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Abstract
Big data and algorithmic risk prediction tools promise
to improve criminal justice systems by reducing human
biases and inconsistencies in decision-making. Yet dif-
ferent, equally justifiable choices when developing, test-
ing and deploying these socio-technical tools can lead
to disparate predicted risk scores for the same indi-
vidual. Synthesising diverse perspectives from machine
learning, statistics, sociology, criminology, law, philoso-
phy and economics, we conceptualise this phenomenon
as predictive inconsistency. We describe sources of pre-
dictive inconsistency at different stages of algorithmic
risk assessment tool development and deployment and
consider how future technological developments may
amplify predictive inconsistency. We argue, however,
that in a diverse and pluralistic society we should not
expect to completely eliminate predictive inconsistency.
Instead, to bolster the legal, political and scientific legit-
imacy of algorithmic risk prediction tools, we propose
identifying and documenting relevant and reasonable
‘forking paths’ to enable quantifiable, reproducible mul-
tiverse and specification curve analyses of predictive
inconsistency at the individual level.
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1 INTRODUCTION: THE EVOLUTION OF ALGORITHMIC
RISK ASSESSMENT INSTRUMENTS

Prediction and classification methods have played a role in criminal justice for over a century. For
nearly as long, doubts regarding the suitability and performance of such methods have loomed.
In 1895, for instance, Francis Galton wondered whether different judges might impose differ-
ent patterns of penalties for the same kinds of offenders (Gottfredson, 1987). What started as
‘behavioral forecasts’ informing parole decisions in the 1920s (Berk & Bleich, 2014) eventually
evolved into more sophisticated ‘actuarial’ prediction methods used since at least the 1970s in
the United States. Since then, data-driven statistical and algorithmic risk assessment instru-
ments (ARAIs) have been used in a variety of criminal justice contexts including sentencing,
pretrial incarceration, parole, probation supervision levels and security levels decisions (Bren-
nan, 1987). Predictive algorithms are now deployed at numerous stages in the judicial process,
from pre-guilt fact-finding to post-guilt sentencing stages, as part of a general trend towards
‘evidence-based sentencing’ (McKay, 2020). Although the acronym ARAI originally referred to
‘actuarial risk assessment instrument’, it now also refers to more sophisticated ‘algorithmic’ tools
(Partnership on AI, 2016).

In an era of budget cuts and limited resources, US-based judges have increasingly become
‘managerial’, relying on the power of information systems to quickly resolve disputes and organ-
ise growing caseloads (Resnik, 1982). Consider the CompStat (computerised statistics) system
used by police departments around the world since the 1990s (Bratton & Malinowski, 2008).
CompStat and other tools like it combine data-driven decision-making with private sector ‘per-
formance management’ techniques emphasising standardised metrics to track progress and
promote accountability. But lunches are not free. The growing pressures of bureaucratic effi-
ciency and consistency—resulting in determinate sentencing laws, and, in some jurisdictions,
the mandatory use of risk assessment tools (Stevenson, 2018)—have left judges with varying
degrees of discretion in overriding the tool’s recommendation (Garrett & Monahan, 2020). Still,
the standardised pre-sentence reports compiled by probation officers have been criticised by
some as a ‘ritual’ used to ‘maintain the myth of individualized justice’ (Rosecrance, 1988). More
recently, the 2016 State v. Loomis case re-ignited similar debates when Loomis unsuccessfully
argued in the Wisconsin Supreme Court that including a prediction from the COMPAS ARAI
in his pre-sentencing investigation report violated his rights to due process and individualised
sentencing (Liu et al., 2019).

Despite these concerns, the digitisation of court records, new forms of data collection,
and cheaper processing power have catalysed the use of data analytics and algorithms in
the decision-making processes of law enforcement agencies, corrections officials, and judges
(Coglianese & Ben Dor, 2021). Today, over 200 ARAIs are used worldwide, and US corrections
agencies alone rely on over 19 different tools (Duwe & Rocque, 2017; Fazel & Wolf, 2018). Pro-
ponents of modern data-driven approaches to risk assessment emphasise their cost-effectiveness
in prioritising limited government resources and in predicting and controlling individual
behaviour. ARAIs promise to reduce human bias and inconsistency, and provide a scientific
and evidence-based approach to the judicial process (Završnik, 2020). Data-driven risk assess-
ment helps manage the complexity of judicial decision-making, which often involves estimating
the likelihood of future unlawful behaviour, given an individual’s unique personal characteris-
tics, social connections, and past history (Monahan & Skeem, 2016). In US pre-trial contexts,
risk assessment tools are part of reformatory efforts aimed at reducing wealth-based disparities
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S694 GREENE et al.

and providing ‘equal justice for poor and rich, weak and powerful’, in line with constitutional
guarantees to equal protection and due process (Mayson, 2017). The overall goal is to move the
United States toward a ‘smarter’ regime by incorporating statistical and machine learning (ML)
risk prediction algorithms into the criminal justice system (Berk & Hyatt, 2015). Although the
United States is unique in its reliance on and early adoption of ARAIs, many countries are now
implementing predictive algorithms in their criminal justice systems, including China (Li, 2020)
and the United Kingdom (Cui, 2020). Others, such as Austria, Latvia and the Netherlands, are
debating their use (Council of Europe, 2019).

Experts fall into several camps about the appropriateness of ARAIs in criminal justice
decision-making contexts. Some scholars view the algorithmisation of judicial decision-making
as inevitable and argue courts should embrace automation (Volokh, 2018). Well-designed (even
if imperfect) algorithms can mitigate human judges’ biases and inconsistencies (Završnik, 2020),
improve the criminal justice system (Corbett-Davies et al., 2017), and reduce prison and jail pop-
ulations. ARAIs can help limit unwanted judicial discretion in sentencing by giving offenders
with similar characteristics similar sentences, resulting in more consistent and rational sentenc-
ing policy (Frase, 2000). As Eckhouse et al. (2019) explain, ‘With the (ARAI) scores as guidance,
judges and policymakers can apply the same model to every case and claim they have used an
objective, neutral mechanism of fair treatment’.

Yet critics allege ARAIs are simply a new mode of ‘penological control’ (Feeley & Simon, 1992)
adapted from managerial methods of risk assessment. Instead of rehabilitating, reintegrating or
retraining offenders, these methods merely shuffle the allocation of ‘risky’ offenders in society
by ‘selective incapacitation’ (Auerhahn, 1999). And many scholars, particularly from science and
technology studies, are skeptical of claims that the rationality and objectivity of big data justi-
fies the use of ARAIs in criminal justice contexts (boyd & Crawford, 2012; Dressel & Farid, 2018;
Moses & Chan, 2014). Complex and proprietary algorithms may inadvertently reflect and exac-
erbate existing social biases and discrimination embedded in training data (Liu et al., 2019), thus
reproducing injustices already present in society (Mittelstadt et al., 2016). A recent and related
stream of research draws from surveillance studies, critical race theory, sociology and feminist
theory to argue that ARAIs express a form of ‘technoscientific’ power whose ahistorical and osten-
sibly neutral algorithms, data, and computer code serve to maintain structural inequalities across
racial and social boundaries (Benjamin, 2019; D’ignazio & Klein, 2020; Eubanks, 2018).

1.1 The role of prediction in punishment and sentencing

Whether algorithmic risk assessment is considered a boon or bane may depend on one’s theory
of criminal punishment. Modern ARAI proponents often assume a utilitarian or consequential-
ist ethics in which public safety and deterrence is the primary goal (see, e.g., Corbett-Davies
et al., 2017). Sentencing and punishment thus assume a forward-looking perspective with a
focus on minimising the costs and probability of future unlawful behaviour (Hamilton, 2015).
Indeed, some US states, such as Pennsylvania, require judges to consider defendants’ future dan-
gerousness during sentencing (Berk & Bleich, 2014). Efficient gains in public safety result from
replacing ‘individualized diagnosis and response’ with ‘aggregate classification systems’ used for
‘surveillance, confinement, and control’ (Feeley & Simon, 1992). Yet the utilitarian, consequen-
tialist rationale for ARAIs worries legal scholars who see their use as conflicting with individual
constitutional rights to avoid self-incrimination and receive procedural due process and equal
protection (Starr, 2014, 2015).
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GREENE et al. S695

In the instrumental pursuit of efficiency, predictive algorithms now carry out the ‘selec-
tive incapacitation’ policies popular in the United States from the 1980s and 1990s (Kehl &
Kessler, 2017). Selective incapacitation ‘selects’ or classifies high risk individuals using statisti-
cal methods in order to isolate them from the social community (Blackmore & Welsh, 1983). The
method relies on finding highly correlated indices of a behaviour of interest, particularly those
which reliably discriminate between low, medium and high risk persons. The ends of public safety
are believed to justify the predictive means. Berk and Bleich (2014) note, ‘(if) shoe size is a useful
predictor of recidivism, then it can be included as a predictor…Why shoe size matters is immate-
rial’. The utilitarian believes the net benefits in reduced crime from identifying and incapacitating
high-rate offenders outweigh the costs of ‘wasted imprisonment’ on low-rate offenders (Moore
et al., 1984). Utilitarians are generally willing to accept more false positives (falsely imprisoning
an innocent person) and fewer false negatives (treating a dangerous criminal leniently) to achieve
greater public safety.

