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a  b  s  t r  a  c  t

In  this  paper,  we  propose  a  fast  hierarchical  framework  of  leukocyte  localization  and  segmentation  in
rapidly-stained  leukocyte  images  (RSLI)  with  complex  backgrounds  and  varying  illumination.  The  pro-
posed  framework  contains  two  main  steps.  First,  a nucleus  saliency  model  based  on average  absolute
difference  is built,  which  locates  each  leukocyte  precisely  while  effectively  removes  dyeing  impurities
and  erythrocyte  fragments.  Secondly,  two  different  schemes  are  presented  for  segmenting  the  nuclei
and  cytoplasm  respectively.  As  for nuclei  segmentation,  to solve  the  overlap  problem  between  leuko-
cytes,  we  extract  the nucleus  lobes  first  and  further  group  them.  The  lobes  extraction  is realized  by
the  histogram-based  contrast  map  and  watershed  segmentation,  taking  into  account  the  saliency  and
similarity  of nucleus  color.  Meanwhile,  as  for cytoplasm  segmentation,  to  extract  the  blurry  contour  of
the cytoplasm  under  instable  illumination,  we  propose  a cytoplasm  enhancement  based  on  tri-modal
histogram  specification,  which  specifically  improves  the  contrast  of cytoplasm  while  maintaining  oth-
ers.  Then,  the  contour  of  cytoplasm  is quickly  obtained  by  extraction  based  on parameter-controlled
adaptive attention  window.  Furthermore,  the  contour  is corrected  by  concave  points  matching  in  order
to  solve  the  overlap  between  leukocytes  and  impurities.  The  experiments  show  the  effectiveness  of  the
proposed  nucleus  saliency  model,  which  achieves  average  localization  accuracy  with  F1-measure  greater
than  95%.  In  addition,  the  comparison  of single  leukocyte  segmentation  accuracy  and  running  time  has
demonstrated  that  the  proposed  segmentation  scheme  outperforms  the former  approaches  in  RSLI.

© 2013  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Differential counting of white blood cells (WBC or leukocytes)
plays a crucial role in indicating lots of vital diseases such as hepati-
tis, leukemia and AIDS (Ghosh et al., 2010). Over the past few years,
development of automated cell counter has transferred the time-
consuming job from human subjects to automated systems (Bikhet
et al., 2000). And it is the cell segmentation that plays a key role
in these systems, whose running speed and accuracy are directly
influenced by image quality. In image acquisition stage, Wright
or Giemsa staining is widely used to facilitate the differentiation
of blood cell types. Though traditionally-stained leukocyte images
(TSLI) are colored stably with clear details, they have two  problems
which limit their application. One is the slow dyeing speed, which
is not conducive to analyze large numbers of images. The other is
the frequent overlap among blood cells (Wang and Wang, 2006),
resulting in very time-consuming and challenging segmentation.

∗ Corresponding author. Tel.: +86 027 87559040.
E-mail addresses: zxaoyou@gmail.com (X. Zheng), wangyong1989@hust.edu.cn

(Y. Wang), gywang@hust.edu.cn, guoyouwang2012@gmail.com (G. Wang).

To settle the two  problems, our team has recently developed a
hematology reagent for both rapid leukocyte staining and eryth-
rocyte lysing, which takes only about ten seconds and greatly
eliminates the overlap among erythrocytes and leukocytes. How-
ever, the dyeing effect is not as good as that of the traditional
staining. There are mainly two  new problems in rapidly-stained
leukocyte images (RSLI). The first is the emergence of substantial
dyeing impurities, whose appearances are akin to that of nuclei,
makes leukocyte localization difficult. The second is the varying
color and illumination, which result in instinct boundaries, become
a great challenge in segmentation.

Leukocyte localization is to extract the whole leukocyte from
a complicated background. There are many leukocyte localization
methods, most of which are realized by thresholding based on a
nucleus saliency map  (Ghosh et al., 2010; Huang et al., 2012; Jiang
et al., 2006; Ko et al., 2011; Kovalev et al., 1995; Madhloom et al.,
2010), because the nuclei have the most salient color in TSLI. How-
ever, since the nuclei are not the only salient objects in RSLI where
dyeing impurities exists, the previous methods failed to precisely
locate leukocytes in RSLI.

