are made to have two children each. At
the bottom level-h, all Nh nodes are leaves.

It can be seen that α determines the degree of imbalance
of the tree. Specifically, when α = 0, the tree is balanced,
since all leaves reside only at the bottom (level-h), as shown
in Fig. 1(a), which corresponds to the Merkle tree. On the
other extreme, when α = 0.5, each level-i, where 0 < i < h,
has exactly one leaf, and the tree degenerates to a linear chain,
as shown in Fig. 1(b).

When α takes an intermediate value, say 0.25, the resulting
tree is imbalanced, in that successive groups of leaves have
increasing path length to the root, as shown in Fig. 1(c).
As we will show below, the height of the tree still remains
logarithmic.

We also present here a special tree structure, called the
Fibonacci-leaf tree, that can be counted as a special case
of the α-leaf tree. The Fibonacci-leaf tree is constructed
as follows: Let Fi denote the ith Fibonacci number where
F0 = 0, F1 = 1, and Fi = Fi−2 + Fi−1 for i ≥ 2. Then a
Fibonacci-leaf tree of height h is such that at level-i, where
0 < i < h, the number of leaves is Fi−1 and the number
of non-leaves (each of which will have exactly two children)
is Fi+2. Needless to say, the top level-0 has no leaves and
one non-leaf node, while the bottom level-h has Fh−1 +Fh+2

leaves. Fig. 1(d) depicts the structure of a Fibonacci-leaf tree
of height h = 6. For a Fibonacci-leaf tree of sufficiently large
height, the ratio of leaves to nodes at level-i for sufficiently
large i approaches 0.19, and hence the Fibonacci-leaf tree can
(approximately) be viewed as an α-leaf tree where α ≈ 0.19.

The implications of the special tree will be discussed in the
following sections.

B. Number of Leaves

In this section, we derive expressions for the number of
leaves in the α-leaf tree and the Fibonacci-leaf tree. This
expression can be used to find the appropriate tree height for
the given file size (i.e, number of packets).

Lemma 1. An α-leaf tree of height h has Lαh leaves where

Lαh =

{
2h(1−α)h−2α

1−2α if 0 ≤ α < 0.5

h+ 1 if α = 0.5
(1)

Proof: The number of leaves NL
i and number of non-

leaves (internal nodes) N I
i at level-i (0 < i < h) of the α-leaf

tree is given by, NL
i = 2iα(1− α)i−1 and N I

i = 2i(1− α)i.
The total number of leaves in the α-leaf tree of height h is
obtained by adding the number of leaves at each level:

Lαh =

h∑
i=1

NL
i +N I

h =

h∑
i=1

2iα(1− α)i−1 + 2h(1− α)h

Summing the above for the two cases: α = 0.5 and α < 0.5
yields the result.

Lemma 2. A Fibonacci-leaf tree of height h has LFh leaves
where LFh = Fh+3 − 1.

Proof: A Fibonacci-leaf tree has Fi−1 leaves at level-i
(0 < i < h), and Fh−1 + Fh+2 leaves at the bottom level-
h. Adding these, and using the known equality

∑h−1
i=0 Fi =

Fh+1 − 1 yields:

LFh =

h−1∑
i=1

Fi−1 + Fh−1 + Fh+2 =

h−1∑
i=0

Fi + Fh+2

= Fh+1 − 1 + Fh+2 = Fh+3 − 1

C. Path Length

The path length from the packet at the leaf of the tree to the
root in the α-leaf tree is representative of the cost of verifying
that packet. The balanced Merkle tree has the same path length
from any leaf to the root. For the unbalanced α-leaf tree, the
path length increases as we consider successive leaves (from
left to right), as shown below:

Lemma 3. In an α-leaf tree of height h the authentication
path length lk of the kth packet is given by:

lk ≈ min

h, ln
[
k(1−2α)

2α + 1
]

ln (2− 2α)

 (2)

Proof: Number of leaves in an α-leaf tree upto level j
(j < h, where h is the height of the tree) is given by:

Lαj =

j∑
i=1

2iα(1− α)i−1 = 2α

[
(2− 2α)j − 1

1− 2α

]