In contrast to utilitarian and consequentialist theories of punishment, retributivists look back-
wards. They argue that if punishment serves to inflict retribution, confer just desert, or express
moral condemnation, basing it on prediction is fundamentally misguided. Indeed, just desert the-
ories preclude justifying punishment for its instrumental value, such as improving public safety
(Darley et al., 2000). Just punishment is therefore proportional to the seriousness of the commit-
ted crime, or in the words of philosopher Immanuel Kant, to the ‘internal wickedness’ of the
perpetrator (Carlsmith et al., 2002). Retributivists disapprove of algorithmic prediction because
it violates the presumption that one must actually do something prohibited by law—not merely
be ‘at risk’ of doing something—before losing one’s right to determine one’s own future (Fein-
berg, 1970). That is, moral blame stems from one’s past choices, not one’s potential future conduct
(von Hirsch, 1984). In general, retributivists claim algorithmic approaches conflict with individ-
ual rights and moral autonomy, and criticise the narrow focus on predictive accuracy in legal
decision-making (Pundik, 2008; Underwood, 1979; Wasserman, 1991).

1.2 Contribution and scope

The contribution of this paper is fourfold. First, we collect and organise a diverse liter-
ature of ARAI-related issues from ML, statistics, sociology, criminology, law, economics,
philosophy and related fields. Second, we unite these sources under our newly intro-
duced umbrella concept of predictive inconsistency. Predictive inconsistency occurs when an
algorithmic system generates disparate predicted scores for the same individual, based on
conceptually-justified-but-technically-different choices by ARAI designers. Third, we identify
and taxonomise sources of predictive inconsistency and relate them to real-world data science and
criminal justice choices. Fourth, drawing on extant legal practices and the normative framework
of scientific and political pluralism, we propose adding multiverse and specification curve analy-
sis techniques to ARAI development and auditing toolkits in order to estimate a lower bound on
predictive inconsistency, as well as to illuminate diverse sources of discretionary bias and quantify
their impact on predicted risk scores.

The paper proceeds as follows. Section 2 considers the nature and value of consistency in
various fields and relates legal consistency to our guiding concept of predictive inconsistency.
Section 3 describes the ARAI-building process. Section 4 identifies and discusses specific sources
of predictive inconsistency related to decisions at the various stages of ARAI development and
deployment. Section 5 considers how more complex predictive algorithms combined with new
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S696 GREENE et al.

forms of behavioural data may exacerbate predictive inconsistency. To quantify and evaluate pre-
dictive inconsistency, Section 6 draws on pluralist scientific and political theories to propose a
publicly-justified ‘multiverse’ prediction framework for documenting and reproducing forking
paths. Section 7 provides our conclusions.

2 CONSISTENCY IN ALGORITHMIC RISK ASSESSMENT:
FORKS VERSUS KNIVES

Below we describe several notions of consistency and relate them to concepts of justice in order
to set the stage for our new term, predictive inconsistency. In logic and philosophy, consistency
is a property of a set or system of axiomatic propositions, all of which, if true, render the con-
clusion true (Marcus, 1980). In scientific modelling, a valid model makes predictions consistent
with observed data (Oreskes et al., 1994). In statistics, consistency is a property of an estimator,
while in psychometrics, the reliability of a measurement is its consistency across occasions or
across items designed to measure the same construct (Groves et al., 2011). Moving to law, wit-
ness testimony and forensic evidence are said to be consistent with a legal theory explaining
the facts of the case (Kiely, 2005). In jurisprudence, consistency denotes coherent judicial deci-
sions (Sunstein et al., 2002), and can refer to consistency of approach or consistency of sentences
(Lovegrove, 1997). Consistency of approach signifies that sentences are related to penal aims
and case facts in a principled way, while consistency of sentences implies like sentences for like
cases. Real-world examples of consistency in US law are captured by principles such as procedu-
ral due process and procedural regularity, which protect against arbitrary and biassed lawmaking
targeting specific individuals or groups (Kroll et al., 2017).

2.1 Legal consistency

While consistency rests in a dense web of relations to other concepts, we focus on its relation to
justice. Early Greek philosophers believed the ideal society, as well as the cosmos, to be ruled by
an intelligible, rational and eternal ‘law and order’ best expressed through numerical relations
(Kline, 2012). Justice involves acting to restore this order or proper balance. Aristotle, for instance,
believed the just person develops a disposition for moral discernment through habitual exercise
of practical reasoning to particular cases in a variety of contexts (Ackrill, 1988).

Aristotle’s insights are still relevant to judicial reasoning today. Judges must engage in a
delicate balancing act that involves inferring judicial principles from individual cases in a con-
sistent way while also maintaining the flexibility to handle new and unexpected circumstances
(Cane, 2002). Just legal judgments are proportionally balanced in the sense of not being under- or
over-fit to the case at hand; this balance provides the desirable property of generalising to future
cases. Yet as Aristotle also insisted, one cannot give a priori rules specifying precisely where this
balance must lay (Ackrill, 1988). As in predictive modelling, the price of rigid consistency with
past data (i.e., memorisation) is generalisability. Justice requires consistency, but not absolutely:
‘law never requires a judge to sacrifice “justice” on the altar of consistency’ (Cane, 2002, pg. 20).
Still, consistent legal decision-making is valuable, even if not absolutely. Consistency may be evi-
dence of the underlying accuracy and objectivity of legal judgments (Legomsky, 2007), as when
multiple judges decide similar cases in similar ways. The consistency of law also provides citizens
with a degree of predictability to guide them in planning and orienting their lives (Hart, 1961).

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/article/185/Supplem

ent_2/S692/7069503 by guest on 20 M
arch 2024



GREENE et al. S697

This aspect of consistency is related to the concept of the rule of law (Rosenfeld, 2000) which, in
part, makes citizens accountable only to those laws which are publicly promulgated and capable
of being followed.

Perhaps the most worrying effect of slavish adherence to consistency is its tendency to blind
one to novelty and difference, the recognition of which can expand the scope and application of
law, as often occurs in landmark cases. For instance, different judges may examine what appears
to be superficially the ‘same’ type of case and come to contradictory conclusions, yet this disagree-
ment does not always imply judicial inconsistency. A highly experienced judge may have noticed a
small but relevant detail—perhaps ‘hidden’ under the surface—that had escaped the attention of
other judges. Once identified, this newly discovered relevant difference (Burch & Furman, 2019)
can modify pre-existing rules or principles, or be used to craft new ones, thereby contributing to
the evolution and expansion of law and concept of justice (Cane, 2002; Hayek, 1973).

In practice, however, it is difficult to separate mere difference from inconsistency. Justice
means different things to people of different religions and worldviews, and so legal disputes
may themselves concern the question of what constitutes a relevant moral or legal difference
(Rawls, 2005). For this reason, Perez (2006) argues that perfect legal consistency—a perfectly uni-
form application of rules—in a diverse, ‘pluralistically sensitive’ society would result in systemic
injustice to certain groups whose moral and political beliefs may conflict with those of legislators
and judges. Perfect legal consistency can, for instance, be achieved by repressing freedom of belief
and conscience, or by restricting opportunities for good faith dialogue with others. In contrast,
some degree of legal inconsistency should be expected and even desired in a pluralistic society, as
its existence and eventual resolution hints at the possibility of developing more comprehensive
legal principles, moral concepts and, ultimately, progress in the pursuit of justice.

2.2 Predictive inconsistency

Although we argue some degree of legal inconsistency in pluralistic societies should be expected
and even tolerated, inconsistency in science is generally viewed as undesirable. Inconsistency in
decision-making results in ‘noise’ and derives from variation over occasions, variation across indi-
viduals or both (Kahneman et al., 2016). Indeed, the inability to reproduce experimental findings
has prompted a methodological ‘crisis’ in psychology (Simmons et al., 2011). Inconsistent ARAI
predictions may invite legal controversy for similar reasons. Even relatively simple ‘actuarial’ risk
assessment tools can generate conflicting risk scores for the same individual. For example, in the
2018 case State v. Gordon, Gordon was classified in his pre-sentencing report as high-risk for sexual
re-offense using the three-category SOTIPS tool, while the five-category STATIC-99R classified
him as average risk (Supreme Court of Iowa, 2017).

Motivated by these methodological and real-world legal concerns, we focus on a
new term, predictive inconsistency. Predictive inconsistency captures conceptually-justified-
but-technically-different choices by ARAI designers leading to disparate predicted risk
scores for the same individual. Predictive inconsistency arises when conceptually-similar-
but-technically-different data science and data collection choices produce disparate and possi-
bly contradictory predictions. Our notion of predictive inconsistency differs from recent work
in statistics and ML focusing on the implications of pipeline underspecification (D’Amour
et al., 2020), the Rashomon effect (Breiman, 2001) and various properties of the Rashomon set of
‘almost equally-accurate predictive models’ (Dong & Rudin, 2020; Fisher et al., 2019; Semenova
et al., 2019). In line with legal debates around individualised justice, our approach emphasises
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S698 GREENE et al.

the impact of data science decisions on individual predicted scores, not properties of the models
themselves. Second, our proposal aims to examine variability across these predicted scores with-
out necessarily requiring actual (ground truth) outcomes or labels (except at the model training
stage), whereas most work in this area computes predictive accuracy or goodness of fit metrics
that assume access to actual outcomes.

