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DeepDrawing: A Deep Learning Approach to Graph Drawing

Yong Wang, Zhihua Jin, Qianwen Wang, Weiwei Cui, Tengfei Ma and Huamin Qu

Abstract—Node-link diagrams are widely used to facilitate network explorations. However, when using a graph drawing technique to
visualize networks, users often need to tune different algorithm-specific parameters iteratively by comparing the corresponding drawing
results in order to achieve a desired visual effect. This trial and error process is often tedious and time-consuming, especially for
non-expert users. Inspired by the powerful data modelling and prediction capabilities of deep learning techniques, we explore the
possibility of applying deep learning techniques to graph drawing. Specifically, we propose using a graph-LSTM-based approach to
directly map network structures to graph drawings. Given a set of layout examples as the training dataset, we train the proposed
graph-LSTM-based model to capture their layout characteristics. Then, the trained model is used to generate graph drawings in a
similar style for new networks. We evaluated the proposed approach on two special types of layouts (i.e., grid layouts and star layouts)
and two general types of layouts (i.e., ForceAtlas2 and PivotMDS) in both qualitative and quantitative ways. The results provide support
for the effectiveness of our approach. We also conducted a time cost assessment on the drawings of small graphs with 20 to 50 nodes.
We further report the lessons we learned and discuss the limitations and future work.

Index Terms—Graph Drawing, Deep Learning, LSTM, Procrustes Analysis

1 INTRODUCTION

Node-link diagrams are widely used to visualize networks in various
areas, such as bioinformatics, finance, and social networks analysis.
Many graph drawing techniques have been proposed in the past five
decades [4, 30, 41, 49] to achieve desired visual properties of node-
link diagrams, such as fewer edge crossings, less node occlusion, and
better community preservation, to support an easy interpretation of the
underlying network structures.

Graph drawing methods are often based on different underlying
principles: from spring-embedder algorithms [24], to energy-based
approaches [47,48,63], to dimension-reduction based techniques [9,27].
When users employ a specific graph drawing algorithm, they usually
need to understand its basic mechanism and tune its various parameters
to achieve the desired visual properties for different graphs, though
some default parameters are often provided by the developers. Such
trial-and-error process requires time and is a non-trivial challenge for
less experienced users without a background in graph drawing. Since
the algorithm-specific parameters and the corresponding drawings often
depend on the input graph structure, we consider the question whether
a machine learning approach can be used instead to generate the graph
drawings.

One possible choice is using the graph structure information to
directly predict the graph drawings with certain visual properties, where
graph drawing is considered as a structure-to-layout mapping function.
A recent work [54] speeds up the graph drawing process by showing a
pre-computed drawing of a graph that has a similar graphlet frequency
to the input graph. However, such an approximation needs to extract
a hand-crafted feature (i.e., graphlet frequency) and cannot guarantee
that it will definitely generate an accurate drawing for the input graph,
since graphs with a similar graphlet frequency can have totally-different
topology structures. On the other hand, deep learning techniques have
shown a powerful capability for modelling the training data and making
predictions for relevant data inputs, where no hand-crafted features
are needed. Deep learning techniques have been successfully used
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in various applications such as computer vision and natural language
processing fields [32,56]. Inspired by these successes, we are exploring
the possibility of applying deep learning techniques to the problem of
graph drawing in this paper.

However, we are not aware of any prior work on using deep learning
for graph drawing, and there is still a significant gap in how to achieve
this. This gap is mainly due to three aspects: model architecture, loss
function design, and training data.

Model architecture: Graphs represent topological relationships
between different entities; this makes graphs intrinsically different
from typical datasets that are often used in deep learning, such as
images, videos and texts, which are all Euclidean data. Therefore, it
remains unclear whether deep learning techniques can be used for graph
drawing and how to adapt existing techniques for the graph drawing
problem. Some recent work on Graph Convolutional Neural Networks
(GCN) [15, 51] has adapted the CNN framework for graph data, but
they are mainly applied to node classification and link prediction tasks,
which is different from ours. Since there is no prior work on this
problem, our first step is identifying a deep neural network model that
can be used to predict graph drawings. At the same time, it is also
necessary to identify a transformation that can convert a graph structure
into a data structure that can be processed by deep learning models.

Loss function design: One key part of using deep learning tech-
niques is designing an appropriate loss function to guide the model
training. For typical deep learning tasks such as classification, the
loss function can be easily defined by counting incorrect predictions.
However, it is much more complicated for graph drawing. For example,
how can we define whether the prediction of a node position is “correct”
or “incorrect”? Since a graph drawing may have significantly-different
visual appearances after linear transformations, like translation, rotation
and scaling, it is also critical for us to design a loss function that is
invariant to those transformations.

Training data: High-quality training datasets are critical for using
deep learning techniques and many benchmark datasets have been
published in different applications, e.g., ImageNet dataset 1 for image
classification, MNIST dataset 2 for digits recognition. However, there
are no available benchmark datasets with clear drawing labels for graph
drawing tasks.

In this paper, we propose a graph-LSTM-based approach to directly
generate graph drawing results based on the topology structures of input
graphs. We transform the graph topology information into a sequence
of adjacency vectors using Breadth First Search (BFS), where each ad-
jacency vector encodes the connection information between each node
and its adjacent nodes in the sequence. In addition, we propose a Pro-

1http://www.image-net.org/
2http://yann.lecun.com/exdb/mnist/
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crustes Statistics based loss function, which is essentially invariant to
translation, rotation and scaling of graph drawing, to assess the learning
quality and guide the model training. Furthermore, we generate three
graph datasets (including grid graphs, star graphs and general graphs
with clear communities), which are further drawn by both two regular
drawings (i.e., grid layout and star layout) and two general drawings
(i.e., a force-directed graph drawing [47] and a dimension-reduction-
based drawing [9]). We carefully choose the parameters of drawing
algorithms to generate drawing results with certain desired visual prop-
erties for these graphs (e.g., better preservation of community structure
and less node occlusion). As a proof of concept, these drawings are
treated as the ground-truth labels. The graphs and the corresponding
drawings are used to train and test the proposed approach.

We investigated the effectiveness of the proposed deep learning
approach through both qualitative comparisons and quantitative metric
evaluations, where the drawings of our approach are compared with the
ground truth drawings (drawn by ForceAtlas2 [47] and PivotMDS [9])
and the drawings by a 4-layer bidirectional LSTM model. In summary,
the primary contributions of this work include:

• A novel graph-LSTM-based approach for graph drawing, which,
to the best of our knowledge, is the first time that deep learning
has been applied to graph drawing.

