Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

12-2020

Blockchain-based public auditing and secure deduplication with
fair arbitration

Haoran YUAN
Xiaofeng CHEN
Jianfeng WANG

Jiaming YUAN
Singapore Management University, jmyuan@smu.edu.sg

Hongyang YAN

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Databases and Information Systems Commons, Finance and Financial Management

Commons, and the Technology and Innovation Commons

Citation
]

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/631?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/631?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/644?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5367&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author
Haoran YUAN, Xiaofeng CHEN, Jianfeng WANG, Jiaming YUAN, Hongyang YAN, and Willy SUSILO

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/5367

https://ink.library.smu.edu.sg/sis_research/5367

Blockchain-based public auditing and secur e deduplication with fair arbitration

Haoran Y uan?, Xiaofeng Chen?, Jianfeng Wang?, Jiaming Y uan®, Hongyang Y an®, Willy Susilo?
aState Key Laboratory of Integrated Service Networks (ISN), Xidian University, Xi’an, PR China
bSchool of Information Systems, Singapore Management University, Singapore

¢School of Computer Science, Guangzhou University, Guangzhou, PR China

dSchool of Computing and Information Technology, University of Wollongong, Australia

Published in Information Sciences, December 2020, 541, 409-425
https://doi.org/10.1016/j.ins.2020.07.005

Abstract

Data auditing enables data owners to verify the integrity of their sensitive data stored at an untrusted cloud
without retrieving them. This feature has been widely adopted by commercial cloud storage. However, the
existing approaches still have some drawbacks. On the one hand, the existing schemes have a defect of fair
arbitration, i.e., existing auditing schemes lack an effective method to punish the malicious cloud service
provider (CSP) and compensate users whose data integrity is destroyed. On the other hand, a CSP may store
redundant and repetitive data. These redundant data inevitably increase management overhead and
computational cost during the whole datalife cycle. To address these challenges, we propose a blockchain-
based public auditing and secure deduplication scheme with fair arbitration. By using a smart contract, our
scheme supports automatic penalization of the malicious CSP and compensates users whose data integrity is
damaged. Moreover, our scheme introduces a message-locked encryption algorithm and removes the random
masking in data auditing. Compared with the existing schemes, our scheme can effectively reduce the
computational cost of tag verification and data storage costs. We give a comprehensive analysisto
demonstrate the correctness of the proposed scheme in terms of storage, batch auditing, and data consistency.
Also, extensive experiments conducted on the platform of Ethereum blockchain demonstrate the efficiency
and effectiveness of our scheme.

Keywords. Blockchain, Data auditing, Fair arbitration, Data deduplication

1. Introduction

Cloud computing provides users with flexible computing and storage resources. It significantly
reduces the burden of software and hardware management, which attracts many individuals and
enterprises to outsource their confidential data to remote cloud servers. However, since users’ data is
outsourced to the CSPs and stored on the remote cloud, it separates the ownership and management
rights of users’ data. This makes it difficult for users to verify the integrity of their sensitive data.

Corresponding author. E-mail address: hyang.yan@foxmail.com (H. Y an).

https://doi.org/10.1016/j.ins.2020.07.005

In the cloud computing environment, the outsourced sensitive data may be tampered and deleted, due to various hard-
ware and software vulnerabilities, and even malicious adversary attacks. For example, Google’s Europe-west1-b data center
in Belgium was affected by lightning strikes in 2015. At the height of the calamity, about 5% of the disks in the data center
experienced I/O errors. This led to the permanent loss of 100 gigabytes (GB) data in Europe-west1-b even though Google took
a series of precautions [1]. Nearly 50 million Turkish citizens’ personal information was accessed by hackers and posted
online in a downloadable 6.6 GB file in 2016 [2]. Kromtech security researchers discovered that an Amazon S3 repository
could be publicly accessed in 2017. About 316,363 PDF medical reports in this repository were leaked and more than
150,000 patients were affected by this leak [3]. Various hacking attacks and data loss problems indicate that data security
has become one of the most critical issues in cloud computing [4-10]. For ensuring the security of users’ sensitive data,
numerous data auditing schemes have been proposed [11-18]. Data auditing schemes effectively verify the data integrity
of outsourced data without downloading the original data. However, the existing schemes still have a defect of fair arbitra-
tion, i.e., data owners may not obtain the compensations even if they discover that the outsourced data has been destroyed.

Besides, with the surge in the number of cloud users, the amount of users data is exploding. According to the report from
Internet Data Center (IDC), the total amount of digital data grows at a rate that doubles every two years, which is expected to
reach 44 trillion gigabytes (GB) in 2020 [19]. Moreover, the Global Datasphere would grow from 33 ZB in 2018 to 175 ZB in
2025, from the investigation Seagate and IDC DataAge White Paper [20]. This trend makes CSPs caught in the swamp to cope
with the increasing demand for disk space and bandwidth. To solve this problem, a simple method is to ask CSPs to increase
the storage space for adapting users’ requirements for high-quality cloud storage services. Nevertheless, CSPs may store
repetitive and redundant data, which inevitably occupies a large number of backup and storage space. To address this prob-
lem, Bolosky et al. [21] proposed the idea of data deduplication, which enables CSPs to delete the repetitive data and only
keep one copy of them to decrease the bandwidth and storage space. Nowadays, a large number of CSPs have applied data
deduplication techniques, such as Google Drive [22], Memopal [23] and Dropbox [24]. Research [25] has shown that data
deduplication can reduce at least 90% of business application storage and bandwidth costs.

Although data deduplication technology brings significant benefits to CSPs, there remain some problems to be solved. It is
generally considered that CSPs are not fully trusted; they are curious about the outsourced data. Thus, a user usually
encrypts sensitive data before uploading them to the cloud. Different users choose file keys independently to encrypt the
same data and generate different ciphertexts, which hinders the realization of data deduplication. Convergent encryption
(CE) is the first realistic scheme to guarantee data confidentiality and support ciphertext deduplication [26]. In this scheme,
a user uses a convergent key to encrypt the sensitive data, where the convergent key is computed by hashing the sensitive
data. Thus, the same data can always be encrypted to the same ciphertext. This allows the CSP to perform deduplication on
ciphertexts. However, users’ data may be corrupted due to various network failures during the downloading process and
software failures during the decryption process. If the user decrypts the corrupted data, he could not obtain the correct plain-
text. Thus, the CE scheme cannot protect the data consistency of users’ sensitive data.

To address the above problems, it is fundamental to design a data auditing and secure deduplication scheme with fair
arbitration, which enables automatic data auditing without third-party auditors and consistent detection during decryption.
In should be stressed that designing a data auditing and secure deduplication scheme with fair arbitration is not a trivial
problem. First, existing data auditing schemes [11-13,15] exclusively focus on how to achieve probabilistic auditing or batch
auditing and rarely consider fair arbitration. The data owner cannot obtain the corresponding compensation once the data
integrity is destroyed, which is unfair to the data owner. Therefore, how to design a data auditing scheme with fair arbitra-
tion to punish the malicious CSP and compensate users whose data integrity is destroyed becomes an urgent problem that
needs to be solved. Second, many existing data auditing schemes resort to a third-party auditor to check the data integrity of
outsourced data and the correctness of the integrity audit results is completely dependent on the trusted third-party. How-
ever, finding a fully trusted third-party is often unrealistic. Finally, existing data auditing and data deduplication schemes
[16-18] only adopt the CE scheme to realize data deduplication. Therefore, these schemes cannot guarantee data consistency
of users’ sensitive data.