Predictive inconsistency is important to understand as it affects public-facing algorithms in
high-stakes contexts. Statisticians Gelman and Loken (2014) illustrate the problem using Jose
Luis Borges’ metaphor of a ‘garden of forking paths’ to describe data analysis decisions and
variable human factors they refer to as ‘researcher degrees of freedom’. These degrees of free-
dom represent unacknowledged yet non-trivial sources of uncertainty whose impact is not yet
well studied (Sauerbrei et al., 2020). Crucially, these data-dependent choices are not laid out in
advance, and researchers often do not realise their particular findings are one outcome of many
possible forking paths, each representing a different sequence of data analysis decisions (Dwork
et al., 2015; Gelman & Loken, 2014). Data scientists developing ARAIs face similar problems.
Because no general algorithm or inductive bias is guaranteed a priori to be the best for a particular
problem (Wolpert, 1996), data scientists try a variety of strategies, methods and algorithms—often
with multiple tuning parameters—to find a predictive model delivering the best generalisa-
tion performance on new, unseen data presumed to come from the same distribution (Duwe &
Kim, 2017).

We claim the forking paths problem will likely be compounded as the algorithms and sources
of data used in ARAI development increase in complexity, and as the variety of actors and insti-
tutions involved grows. Just as scientific publications can gloss over analytical missteps and false
starts in retrospectively idealised final analyses (Latour & Woolgar, 2013; Pickering, 1995), a
deployed ARAI embodies an idealised single path through what is actually a ‘garden’ of many
path-dependent and contingent data science practices, such as unacknowledged and undocu-
mented choices by the human factors involved earlier in generating, gathering and cleaning the
data, and later in developing, testing and deploying the algorithm. Yet judges, corrections officers
and other end-users of the resulting tool’s predictions may underestimate the cumulative impact
of these discretionary choices and practices on an individual’s predicted risk score.

We believe the socio-technical nature of ARAIs and resource limits of real-world criminal jus-
tice systems require us to reconsider the value and nature of predictive inconsistency. We should
not expect ARAIs to exhibit the level of consistency provided by the controlled laboratory condi-
tions of the natural sciences or the mechanistic precision of the assembly line. A more realistic
expectation—aligned with the actual practices of legal reasoning in a diverse society—is that a
well-functioning ARAI should reliably assign an individual into a risk category across a variety of
‘reasonable’ forking paths, which we interpret as representing good enough or reasonable rather
than optimal or rational descriptions of the same underlying phenomenon viewed from differ-
ent vantage points. We think this more inclusive approach can bolster the scientific, legal and
political legitimacy of these new and often controversial algorithmic tools.

Our re-framing of predictive inconsistency embraces the democratic spirit of scientific and
political pluralism (see e.g., Bohman, 2006; Dewey & Rogers, 2012; Habermas, 2015; Kellert
et al., 2006; Kitcher, 2003; Rawls, 2005; Shadish, 1993). Broadly speaking, pluralism endorses
tolerating some inconsistency and conflict in the transformative search for overlapping con-
sensus on scientific and political issues by deliberating on diverse yet reasonable worldviews,
problem representations, classification schemes, analytical methods, economic and social inter-
ests and interpretive assumptions. Pluralism challenges the default assumption that ARAIs can
or should embody a single, unique logic of decisions leading to a ‘best’ model resulting in a
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single, clear-cut final prediction (‘knives’). Pluralism, in our view, instead engages a diverse
team of individuals—in terms of both functional (i.e., cognitive) and identity diversity (Hong &
Page, 2004)—in ARAI design, development and auditing focused on assessing the distribution
of predictions generated for an individual from a multiplicity of coequally reasonable models
(‘forks’). Our commitment to democratic pluralism might also warrant the possibility of non-use
of an ARAI, particularly when its predictive inconsistency exceeds bounds set by a diverse group
of data scientists, domain and legal experts.

3 BUILDING AN ARAI

ARAIs are socio-technical systems composed of technical artefacts, human agents and
resource-constrained institutions whose rules and norms influence and guide the behaviour of
human agents (Selbst et al., 2019; van de Poel, 2020). We use the general term ARAI designers to
refer to institutional stakeholders and industry and/or academic software development and data
science teams, often with criminal justice domain expertise. To concretise the socio-technical
nature of ARAI design and relate it to data science decisions, we provide a brief description of the
ARAI-building process (see Figure 1).

First, a data source must be found, representing a sample from a theoretical target popula-
tion, such as all prisoners in Minnesota. These data are often drawn from court or administrative
records (Ritter, 2013). Duwe (2014), for instance, obtained the data for the MnSTARR tool from the
Minnesota Correctional Operations Management System (COMS), based on a sample of 11,375
male offenders released from prison between 2003 and 2006. Next, ARAI designers must define
and operationalise the outcome or construct of interest, such as recidivism—defined broadly as
the commission of subsequent crime within a set time period—and decide on a particular time
horizon. Duwe (2014) defines recidivism as reconviction for a criminal offense within 4 years of
release from prison. Designers also need to decide how many risk categories to include (e.g., low,
medium, high) and how much resources they can realistically devote to the different categories.

1
Define, 

Operationalize 
Legal Concepts

2
Collect Data

3
Compute 
Measures

4
Preprocess 

Data

5
Select 

Model/Algorithm

8
Test Model

10 
Communicate 

Score

11
Make 

Decision

Selection bias
Coverage bias

Non-response bias
Dataset shift

Biased noisy labels

Selection bias
Measurement error

Data missingness
Adjustment error
Processing error
Data coding error

Predictive multiplicity 
Reference class problem Dataset shift

External validity
Risk score binning & 

adjustment

Legal Concepts
Construct invalidity

Risk score 
uncertainty
Risk level 

misinterpretation

Override bias

7
Select 

Performance 
MetricsMetrics

Calibration vs. Discrimination
Fairness operationalization
Resource-constrained metrics

6
Select Predictors

Model/Algorithm
Predictive multiplicity
Numerical instability

9
Deploy 
Model

& 

Dataset shift
Performance 
degradation 

criteria

F I G U R E 1 Steps and potential sources of predictive inconsistency in the development and use of an
algorithmic risk assessment instrument (ARAI). Discretionary ‘forking path’ decisions by ARAI designers can
reduce the tool’s ability to provide consistent predictions for the same individual. Common descriptors for the
sources of inconsistency are listed below the step. [Colour figure can be viewed at wileyonlinelibrary.com]
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S700 GREENE et al.

Duwe (2014) uses four risk levels with cutoffs varying by gender and type of recidivism (e.g.,
sexual or violent).

Designers then select predictor variables given the data available and theoretical or policy con-
cerns. Duwe (2014) considered over 100 different predictors, keeping just eight using a bootstrap
variable selection procedure. Examples include prior supervision failures, total felony convictions,
drug offense convictions, and false information given to police convictions. ARAI designers typically
also consider the relative costs of misclassification (false positives and negatives).

After building several models and evaluating their resulting predictive accuracy and risk
distributions, designers may adjust aspects of the model or data. Assuming accuracy and risk dis-
tributions are appropriate given the resource limitations of the institution developing the tool,
the model is then deployed for offenders in the agency’s caseload. For MnSTARR, male inmates
are scored at prison intake and once again prior to their release, after updating ‘dynamic fac-
tors’ that may have changed during incarceration, such as undergoing chemical dependency
treatment (Duwe, 2014). This final risk prediction is used to decide the post-release level of com-
munity supervision. Lastly, designers monitor the performance over time to ensure its accuracy
and reliability.

4 POTENTIAL SOURCES OF PREDICTIVE
INCONSISTENCY

This section describes the real-world process of data collection and algorithmic development
and illustrates its impact on predictive inconsistency, as shown in Figure 1. To guide our
presentation, we follow a taxonomy of errors affecting data-driven processes commonly used
by statisticians and social scientists (Groves et al., 2011). While textbooks tend to focus on
issues of sampling error and statistical inference, we emphasise the effects of a variety of
non-sampling errors such as construct invalidity, measurement error, processing and data cod-
ing error, coverage bias, non-response bias, and adjustment error on predictive inconsistency.
Note that discretionary choices in earlier steps can propagate and exacerbate predictive incon-
sistencies in later steps. An example is measurement error at the data collection stage that later
impacts predictors and response variables, thereby affecting a model’s predictive performance
(Kuhn & Johnson, 2013).

4.1 Defining and operationalising constructs into empirical
measures

The law ‘teems with devices that defeat uniformity and predictability’ (Easterbrook, 1992). Due
to its vast scope of application, law possesses an ‘open texture’ focused on defining general classes
of persons or acts (Hart, 1961). That is, for practical reasons, law cannot in advance define every
conceivable criminal act in society and therefore considers only general classes of acts (e.g., mur-
der, battery, fraud) under which particular acts may fall. Legal systems, like most natural systems,
are open, not closed, and so legal assertions require an element of intuitive judgment and inter-
pretation that both precludes absolute proof or demonstration and resists explicit automation
(Schauer, 2009). In contrast, statistical algorithms must presume the validity of a particular inter-
pretation or application of a general label (i.e., categorical outcome variable) to make inferences
and predictions at all (Barocas et al., 2019; Selbst & Barocas, 2018). But whether the resulting
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predictions rightfully apply to anything in the ‘real world’ depends on the degree of correspon-
dence between internal model elements and external objects of interest (Selbst et al., 2019). Cru-
cially, the validity of such correspondence can never be absolutely verified (Oreskes et al., 1994).