Segmenting every leukocyte into morphological components
such as nucleus and cytoplasm is an essential and important
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issue, which attracts the most attention in automatic differen-
tial blood counter systems. The pixel-based classification methods,
have achieved good segmentation results in TSLI (Fang et al., 2005;
Guo et al., 2007; Pan et al., 2012; Theera-Umpon, 2005). How-
ever, there is no obvious color difference between cytoplasm and
background in RSLI, as well as between nucleus and cytoplasm.
With color variation and no spatial information taken into account,
these methods cannot get the whole cell region. The boundary-
based segmentation methods (Ko et al., 2011; Lin et al., 2005;
Sanpanich et al., 2008) are able to get ideal contours in TSLI. How-
ever, the cytoplasm boundaries in RSLI are too weak to be precisely
obtained.

To sum up, the frequently-used algorithms would not be able to
effectively extract and segment each leukocyte in RSLI, for RSLI are
more challenging than TSLI. In this paper, we focus on developing a
fast and precise leukocyte localization and segmentation approach,
which could handle the new problems in RSLI.

2. Nucleus saliency model based on average absolute
difference (AAD) and Leukocyte localization

RSLI is a complex scene which is flooded with erythrocytes
fragments and dyeing impurities, containing a few scattered leuko-
cytes. According to the visual attention mechanism, despite the tiny
area of the leukocytes when compared with the whole image and
the diversity of color and illumination, human eyes will quickly pick
out leukocytes while ignore the others. In RSLI, the impurities and
nuclei are both salient objects, very alike in their intensity and color.
However, human eye can distinguish nuclei from impurities easily.
The main reason is that we know the leukocyte has a round shape,
with nucleus lobes in the center. Meanwhile, there is an upper limit
to the size of it. Thus there is obvious contrast between nucleus
and its local neighborhoods. But the impurities are amorphous and
most of them don’t possess the local saliency. So we define the aver-
age absolute difference (AAD) to enhance nuclei while suppressing
impurities. AAD is defined as follows:

AAD(x, y) = max
∀�

⎧⎨
⎩�D|�D = 1

N˝

∑
x,y∈˝

I(x, y) − 1
N�

∑
x,y∈�

I(x, y)

⎫⎬
⎭

(1)

where � and  ̋ are the object and background windows as shown
in Fig. 1, N�, N˝ are the sum of Set � and  ̋ respectively, I(x, y)
represents the gray-scale of the pixel (x, y). By computing the max-
imum differences between the surrounding points and the center
points, the AAD operator simulates the sensitivity to local spatial
discontinuities of visual receptive fields in human visual mecha-
nism to enhance the nuclei. When both Set � and  ̋ cover only
background, �D  is quite small; when only the object is covered in
� and  ̋ covers the background, �D  has the maximal value. Given
a fixed ˝,  AAD can adaptively find the location of � which shows

Fig. 1. Object and background windows of AAD.

the maximal contrast between � and ˝.  Therefore, � and  ̋ can
best cover the object and background respectively.

When AAD is used in RSLI, the impurities are restrained
effectively while the contrast between nuclei and background is
retained, as shown in Fig. 2. Though the impurities are salient in the
entire scene, the local contrast is low. So they can be suppressed by
AAD when  ̋ is a little bigger than the maximum size of leukocytes.

To further suppress noises of small area and make the histogram
present a more obvious double-peak, we apply the AAD operator
into a well-known saliency model proposed by (Itti et al., 1998). The
model is based on a biologically-plausible visual attention architec-
ture which is related to the feature integration theory, explaining
human visual search strategies. But this saliency model is not ade-
quately suitable for RSLI because it is in a purely bottom-up manner
with no top-down features. According to AAD operator, we make
the best use of the two task-dependent features of leukocytes:
the darker color of nuclei, the circular shape and the fixed size of
leukocyte. Thus the modified saliency model based on AAD is more
efficient for detecting nuclei and suppressing impurities. The archi-
tecture comparison between the proposed nucleus saliency model
and Itti’s saliency model is shown in Fig. 3.

The biggest difference between Itti’s saliency model and our
nucleus saliency model is that the color, intensity and orientation
features are replaced by AAD feature in our model. Itti’s model is
a general model which has to consider different types of features
in order to surely include all kinds of salient objects. But for leuko-
cyte localization, we only need to consider the features which can
highlight nuclei. Since the nuclei appear dark purple, green channel
can best represent the contrast between nuclei and others. In brief,
by means of integrating top-down and bottom-up attention, our
model is able to perform better than Itti’s model. We  can see from
Fig. 4 that the saliency map  gained from our nucleus saliency model
can better suppress impurities and highlight nuclei compared with
Itti’s saliency map.