• Qualitative and quantitative evaluations on three synthetic graph
datasets (i.e., grid graphs, star graphs and clustered graphs with
20–50 nodes) and four types of drawings (i.e., grid layout, star
layout, ForceAtlas2 and PivotMDS), which provides support for
the effectiveness and efficiency of our approach in generating
graph drawings similar to the training data.

• A detailed summary of the lessons we learned in the development
of the proposed approach, which, we hope, will assist in future
research on using deep learning for graph visualization.

2 RELATED WORK

This section summarizes the related work of this paper, which mainly
consists of three parts: graph drawing, graph neural networks, and
machine learning approaches to graph drawing.

2.1 Graph Drawing
One of the central problems in graph visualization is the design of
the algorithms for graph layout. Since Tutte [72, 73] proposed his
barycenter method for graph drawing more than fifty years ago, the
information visualization community has proposed many graph drawing
techniques. These algorithms can be found in various books [4, 49, 71]
and surveys [16, 30, 41, 74, 79].

Typically, graph drawing algorithms generate only one drawing
for a graph, though some work [6] also proposes producing multiple
drawings for the same graph. According to the survey by Gibson et
al. [30], the existing graph drawing algorithms can be categorized into
three types: force-directed layouts, dimension reduction based layouts,
and computational improvements like multi-level techniques. Force-
directed graph layout approaches regard a graph as a physical system,
where nodes are attracted and repelled in order to achieve desirable
graph drawing aesthetics. Eades [22] proposed a spring-electrical-based
graph drawing approach, where nodes and edges are modeled as steel
rings and springs, respectively. The final graph drawing result is the
stable state when the forces on each node reach an equilibrium. This
kind of modelling is the start of all force-directed techniques and has
inspired many follow-up algorithms, like the spring-embedder algo-
rithm by Fruchterman and Reingold [25], the graph-embedder (GEM)
algorithm [24], and the energy-based approaches [47, 48, 63, 78]. Di-
mension reduction based methods focus on retaining the information
of high-dimensional space in the projected 2D plane, especially the
graph-theoretic distance between a pair of nodes. Various dimension
reduction techniques have been used for graph drawing, including mul-
tidimensional scaling (MDS) [9, 27], linear dimension reduction [38],
self-organising maps (SOM) [7, 8] and t-SNE [53]. The last category
of algorithms mainly aims to improve the efficiency of force-directed
algorithms for drawing very large graphs. These approaches often fol-
low a multi-level paradigm: optimizing the graph drawing in a coarser

graph representation and further propagate the layout result back to the
original graph [26, 34, 37, 44].

Different from prior studies, this paper explores the possibility of
using deep neural networks for graph drawing.

2.2 Graph Neural Networks

Existing deep neural networks mainly focus on regular Euclidean
data (e.g., images and text), which cannot be directly applied to non-
Euclidean data, like graphs. To address this issue, a number of graph
neural networks (GNN) have been proposed by extending existing
deep neural networks, e.g., convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), to the graph domain [82].

The GNNs that are derived from CNNs can be categorized into spec-
tral approaches and non-spectral approaches [82]. Spectral approaches
apply convolution to the spectral representation of graphs [9, 12, 15, 40,
51]. For example, Bruna et al. [12] conducted convolution in the Fourier
domain using eigen decomposition of the graph Laplacian. Defferrard
et al. [15] approximated the spectral convolution using Chebyshev poly-
nomials and reduced the computational cost. Since spectral convolution
depends on the input graph, spectral approaches are usually applied
in the learning problem within a single graph. Instead of defining
convolution operations in the spectral field, non-spectral approaches
operate convolution directly on the graph [36, 60, 62]. The key chal-
lenge of non-spectral approaches is how to define the neighborhood of
a node as the receptive field and various methods have been proposed,
including adaptive weight matrices [21], uniformly sampling [36], and
transition matrices [1]. A closely related research direction explores
using RNNs for graph-structured data [57, 65, 70, 82]. For example,
Li et al. [57] modified the Gate Recurrent Units (GRU) and proposed
a gated GNN to learn node representations. Tai et al. [70] proposed
two types of tree-LSTM, generalizing the basic LSTM to tree-structure
typologies, to predict the semantic relatedness of sentences. Peng et al.
[65] extended tree-LSTM by distinguishing different edge types in the
graph and applied the model to the relation extraction problem in the
Natural Language Processing (NLP) field. You et al. [80] developed an
RNN-based method for modeling complex distributions over multiple
graphs and further generating graphs.

However, the idea of applying GNNs to graph drawing has been
rarely explored, even though it is a fundamental research direction in
the visualization community.

2.3 Machine Learning Approaches to Graph Drawing

According to the survey by Santos Vieira et al. [17], there have been
only a few studies about applying machine learning techniques to graph
drawing. These techniques can be roughly classified into two categories:
the approaches that learn from human interaction and those without
using human interaction. The first group of techniques assume that the
choices of aesthetic criteria and their importance depend on the users’
subjective preferences. Therefore, these approaches keep humans in
the loop and use evolutionary algorithms (e.g., genetic algorithms) to
learn user preferences [2, 3, 58, 68, 69]. However, these approaches are
inherently dependant on user interactions. The second category focuses
on using traditional neural-network-based algorithms to optimize the
aesthetic criteria of a graph layout [13, 76] or to draw graphs in both
2D and 3D space [59]. However, these early studies are essentially
categorized as traditional graph drawing methods, where algorithm-
specific parameters are still needed.

Recently, Kwon et al. [54] proposed a machine learning approach
that provides users with a quick preview of the graph drawing and it uses
graphlet frequency to compute the similarities among different graph
structures. However, as Kwon et al. pointed out in their paper, similar
graphlet frequencies do not necessarily lead to similar drawings. Deep
learning techniques have recently been applied to multidimensional
projections [23]. However, the networks cannot be directly used for
graph drawing, since the designs of the model input and training loss
function for graph drawing are significantly different from those of
multidimensional projection. Also, neural-network-based approaches
have been proposed to evaluate graph drawing results [35, 52].
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Fig. 1. The workflow of graph drawing algorithms: (a) traditional graph
drawing algorithms, (b) the proposed deep learning based approach.

This paper expands on these earlier findings and makes new contri-
butions to the field by focusing on applying deep learning techniques to
direct graph drawing instead of using a similar preview, and the trained
model can be reusable for new graphs.

