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A Vector Field Design Approach to Animated
Transitions

Yong Wang, Daniel Archambault, Carlos E. Scheidegger and Huamin Qu

Abstract—Animated transitions can be effective in explaining and exploring a small number of visualizations where there are drastic
changes in the scene over a short interval of time. This is especially true if data elements cannot be visually distinguished by other
means. Current research in animated transitions has mainly focused on linear transitions (all elements follow straight line paths) or
enhancing coordinated motion through bundling of linear trajectories. In this paper, we introduce animated transition design, a
technique to build smooth, non-linear transitions for clustered data with either minimal or no user involvement. The technique is flexible
and simple to implement, and has the additional advantage that it explicitly enhances coordinated motion and can avoid crowding,
which are both important factors to support object tracking in a scene. We investigate its usability, provide preliminary evidence for the
effectiveness of this technique through metric evaluations and user study and discuss limitations and future directions.

Index Terms—Information Visualization, Animated Transitions, Vector Field Design.

F

1 INTRODUCTION

A NIMATED transitions, whether interactive or not, are perva-
sive in information visualization and visualization in general.

In particular, they are important for the visualization of dynamic
data [1] and for representing changes in the data [2], [3]. As these
transitions are in widespread use, techniques have been developed
and studies have been run to understand and leverage when they
are effective for the visualization of data [4], [5], [6], [7]. Thus,
we are beginning to understand where and when to use animated
transitions.

Animated transitions have been shown to be useful in situ-
ations where there are large changes in the spatial positions of
the data over a very short period of time1 and when such scenes
cannot be linked using other means [8]. Despite the fact they are
slower to use in general, even the strongest critics of animation
for the purposes of visualization admit that animations can be
useful in this context: “At this point then, the most promising
uses of animation seem to be to convey real-time changes and
reorientations in time and space.” [9]. Both interactive and non-
interactive forms of animation can help users follow these large
changes in non-spatial data. Given this particular benefit, it is
interesting to study methods for facilitating short transitions that
support the user’s orientation in datasets.

A number of techniques have focused on linear paths as a
basis for animated transitions. In particular, linear extrusion into
the third dimension [7], distortion of data point speed [5], and stag-
gered linear transitions [4] have been explored. These techniques
have been shown to produce effective animated transitions with
varying degrees of success. However, these techniques consider
the motion of all points independently in the scene and do not
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presentations/Robertson Vizualization and Interaction RFS 071210.pdf

explicitly leverage coordinated motion (Gestalt law of common
fate) to enhance the maintenance of perceptual grouping, which
has shown to be advantageous for object tracking [10].

Recent work has looked at the motion of groups of points
by bundling their linear trajectories together in order to increase
the coordinated motion of the points between the initial and final
positions [6]. This work does leverage coordinated motion of the
data points by bundling the motion of these points together. It
can increase the tracking accuracy if only the group identities are
required. However, it does so at the expense of crowding [11]
or placing the objects in the same group very close together,
where the identities of objects can be confused during the ani-
mated transition. But animated transitions enabling better track
of individual objects can more clearly convey the transformation
between different visual states and help users well understand the
exact correlation between different scatterplot views, which is also
discussed in previous work [4], [5].

In this paper, our goal is to design effective animated transi-
tions between two spatial positions of data with the following two
desirable properties:

1) Data points should not pass too close to each other in
the transition to avoid confusion of their identities. That is,
transitions should reduce crowding [11].

2) The motion of data points within the same group should
follow the Gestalt law of common fate to improve the perfor-
mance of multiple object tracking [10]. That is, points in the
same group should move together with similar trajectories.
We call this coordinated motion in this paper.

These properties have been shown to help with object track-
ing [10], [11]. As for transition trajectories, prior animation
research indicates that straight-line transitions tend to result in
crowding [12], [13]. Arcs provide a method for smooth and
natural motion [14] and studies in vision science [15], [16], [17]
have found that non-linear paths have only a minor influence on
performance. Therefore, in contrast to the majority of animation
techniques using linear paths, we consider using non-linear paths
for animated transitions.