Another difference is that the purpose of the Itti’s model is to
shift the focus of attention (FOA) by sorting its saliency, but we just
care about the location of each region of interest (ROI) regardless
of the saliency order of each ROI So we  replace the “winner-take-
all” neural network with an automatic binaryzation such as Otsu
threshold (Otsu, 1979).

Fig. 2. (a) Original image, (b) green channel of (a), (c) AAD map  of (b). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 3. Architecture comparison of saliency models. (a) Itti’s model, (b) nucleus saliency model based on AAD.

Using the AAD-based nucleus saliency model, the adaptive
saliency window (ASW) is acquired. ASW is a sub-image which
is large enough to include all nucleus lobes of each leukocyte. In
our scheme, the width and height of each ASW are defined as
(2 × wn) × (2 × hn) centered on the centroid of each salient region
(wn × hn).

3. Leukocyte segmentation within ASW

3.1. Preprocessing

Due to instable staining and illumination, the RSLI image qual-
ity is poor, which leads to fuzzy edges of nucleus and cytoplasm.
Common smoothing filter operators are able to reduce some of
the noises, but they can make the weak edges even weaker. In
our approach, we found that the mean shift filtering (Comaniciu
and Meer, 2002) is more powerful in image edge-preserving than

other methods. So the mean shift filtering is used as the smoothing
preprocessing, whose steps are as follows:

Step 1. Initialize j = 1 and yi,j+1 = xiwhere xi is a five-dimensional
input in the position (x, y), for example, xi = (R, G, B, x, y)

Step 2. Compute yi,j+1 using Eq. (2) until convergence, y = yi,c is
the filtered pixel.

yj+1 =
∑n

i=1xig(|yj − xi/h|)2∑n
i=1g(|yj − xi/h|)2

j = 1, 2, . . . (2)

where g(x) is the kernel function. By controlling the kernel band-
width h = (hs, hr), we  can get different smoothing images. h = (hs, hr)
is set as (10, 20) where the smoothing effect and time cost are com-
prehensively considered. Fig. 5 shows some ASWs after mean-shift
smoothing.

Fig. 4. Comparison of saliency maps. (a) Original image, (b) saliency map generated by Itti’s model, (c) saliency map yielded by our model.
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Fig. 5. ASW (the top row) and its corresponding mean-shift smoothed image (the bottom row) for five different types of leukocyte: (a) neutrophil, (b) lymphocyte, (c)
monocyte, (d) eosinophil and (e) basophil.

3.2. Nucleus region segmentation

Though we have already transformed an entire leukocyte image
into several ASWs in the last section, there might be one or more
leukocytes or impurities within each ASW. In addition, there might
still be overlap among leukocytes or between leukocytes and impu-
rities within an ASW, which is not suitable for the single cell
segmentation. Although the overlap will exist among leukocytes,
the nucleus lobes of different leukocytes do not overlap each other.
Besides, it is easier to segment the nucleus than the whole cell.
Thus we take a two-step process to segment leukocyte regions and
get sub-images simultaneously, and each sub-image contains only
one leukocyte. First, all the nucleus lobes in ASW are segmented,
and then the nucleus lobes belonging to the same leukocyte are
grouped.

3.2.1. Nucleus lobes segmentation inside ASW
Note that the boundaries of nuclei in RSLI are more blurry than

TSLI, so we obtain nucleus lobes by watershed algorithm which
has a good response to weak edges. Vincent and Soille (1991) gave
an algorithmic definition by simulating immersion. As shown in
Fig. 6, a gray-scale image I is considered as a topographic surface.
It is imagined that the landscape is immersed in a lake, with holes
pierced in the local minima. Starting from the minima of lowest
altitude, the water will progressively fill up the different catchment
basins of I. When water coming from different minima meets, dams
are built. However, watershed segmentation will produce over seg-
mentation resulting in many meaningless small regions unless it is

Fig. 6. Schematic diagram of watershed transform.

combined with a good merging algorithm. Thus, we merge the adja-
cent small regions by defining a color similarity measured by the
distance in the CIE Lab color space as follows:

D(i, j) = |Ii − Ij| (3)

where Ii is the mean vector of color space of the region Ri. When
the distance between Ri and Rj is small enough (for example, D(i,
j) < 10), it indicates that the two regions are similar enough in color
to be merged as one.