3 PROBLEM STATEMENT

A graph G = (V,E) consists of a set of n nodes V = {v1,v2, ...,vn} and
an edge set E ⊆V ×V . The graphs can be classified into directed and
un-directed graphs, depending on whether the edges are directed or not.
For graph drawing, the edge directions are often ignored, since they can
easily be visualized by adding an arrow to each link. In this paper, we
focus on the visualization of unweighted and undirected graphs. The
graph drawing problem is finding a set of coordinates C = {cv|v ∈V}
for the given graph G = {V,E} [44]. In this paper, we only consider
2D drawings, which means pv ∈ R2. Also, we assume that the edges in
the graph drawings are straight-lines, instead of arcs or curves.

As discussed in Section 2.1, there have been many graph drawing
algorithms that are proposed for optimizing aesthetic criteria like mini-
mizing edge crossings, avoiding node occlusions, and preserving the
node community structures. These criteria are formulated as objective
functions and integrated into the design of traditional graph drawing
algorithms (Fig. 1(a)). When using a drawing algorithm to visualize a
specific graph, users also need to tune the algorithm parameters through
trial and error to achieve a suitable graph drawing result.

In this paper, we formalize graph drawing as a learning problem
and propose a novel and generalizable deep-learning-based approach to
graph drawing (Fig. 1(b)). Given a set of graph drawing examples with
desirable aesthetic properties and their structures, the deep learning
model is trained to learn the mapping and corresponding algorithm-
specific parameters for determining the desirable graph drawings (Train-
ing Stage in Fig. 1(b)). Once the deep learning model is successfully
trained, when given a new graph, it can automatically analyze the graph
structure and directly generate a layout that carries the common visual
properties of the drawing examples (Testing Stage in Fig. 1(b)). We use
the term “graph drawing style” to refer to the common visual prop-
erties (e.g., the characteristics regarding edge crossings, community
preservation and node occlusion) that are shared by the training graph
drawings. The deep learning model learns one specific drawing style
from a certain training dataset. In real applications, the deep learning
model can be pre-trained by experts. Then, the well-trained model can
be directly used by different users to visualize graphs, especially graph
drawing novices.

4 BACKGROUND: LONG SHORT-TERM MEMORY NETWORKS

As will be introduced in Section 5, we propose a graph-LSTM-based
approach for graph drawing, where the foundation of our model is the
typical LSTM architecture. This section introduces the basic concepts
and other related background of LSTM.

LSTM architecture is a popular variant of Recurrent Neural Net-
works (RNNs). It can learn long-distance dependencies of the input
sequence and can avoid the gradient exploding and vanishing problems
of traditional RNN models [28, 42]. The main reason for this is that
LSTM models introduce a memory cell, which can preserve the state
over a long time range. An LSTM memory cell consists of an input
gate, output gate, and forget gate. It takes sequential data {x0, ...,xT }
as inputs and maintains a time-variant cell state vector ct and hidden
state vector ht , where xt ∈ Rm, ct ∈ Rn and ht ∈ Rn.

The transitions functions of LSTM are as follows:

it = σ

(
W (i)xt +U (i)ht−1 +b(i)

)
(1)

ot = σ

(
W (o)xt +U (o)ht−1 +b(o)

)
(2)

c̃t = tanh
(

W (c)xt +U (c)ht−1 +b(c)
)

(3)

ft = σ

(
W ( f )xt +U ( f )ht−1 +b( f )

)
(4)

ct = it � c̃t + ft � ct−1 (5)
ht = ot � tanh(ct) (6)

where xt , ht and ct represent the input feature vector, hidden state,
and cell state of the current time step t, respectively. W ’s and U’s are
the weighted matrices for the input and hidden state, and b’s are the bias
vectors. σ , tanh and � are the sigmoid function, the hyperbolic tangent
function, and the pointwise multiplication operation, respectively. Basi-
cally, the input gate it controls how much the information is updated
at each time step; the output gate ot controls how much of the internal
state information flows out of the cell. The forget gate ft is a key design
of LSTM; it enables LSTM models to forget the previous cell state that
has become irrelevant to a certain degree. Due to the design of these
gates, LSTM models can learn and represent long-distance correlations
within sequential input data [42].

5 DeepDrawing
We propose a deep learning based approach, called DeepDrawing, for
graph drawing. Our model is built on the widely-used LSTM frame-
work [42]. This section introduces DeepDrawing from the perspectives
of model architecture, input design, and loss function.

5.1 Graph-LSTM-based Architecture
When applying deep learning techniques to graph drawing, a fundamen-
tal requirement is to learn a certain graph drawing style from multiple
graphs of various sizes. As discussed in Section 2.2, many graph neu-
ral networks, like spectral approaches [9, 12, 15, 40], mainly focus on
learning from a single graph or fixed-size graphs. Thus, these models
do not easily generalize graphs with different sizes and structures [10].
On the other hand, RNN-based graph neural networks are intrinsically
applicable to graphs with variable sizes, since RNN cells can be recur-
rently used. Also, a recent study [80] has shown that RNNs are capable
of modelling the structure information of multiple graphs. Inspired by
these models, we focus on RNN-based approaches for graph drawing
in this paper.

Among the RNN-based approaches, vanilla RNNs have proved to
be difficult to train, as they suffer from gradient vanishing or explo-
sion [5, 64] problems. On the contrary, as introduced in Section 4,
LSTM models introduce a series of gates to avoid amplifying or sup-
pressing the gradients, making them better at capturing long-distance
dependencies.

In this paper, we propose a graph-LSTM-based approach for graph
drawing. The commonly-used LSTM architectures are often linearly
chained, as described in Section 4. One of their major limitations is
that they can only explicitly model sequential data. However, for graph
drawing, the input is essentially the graph/network structure, which is
usually not linearly-chained. The layout position of a node in the graph
drawing depends on all the other nodes that are directly or indirectly
connected to it. When using a general LSTM model, such kind of
dependency information can still be weakened or lost, especially for
the LSTM cells that are far from each other. Inspired by the recent
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work in natural language processing field [65, 70], we propose adding
direct connections between different LSTM cells to explicitly model
the topological structure of input networks. Such direct connections
are termed “skip connections” in the deep learning field [32]. Then we
can use the linear chain between adjacent LSTM cells to propagate the
overall state of prior graph nodes to the subsequent nodes along the
chain.