One way to achieve these desirable properties is to exploit the

http://research.microsoft.com/en-us/um/redmond/events/fs2010/presentations/Robertson_Vizualization_and_Interaction_RFS_071210.pdf
http://research.microsoft.com/en-us/um/redmond/events/fs2010/presentations/Robertson_Vizualization_and_Interaction_RFS_071210.pdf
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vector field design literature [18], [19], [20]. Vector field design
considers the problem of designing vector fields for the purposes
of flow simulation. If one were to closely examine the problem of
designing animated transitions in this light, we could consider the
constraints placed on the animated transition as constraints placed
on the flow. These constraints can be either designed by the user or
computed by an automated algorithm, ensuring that the constraints
preserve the desirable properties needed for a better animated
transition. The data points involved in the transition can be treated
as particles advected by this flow in order to achieve the desired
animated transition. This transition can now follow any linear
or non-linear path, allowing for greater flexibility in avoiding
crowding and increasing coordinated motion at the expense of
linear paths of the data elements.

Using this idea, we present a technique to enable users to
freely design animated transitions for clustered data between two
scenes, given a pre-defined clustering. Similar to prior work [6],
we also regard the points with spatial proximity of starting and
ending positions (thus, similar moving directions) to be the same
group. We provide users with the flexibility to add constraints for
better transitions through either manual sketching or an automated
approach which have comparable effectiveness. We first conduct
an informal user interview to evaluate the usability of the pro-
posed technique. Then, we evaluate the transitions that we design
against approaches such as trajectory bundling [6] and straight
line transitions through both metric evaluations and a user study.
The metric study demonstrates that the proposed transition design
technique decreases occlusion and deformation, providing a good
compromise between crowding and coordinated motion. However,
bundled transition has lower dispersion, meaning that the proposed
technique may not be a choice as good as bundled transition when
only group identities are required. The user study shows our transi-
tion design technique helps improve target tracking performance in
transitions of high occlusion and maintains or improves response
time when compared with straight line transition.

2 RELATED WORK

The related work of this paper includes three areas: animation-
related techniques, object tracking studies and vector field design.

2.1 Animation-related Techniques
Animation is frequently used in the design of interactive visual-
ization systems because animations provide an engaging method
for presentation, can visually attract attention [9], [21], [22] and
provide potential benefits for particular tasks. On the other hand,
designers must be cautious when using animations as animations
can also be a source of distraction [3], [23] and impose a
greater cognitive demands [24]. Because of these reasons, many
animation-related techniques have been proposed, which can be
classified into two types in terms of whether manual effort is
needed or not: automated animation techniques and animation
authoring techniques.

Automated animation techniques generate animated transi-
tions without user involvement. Dragicevic et al. [5] introduced
animated transitions based on different temporal distortions and
concluded that slow-in/slow out performs the best. Staggered
animated transitions [4] delay the starting time of elements in-
dividually but seem to have negligible or even negative effects
on multiple object tracking performance. Other automated tech-
niques use non-linear transition paths instead of straight lines.

For example, Yee et al. [13] interpolated polar coordinates to
generate non-linear transition path for the animation of radial
graph layouts. Dragicevic et al. [25] used curved trajectories to
clarify text animations. Schlienger et al. [26] proposed conveying
data information through different motion trajectories. Trajectory
bundling [6] of objects in the same group has also been considered.
The technique helps in tracking groups of points but suffers from
crowding.

Animation authoring techniques require user interaction for
the design of animation. For example, motion sketching is used by
researchers in computer graphics area to generate 3D animation
conforming to physical and geometric constraints [27], [28].
However, these algorithms do not apply to coordinated animated
transitions. Animation sketching systems [29], [30], [31] are
developed in HCI community, focusing on improving the usability
and convenience of freely creating animations by incorporating
different types of interaction operations. Our technique enables
animated transition design between a pair of scatterplots.

User involvement can be both an advantage and disadvan-
tage for animation-related techniques. For example, it takes less
time for users to use automated animation technique to generate
animated transitions, but also limits the flexibility for users to
specify animations in order to make them satisfy their specific
animation requirements. Taking this issue into account, the pro-
posed technique provides users with the flexibility to have both.
Similar to Draco [31], the proposed technique is also based on
vector fields and enables motion sketching. However, the animated
transition design in this paper enforces further constraints, such
as fixed starting and ending positions, crowding avoidance, and
coordinated motion.

2.2 Object Tracking Studies

The goal of animated transitions is often to support the ability
of the user to follow data which is changing spatially. Thus,
object tracking studies, in psychology, are highly relevant to
this area. These studies are a source of inspiration for designers
and evaluators of animated transitions in the visualization field.
Pylyshyn and Storm [17] showed that humans can track up to five
objects simultaneously against a field of identical and randomly-
moving distractors. Tracking accuracy degrades as the number of
tracked targets increases. A number of studies that followed in this
area further confirmed tracking performance is not only adversely
affected by the target number but also object speed [10], [32], [33]
and tasks itself [34], [35].