The over segmentation is reduced greatly after region merging
based on color similarity rule, but still we  are not able to obtain the
accurate nucleus lobes here. According to the fact that the nuclei are
the most salient objects in the images, histogram contrast (HC) map
based on histogram contrast proposed by Ming-Ming et al. (2011)
is adopted as the nucleus saliency map  to refine the watershed
segmentation results. The saliency value of each pixel in HC map  is
defined as:

S(Ik) = S(ck) =
n∑

j=1

fjD(ck, cj) (4)

where ck is the color value of pixel Ik, n is the number of distinct
pixel colors, fj is the probability of pixel color cj in image I, and D(i,
j) is the color distance metric defined in Eq. (4).

Then, an adaptive threshold (T˛) value is determined as two
times the mean saliency of a given image:

T˛ = ˛

W × H

W−1∑
x=0

H−1∑
y=0

HC(x, y) (5)

If the average saliency of each region Si > T˛, the region is consid-
ered as nucleus regions. Based on vast experimental data, we set

 ̨ = 2. The flow diagram of the nucleus lobes segmentation within
each ASW is illustrated in Fig. 7. And Fig. 8 shows some results of
the proposed nuclei segmentation compared with doctors’ manual
segmentation.

3.2.2. Nucleus lobes grouping inside ASW
To judge whether the nucleus lobes belong to the same leuko-

cyte or not, a nucleus lobes grouping method is needed. To
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Fig. 7. The process of nucleus segmentation.

accomplish nucleus grouping we have used the following shape
parameters: the centroid of blob, blob area, centroid distance, min-
imum distance and maximum distance between two  blobs. The
centroid distance between blob Bi and blob Bj is defined as follows:

dg(i, j) = ||gi − gj|| (6)

where gi is the centroid of blob Bi, and || · || is the Euclidean distance.
The definition of minimum and maximum distance between

two blobs Bi and Bj is clarified as follows:

dmin(i, j) = min  ||Ci − Cj|| (7)

dmax(i, j) = max  ||Ci − Cj|| (8)

where Ci is the pixels on the contour of Bi.
And the algorithm in detail is outlined in the following flowchart

(Fig. 9) and described as follows:

Step 1. If Area(Bi) > AreaTh1 and Area(Bi) > AvgArea, the blob Bi is
marked as an elect blob and added to elect blob list (EBL); otherwise
the blob Bi is marked as a candidate blob and added to candidate
blob list (CBL). In addition, if EBL is empty, the biggest blob is labeled
as an elect blob and added to EBL;

Step 2. Compute three distances in Eqs. (6)–(8) between each
blobs Ci in CBL and the nearest blob Ej in EBL.

If blob Ci cannot meet both dmin(Ci, Ej) < DistTh1  and dmax(Ci,
Ej) < DistTh2, it is treated as a new elect blob and added into EBL
while deleted from CBL.

Otherwise, judge the area size of Ci:if Area(Ci) < AreaTh2, then
blob Ci is merged into the elect blob Ej;otherwise, blob Ci is treated
as a new blob in EBL and deleted from CBL.where AreaTh1 is the
minimum size of the biggest nucleus blobs and AreaTh2 is the max-
imum size of the second biggest nucleus blobs. DistTh1  and DistTh2

are the maximum of the minimum distance and maximum distance
between two adjacent nucleus blobs respectively.

After nucleus lobes grouping and region growing inside ASW,
we get sub images which are called cell adaptive saliency window
(CASW) whose width and height are defined as (2 wn) × (2 hn) cen-
tered on the centroid of each blobs region (wn  × hn) belonging to
one leukocyte. After finishing this step, the overlapped cells can be
separated naturally.

3.3. Leukocyte contour extraction within CASW

Since the color of impurities and erythrocyte fragments is sim-
ilar to that of the adjacent cytoplasm, and the boundaries of
cytoplasm is weak, we  design a three-step process to extract the
cytoplasm contour: firstly, enhance the contrast of cytoplasm; sec-
ondly, extract the contour of the overlapped object, which contains
the undesired parts and cytoplasm; thirdly, correct the contour to
separate the undesired parts.

3.3.1. Cytoplasm enhancement based on tri-modal histogram
specification (THS)

Due to the varying illumination, the edge of the cytoplasm is
blurry, which makes the contour extraction difficult. It is important
to enhance the contrast of the cytoplasm before contour extraction.
Histogram-based contrast enhancement is widely used for enhanc-
ing contrast, for example, histogram equalization (HE) and adaptive
histogram equalization (AHE) (Stark, 2000). However, they cannot
specifically enhance the contrast of cytoplasm, and may result in an
excessively enhanced output image or reduce the contrast between
cytoplasm and background. We  propose an enhancement opera-
tor based on tri-modal histogram specification (THS), which can
enhance the contrast of cytoplasm while suppressing noise.