Although our model architecture is similar to prior studies [65, 70],
it targets at different problems. Unlike natural language processing
(NLP) problems, where the input text is already sequential data and the
input feature vector can be directly gained through word embedding, it
is necessary to carefully design the architecture and input feature vector
to model the graph topology information when using deep learning for
graph drawing. To the best of our knowledge, our model is the first deep
learning architecture proposed for graph drawing tasks. Fig. 2 provides
an overview of the proposed model architecture. The input graph is
transformed into a sequence of nodes. Each LSTM cell takes the feature
vector of one node as input and generates the output status of each node.
The green arrows between LSTM cells represent the real edges in the
graph structure, while the dotted yellow arrows are the “fake” edges
between adjacent nodes in the BFS-ordered node sequence to propagate
the summary state of previous nodes to subsequent unprocessed nodes.
The detailed transition equations of our model are as follows:

it = σ

(
W (i)xt +U (i)ht−1 + ∑

k∈P(t)
Ũ (i)hk +b(i)

)
(7)

ot = σ

(
W (o)xt +U (o)ht−1 + ∑

k∈P(t)
Ũ (o)hk +b(o)

)
(8)

c̃t = tanh

(
W (c)xt +U (c)ht−1 + ∑

k∈P(t)
Ũ (c)hk +b(c)

)
(9)

ft,t−1 = σ

(
W ( f )xt +U ( f )ht−1 +b( f )

)
(10)

ftk = σ

(
W ( f )xt +Ũ ( f )hk +b( f )

)
,k ∈ P(t) (11)

ct = it � c̃t + ft,t−1� ct−1 + ∑
k∈P(t)

ftk� ck (12)

ht = ot � tanh(ct) (13)

where P(t) denotes the prior nodes that have real edges linked to
Node t. Like the standard LSTM model (Equations 1-6), the proposed
model also considers the hidden state of the immediate predecessor
node (t − 1) in the recurrent terms (i.e., U (i), U (o), U (c) and U ( f )),
which correspond to the fake edges discussed above. However, when
comparing the transition functions of both models (Equations 1–6 and
Equations 7–13), it is easy to find the main difference: our model
further considers the real edges in the architecture and integrates the
states of the remotely-connected predecessors (i.e., Ũ (i), Ũ (o), Ũ (c) and
Ũ ( f )) into the current node. Thus, it can directly reflect the actual graph
structure and well model the influence of former nodes on subsequent
nodes along the node sequence in the graph drawing.

On the other hand, graphs are not sequential data. When attempting
to draw a graph using this approach, all nodes (both those before and
those after in the linear layout) should be taken into consideration, i.e.,
the latter nodes in the sequence can also influence the positions of
the former nodes during the actual graph drawing. To better model
this mutual influence, we further introduce a backward propagation to
the proposed graph-LSTM-based model by simply reversing the link
direction in the forward propagation (Fig. 2(b)). Then, we combine the
outputs of each LSTM cell in both forward and backward propagations
into a concatenated feature vector, which is further input into a fully-
connected layer to generate the final 2D coordinate of each node.

5.2 Model Input
When applying the LSTM model to graph drawing, it is crucial to find
a suitable way to input the graph structure information into the LSTM

Fig. 2. An illustration of the proposed graph-LSTM-based model archi-
tecture: (a) an example graph input, (b) the proposed model to process
the input graph. The graph nodes are sorted using BFS, with each node
represented by an adjacency vector encoding its connections with pre-
decessor nodes. The dotted yellow arrows (“fake” edges) propagate the
prior nodes’ overall influence on the drawing of subsequent nodes, and
the curved green arrows (real edges of graphs) explicitly reflect the actual
graph structure, enhancing the graph drawing details. The information of
both forward and backward rounds is considered for generating the final
2D node layouts.

model. More specifically, we need to determine the feature vector for
each node, where the graph structure information of each node should
be properly encoded. This feature vector will be further input into the
LSTM model. Also, it is necessary to transform the original graph
to a sequence of nodes (i.e., node ordering) that can be processed by
the LSTM model, which is another key point for applying LSTM into
graph drawing.

Node Feature Vector: When LSTM models are applied to NLP
tasks, word embedding techniques are often used to transform words
into fixed-length feature vectors; these vectors can be further input
into LSTM models. Considering that many node embedding tech-
niques have been proposed, like node2vec [33], DeepWalk [66] and
SDNE [75], it is natural to use node embedding techniques to encode
graph structure information and further input it into the proposed model.
However, these node embedding techniques are mainly used for a single
graph and have been proved incapable to be generalized to multiple
graphs [39]. Our initial experiments during the design of the proposed
method also confirmed this observation.

Taking into account that adjacency information between nodes is
the essential information in a graph, we propose using a fixed-length
adjacency vector as the feature vector of each node directly; it will be
further input into the proposed model. The adjacency vector of each
node encodes the connectivity between the current node and its prior k
nodes, where k is empirically set as a fixed number.

Fig. 3. The same graph drawing under transformations may look different:
(a) the original graph drawing, (b) the same graph drawing that has been
translated, rotated by 180 degrees and further scaled.
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Node Ordering: Graphs can be represented by adjacency matrices
and are permutation-invariant in terms of node ordering. Therefore, one
naive way to model a graph as a sequence of nodes is to use random
order. However, for a specific graph, the total number of such kind of
random node orderings is O(n!), where n is the total number of nodes.

Inspired by the recent study [80], we propose using breadth-first-
search (BFS) to generate node ordering for a specific graph. The
major advantage of BFS ordering is that we need to train the proposed
model on only all the possible BFS orderings, instead of exhaustively
going through all possible node permutations, which can reduce the
model searching space and benefit the model training. In addition,
for a specific node in a node sequence sorted by BFS, there is an
upper bound for the possible connections between this node and the
nodes before it along the BFS sequence [80]. More specifically, let
(v1,v2, ...,vi−1,vi,vi+1, ...,vn) be a BFS ordering of nodes, the furthest
node before vi that is possible to link to vi is vi−M and all the nodes
before vi−M are impossible to link to vi, where M is the maximum
number of nodes of each level in a BFS sorting. Due to the existence of
this upper bound, we can set the length of the node feature vector to a
fixed length smaller than the node number without losing much graph
structure information.

To further reduce the model’s searching space, we also use node
degree to sort the nodes at the same depth level of a BFS sorting. During
the training stage of the model, we randomly choose the starting node of
the BFS sequence, which can augment the training dataset and improve
model generalizability.

5.3 Loss Function
The design of loss function is another crucial part of applying deep
learning techniques to graph drawing, since the loss function will guide
the neural network to learn what a desirable graph drawing should
be based on the training dataset. Specifically, the graph drawings in
the training dataset are regarded as the ground-truth drawings, and
the purpose of the loss function is to guide the proposed model to
generate graph layouts as “similar” to the corresponding training data
as possible.