The often implicit act of interpretation in ARAI development requires explicitly opera-
tionalising theoretical and unobservable legal, social and moral concepts known as constructs
(Groves et al., 2011). Operationalising a construct involves specifying a corresponding set of
uniquely specifiable physical or mathematical operations (Bridgman, 1927). Yet assessing the
validity of measurements of essentially unobservable constructs is not straightforward (Borsboom
et al., 2004). For that reason, a modern and pragmatic view holds that construct validity is a holis-
tic, evidential judgment of how well a measure captures its intended construct and supports the
interpretation of a score, including action taken on the basis of this interpretation (Messick, 1995).
Generally, the higher the stakes of assessment, the more important construct validity becomes
(Downing, 2003). One implication is that ARAI designers cannot evade the ethical issues of oper-
ationalising ‘essentially contested’ constructs and values such as fairness (Friedler et al., 2021;
Jacobs & Wallach, 2021; Mittelstadt, 2019).

The operationalisation of recidivism risk is one such contested and complex process that
impacts predictive inconsistency. No generally accepted legal definition of recidivism exists, and
the literature devoted to discussing, defining and approximating various operationalisations of
recidivism has a long history (Rector, 1958). We note, however, that existing definitions of recidi-
vism share three features. Each definition has a starting event from which the measurement of
recidivism commences, for example, release from prison. Second, each definition has a measure
of failure following the starting event, for example, a subsequent arrest. Third, each definition
has a window of recidivism, that is, a follow-up period within which the offender’s behaviour is
observed (Zgoba & Dayal, 2015). Table 1 illustrates the diversity of definitions.

According to the US National Institute of Justice, recidivism refers to ‘a person’s relapse into
criminal behaviour, often after the person receives sanctions or undergoes intervention for a pre-
vious crime’. Some operationalise it as the duration between two events, for example, days from
release date to the point of the first warrant date (Breitenbach et al., 2010). Others measure it by a
dichotomous ‘reconvicted/not’ or ‘new arrest/not’ within a certain time period from some event
(Jones & Sims, 1997; Maxfield, 2005). A Bureau of Justice Statistics report uses four measures of
recidivism: rearrest, reconviction, resentence to prison and return to prison with or without a new
sentence within a 3-year period following the prisoners’ release, and further distinguishes between
‘in-state’ and ‘out-of-state’ recidivism (Langan & Levin, 2002). The much-publicised ProPublica

T A B L E 1 Various criteria used to measure recidivism

Criteria Options used by different studies/systems

Events Arrest, conviction, incarceration

Degree Felony, misdemeanor, public ordinance

Time periods 2, 3, 5 years

Since Previous crime, arrest, incarceration, conviction

Inclusion criteria In-state/out-of-state

Predicted outcome type Time-to-recidivate, probability of recidivism, hazard ratio

Note: Definitions obtained from Breitenbach et al. (2010), Blumstein and Larson (1971), Maxfield (2005), Jones and Sims (1997),
Langan and Levin (2002), Angwin et al. (2016).
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study of bias in risk assessment tools defined it as a new arrest within 2 years of the original crime
for which the subject was assessed, while discounting any minor offenses and municipal ordinance
violations (Angwin et al., 2016). This definition is problematic because it counts subjects who were
arrested but were not convicted, and those whose charges were dropped. The choice of recidivism
measure also leads to different selected models and algorithms: predicting the expected time until
recidivating calls for a different type of model than for the probability of recidivating in the next
five years. The same model cannot produce both.

Different choices can lead to different predictive performance and therefore to inconsistent
predicted risk scores. Changing the time horizon in the definition of recidivism changes the base
rate of the phenomenon (i.e. the underlying proportion in the population of interest), which in
turn affects relevant predictive performance measures. For example, Rice and Harris (1995) show
changes in the definition of ‘violent recidivism’ to include any new violent crimes within a hori-
zon of 3.5, 6 and 10 years (resulting in base rates of 15%, 31% and 43%, respectively), causes various
performance measures of the Violent Risk Appraisal Guide (VRAG) model to fluctuate dramati-
cally. Nevertheless, end users of an ARAI may not be aware that different definitions might lead
to different risk scores for the same individual.

4.2 Collecting data and computing measures

Statistics and ML textbooks often assume no errors in the outcome labels and thus narrowly focus
on issues of sampling error (Hand, 2006). While increasing the sample size can reduce sampling
error, many sources of inconsistency mentioned in the ARAI literature are actually instances of
non-sampling error (Lohr, 2011). Common non-sampling errors that can arise in the data collec-
tion step are selection bias, measurement error, non-response bias and coverage bias. Data collection
and pre-processing procedures are major sources of non-sampling error and are hard to identify
and thus control. Merely having ‘big data’ does not reduce non-sampling error.

The bias and noise added due to non-sampling error can propagate through to later stages
of algorithm development (Suresh & Guttag, 2019). Examples of non-sampling error are confus-
ing survey questions, unobserved social and economic pressures influencing persons to respond
in systematically different ways, and optical character recognition (OCR) devices generating
systematic errors in the transcription of handwritten text.

Coverage bias arises when building predictive models of well-defined target populations based
on court and administrative records. Coverage bias relates to mismatches between the sampled
population and target population (Groves et al., 2011), or in ML terms, the algorithmic develop-
ment population and use population (Suresh & Guttag, 2019). Depending on what is available,
some ARAIs will rely on data from convicted populations, while others on arrested popula-
tions (Duwe, 2014; Ritter, 2013). Yet, in the United Kingdom, only about 2% of all crimes ever
face sentencing decisions (Ashworth, 2005). And some are arrested without having committed
a crime.

Further, poverty and racial disparities in arrests may be reflected in the administrative data
used to train risk prediction algorithms, a phenomenon known as ‘biased noisy labels’ (Fogliato
et al., 2020). Rich, well-connected criminals with access to expensive legal representation may
be arrested but convicted less often. Computer crimes, identity theft, tax fraud and a variety
of other ‘low-priority’ white collar crimes are notoriously difficult to detect and so may be
under-represented if only arrests or convictions are counted (Cole & Smith, 2007). Ideally, data
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should be representative of attributes (e.g., ‘propensity to recidivate’) of the population or con-
struct of interest. To the extent power and wealth disparities, or policing strategies, are reflected in
the data, measures based on such data will lead to issues of construct invalidity and measurement
error and actions taken on the basis of the predicted scores should be critically scrutinized.

Selection bias is a concern when relying on non-randomly selected samples to estimate pat-
terns in the population (Heckman, 1979). In ML, the related term data set shift describes the
situation where the joint distribution of inputs and output differs between the training and
test data sets (Quiñonero-Candela et al., 2009). Data sets used to train and test predictive algo-
rithms for use in criminal law can suffer from over-representation of some populations and
under-representation of others (Završnik, 2021). Such misrepresentation leads to inconsistencies
when deployed to new members of under-represented populations, or even to completely dif-
ferent populations. An example is when predictive models trained on mostly male inmates are
applied to female inmates (Hannah-Moffat & Shaw, 2001). Modern ARAIs, however, increasingly
create separate predictive models for men and women (Duwe, 2014). Yet systems developed and
trained for one target population are sometimes used in other geographical, demographic, tempo-
ral and decision-making contexts, such as an algorithm developed for decision on prison releases
being applied for probation decisions (Kehl & Kessler, 2017). Berk (2019) lists many other causes
of data set shift including parole board personnel turnover, judges losing elections, changes in the
number of police and prisoners and changes in drug markets, among other causal factors. As an
example of potential generalisation issues, the Public Safety Assessment tool used pre-trial train-
ing data from 300 US jurisdictions, but was applied statewide in Kentucky, Arizona, New Jersey
and Utah, where pre-trial populations of ethnic subgroups are likely different from the overall
population of jurisdictions (Stanford Law School Policy Lab, 2019b). An example of good method-
ological practice comes from Tollenaar and Van Der Heijden (2019), who trained algorithms
on Dutch conviction data and evaluated their external validity on a different target population
consisting of North Carolina prisoners.

Measurement error is the difference between a measurement and the true value of a quan-
tity (Crowder et al., 2020). It is typically described using random, systematic or differential error
models (Luijken et al., 2019). In statistical inference, measurement error can lead to model
non-identifiability, blurring the meaningful interpretation of model parameters (Grace, 2016).
But measurement error can also amplify predictive inconsistency (Frénay & Verleysen, 2013),
as real-world data gathering in criminal justice settings involves noisy measurement, affecting
data labels used during ARAI training and later at the time of scoring (Duwe & Rocque, 2017).
In plea bargains, for instance, a person is arrested for one crime but charged for a less serious
one (Breitenbach et al., 2010). Despite presumed innocence, poorer persons without high-quality
legal representation may be more likely to accept plea bargains (Ashworth & Blake, 1996). Due
to constraints on legal resources, the practice of prosecutorial discretion resembles ‘satisficing’
(Albonetti, 1986) and can result in reduced police booking charges (e.g., reducing a felony to a
misdemeanor); these reductions may also vary by race and familiarity with the informal workings
of the criminal justice system (Albonetti, 1990, 1992).

Financial incentives can contribute to measurement error by influencing the behaviour of
human data collectors. Organisational pay-for-performance schemes may motivate police to
incorrectly classify crimes and describe arrests. Gaming techniques used by police to ‘hit their
targets’ include ‘choosing not to believe complainants’, ‘recording multiple incidents in the same
area as a single crime’, and ‘downgrading incidents to less serious crimes’ (Muller, 2019, p. 128).
Maltz (2019) mentions the FBI hierarchy rule to avoid double counting. If two types of crime
occur in the same incident, only the category of the most serious crime is counted, for example,
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‘If a convenience store robbery results in the death of the store clerk, this would be classified
as a homicide rather than a robbery—because homicide is a more serious crime than robbery’
(Maltz, 2019). Such gaming strategies lead algorithms to learn predictive relationships more
reflective of record-keeping limitations and wishful thinking than of reality.