1.1. Our contribution

In this paper, we propose a blockchain-based public auditing and secure deduplication with fair arbitration. Specifically,
our scheme utilizes the blockchain technique and public-key-based homomorphic linear authenticator algorithm to realize
data auditing without any third-party auditor and automatic punishment. By integrating the Hash-and-CE-2 scheme [27],
our scheme supports data deduplication and consistent detection during decryption. In summary, our contribution can be
summarized as the following three folds:

e We propose a blockchain-based public auditing and secure deduplication scheme with fair arbitration. Different from the
previous works, our scheme supports data auditing without any third-party auditor and automatically compensates users
whose data integrity is damaged by using the smart contract. This effectively guarantees the benefits of users. In addition,
our scheme supports data deduplication, which reduces the storage and computation overhead of the CSP.

e We propose a batch data auditing and secure deduplication scheme, which can batch audit multiple auditing tasks at the
same time. Moreover, by employing an additional consistent detection mechanism, our scheme guarantees data
consistency.

e We provide security analysis of our scheme, and the results show that our scheme can realize the expected security goals.
Also, extensive experiments conducted on the platform of Ethereum blockchain demonstrate the efficiency and effective-
ness of our scheme.

1.2. Related work

1.2.1. Data auditing

In 2007, Ateniese et al. [11] proposed the first public audit scheme in the provable data possession (PDP) model for ver-
ifying the authenticity of data in untrusted servers. By using the homomorphic linear authenticators, users can efficiently
verify data integrity without downloading the entire data. However, this scheme cannot guarantee data privacy. The user
information will be leaked. For ensuring the retrievability of outsourced data, Juels et al. [28] proposed proof of retrievability
(PoR) in 2007. Based on the spot-checking and error-correcting codes, PoR can support data possession and retrievability at
the same time. However, this scheme does not support public auditability and the number of audit challenges is limited. In
the security model [28], Shacham and Waters [29] proposed an improved PoR scheme with proofs of security based on the
BLS signatures. To achieve public and dynamic data auditing for remote data, Wang et al. [12] proposed a data auditing
scheme, which can achieve public auditability and data dynamics at the same time. By adopting the bilinear aggregate sig-
nature, this scheme can support multiple auditing tasks simultaneously. To protect the data information of users, Wang et al.
[13] proposed a privacy-preserving public auditing scheme. This scheme enables third-party auditor (TPA) to audit multiple
tasks simultaneously. Wang et al. [15] designed a verifiable auditing scheme, which can protect the search results’ correct-
ness and completeness. To support both data integrity and data deduplication in cloud storage, Li et al. [16] proposed the
SecCloud and SecCloud + schemes. By introducing the MapReduce algorithm, SecCloud can help users to generate data tags
before uploading and auditing data integrity of outsourced data. SecCloud + enables data auditing and deduplication on
encrypted data. Liu et al. [17] proposed a message-locked integrity auditing and data deduplication scheme, which can real-
ize the deduplication of authentication tags.

1.2.2. Data deduplication

In 2002, Douceur et al. [26] proposed the first ciphertext deduplication scheme, which is called convergent encryption
(CE). In this scheme, a user uses a convergent key to encrypt sensitive data, where the convergent key is derived by hashing
the sensitive data. Since the data are the same, the different users always are able to generate the same convergent key. By
using the same convergent key, the same data can be encrypted to the same ciphertext. This allows the CSP to perform dedu-
plication on ciphertexts. However, the CE scheme cannot prevent brute-force dictionary attacks. To cope with it, the DupLESS
scheme was proposed by Bellare et al. [30]. In the DupLESS scheme, a user generates encryption keys with the help of a ded-
icated key-server by using oblivious pseudorandom functions (OPRF) protocol. The key server is configured with a system-
wide public and private key based on the RSA mechanism. Thus, the key server is able to generate message-locked encryp-
tion (MLE) key without knowing the hash value of the original data [31]. The rate-limits mechanism is also adopted in the
DupLESS scheme, which limits the query times of MLE key generation. Therefore, brute-force attacks can be efficiently
avoided. Bellare et al. [27] proposed the Hash-and-CE-2 (HCE2) scheme and added a tag checking mechanism in this scheme.
After decrypting the ciphertext, a user recomputes the tag by using the plaintext and compares it with the original tag. If the
newly generated tag is equal to the original tag, the user accepts the ciphertext; else, rejects it. To support efficient and reli-
able key management, Li et al. [32] proposed a secure data deduplication scheme based on the ramp secret sharing scheme.
Shin et al. [33] applied the predicate encryption algorithm in the deduplication scheme. However, this scheme only achieves
single-user deduplication. Based on the traceable signatures, Wang et al. [34] proposed a ciphertext deduplication scheme. In
the hybrid cloud architecture, Li et al. [35] proposed an authorized data deduplication scheme, which can support authorized
duplicate checks. Yuan et al. [36] proposed a scalable and dynamic deduplication scheme, which can support user joining
and revocation.

1.2.3. Blockchain

Bitcoin is the first and most popular decentralized cryptocurrency, which allows users online payment without a financial
institution [37]. To solve the problem of double-spending, blockchain was adopted in the bitcoin system. Blockchain is an
ever-increasing and public distributed transaction ledger, which can record an immutable history of transactions and pro-
vide a tamper-proofing ledger without any central authority. The blockchain collects data elements as a block, which con-
tains version, nonce, previous block hash, root hash of Merkle tree and timestamp. After verifying the validity, the
transaction can be recorded in the blockchain. In a blockchain, the hash value of the current transaction is used to generate
the next block. Therefore, blockchain can efficiently authenticate the history of data and resist modification of chained
blocks. To realize public verification of data deletion, Yang et al. [38] proposed a data deletion scheme based on blockchain,
which can support public verification. For the fog devices, Huang et al. [39] proposed a bitcoin-based fair payment for out-
sourcing computation. Alptekin [40] proposed an official arbitration scheme with a secure cloud storage application, which
only costs 2 ms and 80 bytes for each update on the stored data to resolve disputes. To support dynamic and public auditing
with fair arbitration, Jin et al. [41] proposed fair arbitration protocols, which can support fairness arbitration of potential
disputes.

To improve the function of blockchain, the smart contracts were added in the Ethereum [42]. Smart contracts are com-
puter programs running on cryptocurrency (e.g., Ethereum) blockchains, which can execute a pre-agreed program automat-
ically (such as payments and audits) and without a trusted authority. The Ethereum blockchain is described in Fig.1. We use
Tx to denote a transaction. The hash value of the current block is denoted by BlockHash, the hash value of the previous block
is denoted by PreHash, the timestamp is denoted by Timestamp, and the root value of Merkle hash tree is denoted by
RootHash. Based on the Ethereum blockchain, Zhang et al. [43] proposed a secure data provenance scheme, which improves
the security and privacy of the data provenance. In this paper, we use the Ethereum blockchain to build our scheme. Specif-
ically, we use the smart contract to charge a certain penalty of the CSP and compensate the users whose data integrity is
destroyed.