Fig. 8. Some nuclei segmentation results compared with pathologists’ segmentation. The first row is the results drawn by pathologists. The second row is results of the
proposed method.
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Fig. 9. Flowchart of nucleus blobs grouping within ASW.

In an ideal case, the gray histogram of a CASW will follow
tri-modal distribution. But actually, it is hard to discriminate cyto-
plasm from background owing to the unstable and unsuitable
illumination. If we could translate the histogram into an ideal
tri-modal one, the clustered parts of histogram can be stretched.
Consequently, we propose a cytoplasm enhancement based on THS.
The steps are as follows:

Step 1. Smooth the histogram by scale-space filtering (Carlotto,
1987) with variance �.

F(x, �) = f (x) ∗ g(x, �) =
∫ ∞

−∞
f (u)

1√
2��

[
−(x − u)2

2�2

]
du (9)

where f(x) is a continuous signal, � is the scale, * denotes convolu-
tion with respect to x.

Step 2. Calculate the number (N) of pairs of zero-crossings in the
second derivative, which can be calculated by:

Fxx(x, �) = ∂2

∂x2
[F(x, �)] (10)

Step 3. If N ≥ 3, let � = � + ı� and return to Step 1; otherwise, stop
smoothing.

Step 4. Use the ideal histogram as the histogram specification
function, and the mapping function is as follows:

c(k) =
k∑

j=0

p(j) =
k∑

j=0

nj

n
k  = 0, 1, 2, . . .,  L − 1 (11)

where n is the total number of pixels of the image, nj is the number
of occurrences of gray level j, and L is the total number of gray levels.
Fig. 10(c) shows that HE results in an excessively enhanced output

image, in which the noise was enhanced as well. Fig. 10(d) shows
that AHE, while quite useful for restraining noise, is not efficient
in maintaining the uniformity of cytoplasm. From Fig. 10, we  can
apparently observe that the proposed CE provides the most efficient
cytoplasm enhancement results.

3.3.2. Cytoplasm extraction based on parameter-controlled
adaptive attention window (PCAAW)

Thanks to the rapid staining, most of the erythrocytes are lysed.
Besides, the contrast of cytoplasm is enhanced by the proposed CE
in the last section. Thus, it is much easier for us to extract the con-
tour of cytoplasm in RSLI than in TSLI. To achieve fast and precise
contour extraction, we  propose the extraction method based on the
parameter-controlled adaptive attention window (PCAAW), which
improves the adaptive attention window (AAW) extraction. AAW
extraction proposed by Ko et al. (2009) is a region-based segmenta-
tion method based on visual attention with good results in nucleus
region extraction. But it can only be used in extracting nucleus, for
the color and intensity contrast between nucleus and cytoplasm
is higher than that between cytoplasm and background. PCAAW is
more suitable for cytoplasm extraction than AAW, and it consists of
two steps: initial AAW (IAAW) generation and quad-tree splitting.

3.3.2.1. IAAW generation. Step 1. Estimate the average intensity
ICyto of cytoplasm region and assign new value to the whole nucleus
region, in order to yield the luminance map  L.

L(x, y) =

⎧⎨
⎩

I(x, y), x, y /∈ Nuc

1
W × H

∑
x,y∈CASW

[I(x, y) < Th],  x, y ∈ Nuc (12)
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Fig. 10. Cytoplasm enhancement (CE) comparison. (a) Smoothed sub images, (b) gray image of (a), (c) HE results of (b), (d) AHE results of (b), (e) CE results of (b).

where Th represents the value using Otsu threshold between 0 and
ICyto/2.

Step 2. Calculate the mean L̄  of luminance map.

Step 3. Boundary shrinking. If the mean luminance of each side
Lsi

> L̄,  or the luminance of certain pixel Ls(x,y) > 2 × L̄, then stop
shrinking, otherwise keep shrinking. The rectangular region after
shrinking is defined as an IAAW.

3.3.2.2. Quad-tree splitting. Step 1. Set a threshold �IAAW =
1
N

∑
IAAW

L(x, y) for block splitting within IAAW.

Step 2. Split IAAW into 4 × 4 sub-blocks (Sbi
), let t = 1.

Step 3. Calculate average �bi
= 1

N

∑
Sbi

(Sx,y < Sm) for each sub-

block.

Step 4. If �bi
< �IAAW , then remove the sub-block; Otherwise, re-

split 4 × 4 sub-block until min(W,  H) < 4, let t = t + 1 and turn to Step
3.

Step 5. Merge blocks and fill hole.