However, it is challenging to propose an appropriate loss function
for comparing the similarity between two drawings of the same graph.
For example, a specific graph drawing may look very different after
a series of operations from the set of translation, rotation and scaling,
as shown in Fig. 3. Therefore, the loss function should be invariant
to such kind of transformations. Motivated by these requirements, we
propose conducting Procrustes Analysis [14,18] to assess the similarity
between two drawings of the same graph. Procrustes Analysis is a
widely-used technique in statistics and shape comparison [31] and it
has also been used in graph drawing [45]. For two graph drawings of the
same graph with n nodes, Procrustes Analysis will explicitly translate,
scale and rotate the drawings to align them. Suppose the corresponding
coordinates of all the n nodes in the two drawings are C = [c1, ...,cn]

T

and C̄ = [c̄1, ..., c̄n]
T , where ci = (xi,yi) and c̄i = (x̄i, ȳi), the Procrustes

Statistic will be calculated to indicate the shape difference between
them as follows:

R2 = 1− (tr(CT C̄C̄TC)1/2)2

tr(CTC)tr(C̄T C̄)
(14)

where 0 ≤ R2 ≤ 1. It is essentially the squared sum of the distances
between C and C̄ after a series of best possible transformations. R2 =
0 denotes both graph drawings are exactly the same, while R2 = 1
indicates that the two graph drawings are totally different and cannot
be matched by any transformations.

6 EVALUATION

We thoroughly assess DeepDrawing through both qualitative and quan-
titative evaluations. This section introduces the detailed experiment
settings and evaluation results.

6.1 Experiment Setup
The experiment settings include graph generation, drawing dataset
generation, baseline method selection and other implementation details.

6.1.1 Graph Generation
Since there are no public graph drawing datasets, where the layout
position of each node is labeled, we need to generate graphs and further
properly draw the graphs to gain drawing datasets for training and
evaluating DeepDrawing. For graph generation, we adopt the classi-
cal method of synthetic graph generation proposed by Lancichinetti
et al. [55], since it can generate realistic benchmark graphs with var-
ious community structures, which is helpful for verifying whether
community-related visual properties are learned by DeepDrawing. The
implementation by the authors3 is used. We can specify various pa-
rameters, including node number, average node degree, community
number and community overlap coefficient, to control the structures of
generated graphs. In this paper, we mainly generated graphs with the
node number evenly ranging from 20 to 50, as prior studies [29, 46]
have shown that node-link diagrams are more suitable for graphs with
dozens of nodes in terms of visual perception. We randomly split the
whole dataset into training, validation and testing datasets. Table 1
shows the detailed statistics of the generated graphs used in this paper.

Apart from general graphs, we also generate grid and star graphs,
which have simple and regular topological structures, to extensively
evaluate the effectiveness of DeepDrawing.

To avoid contaminating the training data, we carefully checked and
guaranteed that no validation and testing graphs have exactly the same
topology structure with any training graphs by using pynauty 4, a public
library for checking graph isomorphism.

6.1.2 Drawing Dataset Generation
We used different types of graph drawing methods to draw the graphs.
As discussed in Section 2.1, there are mainly three types of graph draw-
ing methods. There are many force-directed and dimension-reduction-
based graph layout approaches. We chose ForceAtlas2 [47] and Pivot-
MDS [9] respectively, since both algorithms are typical and widely-used
algorithms for each type. Also, ForceAtlas2 can preserve the communi-
ties and PivotMDS is deterministic and fast. The multi-level drawing
techniques are not used, as they mainly target at the acceleration of
large graph visualization (Section 2.1), which is not the focus of this
paper.

All the graphs are drawn on a canvas with a size of 800× 800,
which is big enough for rendering the graphs used in this paper. When
drawing the graphs using the above two methods, we manually tune
the algorithm-specific parameters according to the node number, com-
munity structure and edge density of the input graphs, in order to
achieve desirable visual properties such as better clustering, fewer edge
crossings and less node occlusion. Also, due to the random point initial-
ization of ForceAtlas2, its layout results are not deterministic. Given a
graph with the same algorithm-specific parameters, the graph drawing
result may be different, which can confuse the deep learning model.
Therefore, considering that PivotMDS is deterministic, we follow the
method by Kruiger et al. [53] and initialize the node positions with
PivotMDS instead of using default randomized initial 2D positions,
guaranteeing that the same input graph is mapped to the same layout.
By drawing the generated graphs using ForceAtlas2 and PivotMDS, we
gained two drawing datasets with different layout styles.

For the grid and star graphs, apart from using ForceAtlas2 and
PivotMDS, we also visualized grid graphs as perfect grid layout and
star graphs as perfect star layout, gaining three drawing datasets for
grid and star graphs.

6.1.3 Baseline Method Selection
To better evaluate the effectiveness of our approach, it is necessary to
compare it with other general models that have a similar architecture.
Initially, we compared unidirectional LSTM and bidirectional LSTM
models, and also tested them with 1∼ 4 layers. Among all these general
LSTM models, our initial results show that a 4-layer bidirectional
LSTM (Bi-LSTM) model has the best graph drawing performance in
terms of the Procrustes Statistic based similarity with the ground truth

3https://github.com/eXascaleInfolab/LFR-Benchmark UndirWeightOvp
4https://web.cs.dal.ca/∼peter/software/pynauty/html
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Table 1. Statistics of the generated graphs.

Graph Type #Node #Edge Node Degree Training Validation Testing Total #Community

Grid Graphs [100, 576] [180, 1104] [2,4] 72 24 24 120 -

Star Graphs [10, 209] [9, 208] [1,208] 120 40 40 200 -

General Graphs [20, 50] [23, 178] [1,10] 26000 3000 3000 32000 [2, 12]

Table 2. The configurations of the baseline model and our model.

Model Hidden Size Layers Direction # Parameters

Baseline 256 4 bidirectional 5.33M

Ours 256 1 bidirectional 1.12M

drawings. This performance comparison result is also consistent with
Google Brain’s prior study [11]. Therefore, a 4-layer bidirectional
LSTM model is chosen as the baseline method for comparison in the
subsequent evaluations.

6.1.4 Implementation and Model Configuration

PivotMDS and ForceAtlas2 are implemented in Python based on Tulip 5

and Gephi 6. The proposed graph-LSTM-based model is implemented
with PyTorch 7 and PyG Library 8. The LSTM model implementation
integrated in PyTorch is used for the baseline model. The machine we
used for model training and all the subsequent experiments has 48 Intel
Xeon(R) CPU processors (E5-2650 v4, 2.20GHz), and 4 NVIDIA Titan
X (Pascal) GPUs.