1.3. Organization

The rest of this paper is organized as follows. In Section 2, we introduce the preliminaries used in our scheme. We give the
system architecture and security goals of our scheme in Section 3. In Section 4, we present a detailed description of our pro-
posed scheme. The security analysis and efficient comparison are presented in Section 5. The performance evaluation results
are shown in Section 6. Finally, conclusions are made in Section 7.

2. Preliminaries
In this section, we present the definitions and properties of Hash-and-CE-2 [27] and bilinear groups.
2.1. Hash-and-convergent-encryption-2

Hash-and-CE-2 (HCE2) is one of the message-locked encryption [27]. In HCE2, a user uses a convergent key to encrypt
sensitive data, where the convergent key is derived by computing the hash of sensitive data. Thus, different users can always
generate the same convergent key for the same data. Then, the different users use the same convergent key to encrypt the
same data and get the same ciphertext. Therefore, HCE2 can realize data deduplication on the ciphertext. To protect data
consistency, an additional tag checking mechanism is adopted in the HCE2 scheme. After decrypting the ciphertext, the user
re-generates the tag of data by using the plaintext and compares it with the corresponding tag. The user accepts the data
only if the tags are consistent. We describe the Hash-and-convergent-encryption-2 (HCE2) algorithm as follows.

Definition 1. The HCE2 algorithm HCE2 = (HCE2.KeyGen, HCE2.Encrypt, HCE2.Decrypt, HCE2.TagGen) consists of the
following algorithms:

e HCE2.KeyGen(P,M;) — (K;) is an MLE key generation algorithm that inputs public parameter P and file M;, and then out-
puts the MLE key K;;

o HCE2.Encrypt(K;, M;) — (C;) is an encryption algorithm that inputs MLE key K; and file M;, and then outputs C;;

e HCE2.TagGen(C;) — T; is a tag generation algorithm that inputs ciphertext C; and outputs the tag T;;

e HCE2.Decrypt(K;, C;) — (M;) is a decryption algorithm that inputs MLE key K; and ciphertext C;, and then outputs the
original plaintext M;.

2.2. Bilinear groups

We review some concepts of bilinear maps, which include computability, bilinearity, non-degeneracy. Let G, G, and Gy
be three different multiplicative cyclic groups, where the order is p. We use g, and g, to denote the generator of G; and G,.
e: Gi x G, — Gris a bilinear map with the following properties:

(1) Computability: there exits an efficiently computable algorithm for computing map e;

(2) Bilinearity: for all a € Gy,b € G, and x,y € Z,,e(a*,b’) = e(a,b)";

(3) Non-degeneracy: e(g;,g,) # 1.
3. Model and security goals

3.1. System architecture

Based on the blockchain, we propose a public auditing and secure deduplication scheme with fair arbitration for cloud
storage. Our scheme includes two entities: users and CSP. The system model of our scheme is shown in Fig. 2.

L BlockHas «— BlockHash ‘4— ’ BE

PreHash | —{ PreHash | —{ PreHash |

Version ‘ | Nonce ‘ ‘ Version ‘ | Nonce ‘ ‘ Version ‘ ‘ Nonce ‘
‘r———>| RootHash | ‘Timestampl l RootHash | |Timestampl | RootHash | |Timestamp|
3 }TXHTX""’TX‘ ‘TXHTX""‘TX‘ }TXHTX""}TX‘
! A
‘ i %
Root Transaction ‘
value From Smart Contract
The address of Payer
To ‘ Value H Address ‘
The address of Payee
Halsh H?Sh Value ‘ State “ Functions |
VeI VEIUS The value of transaction
Data x
H(Tx1) H(Txa) -~ H(Tx.) H(Tx,) Signature Camcliiemns

Fig. 1. Ethereum blockchain structure.

A
v

.
Ciphertext E’ i

Cloud service provider

A

Kyeudd
nsodo(q

Blockchain v

|

|

|
|

|

|

|

— [renon]

Signature

PreHash

|
|
i

Timestamp

Fig. 2. The cloud storage model.

e Users: Users are the entities who want to upload sensitive data M to the CSP and download data later. Users encrypt the
sensitive data before outsourcing them to the CSP for avoiding privacy information leakage. After uploading the sensitive
data, users remove M for saving storage space.

e CSP: A CSP is an entity that provides storage services to users. The CSP is assumed honest-but-curious in our scheme. That
means it will honestly execute the protocol but try to extract the content and information of users’ outsourced data. The
CSP cannot obtain the plaintext information of users’ data directly by using the encryption algorithm in our scheme.

3.2. Threat model and security goals

We consider that the CSP is the main adversary. The malicious behaviors of the adversary are described as follows. First,
the CSP may delete outsourced data that users rarely access to save storage costs for their economic interests. Thus, it is pos-
sible to obtain extra storage fees from users. Second, due to various software bugs, economically motivated hackers and
hardware faults, the outsourced data stored on the CSP may be tampered or deleted. CSP may hide the data corruption inci-
dents from users to maintain reputation.

We aim to achieve the following four security goals in this paper.

e Data privacy: We require that the CSP and malicious adversaries cannot obtain the user’s plaintext.

e Storage correctness: We require that if a CSP can pass a smart contract’s audit, it must store the entire user’s data
correctly.

e Batch auditing: We require that a smart contract can verify multiple audit tasks of users’ sensitive data at the same time.
If a CSP generates the correct response of integrity challenges, it must faithfully store all of the challenge blocks.

e Data consistency: In the cloud environment, users’ data may be corrupted due to various network failures during the
downloading process. If the user decrypts the corrupted data, he could not obtain the correct plaintext. In addition, var-
ious software failures may occur during the decryption process. Therefore, it is necessary to verify whether the decrypted
data is equal to the original data. We require that users can determine whether the decrypted data is equal to the original
plaintext.

4. Scheme construction
In this section, we first propose the main idea of our scheme. Then, we describe our scheme in detail.
4.1. Main idea

To solve the problems of data auditing without third-party auditor and integrity detection, we propose a blockchain-
based public auditing and secure deduplication scheme with fair arbitration. The main idea is that a user first encrypts
the sensitive data by using the HCE2 algorithm. Due to the intrinsic property of HCE2, users with the same data can always
generate the same encryption key. By using the same encryption key, the identical data can always be encrypted to the same
ciphertext. Then, the user uploads them to the CSP and the CSP makes a comparison between the stored data and the newly
uploaded data. If the same data is found, it means that the same data has been stored in the CSP. Then, the CSP no longer
stores the new data for saving storage space. The CSP also signs a smart contract with the user to achieve fair arbitration
without any third-party. In a smart contract, a user and the CSP take a certain amount of deposit as input, respectively. If
the CSP completely stores the user’s data, the smart contract sends the user’s deposit as an audit fee to the miner and returns
the CSP’s deposit to the CSP. If the CSP destroys the data integrity of the user’s sensitive data, the smart contract charges the
CSP’s deposit and compensates the user. When performing data integrity auditing, the user first sends an audit challenge to
the CSP. After receiving the challenge, the CSP calculates and sends a homomorphic verification tag to the smart contract
according to the user’s request. Finally, the smart contract verifies the homomorphic verification tag returned by the CSP.
The overview of our scheme is shown in Fig. 3.