PCAAW improves a lot upon the AAW method. The biggest
improvement is that it is more capable of coping with the illumi-
nation instability. First, by estimating the gray mean of cytoplasm
region and assigning the gray mean of nucleus region, it translates
the cytoplasm segmentation into a ROI extraction problem. In this
process, the bad influence of nuclei toward cytoplasm segmenta-
tion is eliminated. Second, the added shrinking restriction is able
to prevent discarding the edge of cytoplasm. The procedures of the
cytoplasm contour extraction based on PCAAW are shown in Fig. 11.

3.3.3. Leukocyte contour correction based on concave points
matching (CPM)

Since the color of impurity and erythrocyte fragments is similar
to that of the adjacent cytoplasm, it is common that the erythro-
cytes fragments or impurities are labeled as a part of the adhesive
leukocyte. Though the color and gray features cannot be the sepa-
rate criteria, the shape features can. Liao and Deng (2002) proposed
a contour correction which is fit for circular-shaped leukocytes.
However, a considerable part of the leukocytes is not so round.
We  analyzed the shape features of adhesive regions and found that
the pixels on the contour of adhesive parts are concave, and there
is a pair of concave points (CP) when entering into and getting out
of the adhesive parts. Taking advantage of geometrical features,
we proposed a leukocyte contour correction method based on the
concave points matching (CPM).

The detection procedure of CP using Freeman chain code
(Freeman, 1961) was  proposed by Lu and Tong (2002).

First, the absolute chain code using relative chain code as fol-
lows:

A(0) = 0

R(i) = ([C(i) − C(i − 1) + 8]mod8) > 4?R(i) − 8 : R(i)

A(i) = A(i − 1) + R(i)

(13)

where C(i) is the Freeman chain code of the ith point in the contour
which is illustrated in Fig. 12, R(i) is the relative chain code, and A(i)
is the absolute chain code.

Then the absolute chain code sum of three sequential points is
defined as:

Sum(i) = A(i) + A(i − 1) + A(i − 2) (14)

Finally, the CCP can be obtained by calculating the difference of
chain code sum, which is defined as follows:

Diff (i) = Sum(i + 3) − Sum(i) (15)

The difference of chain code sum is proportional to the curva-
ture, which is able to indicate the CP of a contour. If we go
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Fig. 11. Process of the cytoplasm contour extraction based on PCAAW.

counterclockwise along the contour, the point with negative dif-
ference is a concave corner, and the positive difference indicates a
convex corner.

CPM process is then utilized to separate the adhesive parts from
the cytoplasm. The steps are as follows:

Step 1. Find all the CP of contour after smoothing the contour of
leukocyte with the Gaussian filter.

Step 2. Choose the midpoint of each CP set as the candidate con-
cave point (CCP) of the set. If the number of CCP is more than two,
then proceed to Step 3; otherwise, end the steps.

Step 3. For each CCP: find the closest N other elect concave points
which are treated as the elect concave point (ECP) in order of chain
length; and calculate the arc-chord ratio rij between it and every
ECP.

rij = lchain(i, j)
deuc(i, j)

(16)

where lchain(i, j) is the chain length between point Pi and point Pj,
and deuc(i, j) is the Euclidean distance between two points. Accord-
ing to experimental data, there are no three or more adhesive parts
within a sub-image of individual leukocyte. So N = 5.

Step 4. If rij > 1.5, we take it as a successful matching, and draw a
line through the pair of points to separate the raised part. If the line
goes across the nucleus, then give up separation; otherwise, keep
the center region of the separated regions as the leukocyte. Fig. 13
shows an example of CPM.

As shown in Fig. 14, the method has a good effect on the separa-
tion where there is an obvious pit between principal leukocyte part
and overlapped impurities or cells. It should be mentioned that the
method would fail if the concavity is not clear. Despite its limita-
tion, this method is able to solve most of the overlap problem in
RSLI where most of erythrocytes have been lysed. The framework
of the whole leukocyte segmentation scheme is shown in Fig. 15.

Fig. 12. The direction of the eight connected Freeman chain code.

4. Experimental results

All the algorithms were implemented with Visual C++6.0 on a
Windows XP operating system with a 3.07 GHz Intel Core i3 CPU
and 2 GB memory.