For the kth node to be sitting on level lk,

2α

[
(2− 2α)lk−1 − 1

1− 2α

]
< k ≤ 2α

[
(2− 2α)lk − 1

1− 2α

]
Simplifying the above equation yields the result. (Eq. (2))

Lemma 4. In the Fibonacci-leaf tree of height h the authen-
tication path length lk of the kth packet is given by:

lk ≈ min
{
h,

⌊
logϕ

[
(k + 1)

√
(5) +

1

2

]⌋
− 1

}
(3)

Proof: Number of leaves in an Fibonacci-leaf tree upto
level j (j < h, where h is the height of the tree) is given by:

LFj =

j∑
i=1

Fi−1 = Fj+1 − 1

For the kth node to be sitting on level lk,

Flk − 1 < k ≤ Flk+1 − 1 (4)

Simplifying the above equation and using the definition of
Fibonacci numbers yields the result. Where ϕ is the golden
ratio.

D. Average Path Length

For the unbalanced tree structure, the mean path length is
computed as below:

Lemma 5. The average path length from leaf to root in the
α-leaf tree of height h is:

Aαh =
α

Lαh(1− α)
{2h+1(1− α)

h+1 − 1

(1− 2α)2

+
2h+1h(1− α)h+1 − 4(1− α)− 1

(1− 2α)
}

+
2hh(1− α)h

Lαh
(5)

Proof:

Aαh =

∑h
i=1 iN

L
i + hN I

h

Lαh

=

∑h
i=1 i2

iα(1− α)i−1 + h2h(1− α)h

Lαh

Simplifying the above equation yields the result.
Correspondingly, for the Fibonacci-leaf tree we can deduce

that:

Lemma 6. The average path length AFh from leaf to root in a
Fibonacci-leaf tree of height h is: AFh = (h−1)Fh+3+Fh+1+1

(Fh+3−1)

Proof: At every level i, (i ≥ 2), Fi−1 number of leaves
have an authentication path of length i. And at i = h, Fh+2

number of leaves have an authentication path of length h.
Summing these with the aid of known equality

∑h
i=1 iFi =

hFh+2 − Fh+3 + 2 yields the result.

Fig. 2. Path-stretch β with respect to the height of the tree for different α
values

E. Path Stretch

We define metric β as the ratio of the average authentication
path length in the unbalanced α-leaf tree to the (fixed) path-
length in the balanced Merkle hash having the same number
of leaves.

βα =
Aαh

dlog2(Lαh)e
(6)

Metric β thus represents the average “stretch” in the path from
leaf to root resulting from the imbalance.

Lemma 7. The path-stretch β for an α-leaf tree of height h
is bounded by 1/log2(2− 2α).

Proof: Eq.(6) in conjunction with Eq.(5) and Eq.(1) can
be used to directly calculate the path-stretch β.

lim
h→∞

βα ≤ lim
h→∞

2αh

log2(Lαh)
+
h(1− 2α)

log2(Lαh)
≤ 1/log2(2− 2α)

For the specific case of the Fibonacci-leaf tree we have:

Lemma 8. The path-stretch β for the Fibonacci leaf tree is
bounded by 1/log2(ϕ), where ϕ is the golden ratio.

Proof:

βF =
(h− 1)Fh+3 + Fh+1 + 1

(Fh+3 − 1)dlog2(Fh+3 − 1)e

≤ h− 1

log2(Fh+3 − 1)
+

Fh+1 + h

(Fh+3 − 1)log2(Fh+3 − 1)

Using Fh ≈ ϕh−(1−ϕ)h√
5

where ϕ = 1+
√

5
2 , we have

lim
h→∞

βF ≤ lim
h→∞

h

log2(Fh+3 − 1)
≤ 1

log2(ϕ)
≈ 1.44

(7)

Fig. 2 illustrates path-stretch β as a function of tree height
for different values of α. It is seen that path-stretch increases
with α; α = 0.2 stretches the average path-length by at most
50%, α = 0.3 by around 100%, and as α approaches 0.5,
the tree degenerates to a linear chain and path-lengths grow
linearly, making the path-stretch unbounded.