4.2. A concrete scheme

Let G1, G, and Gr be three different multiplicative cyclic groups, where the order of the groups is p. We use g to denote
the generator of G, and e : G; x G, — Gris a bilinear map. H(-) is a secure hash function {0,1}" — Gy. h(-) is a secure hash
function Gr — Z,. fis a pseudorandom function: {0, 1}* — n, where n denotes the total number of ciphertexts. Sig(-) is a sig-
nature algorithm. Let P be a public parameter of HCE2.

e Setup: Each user first randomly chooses a key pair (spk, ssk) as the private key and public key for signing, a random num-
ber x — Z, and computes v — g*. Then, the user randomly chooses an element u — G;. The secret parameters are
sk = (x,ssk). The public parameters of our scheme are pk = (v, u, P,spk, g, e(u, v)).

o Encrypt: To upload a file F, a user first splits the file F into a set of chunks {M;, M, ..., M,}. For M;, the user performs the
following operations.

- Execute the MLE key generation algorithm to generate MLE key K; — HCE2 KeyGen(P, M;).
- Encrypt the plaintext M; by computing C; — HCE2.Encrypt(K;, M;) and generate tag T; — HCE2.TagGen(C;) by using the
ciphertext C;.

[v/ [/ /o /
contract

1.Encryption:
e Generate K, <— HCE2.KeyGen(P,M,)

e Compute C, «<— HCE2.Encrypt(K;,M,)
o Generate T, <— HCE2.TagGen(C,)
e Compute o, < (H(W,)-u“)" and t = name|| Sig,., (name)

——Send C,C,,...C,,® = {0,,0,,..,0,), t |
Send deposit,,
2.Audit:

o Chose a random c-element subset / = a,,a,,...,a,
e For each a, € /,choose a random number 7,

4| Send Chal ={(a;,n,)}, |—>

e Compute R = ef,v)

+

Send deposit,,

e Generate ' = n,C, and g=h(R)u'

aer e g
.
e Compute o=] | v

ael @

Send {t,1t,0,R

o Verify the signature Sig_, (name
o Comfgutez =gh(R) B)

e Compute a =e(o”, g) and b=e(([], , H(WM)M') ut,v)
o If a = b send deposit , to CSP; else send deposit ., to user

Send C,,C,....,.C,

3.Decrypt:

o Generate 7, <~ HCE2.TagGen(C,)

e Compute M, <~ HCE2.Decrypt(K,,C,)
o Generate 7' by using M,

o If I'=T,, accept; else L

Fig. 3. Overview of our scheme.

- Generate the authenticator g; — (H(W;) -u%)* € G,, where W; = namel||i and name € 7, is uniformly and randomly
chosen by the user as the identifier of file F. ® = {7;},_;, denotes the set of authenticators.

- Generate file tag t = name||Sig,, (name), where Sig,, (name) is the signature of file F. Then, the user sends ciphertexts
C1,Cy,...,Cp, @ and t to the CSP .

After receiving the ciphertexts C;,Cs, ..., Cy,, the CSP makes a comparison between the stored data and the newly uploaded
ciphertexts. If the same ciphertext is found, it means that the same ciphertext has been stored in the CSP. Then, the CSP no
longer stores the new ciphertext for saving storage space. This efficiently reduces storage and management overhead. Mean-
time, the user signs a smart contract with the CSP. The user sends deposit,,, to the smart contract as his deposit and the CSP
sends deposit s, to the smart contract as its deposit. If the integrity verification is passed, the smart contract automatically
sends the user’s deposit deposit,,, to the miner as the audit fee and returns the deposit deposit . to the CSP. Else, the smart
contract sends the CSP’s deposit deposit. to the user as the penalty and sends deposit,,, to the miner.

¢ Audit: In order to audit the data integrity of the user’s outsourced data, the audit processes are described as follows.

- Based on the current blockhash, a user generates a random c-element subset [= a;,d,,...,a. of set [1,n], where
a; = f(blockhash||i) 2. For each element g; € I, the user generates a random number n,, = H(blockhash]|a;). The metadata
chal denotes the positions of the challenge blocks. The user sends chal = {(a;,n,,)},, to the CSP.

- After receiving the challenge metadata chal = {(a;, n4,)},.,, the CSP sets R = e(u, v) € Gr. Then, the CSP generates a linear
combination of sampled blocks 7 = 3=, nq,Cq,and computes p = h(R)w, where h(R) € Z,. In addition, the CSP generates

an aggregated authenticator o =]‘[aie,(rzlf’" € G;. Finally, the CSP sends {t, u, o, R} to the smart contract.
- After receiving the response of challenge {t, i, o, R}, the smart contract executes Algorithm 1.

a;el

T Regarding the safety of cloud-stored data, a centralized data center will use distributed redundant data storage to protect data safety. Only in a redundant
way can the data be reliably protected upon damage. Therefore, our scheme does not deduplicate redundant copies that are used to enhance data security but
deduplicate copies that are not used for improving security.

2 1t should be emphasized that the challenge value is calculated by the latest hash value of the blockchain, and the malicious adversary cannot predict the
next challenge value. Therefore, our scheme can effectively prevent man-in-the-middle attacks and replay attacks.

Algorithm 1 Auditing of smart contract.

Require: The file tag t and responses of challenge {u, ,R};
Ensure: Result of integrity audit t;

1: Verify the signature Sig, (name) via spk. If the verification fails, let t = 0 and break;
2: Compute z = h(R);

3: Compute a = e(6%,g) and b = e(([], H(Wa,)™ Y uk v);
4:ifa=>b

5: Send deposit,,, to the miner and send deposit .y to the CSP;
6: Sett=1;

7: else

8: Send deposit.p to the user and send deposit,,, to the miner;
9: Sett=0;

10: end if

11: return t.

The correctness of a = b is elaborated as follows:

a = e(a*.g) = e((([[HWa) -u™ "™).g)
= e(([THWa)™ -uc V.9

= e((}‘e[lH(wa,.)"ﬂf) ut, v)

= e((gmw“")nai) ut,v)

o Decrypt: After downloading the ciphertext Cy,Cs,...,C,, the user performs the following operations.

- Input the ciphertext C; into tag generation algorithm and generate the tag T; — HCE2.TagGen(C;).
- Input the key K; and plaintext C; into the decryption algorithm and get the plaintext M; — HCE2.Decrypt(K;, C;).
- Generate the tag T7; by using M; and compare it with T;. If T/; = T;, the user accepts plaintext M;; else, rejects it.

4.3. Batch auditing

To improve the efficiency of data auditing, our scheme supports batch data auditing. In the batch auditing scheme, we
aggregate the data authenticators of multiple data into one data authenticator. As a result, our scheme can audit multiple
tasks at the same time. The batch auditing scheme is described as follows.

e Setup: The setup phase is the same as the above auditing scheme, so we omit here.
e Encrypt: To upload files F=F;,F,,...,Fs, a user first splits each file F4(1<d<s) into a set of chunks
{M‘f,Mg, . ,Mﬁ}(l <d<s) > For M,.d, the user performs the following operations.

- Execute K‘,-j — HCE2. KeyGen(P, M;’) to generate the convergent key Kf.

- Encrypt the plaintext MY by computing C? — HCE2 Encrypt(K?, M?) and generate tag T¢ — HCE2.TagGen(C?) by using
the ciphertext C.