Crowding, or indistinguishable targets passing too close to
each other, is another important factor influencing tracking per-
formance [36], [37], [38]. If the targets and distractors are visually
similar and pass very close to each other, they become difficult to
distinguish and therefore track. Franconeri et al. [11], [37] claimed
that object tracking performance is limited only by crowding and
the influence of speed may actually just be crowding from another
perspective. Other factors such as, occlusion with boundaries [39],
trajectory changes or curved paths [15], [16], surprisingly seem to
have only minor effects on tracking multiple objects. In addition,
Yantis [10] showed that we form perceptual groups of moving
targets. When attending targets, we mentally form a polygon
comprising of these targets. This finding is consistent with the
Gestalt law of common fate, as a perceptual group, consisting of
the multiple targets moving as one, can be more easily followed
during the animation.
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In our paper, we draw on this research to help with our
animated transition design technique. In particular, we aim to
avoid crowding and encourage coordinated motion. As non-linear
paths seem to have little negative effect, we relax this constraint
to achieve our two objectives.

2.3 Vector Field Design

A vector field refers to a function where each point in a space is
assigned a vector – often, the space is a surface and the vectors
are tangent to the surface. A vector field is frequently required
as input in many applications including texture synthesis, non-
photorealistic rendering, anisotropic shading and fluid simulation,
to control surface appearance [40]. Due to these applications in
computer graphics, vector field design, or methods to create vector
fields that satisfy user constraints, has been an important area
of research [41], [42]. Theisel [19] presented a two-dimensional
vector field design system, allowing a user to specify a set of
control polygons to describe a topological skeleton. Zhang et al.
[20] proposed an approach that is based more directly on vector
field topology to enable users to create continuous vector field on
curved surfaces.

Vector fields have been applied to information visualization.
For example, to conduct trajectory clustering, Ferreira et al. [43]
adopted vector fields to delineate similar trajectories and cluster
them by iteratively assigning the “nearest” label similar to a K-
means algorithm. To support flow visualization with bounded
spatial and temporal errors, a new method called edge maps [44]
is proposed to represent vector fields. Vector fields, in partic-
ular curve shortening flow, are also applied to improving the
appearance of Euler diagrams [45]. Inspired by previous studies
especially [43], we apply vector field design techniques in the
design of effective animated transitions.

3 ANIMATED TRANSITION DESIGN

The proposed technique can be divided into three building blocks:
path generation, vector field computation and point advection.
As input, the proposed technique also requires a pre-defined
clustering of the points as in [6]. This clustering is mainly based on
the similarity of spatial positions and moving directions and can
be achieved by any method. Such a clustering requirement does
not necessarily limit the application of the proposed technique in
common animated transitions. In an extreme case where no points
share spatial proximity and movement similarity, each point can
be regarded as a single group. We first generate a path for each
group of points to represent its overall movement. This path is well
designed to avoid occlusion between groups during the transition.
The paths are used to generate a vector field for each group. Using
this vector field, points can be advected creating a smooth and
coordinated transition.

3.1 Path Generation

The initial path for each group can be computed from a manual
sketch or an automatic algorithm as we describe below.

3.1.1 Manual Sketching
We provide an interface allowing for the flexible design of an-
imated transitions that can have non-linear paths. As shown in
Fig. 1, the initial positions of the data points are solid and the final

Fig. 1: Animated transition design interface. The animated transi-
tion design window overlays the initial (solid) and final (hollow)
positions of the points in the same window. Groups are indicated
with color and can be defined using any desired method. For each
group, the user selects a set of points and draws a path for them
from solid to hollow (black line). By specifying this path, the user
can avoid other points in the scene. Crowding can be reduced and
coordinated motion is enhanced in the designed transition.

positions of the points are hollow. Users can specify an initial path
for each group of points with the help of the following interactions:

Point Group Selection: Users can lasso select a group of
initial (solid) points to highlight them.

Path Sketching: Users can sketch a path from the selected
group to their final positions by brushing a curve between the
centers of them, avoiding other points in the transition to reduce
crowding. Once complete, the selection is removed.

Undo: Users can cancel last operations by simply pressing
“ESC” key on the keyboard when necessary.

There are also other related interactions including viewing
the actual path of each point, testing the generated transitions,
changing animation timing, etc.. Through these interactions, users
can conveniently sketch their desired path for each point group.