IV. ANALYTICAL MODEL

The α-leaf tree permits an unbalanced tree in which the au-
thentication path length for successive packets of the streamed
content progressively increases. This has the benefit that initial
packets can be verified faster, allowing for shorter delay in
playing back the streaming content. However, it comes at
the cost of increasing the average path length (since for
a given number of leaves an unbalanced α-leaf tree will
have larger height than the balanced Merkle tree). In this
section we develop a simple analytical model to quantify
this trade-off and identify optimal setting of the imbalance
parameter α. As stated in section II, we use the number
of stalls during playback, start-up delay, tolerance to packet
losses, and authentication overhead as measures to evaluate
the performance of our α-leaf tree scheme.

A. System Model

Packet Arrival Process: We assume that packets compris-
ing the streaming content arrive to the receiver as a periodic
process perturbed by Gaussian noise. In other words, the
arrival time of the k-th packet (k = 1, 2, . . .) is N (kt, σ2),
i.e. has a normal distribution with mean kt and variance σ2,
where t is the average inter-arrival time between successive
packets, and time is measured from arrival of the 0-th packet.
We have validated this model with several captured traces of
YouTube traffic (as explained in the next section), which show
that the deviation of packet arrival times from the expected
periodic are well-approximated as Gaussian.

Authentication Process: It is assumed that the digital
signature at the root of the tree is received and verified prior
to arrival of the 0-th packet. Upon receipt of a packet, its
content is hashed to obtain the corresponding leaf in the tree
– this takes time δleaf . This resulting hash is concatenated
with the sibling hash in the tree, and the result hashed to
move one level up in the authentication path – this takes time
δhash. This process of concatenating hashes and re-hashing
is repeated at each successive level of the tree till the root is
reached, whereupon the result is matched with the hash value
stored at the root. For the k-th packet that has an authentication
path-length of lk (as derived in Section III-C), the time δk for
authentication is therefore given by:

δk = δleaf + lkδ
hash (8)

Note that received packets are authenticated sequentially (i.e.
on a single processor) in order of arrival.

Playback Process: For real-time playback of a long media
stream, steady-state conditions require that the playback time
of (the content in) a packet be larger than the average inter-
packet arrival time, otherwise the playback will eventually stall

after every packet waiting for arrival of the next packet. We
therefore assume that each packet is played back for time t+
ε for some known constant ε > 0. Further, playback of the
stream starts at some offset ∆ from the arrival of the first
packet. This offset allows the receiver to protect against jitter
in packet arrival times, as well as allows time to authenticate
received packets before they need to be played back. Thus the
playback of kth packet (k ≥ 0) will start at time ∆ + k(t+ε),
where time is measured from the arrival of the 0-th packet.

B. Probability of Playback Stall

Playback stalls whenever the receiver runs out of authenti-
cated packets. The k-th packet therefore causes a stall if it is
ready (namely has arrived and is authenticated) later than its
required playback time, i.e.

N (kt, σ2) + δk > ∆ + k(t+ ε) (9)

If we want to bound the probability p that the k-th packet
causes a stall in the playback, we need that:

Pr[N (kt, σ2) + δk > ∆ + k(t+ ε)] ≤ p

This can be expressed in terms of the standard normal (i.e.
zero mean and unit variance) variable Z as:

Pr[Z > (∆ + kε− δk)/σ] ≤ p

Denoting by Φ(z) = P [Z > z] the complementary cumulative
distribution of the standard normal, the condition that needs
to hold for given stall probability can be expressed as:

(∆ + kε− δk)/σ ≥ Φ−1(p) (10)

The above inequality illustrates that for given ε and σ, initial
packets (i.e. small k) rely on the playback offset ∆ to cover for
their authentication delay δk, whereas later packets (large k)
have more time accumulated over the playback of previous
packets (the kε term) to mask their authentication delay.
This provides the rationale for the unbalanced tree that gives
lower δk for earlier packets than later ones, allowing for a
smaller playback offset ∆ without increasing the probability
of playback stalls.

C. Optimising α to Minimize Stall Probability

For given parameters pertaining to packet arrival process,
authentication process, and playback process, we can use
inequality (10) to adjust the tree imbalance (via parameter α)
to minimize playback stalls. To this end, we first explore, for
given number of leaves n in the tree (i.e. the tree is built over
n packets), the tree imbalance that minimizes stall probability
for a chosen packet-k. This can be deduced by differentiating
the left side of inequality (10) with respect to α and equating
to 0 yielding:

d

[
∆ + kε− δk

σ

]
/dα = 0 (11)

Eq. (11) in conjunction with Eq. (2) and Eq. (8) can be used
to directly estimate the value of α that minimizes the stall
probability for packet-k.