- Generate the authenticator ¢¢ — (H(W?)- uct)x, where WY = name,||i and name, is uniformly and randomly chosen by
the user from 7, as the identifier of file F;. We use ®; = {0¢},_,_,to denote the set of authenticators.

- Use key ssk to generate file tag t; = namey||Sig,, (name,), where Sig (namey) is the signature of the file F4. Then, the
user sends ciphertexts Cy = {Cd, Cg, . ,Cﬁ} and verification metadata @y, t; to the CSP.

3 We assume that each file F; has the same number of block n in our scheme.

After receiving the ciphertext Cq,C,,...,Cs, the CSP signs a smart contract with the user. The user sends deposit,.,, to the
smart contract as his deposit and the CSP sends deposit, to the smart contract as its deposit. If the integrity verification is
passed, the smart contract sends the user’s deposit deposit,,, to the miner as the audit fee and returns deposit to the CSP.
Else, the smart contract sends the CSP’s deposit deposit. to the user as the penalty and sends deposit,,,, to the miner.

Algorithm 2 Batch auditing of smart contract.

Require: The file tag tq,t;,...,t; and responses of challenge {1, iy, ..., 4, 01,02,...,0s,R};
Ensure: Result of integrity audit t;
: Verify each signature Sig, (name,)(1 < d < s) via spk. If any verification fails, let t = 0 and break;
: Compute z = h(R);
: Compute a = e([]};_,0%,8) ;

1

2

3

4: Compute b =]'[fizle((]'[aidH(ng)n“i) ke v);

5:ifa=>

6: Send deposit,,, to the miner and send deposit.sp to the CSP;
7: Sett=1;

8: else

Send depositsp to the user and send deposit,,,, to the miner;
10: Sett=0;

11: end if

12: return t.

©

o Audit: In order to audit the data integrity of the user’s outsourced data, the audit processes are described as follows.

- Based on the current blockhash, a user generates a random c-element subset I = ay,d,,...,a. of set [1,n], where
a; = f(blockhash||i). For each element a; € I, the user generates a random number n,, = H(blockhash||a;). The metadata
chal specifies the positions of the challenge blocks. The user sends chal = {(a;,n4,)}, ., to the CSP.

- After receiving the metadata of challenge chal = {(a;, ny)},_,, the CSP sets R = e(u, v) € Gr. For each Cyq(1 < d < s), the
CSP generates a linear combination of sampled blocks g = Zuie,naicﬁ,and computes u; = h(R)wy, where h(R) € Z,. In

addition, the CSP generates an aggregated authenticator Jd:HaiE,(agi)"“" € Gy. Finally, the CSP sends
{ly, 1y, ..., U, 01,02, ...,05,R} to the smart contract.

- After receiving the response of challenge {t1,t5,... ts, Uy, Uy, - .., ls, 01,02, ..., 05, R}, the smart contract executes Algo-
rithm 2.

5. Analysis of our proposed scheme
5.1. Security Analysis

In this subsection, we give a comprehensive analysis to demonstrate the security of the proposed scheme in terms of data
privacy, storage correctness, batch auditing and data consistency. We assume that the underlying basic tools are secure,
which include homomorphic linear authenticator, one-way hash function, Hash-and-CE-2 scheme and symmetric encryp-
tion scheme. These assumptions ensure the security of our scheme. During the data uploading phase, users use a symmetric
encryption algorithm (such as AES-256) to encrypt the data and upload it to the CSP. Therefore, the data privacy of out-
sourcing data can be protected.

5.1.1. Storage correctness
We prove that the CSP cannot generate valid proof of challenge without honest storing the entire original data as follows.

Theorem 5.1. Assume that the computational Diffie-Hellman problem is hard in bilinear groups and the digital signature scheme
is existentially unforgeable, in random oracle model, unless the adversary correctly generates the proof (t,u,o,R) by using
challenge chal and ciphertext C, the probability that the auditor accepts this proof is negligible.

Proof 1. In random oracle model, we assume that there exists an extractor w. With the valid signature ¢ and y, our theorem
follows the previous schemes [13,29].

The extractor can control the random oracle h(-). Then, the extractor is able to answer the hash query issued by the CSP.
We assume that the extractor is an adversary. To response a challenge z = H(R) of the extractor, the CSP outputs {o, i, R}
such that the following equation is satisfied:

e(o%,g) = e(([[HWq)™)" - u",). (1)

a;el

Assume that the extractor can reverse a CSP in the execution of the protocol to the point just before the challenge h(R) is
given. Then, the extractor can set h(R) to be z* # z. The CSP returns {a, u*,R} such that:

e(0”.g) = e(JJHWa)™)" -u", v). (2)

a;el

Recalled that o; — (H(W;) - uS)*. We divide (1) by (2):

e(o* 7 ,g) = e(JJHWa)™)"

a;el

‘.)

e(0**,g) = e(([[HWq)™) ™ .g"e(u * ,g")

a;el

22D e

" = ([[HWq)™)"

a;el

([Toe)™ = ([THWe)")" ™ i)

a;el a;el

w1 = ([[(0a HW)™)
ajel

W) — (H(u"cai))Zﬁz*
a;el

p—p = Cang) - (z-2)

a;el

> Caltg = (L=)/ (z—=27).
a;el
Finally, the extractor can obtain {o, w = (1 — W*)/z — z*} as a valid response of basic proofs of retrievability scheme [29]. O

Theorem 5.2. The proposed scheme guarantees correctness of batch auditing.

Proof 2. The batch auditing involves s challenges. The correctness of batch auditing is proved as follows:

a=e([[oz8) = e([[UITHW) - uh)™) g)
d=1 4=1 wel
— e([[(HWE)™ -ty g)

= [TeTHWE)"™ - ute, v)

d=1 el

Therefore, our scheme can guarantee the correctness of batch auditing. O

Finally, we analyze the data consistency of the proposed scheme. In downloading and decryption processes, a user’s data
may be corrupted by various network and software failures. To verify the correctness of decrypted data, our scheme adopts a
consistent detection mechanism. After downloading the ciphertext C = C4||T from the CSP, the user u first generates the tag T
by using the ciphertext C = C;||T. Then, the user decrypts the ciphertext C; and generates the plaintext Mr by using the file

key K. Finally, the user re-generates tag T/ by using the plaintext M. After generating the tag T and T/, the user u checks
whether T = T. If Tr = T, the user u accepts the message. Otherwise, the user drops the message. Therefore, our scheme guar-
antees data consistency.

5.2. Comparison

Table 1 presents the comparison among four data auditing schemes, which consists of the provable data possession (PDP)
scheme [11], Wang et al.’s scheme [13], Li et al.’s scheme [16] and our scheme, in terms of probabilistic audit, batch auditing,
privacy-preserving, data deduplication, and fair arbitration.

All the data auditing schemes support probabilistic audit and batch auditing, which can reduce the computing and man-
agement overhead of the CSP and users. PDP cannot guarantee the privacy-preserving so that the sensitive information of
users’ data will be leaked. By using homomorphic linear authenticator and random masking, Wang et al.’s scheme [13]
can prevent TPA from learning any information of the users’ sensitive data stored on the CSP during the data auditing. By
combining data deduplication with data auditing, Li et al.’s [16] scheme and our scheme allow users to encrypt the sensitive
data before they upload the sensitive data to the CSP. Therefore, Li et al.’s scheme and our scheme also protect the privacy
information of outsourced data.