Feedback loops in the criminal justice system (Ensign et al., 2018) not only make data collec-
tion and causal interpretation of data complex, but they can also affect measurement error. Due
to variation in the amount and quality of data collected, some individual or group-level records
are harder to predict than others (Rudin et al., 2022), resulting in greater predictive inconsistency.
One explanation for this phenomenon touches on larger structural justice issues, as some minori-
tised subgroups come into contact with administrative agencies more often than others, leading
to class imbalances in resulting data sets (Buolamwini & Gebru, 2018; D’ignazio & Klein, 2020).
If risk predictions are combined with arrest data generated by predictive policing algorithms,
the resulting increased police surveillance can lead to more arrests and recorded criminal inci-
dents although the underlying crime rate has not changed (e.g., Na & Gottfredson, 2013). When
such data are then fed back into judicial decision-making algorithms, they create a self-sustaining
feedback loop that reflects more the nature of the crime sampling process than actual patterns
of criminal behaviour (Partnership on AI, 2016). Judges, parole and probation officers may also
treat those predicted ‘high risk’ in systematically different ways (Koepke & Robinson, 2018), lead-
ing to differential measurement error. For example, algorithm predictions in medical settings can
lead doctors to undertake different forms of measurement (e.g., self-report of body weight versus
physician-directed measurement on a scale) (Luijken et al., 2019).

Differential measurement effects can be related to an individual’s race or gender (Mul-
lainathan & Obermeyer, 2017; Suresh & Guttag, 2019), raising social justice concerns and
resulting in predictors of unequal predictive power for some subgroups compared to others. For
instance, the predictor criminal history might be more predictive of recidivism for older defen-
dants than for younger ones without a detailed criminal history, or for those in living or working
areas with a history of intense police surveillance (Browne, 2015). Worried by the explosive growth
of mass incarceration in America, sociologists have analysed US administrative, survey, and cen-
sus data between 1969 and 1999 and concluded that incarceration rates for young, low-skilled
black men are so high as to resemble a rite of passage into adulthood, on par with college
graduation or military service (Pettit & Western, 2004). Criminology research also suggests that
incarceration may actually slightly increase one’s probability to recidivate (Cullen et al., 2011;
Durlauf & Nagin, 2011). Science and technology studies scholars point to these and other exam-
ples as evidence for the role of ARAIs in contributing to a matrix of domination (Collins, 2002) that
reproduces pre-existing social, historical and economic inequities (Benjamin, 2019; D’ignazio &
Klein, 2020).

Pre-parole questionnaires used as input to ARAIs are also susceptible to measurement error.
They are subject to all the standard sources of measurement error in surveys, including how they
are worded, what time and in what setting they are taken, who administers them, and various
faulty recall effects (Whittle et al., 2018). As an example, parolees in the Pennsylvania Corrections
Department are asked simple yes/no questions regarding their past behaviours, such as whether
they have ever had a drug or alcohol problem (Barry-Jester et al., 2015). But they are not asked to
indicate the severity of the problem or what constitutes a ‘drug or alcohol problem’. Even more,
self-reports can be intentionally manipulated by respondents themselves or by data collectors.
COMPAS thus embeds a ‘data validity check’ in self-report questionnaires to identify respondents
suspected of ‘lying, sabotage, or incoherent responses’ (Brennan & Dieterich, 2018). Given the
strong incentive offenders have in avoiding a ‘high risk’ classification, ARAI designers should
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periodically assess algorithms and proxy measures for their susceptibility to strategic manipula-
tion, particularly differential gaming strategies by sub-populations. If detected, designers may add
randomness or update the algorithm more frequently (Bambauer & Zarsky, 2018). Yet if proxy
measures are chosen wisely, gaming behaviour can be made to incentivise the socially beneficial
self-improvement of offenders (Kleinberg & Raghavan, 2020).

4.3 Data pre-processing

Data scientists may increase predictive inconsistency by employing various pre-processing strate-
gies to improve model performance, especially when trying to predict rare events. In social science
and psychometrics, these kinds of issues broadly fall under adjustment error, processing error and
data coding, including handling missing values (Groves et al., 2011). Although we do not discuss
transforming or standardising predictors, these common operations can also introduce predictive
inconsistency (Sauerbrei et al., 2020).

Data missingness involves missing values or incomplete data. When such missingness is
systematic (e.g. refusal to respond to sensitive questions about criminal behaviour), it may
lead to the exclusion of specific populations. Data scientists must then make decisions about
whether and how to impute missing values, keep only complete observations, or do nothing.
Each decision may have different and unpredictable effects on the final model. For example,
approximately 10% of randomly-selected inmates declined to participate in the data collec-
tion efforts for the COMPAS Reentry risk assessment tool (Breitenbach et al., 2010). Cen-
sored data (unobserved outcomes) is a frequent problem in criminal justice settings because
those whose outcomes are observed may be systematically different from those whose are
not (Berk, 2019). Missing data can cause further inconsistency at prediction time, if the
to-be-predicted record has missing predictor values. ML solutions, such as training multiple mod-
els with different subsets of predictors (Saar-Tsechansky & Provost, 2007), are another source
of inconsistency.

A frequent pattern in ARAI data is imbalanced outcome variables. For example, in a pre-trial
risk tool examined by Eckhouse et al. (2019), only 3.8% were arrested for a violent crime and 4.9%
failed to appear in court. When the outcome variable is imbalanced, a common pre-processing
step is to group together types of rare categories to achieve better balance among the classes. But
such grouping comes with a cost. By replacing examples of drug-related or domestic violence with
a crude dichotomous measure, such as ‘violent’ felony crimes, important criminogenic distinc-
tions are obscured and risk predictions may not properly reflect the context of assessment, leading
to inconsistent predictive performance (Breitenbach et al., 2010).

If the outcome variable is imbalanced, predictive algorithms can fail to learn to distin-
guish between the rare and majority classes. Popular preprocessing strategies to deal with this
problem include oversampling or undersampling of rare or overrepresented classes (e.g., women
in COMPAS Reentry), using cost-sensitive learning, or synthetically generating new records of
the rare events (Weiss, 2013). Discrimination aware pre-processing can also involve re-labelling or
re-sampling/re-weighting methods (d’Alessandro et al., 2017). A simpler method limits the mod-
eled population to a relevant, less-imbalanced subpopulation that contains the class of interest
(Weiss, 2013), such as those committing violent crimes. A meta-analysis of 68 studies of violence
ARAIs found this strategy improved predictive accuracy (Singh et al., 2011). This approach also
finds legal support in Mayson (2017), who argues pre-trial detention may only be appropriate for
persons predicted high risk of violent recidivism, not merely any type of recidivism. But doing
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this requires precise criteria for deciding which sub-domains count as ‘sufficiently interesting’.
Different data scientists may come to different conclusions, thus adding a source of inconsistency
in the resulting predictions.

4.4 Variable selection and the reference class problem

Predictive multiplicity occurs when competing models produce conflicting predictions (Marx
et al., 2020). One source of such multiplicity (i.e., predictive inconsistency) arises when select-
ing variables assumed to be predictive of the outcome. Generalisable inductive inference requires
developing robust predictive models that trade off model complexity with model fit (the so-called
bias-variance tradeoff ) (Hastie et al., 2009). An overly complex model with many predictors can
be made to fit arbitrarily well to a given data set, but in doing so loses the ability to predict well
for new, unseen data. To combat this, a key data science strategy is the process of variable selec-
tion (Hastie et al., 2009), where predictors based on specified criteria are included or excluded in
the model. Examples include lasso and stepwise regression, pruned classification trees and the
bootstrap selection procedure used to build the MnSTARR ARAI. Yet small changes in variable
inclusion criteria affect which predictors go into the model, thus acting as a source of predictive
inconsistency (Heinze et al., 2018).

Variation in variable selection procedures impacts predictive inconsistency in individualised
sentencing because different ‘evidentiary estimates’ could be given to the same person, each on
seemingly justifiable grounds (Rhee, 2007). Predictors included and excluded in the final model
determine the criteria potentially defining one’s reference group and thus one’s predicted risk.
The more predictors selected, the narrower the potential scope of an individual’s reference group
used to calculate risk. But the more specific the reference class, the fewer the individuals belong-
ing to the class, thus increasing uncertainty of the risk estimates. To illustrate, we can calculate
risk based on gender alone, or on a larger set of predictors such as gender, age and zip code. In the
former, the reference class is other people of the same gender, whereas in the latter the reference
class is others of the same gender, age, and in the same zip code.

Cheng (2009) argues that variable selection mirrors the reference class problem, which occurs
when we ‘want to assign a probability to a single proposition, X, which may be classified in various
ways, yet its probability can change depending on how it is classified’ (Hájek, 2007). The 1995 case
of United States v. Shonubi provides a vivid example of its implication for legal risk assessment,
though in a slightly different context from standard ARAIs. Tasked with estimating the unknown
amount of heroin Mr. Shonubi—a Nigerian national and US resident—smuggled into JFK Airport
on seven previously undetected trips, Cheng (2009) says ‘The court could have considered the
amount carried by all drug smugglers at JFK, all Nigerian smugglers regardless of airport, or
smugglers in general’. Each reference class assignment results in different estimates. The accuracy
of these estimates was important because they decided which sentencing guidelines would be
applied to his case, potentially adding several extra months or years in prison. The ensuing legal
battles incited a lively discussion of when statistical evidence is admissible as ‘specific evidence’
to be used in an individual’s sentencing proceedings (Tillers, 2005).