3.1.2 An Automated Approach
Manual sketching provides users with the flexibility to design any
animated transitions they want, but it may not always be preferred
as manual interaction is required. Thus, we propose an automated
approach based on a force model to generate an initial path for
each point group. We regard the path generation in this section as
a path planning problem in 2D space, where we sample a fixed
number of time steps on the path of each point group. Thus, the
goal here is quite intuitive: we should avoid occlusion of data point
at each time step and make position transition between adjacent
time steps smooth. This can be achieved by introducing three
different forces:

Repulsion Force aims at avoiding the trajectory overlapping
between different groups at the same time step, so it is computed
between any two groups only at exactly the same time step. The
repulsion force that group q exerts on group p at the same time
step i is defined as follows:

F r
p =

cp
‖qi − pi‖

(1)

where cp is the coefficient directly proportional to the length of
straight-line trajectory of group p.

Attraction Force is defined for the same point between adja-
cent time step. It is introduced to avoid highly curved and long
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λu

λwλv

(a) Path constraint

~u

~v1

~v2 ~v3

~v4

(b) Smoothing constraint

Fig. 2: Two constraints for vector field computation. (a) Path
constraint: let ~b be one of the vectors defined by line segments
of initial group path, then we can use barycentric coordinates to
define constraints to impose on ~u, ~v and ~w of our linear system.
(b) Smoothing constraint: it corresponds to Laplacian smoothing
in this system. Let ~z correspond to the vector at a grid corner. We
define a constraint on ~z so that it is the average of its neighbors
~v1, ~v2, ~v3 and ~v4.

trajectories. The attraction force on group p at time step i is as
follows:

F a
p = kp((pi−1 − pi) + (pi+1 − pi)) (2)

where the coefficient kp is negatively proportional to the length of
straight-line trajectory of group p.

Smoothening Force is also defined for the same point between
adjacent time steps. The objective of this force is to encourage
smooth trajectories. The smoothening force on group p at time
step i is defined as the weighted average of its current and adjacent
time steps:

F s
p = cs((pi−1 + pi+1)/2 + (1− cs) ∗ pi) (3)

where cs is a constant smoothening coefficient.
By iteratively applying the above forces to all the point groups,

initial paths with good occlusion avoidance and smoothness are
generated.

3.2 Vector Field Computation
In this phase of the algorithm, we construct our overconstrained
system and it describes how a vector field is generated for a given
group based on the initial path generated in Section 3.1.

To begin, we overlay an n× n regular grid over the scene and
use it to define our vector field. To compute the appropriate vector
field, we will construct a system of linear equations in the standard
form:

Ax = b (4)

where A is an m × n2 matrix with m > n2. The value of b is
given by our constraints so we only need to solve for x. As the
system is overconstrained, no solution exists. Thus, an x is found
that minimizes the error in the system. This solution can be solved
for both x and y components independently, defining a vector field
over the grid that can be used to advect the points in the transition.

In this system of linear equations, we define two types of
constraints: a path constraint that constrains vector field to
follow the transition trend of each point group and a smoothing
constraint that smooths vector field outwards from the initial path

of each point group, defining a smooth vector field that is wide
and correctly influences the points in the group.

3.2.1 Path Constraint
The path constraint for each point group is specified by the
polyline l generated from either manual sketching by users or
the automated approach described above. We can interpret each
segment of l as a vector in the direction that the segment was
drawn. This vector is located within a cell of the regular grid
superimposed on the scene. We can decompose the cells of this
grid into triangles as shown in Fig. 2a.

Let us assume that the tail of ~b lies within the triangle with
vertices u, v, and w. The linear system wishes to find a vector
field at all corners of the grid. Let ~u, ~v, and ~w be the vectors at
these grid corners. To constrain this vector field at u, v, and w,
we impose constraints based on the barycentric coordinates of the
tail of ~b. Let λu correspond to the barycentric coordinate of the
tail with respect to u. As λu is a barycentric coordinate, λu ∈
[0, 1] with 1 corresponding to the point having the exact same
position as u and 0 corresponding to when the point is collinear
with the edge vw. The same definition exists for λv and λw with
λu+λv +λw = 1. We can define a constraint for each~b (or each
segment of p) as follows:

λu~u+ λv~v + λw ~w = ~b (5)

For each line segment of l, we add one of these constraints to the
matrix A. Through these constraints, the polyline (i.e., the initial
path of each point group) will have an influence on the vector
field.