Li et al.’s scheme uses the convergence encryption scheme to achieve data deduplication. Thus, this scheme cannot pro-
tect data consistency. In our scheme, we use the HCE2 algorithm to achieve data deduplication. In the HCE2 scheme, an addi-
tional tag checking mechanism is adopted, which can effectively discover whether the decrypted data is equal to the original
plaintext. Besides, the previous schemes do not consider the problem of fair arbitration. After finding that the CSP has
destroyed the users’ sensitive data, the users still cannot effectively obtain corresponding compensation, which is extremely
unfair to the users. To solve this problem, we apply a smart contract in our scheme, which can automatically execute data
auditing without relying on the TPA. Moreover, when data integrity is compromised, our scheme can punish malicious CSP
and compensate users whose data integrity is destroyed. Therefore, our scheme can realize fair arbitration.

Table 2 presents the computational cost of Wang et al.’s scheme [13] and our scheme. Bil denotes the operation of the
bilinear map. Mul denotes the operation of multiplication. Add denotes the operation of addition. Exp denotes the exponent
operation. n denotes the number of data blocks being challenged and k denotes the number of auditing tasks during the
phase of batch auditing. In the phase of proof generation, our scheme reduces one exponent operation and one additional
operation compared with Wang et al.’s scheme. In the phase of batch proof generation, our scheme reduces k addition oper-
ations and one exponent operation compared with Wang et al.’s scheme. In the phase of integrity verification and batch ver-
ification, our scheme reduces one multiplication operation compared with Wang et al.’s scheme. The results of the
comparison show that our scheme has less computational cost than Wang et al.’s scheme.

6. Performance evaluation

In this section, we provide a thorough experimental evaluation of our scheme. We implement our scheme in the Java pro-
gramming language by using the JPBC library v2.0.0 and Solidity v0.5.1. The test environment is Intel(R) Core(TM) i7-7820HK
CPU 2.90 GHz 16.0 GB RAM, Windows 10. We test the solidity program in the Remix-IDE [44]. To verify the performance of
our scheme and compare it with the Wang et al.’s scheme [13] and Li et al.’s scheme [16], we mainly use the MLE key
generation time, proof generation time, batch proof generation time, gas cost of integrity verification and gas cost of batch
verification as the evaluation metrics. Proof generation time and batch proof generation time are the time that the CSP uses

Table 1

Comparison of Data Auditing Schemes.
Scheme PDP [11] Wang et al. [13] Li et al. [16] Our scheme
Probabilistic audit - I v I
Batch auditing 4 7 P v
Privacy-preserving x v v v
Data deduplication X X %4 e
Fair arbitration X X X I

Table 2

Computational Cost of Data Auditing Schemes.
Scheme Wang et al. [13] Our scheme
Proof generation Bil + (n + 1) Exp + 2nMul + nAdd Bil + nExp +2nMul + (n — 1) Add
Batch proof generation k(2nMul + nAdd + nExp)+Bil + Exp k(2nMul+(n — 1) Add + nExp)+Bil
Integrity verification 2Bil+(n + 3) Exp+(n + 1) Mul 2Bil+(n + 3) Exp + nMul

Batch verification (k + 1) Bil+(kn + 2 k — 1) Mul+(n + 3) kKExp (k + 1) Bil+(kn + 2 k — 2) Mul+(n + 3) KExp

to generate proof of integrity audit and generate batch proof of integrity audit. Gas cost of integrity verification and batch
verification are the cost that the smart contract uses to verify the integrity and verify the result of batch verification. Accord-
ing to [13,16], we set the number of challenge blocks to 300 and 460. The data size ranges from 1 MB to 10 MB. The results of
performance evaluation are the average of 20 experiments. The test time does not include the communication time between
the user and the CSP.

6.1. MLE key generation performance

We first measure the performance of the MLE key generation of our scheme and Li et al.’s scheme [16]. To test the con-
vergent key generation time, we use the SHA-128 and SHA-256 as the hash functions, where the data size from 1 MB to
10 MB. We set the size of the block to 1 KB and generate an encryption key for each block. The detail of the key generation
time is shown in Fig. 4. The results show that the MLE key generation time of our scheme is almost the same as Li et al.’s
scheme.

6.2. Encryption and decryption performance

Different from the existing data auditing schemes [11-13,15], our scheme generates a homomorphic linear authenticator
of the outsourced data on the ciphertext. Although our scheme introduces encryption and decryption time, our scheme can

1 Our scheme (128)
709" | I Li et al.'s scheme (128)
7 | Our scheme (256)

60 [Li et al.'s scheme (256)
— 50
(2]
E
% 40
o
(@]
[0
g 30
'_

20

10

0+
1 2 3 4 5 6 7 8 9 10
Data Size (MB)
Fig. 4. MLE key generation time.
60

[Encryption (128-bit)
1 | I Decryption (128-bit)
50 - Encryption (256-bit)
|| I Decryption (256-bit)

Time Cost (ms)

1 2 3 4 5 6 7 8
Data Size (MB)

Fig. 5. Encryption and decryption time.

support data deduplication and prevent the auditor from learning any knowledge about the users’ sensitive data. To test the
encryption and decryption time, we use the AES-128 and AES-256 algorithms in our scheme, where the data size from 1 MB
to 8 MB. The cost of encryption and decryption time is shown in Fig. 5.

6.3. Upload performance

To evaluate the effect of data deduplication, we test the data uploading time of our scheme and Wang et al.’s scheme [13].
We set the data size and the key size to 1 MB and 128-bit, respectively. The data uploading time includes MLE key generation
time, data encryption time and tag generation time. The evaluation results are shown in Fig. 6. The results show that the data
uploading time in our scheme is almost the same as Wang et al.’s scheme.

Our scheme focuses on achieving data auditing without any third-party and fair arbitration, yet we observe the problems
of user revocation. To achieve dynamic user management, we can introduce an access control algorithm or CP-ABE method
to further improve the flexibility of our scheme. We pose this problem as future work.

1 | Our scheme
180 | [l Wang et al.'s scheme
160
140
@ 120
8 100 1
(@]]
2 80
[i
60 —
40 4
20 4
1 2 3 4 5 6 7 8
Data Size (MB)
Fig. 6. Data uploading time.
[Our scheme (300)
1200 | @ Wang et al.'s scheme (300
| | Our shceme(460)
[Wang et al.'s scheme (460
1000 +
& 800
E
2
S 600
)
£
= 400
200
04

1 2 3 4 5 6 7 8
Data Size (MB)

Fig. 7. Proof generation time.

6.4. Proof generation and batch proof generation performance

We measure the proof generation and batch proof generation time of our scheme and Wang et al.’s scheme [13]. Since
both our scheme and Wang et al.’s scheme use a probabilistic integrity audit algorithm, the proof generation time for these
two schemes is constant. Since our scheme does not require a random masking method to achieve privacy-preserving public
auditing, the proof generation and batch proof generation time of our scheme is shorter than Wang et al.’s scheme. The eval-
uation results are shown in Fig. 7.

To improve the efficiency of data auditing, our scheme and Wang et al.’s scheme support batch proof generation. To test
the performance of batch proof generation, we set the data size to 10 MB. The batch auditing time is shown in Fig. 8.