6.2 Model and Training Configurations
The detailed configurations for both our model and the baseline model
are shown in Table 2. We use the Adam optimizer [50] for the model
training. The learning rate and batch size for training both models are
set to 0.0015 and 128, respectively. The size of training, validation and
testing graphs are shown in Table 1.

For each graph drawing dataset in Section 6.1.2, we train an indi-
vidual model (the proposed graph-LSTM-based model or the baseline
LSTM model) to learn the graph drawing style, with the corresponding
algorithm-specific drawing parameters encoded in the model as well.
The size of the input adjacency vector of each node for both the grid
and general graphs is empirically set as 35. The star graphs are an
extreme case, where the surrounding nodes are only connected to the
center node. Therefore, its input adjacency vector size is set as the
maximum number of prior nodes, i.e., 208 (Table 1). When the training
loss converges, the corresponding model is used for generating graph
drawings in the subsequent qualitative and quantitative evaluations.

6.3 Qualitative Evaluation
We first trained DeepDrawing on the drawing datasets of grid and star
graphs, where the graphs are drawn with three different drawing styles:
perfect regular layouts (i.e., grid layout or star layout), ForceAtlas2
and PivotMDS. We further compared DeepDrawing with the baseline
model on the drawing datasets of general graphs with two drawing
styles (i.e., ForceAtlas2 and PivotMDS).

6.3.1 Grid and Star Graphs
Fig. 4 shows the graph drawing results of DeepDrawing on grid graphs,
where the drawings by DeepDrawing and the corresponding ground
truth drawings are aligned by the Procrustes Analysis. The results
demonstrate the excellent performance of DeepDrawing in generating
three different styles of graph drawings for grid graphs. All the graph
drawing styles in the ground truth layouts are well preserved by Deep-
Drawing. For example, the generated perfect grid layouts make all the
nodes evenly distributed, but the results of DeepDrawing trained on
ForceAtlas2 drawings have a sparse distribution of nodes in the center

5http://tulip.labri.fr/Documentation/current/tulip-python/html/index.html
6https://github.com/bhargavchippada/forceatlas2
7https://pytorch.org/
8https://rusty1s.github.io/pytorch geometric

and a dense distribution of nodes in the four corners, and results of
DeepDrawing trained on PivotMDS drawings tend to make the grid
contours curved. All the generated graph drawings by our approach are
consistent with the ground-truth drawings.

Fig. 5 shows the drawing results of DeepDrawing on the star graphs.
The drawing styles of perfect star layout, ForceAtlas2 and PivotMDS
are different on star graphs, but DeepDrawing is also able to learn these
drawing styles and generates graph drawings that are very similar to
the ground truth, further confirming the effectiveness of DeepDrawing.

Fig. 4. Qualitative evaluation results on grid graphs: the ground truth
and the graph drawing generated by our approach are compared side by
side. Each row shows the results of a specific drawing style (i.e., perfect
grid layout, ForceAtlas2 and PivotMDS) and the number of graph nodes
is shown in the bottom.

Fig. 5. Qualitative evaluation results on star graphs: the ground truth
and the graph drawing generated by our approach are compared side by
side. Each row shows the results of a specific drawing style (i.e., perfect
star layout, ForceAtlas2 and PivotMDS) and the number of graph nodes
is shown in the bottom.

6.3.2 General Graphs
Fig. 6 shows the drawing results on the drawing dataset rendered by
ForceAtlas2. The graph drawings generated by both the baseline
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method and our approach, as well as the ground-truth drawings by
ForceAtlas2, are presented; these drawings cover different number of
nodes and communities. The ground-truth graph drawings (Column
2 of Fig. 6) can well visualize the community structures. When com-
paring the drawing results of the baseline model (Column 3 of Fig. 6)
with the ground-truth graph drawings, it is easy to see that the baseline
model is able to preserve the overall community structures, especially
when there are fewer nodes and communities (Rows 1 and 2 of Fig. 6).
However, when there are more nodes and communities, the drawings
generated by the baseline model deviate from the ground-truth draw-
ings, and different communities may overlap with each other (Rows
3-6). On the contrary, our approach (Column 4 of Fig. 6) better pre-
serves the community structures across different number of nodes and
communities than the baseline method. When the drawing results by
our approach are further compared to the corresponding ground-truth
drawings, it is easy to see that our results reflect the visual properties of
the ground-truth drawings and the overall node layouts in both drawings
are similar.

Fig. 7 shows the drawing results on the drawing dataset rendered
by PivotMDS, where the ground-truth drawings by PivotMDS, the
drawings generated by the baseline model and the drawings generated
from our approach are compared side by side. Like the drawings of
ForceAtlas2, the graph drawings of PivotMDS can also reflect the over-
all community structure of the graphs. But there are also two major
differences between these drawings in terms of the graph drawing style.
One difference is that the edge length in the drawings of PivotMDS is
more uniform than that of ForceAtlas2. Specifically, when compared
with ForceAtlas2, the length of edges within communities is more simi-
lar to that of edges between different communities in PivotMDS layouts.
The other difference is that some communities with tight connections
can overlap each other in PivotMDS drawings, while the drawings of
ForceAtlas2 often do not have community overlapping (Fig. 6). For ex-
ample, the light blue community and dark blue community overlap with
each other in Row 4 of Fig. 7, and the darker green community, light
green community and darker blue community are also mixed in Row
6 of Fig. 7, due to the tight connections between those communities.
Such visual properties are well preserved by our approach. As shown in
Column 4 of Fig. 7, the community structure can be clearly recognized
and the overlapping communities in the ground-truth drawings are also
reflected (Rows 4 and 6). The overall layouts by our approach are quite
similar to the ground-truth. However, the baseline model (Column 3 of
Fig. 7) cannot preserve these visual properties (Rows 4-6), though it
can reflect the community structures to some extent.

6.4 Quantitative Evaluation
We quantitatively evaluate the graph drawing results of both our ap-
proach and the baseline method by comparing their similarity with
the ground-truth drawings. This comparison is conducted from two
perspectives: the Procrustes Statistic-based similarity and the aesthetic
metrics-based similarity. The time costs of the graph drawing algo-
rithms running on CPU and GPU are also reported. This section con-
siders only general graphs, since the qualitative evaluation has already
shown that our approach achieves good performance on grid and star
graphs. All the subsequent experiments are conducted on the testing
set of the general graph dataset (Table 1).

6.4.1 Procrustes Statistic-based Similarity
The Procrustes Statistic (Equation 14), which was used as the loss
function for the model training, is further used to evaluate whether
the models effectively learn a specific graph drawing style or not. We
analyzed the Procrustes Statistic-based similarity of all the testing
graphs. We first ran Shapiro-Wilk test to check its normality, which
indicates the results are not always normal. Thus, we further ran
a Friedman test with a Nemenyi-Damico-Wolfe-Dunn for post-hoc
analysis to determine the statistical significance (the statistical level
α = 0.05).