In our study, all smears were prepared using rapid staining.
The images were taken by a Motic Moticam Pro 252A microscope
camera with a N800-D motorized auto-focus microscope, and each
image has a size of 2048 × 1536 and depth of 24 bits color. The
tests consisted of 103 color peripheral blood images and 54 sub-
images (116 × 116) of single leukocyte. The color peripheral blood
images, which were prepared under three different imaging con-
ditions corresponding to three folders (the first and second folder
contained 30 images each and the third one contained 43 images),
contain 528 leukocytes. Each sub-image contains a single type of
stained leukocytes: 17 neutrophils, 14 lymphocytes, 10 monocytes,
10 eosinophils and 3 basophils. To compare the accuracy of the pro-
posed method and manual method, the golden standard contours
of nucleus regions and leukocytes were manually drawn by doctors
in Jiangxi Tecom Science Corporation.

4.1. Leukocyte localization results

Because of the existence of dyeing impurities caused by rapid
staining, the existing algorithms are not suitable for this kind of
leukocyte images, and there are no comparative experiments for
the proposed leukocyte localization. To assess the performance of
the leukocyte localization, we  provided Precision (P), Recall (R)
and F1-Measure (F1) to illustrate its accuracy, and running time to
declare its real-time capability. P, R and F1 are defined as follows:

P = TP

(TP + FP)
, R = TP

(TP + FN)
,  F1 = 2P ∗ R

(P + R)
(17)

where TP represents the number of object pixels that are labeled
correctly; FP is the number of pixels that should be excluded but are
included; FN is the number of pixels that should be included but are
excluded. Table 1 shows the performance evaluation results using
Eq. (17) and real-time capability. The illumination of the images
in the first and the second folders is weak and strong respectively;
and the appearing color in the third folder is different from the pre-
vious two  folders: the background is nearly light purple other than
bright yellow. One leukocyte sample of the third folder is shown in
the last column in Fig. 17. As shown in Table 1, the average time
cost of the proposed leukocyte localization method is less than 300
milliseconds and the average values of F1 is maintained over 95%. It

Table 1
Precision, recall and time cost of leukocyte localization.

Dataset 1 2 3 Average

Precision (%) 84.30 92.41 95.58 91.94
Recall (%) 98.08 99.52 100.00 99.43
F1-Measure (%) 90.67 95.83 97.74 95.54
Time cost (ms) 259.47 294.27 260.34 269.61
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Fig. 13. Flowchart of cytoplasm contour correction based on CPM.

Fig. 14. Results of leukocyte contours correction based on CPM.

is obvious that the proposed method produced a good localization
performance both in accuracy and time cost.

4.2. Comparison of segmentation results in different leukocyte
images

In this subsection, we compared (Theera-Umpon, 2005)’s
method and (Ko et al., 2011)’s method with the presented method
based on 54 leukocyte images.

Theera-Umpon’s method used the color features of pixels
through FCM to segment the leukocyte into nucleus, cytoplasm
and background in the order of ascending gray level. Ko’s method
used different features to segment nucleus and cytoplasm: first,
a saliency map  was gotten by the fusion of the probability map
using color features and the distance map  using region features,
and nuclei region was extracted by mean shift clustering based
on the saliency map; then to segment cytoplasm, the cell contour
was gained by canny edge detector and GVF snake utilizing edge
features. The two segmentation methods are two kinds of typi-
cal algorithms using different features and have gotten satisfactory
effect in single leukocyte segmentation of RSLI.

To evaluate the single leukocyte segmentation performance of
each method, the segmentation results of each method were com-
pared with the manually drawn segmentation results by doctors.
Two evaluation parameters, F1 of nucleus regions computed by Eq.
(17) and relative distance error (RDE) of leukocyte contours com-
puted by Eq. (18) which is proposed by (Yang-Mao et al., 2008),
are used to indicate the accuracy of segmentation, and the running
time is also compared.

RDE = 1
2

⎛
⎝

√√√√ 1
Ns

Ns∑
i=1

d2si +

√√√√ 1
Nm

Nm∑
j=1

d2mj

⎞
⎠ (18)

where si and mi are the pixels on s and m respectively, s and m are
the segmented contour extracted automatically by the algorithm
and the ground truth contour extracted by doctors, Ns and Nm are
the sum of pixels of s and m, dsi

and dmi
are described as:

dsi
= min{dist(si, mj)|j = 1, 2, . . ., Nm}

dmi
= min{dist(mj, si)|i = 1, 2, . . .,  Ns}

(19)

where dist(A, B) represents the Euclidean distance between point A
and B.

Fig. 15. Framework of leukocyte segmentation.
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Fig. 16. Comparison of segmentation results using proposed method, Theera-Umpon’s method and Ko’s method. Numbers 1–17 on X-axis represent images of neutrphils,
18–31  represent images of lymphocytes, 32–41 represent images of monocytes, 42–51 represent images of eosinophils, and 52–54 represent images of basophils. (a)
F1-measure of nucleus segmentation, (b) RDE of cytoplasm segmentation, and (c) total segmentation time.
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Table  2
Evaluation of segmentation results with 54 images.