Fig. 3. Optimal α values of each leaf of an α-leaf tree

In Fig. 3 we plot the optimal tree imbalance α as a function
of the packet index k. The system parameters correspond to
the sensor node scenario of audio streaming as described in
the next section, and the tree is built over 5000 packets. The
plot confirms that the first few packets favour α = 0.5, which
corresponds to a completely imbalanced tree (in fact a linear
chain) wherein initial packets have very short paths, whereas
packets towards the end of the tree favour α = 0 corresponding
to a balanced tree since that gives them the shortest path
to the root. What is however interesting is that the optimal
imbalance progressively reduces with each successive packet,
and indeed many packets in the middle favour the moderately
imbalanced tree of α = 0.19; this corresponds roughly to the
special Fibonacci-leaf tree structure that we described earlier.

The above study considered each packet (that formed a leaf
in the tree) in isolation. It is possible to deduce the optimal tree
structure considering all packets. To do so, we can estimate
the total number of stalls S in the stream of n packets by
summing up the probability of stall over all packets:

S =

n∑
k=1

Pr

{
Z >

(∆ + kε− δk)

σ

}
(12)

Differentiating this with respect to α and equating to 0 yields:

n∑
k=1

exp

{
−
[

∆ + kε− δk√
2σ

]2
}
.
d
[

∆+kε−δk√
2σ

]
dα

= 0 (13)

Numerical evaluation of the above equation gave us α = 0.19
for the optimal tree imbalance, which again corresponds
roughly to the Fibonacci-leaf tree. This strongly indicates that
the Fibonacci-leaf tree achieves growth in path length most
suited to real-time authentication of streaming content. This
is substantiated with simulations of realistic scenarios in the
next section.

(a) Number of stalls vs. tree imbalance (b) Number of stalls vs. time (∆ = 50 ms)

Fig. 4. Audio streaming to sensor device: (a) Average number of stalls versus tree imbalance α, and (b) Cumulative stalls as a function of time

V. PERFORMANCE EVALUATION VIA SIMULATION

We now validate the model of the α-leaf tree presented
above and evaluate its efficacy in two real-world application
via simulation. Our simulation is written in C, and works
as follows. The tree structure corresponding to the choice
of imbalance parameter α is first chosen. Then packets are
generated and delivered to the receiver as per the arrival
process. Each packet upon arrival is queued for authentication,
and served in FIFO manner. To authenticate packet-k, the
receiver hashes the packet content (taking time δleaf to do
so), and then traverses up the authentication path (of length lk)
successively concatenating the hashes and re-hashing (which
takes time δhash at each level). Authenticated packets are
moved to the playback queue. Playback commences offset ∆
after arrival of the first packet. Packets (if any) in the playback
queue are played in FIFO manner for duration t+ε each. If the
playback queue goes empty during the process, a stalls occurs.
We measure the impact of parameters such as tree imbalance
α and playback offset ∆ on the number of stalls observed
in simulation. The two application scenarios for which we
conducted the simulation study are described next.

A. Application 1: Audio Streaming to Sensor Device

Imagine a scenario in which visitors to a museum are
given low-cost portable devices that can sense their location,
and play streaming audio relevant to the artefact in front
of which they stand. The received audio stream may need
to be authenticated to protect against injection of malicious
content. In such a scenario, we evaluate how the α-leaf tree
can reduce playback delay and playback stalls to improve the
user’s streaming audio experience.

The parameters of this application setting are as follows:
packet size is exponentially distributed with mean 28 bytes,
comprising 20 byte payload of G.729 coded voice and 8 bytes
of headers (compressed layer-2 / IP / UDP / RTP headers),

as per [26]. The G.729 codec is used with 8 Kbps default
rate, yielding an overall channel data rate of 11.2 Kbps data
rate. The mean packet inter-arrival time is therefore t = 20 ms,
and the deviation of the arrival time from its periodic expected
value is Gaussian with zero mean and standard deviation of
σ = 8 ms. Playback of each audio packet takes t+ε = 30 ms,
consistent with the capabilities of the sensor mote platform.
We used SHA-1 algorithm for hashing, which produces a 20
byte result, and takes δleaf = 6.5 ms to hash a 28 byte
packet and δhash = 4.3 ms to re-hash a hash on the sensor
mote platform [27]. We evaluate via simulation the playback
performance for audio files of different lengths (150, 300, and
450 seconds of playback, corresponding to 5000, 10, 000, and
15, 000 packet respectively) for various playback offset ∆ and
tree imbalance parameter α.