Fig. 8 shows the Procrustes Statistic-based similarity results, where
the results on both ForceAtlas2 and PivotMDS drawing datasets are
reported. Compared with the baseline approach, our approach achieves

Fig. 6. Qualitative evaluation on general graphs drawn by ForceAtlas2.
For the same graph, the ground truth drawing, the drawing by the baseline
model and the drawing by our approach are compared in each row.
Different colors indicate different communities.

a significantly better (p < 0.05) Procrustes Statistic-based similarity
on both ForceAtlas2 (0.19 vs. 0.23) and PivotMDS (0.21 vs. 0.34)
drawing dataset. This also provides support for the effectiveness of our
approach in learning different graph drawing styles.

6.4.2 Aesthetic Metrics-based Similarity
Similar to the prior work [54], we also evaluate the effectiveness of
our approach by comparing the aesthetic metric similarity between the
drawings generated by our approach and the ground-truth drawings.
The Root-Mean-Square Error (RMSE) is used to measure the aes-
thetic similarity between them. Given n graphs, suppose the aesthetic
metric values of the generated drawings are Ã = {ã1, ..., ãn} and those
of the ground-truth drawings are A = {a1, ...,an}, then the similarity is
defined as follows:

RMSE(A, Ã) =

√
1
n ∑

i
(ãi−ai)

2. (15)

Smaller RMSE scores correspond to higher similarity to the ground-
truth graph drawing.

Various aesthetic metrics have been proposed to assess the aesthetic
quality of different graph drawings [19, 67, 77]. In this paper, three
aesthetic metrics are considered: edge crossings, node occlusions and
community overlapping, since they are widely-used aesthetic criteria
for evaluating how well the underlying graph topology has been realized
in a drawing [20, 67, 77]. Also, they have a normalized form and thus
can be used to compare graphs of different sizes.

Edge crossings (Aec): We use the edge crossing metric introduced
by Purchase [67], which is defined as the ratio of the number of edge
crossings in a drawing over the upper bound of the possible crossings.

Node occlusions (Ano): We choose the global metric of node occlu-
sion introduced by Dune et al. [19], i.e., the ratio of the union area of
all the node representations over their total area if drawn independently.

Community overlapping (Aco): We employ the global version of
the autocorrelation-based metric introduced by Wang et al. [77]. For a
specific node, this metric considers both the Euclidean distance between
the node and its surrounding nodes and also whether they belong to the
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Fig. 7. Qualitative evaluation on general graphs drawn by PivotMDS.
For the same graph, the ground truth drawing, the drawing generated
by the baseline model and the drawing generated by our approach are
compared in each row. Different colors indicate different communities.

same community. Therefore, this metric can clearly reflect the degree
of overlapping between different communities.

Table 3 shows the results of the aesthetic metric-based similarities.
For node occlusions, our approach is similar or slightly better than
the baseline method on both the ForceAtlas2 and PivotMDS drawing
datasets. However, our approach has a better performance than the
baseline method in terms of edge crossing similarity and community
overlapping similarity. Since community structure can reflect the global
graph structure, a better similarity of community structure indicates the
better preservation of a certain graph drawing style. Overall, the aes-
thetic metrics-based similarity comparisons confirm the effectiveness
of our approach in preserving the original graph drawing style, which
is also consistent with our observations in Section 6.3.

Table 3. The RMSEs of aesthetic metrics-based similarity evaluated on
the drawing datasets visualized by both ForceAtlas2 and PivotMDS.

Aesthetic Metrics ForceAtlas2 PivotMDS

Baseline Ours Baseline Ours

RMSE(Aec) 0.0169 0.0125 0.0191 0.0134

RMSE(Ano) 0.0316 0.0310 0.0799 0.0794

RMSE(Aco) 0.0138 0.0125 0.0171 0.0131

6.4.3 Time Cost
We evaluate the time cost of the proposed approach in comparison
with both the original graph drawing techniques (i.e., ForceAtlas2 and
PivotMDS) and the baseline model. The time costs on both CPU and
GPU are tested. For CPU mode, each graph is repeatedly drawn 10
times. Their average is regarded as the actual time cost of drawing
a graph. The iteration number for ForceAtlas2 is empirically set as

Fig. 8. The results of Procrustes Statistic-based similarity. The base-
line method and our approach are evaluated on both ForceAtlas2 and
PivotMDS graph drawing datasets. The error bars are 95% confidence
intervals and significant differences are marked with a line between them
(∗: p < 0.05).

Fig. 9. A comparison of the average running time (second) for drawing
each graph using different methods. (a) The average running time on
CPU, where the error bars are 95% confidence intervals and the graph
drawing techniques with significant difference are marked with a line
between them (∗: p < 0.05), (b) the average running time of the baseline
method and our approach on GPU.

700 steps, since the graph drawing results after 700 steps are relatively
stable for the given graphs, though it is indicated that it can achieve a
slightly better drawing quality with more steps [47]. For GPU mode, we
only compared the time cost of our approach with that of the baseline
model to provide a quick understanding of how fast the deep learning-
based approaches can achieve on GPUs. Since the major advantages
of GPU-based programming lie in its parallel computation, the testing
graphs are input into the model all together to generate the drawings
and the corresponding average time cost for each graph is calculated
accordingly.

Fig. 9 shows the average time cost of using the graph drawing
methods to draw a graph on both CPU and GPU. The CPU time costs do
not follow a normal distribution according to a Shapiro-Wilk test. Thus,
we ran a non-parametric Friedman test with a Nemenyi-Damico-Wolfe-
Dunn for post-hoc analysis to determine the statistical significance
(α = 0.05). Fig. 9(a) shows that our approach and the baseline approach
have a similar CPU time cost (0.055 vs. 0.054 second) and both of
them are significantly faster than the original graph drawing methods
on CPU. Specifically, the time cost of our approach is only 29% of
ForceAtlas2 (0.189 second) and 82% of PivotMDS (0.067 second).
Fig. 9(b) indicates that our approach (8.3×10−4 second) is slower than
the baseline method (0.93×10−4 second) on GPU, though its training
parameter number is only about 20% of the baseline model (Table 2).
One major reason for this is that we directly used the implementation
integrated in PyTorch for the baseline LSTM model, whose underlying
implementation is based on C/C++ and has been extensively optimized
with NVIDIA cuDNN, but the implementation of DeepDrawing is
Python without optimization using NVIDIA cuDNN. However, the
speed of both deep learning-based methods is increased by two orders
of magnitude when running on GPU than that of the techniques running
on CPU.