6.5. Gas cost of integrity verification and batch verification

To achieve fair arbitration, we use the smart contract to verify the audit results of outsourced data automatically. To test
the cost of verifying, we use the solidity to program the smart contract and experiment on the Ethereum blockchain. We
measure the gas cost of integrity verification and batch verification of our scheme and Wang et al.’s scheme [13]. Since
our scheme does not require a random masking method to support privacy-preserving public auditing, the gas cost of our
scheme is less than Wang et al.’s scheme. The evaluation results of the gas cost of integrity verification and batch verification

9000

| | [E2E Our scheme (300)
8000 | | I Wang et al.'s scheme (300)
[Our scheme (460)
[Wang et al.'s scheme (460)

7000

6000 —

5000

4000

3000

2000

1000 +

Time Cost (ms)

(=

10 20 30 40 50 60 70 80
Data Size (MB)

Fig. 8. Batch proof generation time.

2.5x10" 4 [E==1 Our scheme (300)
I Wang et al.'s scheme (300)
| [Our scheme (460)
I Wang et al.'s scheme (460),
2.0x10"
.
= 1.5x10"
e
k7
Q
O 7
% 1.0x10" 4
[©)
5.0x10° o
0.0

1 2 3 4 5 6 7 8
Data Size (MB)

Fig. 9. Gas cost of integrity verification.

are shown in Fig. 9 and Fig. 10. It can be known from Fig. 9 that when the number of randomly selected data blocks is con-
stant, the overhead of the miner to verify the data integrity of the outsourcing data does not increase with the increase of the
data size. The consumed gas value is 1.33 x 10’ Gwei (0.013 Ether) when verifying 300 randomly selected data blocks, and
the consumed gas value is 2.01 x 10’ Gwei (0.020Ether) when verifying 460 randomly selected data blocks.

6.6. Probabilistic audit performance

As previous work [11,13] showed that if t percent of the total data is corrupted by the CSP and every challenge block for
auditing is chosen uniformly, then random sampling ¢ blocks can realize the detection probability P, = 1 — (1 — t)°, where
the number of the challenged data blocks is denoted by c and the total number of data blocks is denoted by n. In Fig. 11
and Fig. 12, we show P, as a function of n and c for two values of t. If t = 1% of the total number of block n, then the data
auditing can achieve at least 95% and 99% probability to find the misbehavior by asking 300 blocks and 460 blocks, respec-

tively. If the sampling strategies are rational, our scheme can realize efficient data auditing and communication overhead can
be reduced.

. | =20 Our scheme (300)
1:6x10° | Wang et al.'s scheme (300)
1 == Our scheme (460)
1.4x10° + |I Wang et al.'s scheme (460)
1.2x10°
2 1.0x10°
o]
Z 8.0x10"
o <4
(2}
& 6.0x10"
4.0x10"
2.0x10"
0.0
10 20 30 40 50 60 70 80
Data Size (MB)
Fig. 10. Gas cost of batch verification.
10000 ——;
i ! —20.99
1
b ---09
! \ —mme 0.5
8000 !
1 \
= ! \
~ 1 \
g 1N
8 6000) \
m ! \
= i \
5 L)
\ \
% 4000 v <
5 \ S
'g N\ ~
E] S S~
Z 2000 > =
N, S < - -
0 . ! . ! . !
0.00 0.05 0.10 0.15 0.20

Number of Queried Blocks (c)

Fig. 11. t = 1% of n.

10000 ——

b —0.99
i ---09
b -==-05
8000 +—

— [
£ i

10
3 6000 \
) i \
I I \

1
a] 1\
% 4000 L <
o} ‘.)
Q 1 \ N
I \ ~
=] \ M
Z 2000 = =
N, S~ -
0 . ; . ; . ; . ; .
0.00 0.01 0.02 0.03 0.04 0.05

Number of Queried Blocks (c)

Fig. 12. t =5% of n.

7. Conclusion

In this paper, we propose a blockchain-based public auditing and secure deduplication scheme with fair arbitration. By
employing a homomorphic linear authenticator and smart contract, our scheme supports data auditing without relying on
any third-party auditor. Besides, when the users’ data integrity is compromised, our scheme can automatically punish the
malicious CSP and compensate users whose data integrity is destroyed. In addition, our scheme supports data deduplication
on encrypted data, which reduces the storage overhead and management cost of the CSP. We also prove that our scheme can
achieve the desired security goals and provide detailed experimental results. The performance analysis shows that our

scheme is efficient. In future work, we plan to address the problem of dynamic user management and evaluate how our
scheme performs for other storage workloads.

CRediT authorship contribution statement

Haoran Yuan: Writing - original draft, Methodology, Software, Validation. Xiaofeng Chen: Methodology. Jiaming Yuan:
Software. Hongyang Yan: Conceptualization. Willy Susilo: Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgment

This work is supported by National Cryptography Development Fund (No. MM]J20180110) and Shandong Provincial Key
Research and Development Program of China (No. 2019JZZY020129).

References

[1] Geek, Google suffers data loss as data center gets hit by lightning, URL:https://www.geek.com/, 2015 (accessed 21, May 2019).

[2] Telegraph, Personal details of 50 million turkish citizens leaked, URL:https://www.telegraph.co.uk/, 2016 (accessed 11, May 2019).

[3] Kromtech, Patient home monitoring service leaks private data, URL:https://kromtech.com/blog/security-center/, 2017 (accessed 21, June 2019).

[4] X. Chen,]. Li,]. Ma, Q. Tang, W. Lou, New algorithms for secure outsourcing of modular exponentiations, IEEE Trans. Parallel Distrib. Syst. 25 (9) (2014)
2386-2396.

[5] G. Xu, H. Li, Y. Dai, K. Yang, X. Lin, Enabling efficient and geometric range query with access control over encrypted spatial data, IEEE Trans. Inform.
Forensics Security 14 (4) (2019) 870-885.

[6] S. Xu, G. Yang, Y. Mu, Revocable attribute-based encryption with decryption key exposure resistance and ciphertext delegation, Inf. Sci. 479 (2019)
116-134.

[7] X. Chen,]. Li, X. Huang, J. Ma, W. Lou, New publicly verifiable databases with efficient updates, IEEE Trans. Dependable Sec. Comput. 12 (5) (2015) 546-
556.

[8] X. Wang, J. Ma, Y. Miao, X. Liu, R. Yang, Privacy-preserving diverse keyword search and online pre-diagnosis in cloud computing, IEEE Transactions on

Services Computing (2019), https://doi.org/10.1109/TSC.2019.2959775.
[9] J. Ning, J. Xu, K. Liang, F. Zhang, E. Chang, Passive attacks against searchable encryption, IEEE Trans. Inform. Forensics Security 14 (3) (2019) 789-802.

http://refhub.elsevier.com/S0020-0255(20)30668-X/h0020
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0020
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0025
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0025
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0030
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0030
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0035
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0035
https://doi.org/10.1109/TSC.2019.2959775
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0045

[10] H. Yuan, X. Chen, J. Li, T. Jiang,]. Wang, R. Deng, Secure cloud data deduplication with efficient re-encryption, IEEE Transactions on Services Computing.
(2019), https://doi.org/10.1109/TSC.2019.2948007.