Fig. 4(a) shows, for several choices of playback offset
∆, how the number of stalls observed in simulation varies
with increasing tree imbalance α. Each point in the curve is
obtained from 50 simulation runs for that parameter setting,
and the curves depicted here correspond to tree size of 5000
leaves (the curves for other tree sizes were similar in character
and are omitted for brevity). It should be noted that without
any authentication, there was on average less than one stall
even with the lowest playback delay considered. Alongside the
simulation results, we also show curves that plot the number
of stalls computed from Eq. (12) of our analytical model. We
make several observations from this plot:

• For given ∆, the average number of stalls in the play-
back observed in simulation correspond well with the
predictions from analysis. Though there is a small offset
between the analytical and simulation curves (due to
the analysis being more conservative as it is an upper
bound), the shapes match very well, providing validity
to our model. This means that for any given system
parameters, the analytical model can be employed to

(a) Number of stalls vs. tree imbalance (b) Number of stalls vs. time (∆ = 50 ms)

Fig. 5. Video streaming to mobile phone: (a) Average number of stalls versus tree imbalance α, and (b) Cumulative stalls as a function of time

rapidly determine optimum tree structure best suited to
the application.

• As the playback offset ∆ is increased from 50 to
100, 150, 200 ms, the curve for stall count shifts down,
confirming our intuition that stalls can be reduced by
increasing the playback offset.

• For given ∆, playback stalls decrease with increasing
tree imbalance α, till they reach a a minimum and then
start increasing again. More interestingly, the optimum
imbalance that minimises stalls corresponds to α = 0.19,
which corresponds to the special Fibonacci-leaf tree
structure. This confirms our observation from analysis in
the previous section.

• Lastly, our results indicate that playback stalls can be
reduced either by increasing playback offset ∆, or by
adjusting tree imbalance. For example, if the receiver
wanted to ensure no more than 10 stalls in the audio
playback in this application, it would need to set the play-
back delay well over ∆ = 200 ms if it used the balanced
Merkle tree. However, if it used our Fibonacci-leaf tree,
the playback delay could be set much lower at ∆ = 50
ms while still achieving less than 10 playback stalls. Use
of the imbalanced tree structure for authentication can
therefore allow a four-fold reduction in playback offset
for this application without impacting stall performance.

To better understand where the stalls are occurring, we plot
in Fig. 4(b) the running count of the number of stalls over
time (as the playback progresses) for various degrees of tree
imbalance α (the playback offset is fixed at ∆ = 50 ms).
This plot confirms our intuition that when the tree is balanced
(α = 0), all the stalls happen early in the playback, since
the path lengths are independent of packet position in the
tree. However, when α is increased (to say 0.19), i.e. the tree
becomes skewed to the right, there are no stalls in the first 90
seconds of playback. This clearly shows the two advantages of

using the unbalanced authentication tree structure – not only
does the number of stalls reduce, but also stalls get pushed to
later in the stream, by which time there is a good chance the
user might have abandoned the stream anyway.

B. Application 2: Video Streaming to Mobile Phone

Users are increasingly watching streaming video on their
mobile phones. The content may even be sourced from a peer-
to-peer network having malicious participants who tamper
with the content, and this necessitates authentication. We
evaluate how the α-leaf tree can be tuned to improve playback
experience (lesser stalls and lower playback delay) for such
users, bearing in mind that many viewers abandon watching
the content mid-stream.