For the model training, Fig. 10 shows the training validation loss
curves. It is easy to observe that DeepDrawing needs fewer epochs to
converge and has lower and smoother training loss than the baseline
model. One possible explanation for this is that the architecture of
DeepDrawing explicitly considers the input graph structure.
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7 DISCUSSIONS

In this section, we first report the lessons we learned when working on
this paper. Then, we further discuss the limitations and usage issues of
the proposed approach for graph drawing.

7.1 Lessons
We learned many lessons from the model design and training while
working on this paper.

Node Feature Vector For determining the adjacency vector size, a
naive choice is to set it as the maximum node number of all the graphs,
which, however, is at the cost of model complexity and efficiency. We
quickly evaluated its influence and found that there is no significant
degradation of drawing performance for general graphs, with the de-
creasing of node size in a certain range. This is probably because the
architecture of DeepDrawing explicitly encodes the graph structure,
and there is an upper bound of the distance between connected nodes
in a BFS sequence of a graph [80].

Model Hyper-parameters The choice of model hyper-parameters
(e.g., hidden size, layer numbers) of DeepDrawing is crucial for deep
learning models. With the increase of these hyper-parameters, the
learning capability of the model can often increase, but it is also at
the cost of increasing overfitting risk and training time and decreasing
model efficiency. For DeepDrawing, we conducted control experiments
to balance these factors to determine the suitable hyper-parameters. For
example, we found that increasing the layer number to 2 or 3 brings
little improvement in the drawing performance, but changing the model
to be unidirectional results in significant performance degeneration.

Loss Function Design For the loss function, we also considered
other possible choices, for example, the sum of the edge length differ-
ence between the predicted drawing and the ground truth. This kind
of loss function can delineate the similarity of different drawings un-
der rotation and translation. However, it cannot capture the similarity
between two drawings under scaling and the loss value seems to be
dominated by long edges. After a series of careful designs and com-
parisons, the Procrustes Statistic was finally chosen to guide the model
training.

Drawing Complexity, Training Size and Overfitting As shown in
Table 1, we used a small training dataset for grid and star graphs (72 for
grid graphs and 120 for star graphs), the graph drawing performance is
good and no overfitting was observed. The major reason for this is that
the graph drawings for grid and star graphs have fixed patterns with
fewer variations, which makes it easier for the deep learning model to
learn from them. On the contrary, the drawings of general graphs are
complex. Initially, we used about 8000 graphs with a fixed order of
input nodes for training on general graphs, which results in an overfitted
model. This is solved by randomly selecting the starting node of the
input BFS-ordering node sequence, which essentially augmented the
training data, and further increased the training data size.

7.2 Limitations and Usage Issues
Our evaluations above have shown that DeepDrawing can learn from
the training graph drawings (i.e., grid layout, star layout, ForceAtlas2
and PivotMDS) and further generate drawings for new graph inputs.
However, the proposed method has limitations and next we discuss
some of them.

Failure Cases and Limited Evaluations According to our empiri-
cal observations, two factors can affect the performance of DeepDraw-
ing in generating drawings with a drawing style similar to the training
drawing: graph structure similarity and node ordering. When the input
graph has significantly-different graph structures or the nodes are not
sorted by BFS, it can result in a decrease of drawing performance of
DeepDrawing or even generate messy drawings. Also, as the first step
of using deep learning for graph drawing, DeepDrawing currently fo-
cuses on small graphs (i.e., clustered graphs with 20–50 nodes). Testing
whether the proposed approach generalizes to large graphs requires
further exploration.

Model Interpretability and Interactivity DeepDrawing is a deep
learning based approach. Like most of deep learning based methods, it
also has the interpretability issues, which are an active research topic

Fig. 10. The loss curves of training the baseline and our model on
ForceAtalas2 and PivotMDS drawing datasets. The training of our model
on PivotMDS drawings is stopped at 330 epochs due to its convergence.

in both visualization and machine learning [43, 61, 81]. Specifically, in
the case of DeepDrawing, it is not clear what graph layout aspects are
learned by the neural network. Also, once the model training is done,
DeepDrawing can directly generate drawings with a drawing style
similar to the training data for input graphs, where no user interaction
is needed. This is both an advantage and disadvantage. It can benefit
novice users without a background in graph drawing, but may be a
disadvantage for expert users who want to interactively explore more
graph properties by themselves.

Usage Issues With a trained model for a specific type of graph and
a specific drawing style, DeepDrawing can be used to generate similar
drawings of similar graphs. However, many sample graphs and the
drawings of these graphs are needed, as well as expert interaction with
the model (e.g., hyper-parameter tuning), and the time to train the
model. In order to generate different types of drawings, the model
needs to be retrained on new graphs and new graph drawings.

8 CONCLUSION

In this paper, we propose DeepDrawing, a novel graph-LSTM-based
approach for graph drawing, where the graph drawing is formalized
as a learning and prediction problem. Given a graph drawing dataset,
DeepDrawing is trained to learn a graph drawing style and can further
generate graph drawings with similar characteristics. We carefully
designed the proposed approach in terms of model architecture, model
input and training loss. We conducted both qualitative and quantitative
evaluations on three types of graphs (i.e., grid graphs, star graphs and
general graphs with good community structures) and four types of
drawings (i.e., grid layout, star layout, ForceAtlas2 and PivotMDS).
The results show that DeepDrawing can generate similar drawings for
the three types of graphs and its speed is fast on the testing graphs
with 20–50 nodes, which provides support for the effectiveness and
efficiency of DeepDrawing for graph drawing. Also, it is observed
that DeepDrawing can better preserve the original graph drawing style
than the general LSTM-based method, confirming the advantage of our
model architecture.

In future work, we plan to optimize the current implementation of
DeepDrawing (e.g., accelerations with PyTorch C/C++ extensions and
NVIDIA cuDNN) and further evaluate its performance on additional
types of graphs. Also, it would be interesting to explore how a deep
learning approach can benefit the visualization of large graphs with
thousands of nodes. For example, given our comparison results of
time cost on small graphs with 20 to 50 nodes, deep learning based
approaches may also be able to improve the efficiency of large graph
drawing. Furthermore, since dynamic graph visualization often de-
pends on the temporal correlation between adjacent time stamps, it is
also promising to investigate whether deep learning techniques can be
extended to dynamic graph visualization. We hope this work can inspire
more research on using deep learning techniques for graph drawing as
well as general information visualization.
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