[11] G. Ateniese, R.C. Burns, R. Curtmola,]. Herring, L. Kissner, Z.NJ. Peterson, D.X. Song, Provable data possession at untrusted stores, in: Proceedings of the
Conference on Computer and Communications Security, CCS, 2007, pp. 598-609.

[12] Q. Wang, C. Wang, K. Ren, W. Lou,]. Li, Enabling public auditability and data dynamics for storage security in cloud computing, IEEE Trans. Parallel
Distrib. Syst. 22 (5) (2011) 847-859.

[13] C. Wang, S.S.M. Chow, Q. Wang, K. Ren, W. Lou, Privacy-preserving public auditing for secure cloud storage, IEEE Trans. Computers 62 (2) (2013) 362-
375.

[14] Y. Zhang, R.H. Deng, X. Liu, D. Zheng, Blockchain based efficient and robust fair payment for outsourcing services in cloud computing, Inf. Sci. 462
(2018) 262-277.

[15] J. Wang, X. Chen, X. Huang, I. You, Y. Xiang, Verifiable auditing for outsourced database in cloud computing, IEEE Trans. Comput. 64 (11) (2015) 3293-
3303.

[16] J. Li, J. Li, D. Xie, Z. Cai, Secure auditing and deduplicating data in cloud, IEEE Trans. Comput. 65 (8) (2016) 2386-2396.

[17] X. Liu, W. Sun, W. Lou, Q. Pei, Y. Zhang, One-tag checker: Message-locked integrity auditing on encrypted cloud deduplication storage, in: IEEE
Conference on Computer Communications, INFOCOM, 2017, pp. 1-9.

[18] Y. Wu, Z.L. Jiang, X. Wang, S. Yiu, P. Zhang, Dynamic data operations with deduplication in privacy-preserving public auditing for secure cloud storage,
in: IEEE International Conference on Computational Science and Engineering, 2017, pp. 562-567.

[19] IDC, Rich data and the increasing value of the internet of things, URL:https://www.emc.com/, 2014 (accessed 1, August 2019).

[20] Seagate, Dataage white paper: the digitization of the world, URL:https://www.seagate.com/cn/zh/our-story/data-age-2025/, 2018 (accessed 23,
January 2019).

[21] W.]. Bolosky, S. Corbin, D. Goebel,].R. Douceur, Single instance storage in windows 2000, in: Conference on Usenix Windows Systems Symposium,
2000.

[22] GoogleDrive, Backup and sync, free and safe download, URL:http://drive.google.com, 2012 (accessed 21, March 2019).

[23] Memopal, Back up all your files with memopal online backup, URL:https://www.memopal.com, 2018 (accessed 16, July 2019).

[24] Dropbox, Store, sync and share your files online, URL:http://www.dropbox.com, 2007 (accessed 23, January 2018).

[25] M. Dutch, Understanding data deduplication ratios, in: SNIA Data Management, Forum (2008) 1-13.

[26] J.R. Douceur, A. Adya, W.J. Bolosky, P. Simon, M. Theimer, Reclaiming space from duplicate files in a serverless distributed file system, ICDCS, 2002, pp.
617-624.

[27] M. Bellare, S. Keelveedhi, T. Ristenpart, Message-locked encryption and secure deduplication, in: Advances in Cryptology - EUROCRYPT 2013, 32nd
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vol. 28, 2013, pp. 296-312.

[28] A.]Juels, Jr Kaliski B. S., PORs: proofs of retrievability for large files, in: Proceedings of the ACM Conference on Computer and Communications Security,
CCS, 2007, pp. 584-597.

[29] H. Shacham, B. Waters, Compact proofs of retrievability, in: Advances in Cryptology — ASIACRYPT 2008, 14th International Conference on the Theory
and Application of Cryptology and Information Security December 7-11, 2008. Proceedings, Melbourne, Australia, 2008, pp. 90-107.

[30] S. Keelveedhi, M. Bellare, T. Ristenpart, Dupless: Server-aided encryption for deduplicated storage, in: Proceedings of the 22th USENIX Security
Symposium, 2013, pp. 179-194.

[31] D. Chaum, Blind signatures for untraceable payments, in: Advances in Cryptology, Proceedings of CRYPTO (1982) 199-203.

[32] J. Li, X. Chen, M. Li,]. Li, P.P. Lee, W. Lou, Secure deduplication with efficient and reliable convergent key management, IEEE Trans. Parallel Distrib. Syst.
25 (6) (2014) 1615-1625.

[33] Y. Shin, K. Kim, Equality predicate encryption for secure data deduplication, in, Proc. Conf. Inf. Security Cryptol. (2012) 64-70.

[34] J. Wang, X. Chen,]. Li, K. Kluczniak, M. Kutylowski, A new secure data deduplication approach supporting user traceability, in: 10th International
Conference on Broadband and Wireless Computing, Communication and Applications, BWCCA, 2015, pp. 120-124.

[35] J. Li, Y.K. Li, X. Chen, P.P.C. Lee, W. Lou, A hybrid cloud approach for secure authorized deduplication, IEEE Trans. Parallel Distrib. Syst. 26 (5) (2015)
1206-1216.

[36] H. Yuan, X. Chen, T. Jiang, X. Zhang, Z. Yan, Y. Xiang, Dedupdum: Secure and scalable data deduplication with dynamic user management, Inf. Sci. 456
(2018) 159-173.

[37] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, URL:https://bitcoin.org/bitcoin.pdf, 2008 (accessed 4, January 2020).

[38] C.Yang, X. Chen, Y. Xiang, Blockchain-based publicly verifiable data deletion scheme for cloud storage,]. Network Computer Appl. 103 (2018) 185-193.

[39] H.Huang, X. Chen, Q. Wu, X. Huang, J. Shen, Bitcoin-based fair payments for outsourcing computations of fog devices, Future Generation Comp. Syst. 78
(2018) 850-858.

[40] A. Kiipgii, Official arbitration with secure cloud storage application, Comput. J. 58 (4) (2015) 831-852.

[41] H. Jin, H. Jiang, K. Zhou, Dynamic and public auditing with fair arbitration for cloud data, IEEE Trans. Cloud Computing 6 (3) (2018) 680-693.

[42] V. Buterin, Ethereum white paper, URL:https://www.mendeley.com/, 2014 (accessed 27, September 2019).

[43] Y. Zhang, X. Lin, C. Xu, Blockchain-based secure data provenance for cloud storage, in: Information and Communications Security - 20th International
Conference, ICICS, 2018, pp. 3-19.

[44] Ethereum, Browser-only ethereum ide and runtime environment, URL:https://remix.ethereum.org, 2018 (accessed 1, January 2020).

https://doi.org/10.1109/TSC.2019.2948007
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0060
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0060
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0065
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0065
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0070
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0070
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0075
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0075
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0080
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0090
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0090
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0090
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0105
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0105
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0105
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0125
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0130
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0130
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0130
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0140
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0140
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0140
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0145
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0145
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0145
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0150
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0150
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0150
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0155
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0160
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0160
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0165
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0170
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0170
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0170
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0175
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0175
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0180
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0180
https://bitcoin.org/bitcoin.pdf
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0190
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0195
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0195
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0200
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0205
https://www.mendeley.com/
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0215
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0215
http://refhub.elsevier.com/S0020-0255(20)30668-X/h0215

	Blockchain-based public auditing and secure deduplication with fair arbitration
	Citation
	Author