Prior data collection choices determine the granularity of possible reference classes and the
number of possible subsets of predictors evaluated during variable selection, but ideally variable
selection should not depend on the particular data at hand (Heinze et al., 2018). Currently, how-
ever, different jurisdictions have access to administrative data of varying granularity and quality.
For instance, is nationality recorded when drug incidents are reported? If not, then it cannot be

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/article/185/Supplem

ent_2/S692/7069503 by guest on 20 M
arch 2024



GREENE et al. S707

used as a predictor. Deciding an individual’s reference class is not only a philosophical issue high-
lighting the indeterminacy (Leiter, 2007) of a priori defining legally relevant differences justifying
differential treatment, but also impacts predictive inconsistency.

4.5 Selecting performance metrics

4.5.1 Discrimination versus calibration

AUC (Area Under the [ROC] Curve) is a popular performance measure used in ARAIs, yet misun-
derstanding what it measures can contribute to predictive inconsistency. As Hand (2009) notes,
‘choosing a measure which does not reflect [one’s aims] could lead to incorrect conclusions’.
AUC estimates the probability that a random positive observation (e.g. recidivator) ranks higher
than a random negative (non-recidivator) (Flach, 2019). Algorithms with higher AUC scores have
better predictive validity: Duwe and Rocque (2017) define an ‘adequate’ level for ARAIs as 0.70
or higher. But AUC is appropriate only when one’s predictive goal is an accurate ranked order-
ing of risk scores, otherwise known as discrimination (Singh, 2013). AUC says nothing about the
accuracy of the predicted score. Calibration, in contrast, focuses on the estimation of an exact
probability (and compares it to the percentage observed in the test set) (Tollenaar & Van Der Hei-
jden, 2019). As Fawcett (2006) explains, an algorithm with high AUC ‘need not produce accurate,
calibrated probability estimates; it need only produce relatively accurate scores that serve to dis-
criminate [between] positive and negative instances’.The same model may perform better at one
or the other task, depending on the nature of the training data and structure of measurement
error (Luijken et al., 2019; Whittle et al., 2018). Lastly, AUC comparisons can be misleading when
the underlying ROC curves cross, which commonly occurs when comparing multiple classifiers
(Hand, 2009).

4.5.2 Formalising fairness criteria

Problems of fairness in ML have been formulated as constrained optimisation problems
(Corbett-Davies et al., 2017; Zemel et al., 2013), which require trading-off predictive accuracy and
various formal notions of fairness (Berk et al., 2021). Fairness metrics can focus on either individ-
ual or group outcomes and may be used at pre-processing, in-processing or post-processing stages
(Berk, 2019). Our discussion mostly centres on post-processing metrics and does not consider
those based on ‘causal’ comparisons of actual with counterfactual outcome distributions (Kusner
et al., 2017). We also leave open philosophical questions of whether it is possible or desirable to
formalise fairness or justice (Derrida, 1992; Green & Hu, 2018).

Algorithms can have disparities in predictive accuracy for various racial or gender sub-groups,
raising questions of bias and unfair discrimination in the data collection process itself (Angwin
et al., 2016). For instance, one measure of discrimination compares true positive rates across
groups, a fairness metric known as equal opportunity (Hardt et al., 2016). But merely observing
different rates of predictive accuracy among subgroups is not necessarily evidence of ‘unfair’ algo-
rithms. Against initial reports of racial discrimination in the COMPAS ARAI (Angwin et al., 2016),
the makers of the tool, Northpointe Inc., argued that when base rates of recidivism differ sig-
nificantly among racial groups, symmetry in the error rates across groups cannot be achieved
(Dieterich et al., 2016). This debate highlights whether unequal base rates are better understood
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as symptoms or causes of unjust social conditions, conditions in which some social groups are
systematically and unjustifiably more likely to be subjected to ARAIs than others. Likewise, such
issues cast doubt on the appropriateness of narrowly treating fairness as a property of algorithms,
independent of larger social contexts (Selbst et al., 2019).

At the same time, fairness metrics may help identify deeper structural problems at the
data collection and operationalisation stages. Eubanks (2018) illustrates this situation using a
Pennsylvania-based tool used to predict cases of child abuse. Children in poor families tend to
come into contact with public services such as child protective services, Medicaid, and drug and
alcohol treatment programmes more often than those from wealthy families, resulting in more
extensive data collection for poor families, in terms of both the number of observations and the
number of features. In such situations, the ARAI is apt to confuse ‘parenting while poor with
poor parenting’ (Eubanks, 2018, p. 127). The counter-intuitive implication is that ARAIs trained
using sparse data from wealthier families may exhibit greater predictive inconsistency, prompt-
ing ARAI critics to call for discontinuing their use or delegitimising their predictions. Meanwhile,
ARAI proponents could point to the low predictive inconsistency for poor families as a reason to
continue using such tools. Yet it seems unfair to subject some families—namely poorer ones—to
more algorithmic decision-making and state surveillance and intervention because more and bet-
ter quality data has been collected on them. In other words, the mere fact of having more data
should not count as a relevant difference justifying more surveillance.

As one might expect, basing formal predictive measures on contested legal and ethical con-
cepts is difficult, if not impossible. Imposing fairness criteria can itself impede the social goal of
minimising expected violent crime because satisfying the criteria can only be achieved by releas-
ing more high-risk defendants (Corbett-Davies et al., 2017). There is thus an inherent tension
between treating individuals equally and achieving ‘algorithmic fairness’ by setting race-specific
decision thresholds. Berk (2019) also points out that by not including ‘discriminatory’ informa-
tion such as race or gender in the algorithm (i.e., ‘fairness through unawareness’)—or even their
proxies, such as neighborhood—the reduced predictive power may result in greater numbers
of dangerous persons released back into communities. Kleinberg et al. (2016) and Choulde-
chova (2017) demonstrate that in normal situations, no single algorithm can achieve the desired
fairness properties of calibration, balance for the negative class and balance for the positive class
simultaneously. Only in extremely rare cases of ‘perfect risk assignment’ by the algorithm
and equal base rates among subgroups can a single algorithm satisfy the above-mentioned
definitions of fairness. As Dieterich et al. (2016) remark, this is unlikely to hold in
practice.

The discussion of competing fairness metrics also highlights a deeper issue: the distinction
between individual and group justice (Binns, 2020; Mitchell et al., 2021). Realistically, one must
choose the least unfair of a set of unfair algorithms (Speicher et al., 2018). For example, Dwork
et al. (2012) base their operationalisation of fairness on an Aristotelian, individualised notion of
‘nearest neighbor parity’, capturing whether persons represented as similar in predictor space
receive similar predictions. Yet many of the approaches detailed above rely on the resulting
group-level parity of calibration or false positive rates. Satisfying both forms of fairness requires
tradeoffs: minimising between-group unfairness can increase within-group unfairness (Speicher
et al., 2018). Consequently, ‘hard choices’ among fairness metrics cannot be made independently
of the complex ethical considerations of individual versus group justice (Binns, 2018b). Equally
justifiable metrics can lead to disparate predicted scores. ARAI designers may thus consider gen-
erating predicted scores for a variety of fairness definitions and operationalisations based on
plurality of legal and philosophical assumptions.

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/article/185/Supplem

ent_2/S692/7069503 by guest on 20 M
arch 2024



GREENE et al. S709

4.5.3 Lift: resource constrained ranking

Although ARAIs are often justified by claims of cost-saving and efficiency in resource allocation
(Duwe, 2014; Ritter, 2013), surprisingly few predictive applications use lift to evaluate classifier
performance (Shmueli, 2019). Lift is the ratio of the true positive rate in the top-n sample (where
n is subject to budget or resource constraints) to the true positive rate in the entire test set. The
greater the lift, the better the classifier performs compared to random targeting.

In criminal justice contexts, public agencies often have budget and resource constraints lim-
iting their ability to act on every prediction made, a fact with implications for performance
evaluation and predictive inconsistency. An ARAI chosen for its superior performance as judged
by capacity-unconstrained metrics, such as AUC, may be judged inferior when lift is evaluated.
As noted above, lift measures a classifier’s ranking (i.e. discriminative) ability, just like AUC. But
unlike AUC, lift captures the classifier’s ability to maximally ‘skim the cream’ from a subset of
individuals (Shmueli et al., 2017, p. 136). The amount of resources that can be invested into acting
on the predicted scores decides the size of the subset. As an illustration, Duwe and Kim (2017)
note that random forest and logistic regression performance appear very similar in terms of AUC
in predicting recidivism, yet random forest much more accurately ranks the highest risk offenders.

In our view, it makes little sense to rely on capacity-unconstrained metrics, such as AUC, in
constrained scenarios in which real criminal justice systems operate. Because lift explicitly con-
siders budgetary limits it is well-suited for judicial and policing contexts. But lift requires greater
coordination between data scientists and legal domain experts, as they would need information
about budgetary constraints and operating scenarios. Lift also raises questions of justice and fair-
ness: is it reasonable to rank people and act only on the top-ranked? When predicted probabilities
are—in an absolute sense—low, acting on a predefined top x% of cases could violate intuitive
notions of fairness.