The parameters of our video streaming application are
derived from our captures of packet streams from YouTube,
and from reported measurements [28]. The mean packet size
was set at TCP’s default of 1500 bytes. Our captured traces
verified that the packet arrival process is normally distributed
around a periodic mean of t = 5 ms (on a wireless link
of 2.0 Mbps) with standard deviation of σ = 2 ms. The
mobile phone plays the streaming video (MPEG-4 or FLV
encoded) at a 1 Mbps rate [28], corresponding to a playback
time of t+ ε = 12 ms per packet. We use SHA-1 for hashing,
which it estimated to take δleaf = 35 ms to hash a packet
and δhash = 0.5 ms to re-hash a hash, as per data available
for mobile phone platforms in [29]. We evaluate below via
simulation the playback performance for video clips of 60,
120, and 180 seconds (comprising 5000, 10, 000 and 15, 000
packets) for various setting of playback offset ∆ and tree
imbalance α.

Fig. 5(a) depicts, for chosen tree size of 10, 000 packets
(about 120 seconds of playback), how the number of stalls
(averaged over 50 simulation runs) in the first 120 seconds
varies with the tree imbalance parameter α. It should be noted
that in the absence of any authentication, there was on average

less than one stall during the 120 second playback period,
even for the lowest playback delay ∆ = 50 ms considered.
Authentication imposes a penalty, increasing the number of
stalls to above 15 for a balanced Merkle tree even when the
playback offset ∆ is increased to 200 ms - such a high number
of stalls can be annoying to the user. We again note the efficacy
of an unbalanced tree. The Fibonacci-leaf tree (α = 0.19)
reduces the number of stalls from 25 to 8 for playback offset
∆ = 50 ms, and from 15 to 3 for higher playback delay
∆ = 200 ms. Stated another way, the Fibonacci-leaf tree yields
less than 10 stalls with a tight playback delay of ∆ = 50 ms,
while the Merkle tree has higher stalls (nearly 15) even with
a much looser playback delay of ∆ = 200 ms. This clearly
demonstrates that using unbalanced trees can reduce playback
delays by a factor of four or more without impacting stall
rates even in this important application of video streaming on
a mobile phone.

Fig. 5(b) shows where the stalls occur in the video playback.
Again, it is evident that stalls occur at the beginning when a
balanced tree structure is used, while increasing imbalance
reduces the number of stalls as well as pushes them to later
in the stream, giving us the added benefit that the user might
have abandoned the stream by then anyway.

VI. CONCLUSION

Content streaming to portable devices such as low-cost
sensor nodes and mobile phones is growing rapidly, and real-
time authentication of such content received over the wireless
medium, potentially from untrusted peers comprising the dis-
tribution network, is of growing importance. The Merkle hash
tree is a well-accepted construct that can be used to achieve
low-cost authentication by amortising the cost of a digital
signature over a large block of data, while still permitting loss
resilient instantaneous authentication of packets by repeated
hashing from the leaf to root of the tree. In this paper, we have
generalized the Merkle tree structure to allow for imbalance,
i.e. varying path-length from leaf to root. Our novel construct,
called the α-leaf tree, permits gradually increasing path lengths
for successive leaves. We derived several key properties of this
unbalanced tree structure, and related them to the imbalance
parameter α. We developed an analytical model to illustrate
how the tree imbalance can be tuned to minimise playback
stalls for given system parameters and application needs.
We then validated our model via simulation of two realistic
applications, one for audio streaming to a low-cost sensor
device, and the other for video streaming to a mobile phone,
and showed how our unbalanced tree structure readjusts the
burden of authentication across the packets allowing streaming
applications to have lower start-up delay for given playback
stalls. We believe our proposal is of both theoretical and
practical relevance, and may have broader application beyond
the scenarios considered in this paper.

REFERENCES

[1] Sandvine-Intelligent Broadband Networks. (Spring 2011) Global Inter-
net Phenomena Report. http://www.wired.com/epicenter/2011/05/netflix-
traffic/.

[2] Microsoft Tag. The Growth of Mobile Marketing and Tagging.
http://tag.microsoft.com.

[3] P. Dhungel, X. Hei, K. W. Ross, and N. Saxena, “Pollution in P2P
Live Video Streaming,” International Journal of Computer Networks
and Communications, vol. 1, pp. 99–110, 2009.

[4] S. Ababneh, A. Khokar, and R. Ansari, “A Multimedia Content Authen-
tication and Recovery Protocol in peer-to-peer Networks.” in Proc. of
IEEE International Conf. on Electro/Information Technology, 2008.