Neutrophil Lymph Monocyte Eosinophil Basophil Average

F1-Measure % Theera-Umpon’s method 95.20 96.72 98.93 55.99 84.89 88.45
Ko’s  method 94.40 94.46 93.84 90.75 91.99 93.50
Our  method 99.45 97.09 99.46 93.13 96.65 97.51

RDE  Theera-Umpon’s method 2.60 2.03 2.24 3.94 1.65 2.58
Ko’s  method 3.11 2.90 3.95 2.67 1.94 3.06
Our  method 1.22 0.89 1.05 0.88 0.84 1.02

Time  cost (ms) Theera-Umpons’s method 2.19 1.53 2.15 1.70 1.75 1.90
Ko’s  method 7.02 3.81 6.34 4.85 4.00 5.49
Our method 0.31 0.17 0.23 0.15 0.19 0.22

Fig. 16(a) and Table 2 show the nucleus segmentation accuracy
of three methods evaluated by Eq. (17). Although the accuracy of
Theera-Umpon’s method is also very good and the performance in
several images is even better than our scheme, it shows a quite
poor performance for eosinophils. Ko’s method has a lower accu-
racy and stability than ours though its performance outperforms
other algorithms. When comprehensively evaluating the perfor-
mance of nucleus segmentation method, the existing methods are
not as good as the proposed method.

Fig. 16(b) demonstrates that the contours of the whole leukocyte
extracted by our method come closest to the ground truth, and the
average RDE is near 1.02 compared with 2.58 and 3.06 of Theera-
Umpon’s method and Ko’s method respectively.

The time cost of the three methods is shown in Fig. 16(c). The
average speed of the proposed method is about 200ms which is
much faster than 1.9 s of Theera-Umpon’s method and 5.46 s of Ko’s
method.

Fig. 17 shows different results of the three methods and the
final contours of nuclei (white curve) and cytoplasm (black curve)
performing on sampling sub images of five types of leukocytes. As
shown in Fig. 17, the dyeing colors are instable, the illuminance is
distinctly different, and different types of leukocytes appear differ-
ent colors both in nucleus and cytoplasm. When compared with
other two  methods which cannot avoid over-segmentation and
under-segmentation, the proposed method was the most robust
when processing the instable RSLI with poor illumination.

Fig. 17. Examples of segmentation results from different methods on sub images of different types of leukocyte. (a) neutrophils, (b) lymphs, (c) monocytes, (d) eosinophils,
(e)  basophils. The first row is the result of doctors’ segmentation, the second row is the result of Theera-Umpon’s method, the third row the result of Ko’s method and the
fourth row is the result of our method.
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5. Conclusion

Since the rapid staining significantly improves the staining
speed and promotes the erythrocyte lysing, it will be a valuable
and important work to achieve precise and fast segmentation of
the RSLI. Also, it is a difficult and challenging problem because
of the complexity of the RSLI, for instance, the containment of
dyeing impurities and erythrocyte fragments, color inconsistency,
and the overlap among leukocytes and erythrocyte fragments.
To solve these problems, this paper presents a complete frame-
work of leukocyte localization and segmentation based on the
visual saliency attention mechanism. First, the AAD-based nucleus
saliency model effectively solves the leukocyte localization prob-
lem despite strong disturbances of dyeing impurities and uncertain
conditions of color and illumination. Then, two different segmen-
tation schemes are processed to extract nucleus and cytoplasm
regions separately, which eliminate the bad influence of illumina-
tion inconsistency and edge blurring. Furthermore, the problem of
overlap between leukocytes and impurities (or erythrocyte frag-
ments) is also successfully settled. The nucleus lobes grouping and
the contour correction stepwise separate leukocytes from impu-
rities. Experiments indicate that the proposed localization and
segmentation method owns low time cost, good accuracy and
strong robustness against varying illumination and unstable color.

Combined with the rapid staining, the proposed method could
be used in automated leukocyte counting systems more widely. In
addition to RSLI, the proposed techniques can also have a refer-
ence value for the cell detection and segmentation of other kinds
of images as well, for example, TSLI and cervical smear images.
Based on the proposed method, we intend to develop an automated
cell counter which will include abnormal leukocyte analysis, fea-
ture extraction and classifying the leucocytes into five categories
in future work.
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