4.6 Adjusting and communicating risk scores

ARAI designers convert risk probabilities into risk levels for decision-makers to interpret and act
on. Although judges typically have discretion in choosing not to follow ARAI recommendations,
evidence from case studies suggests they often prefer to have them if available (Hartmann & Wen-
zelburger, 2021). An ARAI might display output for an individual similar to the following: ‘Risk
of Recidivism: Medium; Failure to Appear: Low; Risk of Violence: High’ and provide a recom-
mended supervision level (Angwin et al., 2016). ARAIs generally, however, give no indication of
the uncertainty associated with predicted risk levels (Partnership on AI, 2016).

Despite little evidence that categorical risk levels promote better informed decision-making
(Scurich, 2018), it is common practice to bin continuous probabilities into discrete risk levels in
order to ‘aid practitioner interpretation’ (Chiappa & Isaac, 2018). In some US states, such as Ken-
tucky, practitioners are required to create risk groups (Stanford Law School Policy Lab, 2019a).
Nevertheless, there may still be a large, unaccounted for gap between a predicted probability and
categorical score. Depending on relative misclassification costs, an algorithm developer might
decide to classify an individual as ‘high risk’ if the predicted probability ranges between 0.50
and 0.99. Mayson (2017) suggests that binning and threshold decisions involving preventative
restraint should ideally be based on comparisons with the general population of non-defendants.
We note that binning decisions are related to construct validity and measurement error (Hanson
et al., 2017).
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There are pros and cons to creating risk groups (Hilton et al., 2015). Discretising risk levels
discards potentially useful information, but can increase consistency across judges who might
interpret raw probabilities in different ways. Gastwirth (1992) cites a study of judges in the East-
ern District of New York revealing varying interpretations of probability assigned to important
legal standards of proof, such as ‘preponderance of evidence’ and ‘[evidence] beyond a reason-
able doubt’. On the other hand, a more precise and finer breakdown of risk, such as displaying
percentile ranks, absolute recidivism rates, or risk ratios (Hanson et al., 2017), may reduce the
consistency of judicial decision-making processes. But access to these more fine-grained distinc-
tions could theoretically promote more individualised sentencing. In either case, when predicted
probabilities are converted into risk levels, this choice is usually neither driven by legal or theo-
retical considerations nor aligned with the outcome measure used in training, which is typically
an arrest or conviction, not a ‘risk level’. In fact, agencies often adjust algorithms’ predictions ex
post until predicted risk scores are broadly aligned with the desired or expected distribution of
risk in the target population (Ritter, 2013), which is only vaguely estimable. An ARAI designed to
help allocate probation supervision levels where 90% of individuals receive a ‘high risk’ classifica-
tion is useless in practice. But these ad hoc adjustments and risk groupings create inconsistency
across systems and applications.

Finally, as hinted at earlier, the decision to train an algorithm for discrimination or calibration
can result in different predictive models being declared most predictively accurate. This is because
small differences in relative ranks (e.g., 1–2) may hide large absolute differences in probability
(e.g., 0.99–0.01). In other words, the best model for a calibration task may not be the best model
for a discrimination task: it will depend on what one is trying to predict. The absolute risks of some
crimes may be so low (e.g., a 4.9% failure to appear rate) that converting predicted probabilities
into relative ranks or ‘high, medium, and low risk-levels’ is misleading to end-users (Eckhouse
et al., 2019).

5 POSSIBLE FUTURES FOR ALGORITHMIC RISK
ASSESSMENT

Despite methodological debate about the ‘exceptional variation’ of individual predicted scores and
whether this imprecision warrants their disuse (Cooke & Michie, 2010; Imrey & Dawid, 2015),
current ARAIs are mostly limited to relatively interpretable and computationally stable statis-
tical regression models. The next generation, however, will likely rely on more automated and
flexible ML algorithms with built-in data ingestion and variable selection capabilities (Duwe &
Rocque, 2017; Slobogin, 2017), such as those used in predictive policing. We also expect these
models to use more granular, micro-level behavioural data on individuals and key criminal justice
actors and decision-makers, such as police and judges. As noted earlier, judges have discretion
in choosing to follow predicted risk scores, resulting in a ‘gap’ between algorithmic recommen-
dation and the final judicial decision. Green (2020) details research showing how some judges in
Cook County, Illinois are systematically biassed in favour of increased detention, and how defen-
dants’ race is correlated with decisions to increase individuals’ predicted crime risk. We refer
to this phenomenon as override bias (see Figure 1, step 11). Further, various institutional and
economic pressures—not to mention other psychological factors such as anchoring bias (Chang
et al., 2016) and ARAI output misinterpretation (Yacoby et al., 2022)—may affect how and when
judges diverge from the algorithm’s recommendation. To better understand the relevant fac-
tors involved and promote greater accountability, Koepke and Robinson (2018) suggest requiring
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judges to justify these divergences and that agencies begin collecting data on when and how they
occur.

If a source of data improves the ability to reliably discriminate among risk levels, for-profit
companies and under-funded public agencies have clear incentives to use them to more efficiently
allocate resources (Berk, 2019). A shift is already underway in some risk-modelling industries
such as credit scoring and car insurance, where auto insurance policy rates can be augmented
with behavioural driving data and GPS locations. A recent study by Ayuso et al. (2019) used telem-
atic data to design auto insurance policies, emphasising the need to find ‘new variables of risk
exposure and driver behaviour’. Berk (2019, p. 172) refers to these new individually weak, but
collectively powerful sources of predictive information as ‘dark structure’, arguing ‘there is sub-
stantial structure in criminal behavior that current thinking in criminal justice circles does not
consider’. But if things move in this direction, the hidden sources of predictive inconsistency we
mentioned will persist and perhaps become even more difficult to detect.

In terms of ML algorithms, classification and regression trees are a likely next step due to
their relative transparency and interpretability. Berk and Bleich (2014) suggest random forests as
a candidate ML technique, which also offer predictor importance scores and the ability to easily
employ asymmetric misclassification costs in model training (Berk, 2019). Kleinberg et al. (2018)
use gradient boosted trees to predict failure to appear cases in New York City. Random forests
are used by both the Harm Assessment Risk Tool in the United Kingdom (Oswald, 2018) and
a COMPAS tool used by some US prisons for new inmate classification (Brennan et al., 2009).
We note, however, that ML algorithms, even tree-based algorithms, can be numerically unstable:
re-running the algorithm with the same data but a different random initialisation seed can give
a different output (Berk, 2019). Even using different software can lead to a different result, thus
increasing predictive inconsistency.

Paralleling the evolution in predictive algorithms, the next generation of ARAIs will rely on
new and more finely-grained sources of behavioural data as input (Werth, 2019). As digital era
governance and IT infrastructures expand, we foresee a move from using only well-understood
input measures (e.g., criminogenic factors), toward ‘features’ derived from fusing multiple data
sources (e.g., social media), with data in multiple formats (e.g., numerical, text, image, video,
network). In China, using such behavioural big data is already common in law enforcement
and for tightening up the government’s social and political control (Jiang & Fu, 2018). In the
United States, California has trialed GPS monitoring of high-risk parolees, and in some areas driv-
ing under the influence probationers are given remote monitoring anklets (Ridgeway, 2013). In
Taiwan, You et al. (2018) designed a portable breathalyser device to reduce drunk driving by log-
ging and analysing complex behavioural data and reporting them to a local probation office. These
sources of behavioural data can easily be adapted and included as predictors in future ARAIs. But
as the sources and variety of input data grow, so too do worries of robustness under conditions of
data set shift (Berk, 2019).

New and more complex sources of data may also conflict with contemporary understand-
ings of the rule of law in Western democracies (Liu et al., 2019). The distinction between
using algorithms to explain or predict (Shmueli, 2010) raises legal questions about the relevance
and defensibility, accountability, and transparency of high-stakes blackbox predictions when
employed by private companies and public authorities (Oswald, 2018). For instance, algorithm
audits in the health care domain have uncovered evidence of racial bias due to spurious corre-
lations stemming from construct invalidity (Obermeyer et al., 2019). Unless citizens know they
are subjected to such algorithms and they have some way of challenging the results (which itself
requires some degree of explainability), predictive algorithms pose the risk of reproducing, not
resolving, societal inequities.
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6 TOWARDS ILLUMINATING AND QUANTIFYING
FORKING PATHS

As ARAIs use more sophisticated algorithms and harvest more complex sources of behavioural
data, how can we illuminate and estimate predictive inconsistency in ways compatible with and
justified by legal, political and scientific practices? We suggest a pragmatic compromise based on
a philosophy of pluralism. Pluralist ARAI design tolerates some level of predictive inconsistency
by viewing a well-functioning ARAI as reliably assigning an individual into a risk category across
a variety of ‘reasonable’ forking paths. This approach aims to cancel out systematic biases of indi-
viduals or groups of data scientists by combining predictions made across a variety of agreed-upon
reasonable forking paths constituting the design, decision, representational and attentional biases
of data scientists from diverse walks of life. Inspired by the ‘notice and comment’ rulemaking pro-
cedures of US government agencies (Mulligan & Bamberger, 2019), the democratic pluralism we
endorse insists that deliberation on the ‘reasonableness’ (Binns, 2018a) of a path be responsive
to public criticism from those likely to be subjected to predictions (or their chosen appointees).
In this way, individuals can influence decisions affecting their interests (Fung, 2013), or at least
be heard in a due process. The predictions generated through the democratic and technologi-
cally aided procedure we propose may better achieve the normative legitimacy characteristic of
‘procedurally fair’ legal judgments (Habermas, 2015; Tyler, 2006). We thus advocate for ARAI
design based on publicly contestable, multi-path ‘forks’ rather than monological, single-path
‘knives’.