[5] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, I. S.
S. Shenker, , and H. Yu, “Open DHT: A Public DHT service and its
uses,” in Proc. SIGCOMM, 2005.

[6] T. Wolfi, “Public Key Infrastructure Based on peer-to-peer Network,” in
Proc. of 38th Hawaii Int. Conf. System Sciences, 2005.

[7] M. C. Chan, S. Y. Hu, and J. R. Jiang, “Secure peer-to-peer 3D
Streaming,” Multimedia Tools and Applications, vol. 45, pp. 369–384,
2009.

[8] R. C. Merkle, “A Digital Signature Based on a Conventional Encryption
Function,” in Proc. CRYPTO, 1987.

[9] P. Dutta, J. Hui, D. Chu, and D. Culler, “Securing the Deluge Network
Programming System,” in IPSN, 2006.

[10] Visible-Measures-Corporation Research Brief. (2010) Understanding
Viewer Abandonment Trends in Short-Form Online Video
content. [Online]. Available: http://corp.visiblemeasures.com/contact-
us/abandonment-research/

[11] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for obtaining
digital signature and public key cryptosystems,” in Communications of
the ACM, pages 120-126, 1978.

[12] R. Gennaro and P. Rohatgi, “How to Sign Digital Streams,” in Advances
in Cryptology - CRYPTO, 1997.

[13] L. Lamport, “Constucting digital signatures from a one-way function,”
SRI-CSL-98, SRI International Computer Science Laboratory, Tech.
Rep., 1979.

[14] A. Perig, “The BiBa one-time signature and broadcast authentication
protocol,” in Conference on Computer and Communications Security,
2001.

[15] L. Reyzin and N. Reyzin, “Better than BiBa: Short one-time signatures
with fast signing and verifying,” in 7th Australasian Conference ACSIP,
2002.

[16] A. Habib, D. Xu, M. Atallah, B. Bhargava, and J. Chuang, “Verifying
Data Integrity in Peer-to-Peer Streaming,” in Multimedia Computing and
Networking, 2005.

[17] J. Park, E. Chong, and H. Siegel, “Efficient Multicast Stream Authenti-
cation Using Erasure Codes,” in ACM Trans. Inf. Syst. Secur., 2003.

[18] Y. Park and Y. Cho, “The eSAIDA Stream Authentication Scheme,” in
Proceedings of the International Conference on Computational science
and Its Applications, 2004.

[19] A. Perrig, R. Cannetti, J. D. Tygar, and D. Song, “The TESLA Broadcast
Authentication Protocol,” in CryptoBytes, 2002.

[20] A. Perrig, R. Canetti, D. Song, and D. Tygar, “Efficient Authentication
and Signing of Multicast Streams over Lossy Channels,” in IEEE
Symposium on Security and Privacy, 2000.

[21] P. Golle and N. Modadugu, “Authenticating Streamed Data in the
Presence of Random Packet Loss,” in Proceedings of the Network and
distributed Systems Securuty Symposium, 2001.

[22] Z. Zhang, Q. Sun, and W. Long, “A Proposal of Butterfly-graph Based
Stream Authentication over Lossy Networks,” in ICME, 2005.

[23] C. Wong and S. Lam, “Digital signatures for flows and multicasts,” in
IEEE/ACM Transactions on Networking, 1999.

[24] R. Tamassia and N. Triandopoulos, “Efficient Content Authentication
in peer-to-peer Networks,” in Proc. of the International Conference on
Applied Cryptography and Network Security, 2007.

[25] K. Marek and N. Yakov, “A Note on Traversing Skew Merkle Trees,”
in ECCC, 2004.

[26] Cisco: Voice over ip - per call bandwidth consumption. [Online].
Available: http://www.cisco.com

[27] J. Hui, “Deluge: TinyOS Network Programming - The real way to
program your motes,” University of California, Berkeley, Tech. Rep.,
2005.

[28] http://en.wikipedia.org/wiki/Youtube.
[29] Crypto ++ 5.6.0 benchmarks. [Online]. Available:

http://www.cryptopp.com/benchmarks.html

	A novel unbalanced tree structure for low-cost authentication of streaming content on mobile and sensor devices
	Citation

	tmp.1606884224.pdf.3rDv6