But not all forking paths are under the control of ARAI designers. For example, data sci-
entists have little to no control over the quality of the administrative data, or how corrections
officers conduct interviews and assessments. Further, judges are not required to follow the ARAI’s
recommendation and may even misinterpret its output. Local legal requirements also constrain
construct operationalisation. Yet many paths are under the designers’ control. We therefore
distinguish between forking paths that are quantifiable by ARAI designers and those that are
not. Quantifiable paths comprise a variety of generic data science decisions, which can vary
according to local legal and data set-driven considerations. These paths can be used to help illu-
minate the various sources and impact of predictive inconsistency on individual risk prediction
scores.

The first step is to identify and document the multiplicity of paths involved in the develop-
ment of an ARAI, as outlined in Section 4. We then envision turning identified forking paths
into self-contained, shareable, searchable and reproducible computational environments using
tools and workflows adapted from software engineering (Forde et al., 2018; Ragan-Kelley and
Willing, 2018). Model-level ‘predictive multiplicity’ metrics (Marx et al., 2020) can be combined
with auditing tools such as data sheets (Gebru et al., 2021) and model cards (Mitchell et al., 2019)
to help document data and modelling choices relevant to a specific prediction. The goal of
this step is to facilitate internal and third-party ARAI auditing and possibly even foster civic
engagement by creating publicly accessible ARAI registries, as several major cities have done
(Johnson, 2020).

After identifying and documenting candidate paths, our pluralist approach calls for a diverse
group of domain experts to deliberate on which paths are ‘reasonable’, drawing on their combined
technical, legal and theoretical knowledge. Again, any agreed upon definitions, ranges or thresh-
olds should be responsive to and contestable from those likely to be subjected to predictions, or
their chosen representatives (i.e., a public data science advocacy group). Table 2 provides a basic
template for evaluating the reasonableness of a currently deployed ARAI or one in development.
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T A B L E 2 Sample template for deliberating on the reasonableness of quantifiable ‘forking path’ choices by
ARAI designers

Step in ARAI
development

Data science
choices (examples)

Evaluating reasonableness
of path

Defining and operationalising
constructs

Event type, time period,
geographic area

Check local law and domain
knowledge (e.g.,
criminology)

Collecting data and computing
measures

Data scientists generally have
less control over data
collection and quality

Use or create data sheet.
Check for: coverage bias,

measurement error and
selection bias

Data pre-processing Data imputation, over/under
sampling, grouping rare
categories, binning continuous
features, removing outliers,
transforming predictors

Use model cards and
exploratory data analysis.

Investigate reasons for
missingness and/or class
imbalance

Model/variable selection Regression model, random
forest, stepwise procedures,
bootstrap, regularisation, add
pairwise interactions

Examine interpretability and
numerical stability
(e.g., different random
seeds and train/test splits)

Selecting performance metrics AUC, Brier scores, lift, fairness
metrics

Determine: calibration or
discrimination goal?
Institutional budget
constraints? Individual or
group fairness?

Adjusting risk scores and
communication

Create discrete risk bins Check local law for binning
guidance and budgetary
limits

Assuming consensus has been reached on a set of reasonable forking paths, and these paths have
been identified and documented in reproducible environments, the next step is generating predic-
tions for individuals. We propose adapting the methods of multiverse analysis (Steegen et al., 2016)
and specification curve analysis (Simonsohn et al., 2020), a technique giving a high-level, visual
overview of multiverse analyses. Multiverse analysis stems from applications in psychology (Sim-
mons et al., 2011) and the analysis of experimental fMRI data, where up to 35,000 different forking
paths may be at play (Carp, 2012).

Although multiverse analyses generally focus on parameter estimation and statistical infer-
ence, we instead suggest adapting these techniques to individual-level predictions for a specific
ARAI under development or audit. The essential idea is to evaluate subject-level predictive incon-
sistency by generating reasonable forking paths and obtaining the set of resulting prediction
scores for each subject. The score distribution for an individual is then plotted using specification
curves. During ARAI development and auditing, individual-level score distributions can be used
for estimating overall predictive inconsistency stemming from manipulable forking paths and for
researching sources that might be eliminated. Further, the score distributions can also be used at
the time of decision-making to, for instance, illuminate person-specific predictive inconsistency
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levels and help end-users determine the appropriate level of credibility to attach to the ARAI’s
score. Similar to the suggestion of Marx et al. (2020), when an ARAI exhibits an unreasonable
degree of predictive inconsistency, we might choose not to make predictions for that person, or
implement the model at all.

To reiterate, because of our focus on individual-level prediction scores, the key modifications
to multiverse analysis include (1) creating a predictive inconsistency holdout set, ideally based
on a purposive or representative sample of the population of interest located where the ARAI is
likely to be deployed; (2) determining ‘reasonable’ minimal predictive and fairness performance
metric thresholds, based on deliberation among data scientists, domain and legal experts (e.g.,
whether AUC, Brier scores or lift should be used and their acceptable thresholds or ranges; which
fairness metric is used, etc.); (3) adapting specification curves to display subject-level predicted
scores. Specification curves helpfully reveal both model specification details (i.e., which forking
paths went into an individual’s prediction) and corresponding predicted scores. We envision the
results of these analyses open to public comment and scrutiny.

Multiverse analysis can also help to align ARAI design and auditing with principles and prac-
tices of legal responsibility aimed at preventing and repairing harms in society. In civil law, for
instance, domain specific, community-based standards of ‘reasonable conduct’ and care are used
to assess responsibility for harmful outcomes (Cane, 2002). When evaluating negligence claims in
domains such as medicine, a common test for establishing causation entails asking whether, ‘but
for the negligence of the defendant, the plaintiff would not have been injured’ (Epstein, 1973).
A further consideration is whether abnormal or deviant conditions were present (Hart & Hon-
oré, 1985). An ex post multiverse analysis can thus help reveal that an individual’s predicted
risk scores would likely have fallen into some range, ‘but for’ a particular data science decision.
With the help of a diverse community of domain experts to specify ‘reasonable’ forking paths,
multiverse analysis can encourage socially accountable ARAI design by providing standards to
assess the reasonableness of a particular design choice. Besides providing useful ‘contrastive’
or counterfactual causal explanations (Miller, 2019) of predicted risk scores, multiverse analysis
can guide efforts to improve data collection and quality and indicate construct invalidity when
irrelevant factors have an unexpected and disproportionate impact on an individual’s predicted
risk score.

Prediction-oriented multiverse analysis is limited by applying only to quantifiable forking
paths amenable to manipulation by data scientists. Analyses may therefore only provide a lower
bound for an ARAI’s predictive inconsistency for a given individual. Privacy concerns, strategic
gaming considerations and issues of intellectual property law may also restrict the feasibility and
generality of this collaborative approach. Citizens and ARAI end-users might also lack the requi-
site data science and legal knowledge or motivation to participate in developing community-based
standards of reasonableness. For this reason, a specialised government agency could be tasked
with setting such standards (see, e.g., Scherer, 2015). In any case, we encourage interdisci-
plinary research on not only the sources of predictive inconsistency affecting ARAIs and similar
socio-technical systems, but also on the larger legal and institutional decision-making processes
in which they are embedded.

7 CONCLUSION

Although controversial, ARAIs increasingly influence decision-making in criminal justice sys-
tems worldwide. Predictive inconsistency captures the conceptually-justified-but-technically-
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different decisions by ARAI designers that reduce the ability to provide consistent predictions
for the same individual. Key sources of predictive inconsistency include construct invalidity,
measurement error, processing and data coding error, coverage bias, non-response bias, and
adjustment error. These errors relate to the way ARAI designers define, operationalise, collect
and preprocess data, select predictor variables, choose models and performance metrics, test and
deploy them, and communicate risk scores in many and often conflicting ways. Grounded in the
normative framework of scientific and political pluralism, we propose multiverse and specifica-
tion curve analyses as steps towards reproducible, explainable and democratically accountable
ARAI development and auditing. These methods reveal how reasonable deviations (forks) from
a single development path (knives) affect the variability of a particular prediction. They also pro-
vide new means for contesting predictions and advancing ARAIs’ scientific, political and legal
legitimacy.

Criminal justice systems operate with limited resources, and ARAIs promise more efficient
and consistent decisions. Yet these practical benefits must be weighed against the potential harms
of unjust treatment stemming from algorithmic blindness to morally relevant differences in indi-
vidual persons and cases. Questions of whether and how ARAIs can be used in a just, responsible,
transparent and innovative manner will not be resolved by more sophisticated technology, more
rigorous mathematical formalism, or more abstract ethical principles alone. Tolerating some
degree of predictive inconsistency may be the price we must pay to live in a democratic, dynamic
and pluralistic society where legal and social practices, moral concepts, technologies, policing
and carceral strategies and even the definitions of crimes evolve over time and are subject to the
changing needs and interests of citizens. Whether the resulting imprecision negates the ostensible
social and legal utility of ARAIs we alone cannot say. This is largely a political issue (Wong, 2020)
that requires not only an appeal to technical expertise, but to normative authority as well. Ulti-
mately, however, we support adjusting the tools and techniques of predictive modeling to fit the
complex and plastic nature of persons, law and society, rather than adjusting persons, law and
society to fit the idealised and rigid nature of predictive modeling.
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