3.2.2 Smoothing Constraint
The smoothing constraint extends the influence of path constraint
and helps ensure a smooth vector field. The smoothing constraint
is equivalent to Laplacian smoothing of the vector field and is
imposed on the grid as defined in Fig. 2b.

When defining this constraint, let ~z be the vector at a grid
corner z. Let the points v1, v2, v3, and v4 correspond to the four
adjacent grid corners to u with the corresponding vectors ~v1, ~v2,
~v3, and ~v4. Laplacian smoothing defines ~z to be the average of its
neighbors:

~z − 1

4
~v1 −

1

4
~v2 −

1

4
~v3 −

1

4
~v4 = 0 (6)

If the corner of the grid lies on a boundary, the smoothing con-
straint only considers the two or three values of ~vi as appropriate.
As a smoothing constraint is defined for each corner of the grid,
it imposes n2 constraints on the linear system. These constraints
propagate the path constraints outwards into the grid and help
ensure a smooth vector field.

3.2.3 Solving the Overconstrained System
The path and smoothing constraints form a linear system. In this
linear system, x is a row vector with an entry for each corner of
the grid. We can find a solution for the x and y components of
the vectors at each element of x independently. The constraints
defined above are loaded into the matrix A which has the defined
coefficient when an element of x is involved in the constraint and
0 otherwise. The vector b is the component of ~b if the constraint
is an initial group path constraint and 0 for smoothing constraints.
Let D be the initial group path constraints and B the right-
hand side of these constraints. Let S represents the smoothing
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(a) Forward Advection (init→ final) (b) Reverse Advection (final→ init) (c) Final Interpolated Path

Fig. 3: Advection of points in the vector field. Both vectors and particle traces are shown in this diagram. (a) Points are advected from
their starting positions towards their ending positions using the vector field computed in the first step. (b) Each vector in the field is
multiplied by −1, reversing its direction. The points are then advected from their final positions towards their starting positions. (c)
Given these two particle traces, interpolate the positions of both to obtain a smooth trajectory for each point in the group.

(1 - α(t))f(t) + α(t)r(t)

r(t)

f(t)

Fig. 4: Interpolating the two particle trajectories. The particle
trajectory resulting from advecting the points from their initial
positions (f(t)) is in red. The particle trajectory resulting from
advecting the points from their ending positions (r(t)) is in green.
As both f(t) and r(t) have the same number of time steps, linear
interpolation can be used via a function α(t) to compute the final
trajectory (the black curve).

constraints. Thus, our linear system, as a block matrix, is as
follows: [

D
S

]
x =

[
B
0

]
(7)

This system, by definition, is an overconstrained system as
there exists at least n2 smoothing constraints with only n2 ele-
ments of x (thus m > n2 in A and A is a m×n2 matrix). As the
system is overconstrained, no solution exists. However, a solution
that minimizes the error in the system can be solved independently
for the x and y components of the vector field using the conjugate
gradients method [46]. The resulting solution will be a vector field
that can be applied to move the points of the group.

3.3 Advection of the Points

Given the vector field, we treat the points of the group as particles
in a flow field and advect them. If we were to naively advect
the data only from the initial position of the data points towards
their final positions, there is no guarantee that the points would
end up at their correct final positions as the ending positions have
little influence on the vector field. Thus, we employ the following
algorithm to ensure that points start at their initial positions, follow
the transition defined by the user, and finally come to rest at the
correct ending position in the transition:

1) Advect all points from the initial positions towards the final
positions using the vector field.

2) Multiply all vectors in the field by -1, reversing the field
direction. Advect all points from the final positions towards
the initial positions using the reverse vector field.

3) Interpolate the two particle trajectories to form an animated
transition that starts and ends at the correct positions.

Fig. 3 shows the results of this procedure on the individual
points of a group. In this section, we describe how this procedure
is carried out on all points of each group.

3.3.1 Forward and Reverse Advection

The points are advected in the vector field using the stan-
dard fourth-order Runge-Kutta method [47]. An alternative is to
use edge maps [44] which can trace paths with bounded errors,
but applying this method to our problem currently remains future
work. In the forward advection process, we use the vector field
computed in Section 3.2 to advect points.

This process creates good paths for the points near the starting
point of the process, but low-quality paths as the particle gets
further away. To compensate for this tendency, we advect the
particles in reverse direction from the intended final positions of
the data points towards the start positions as well. In order to
advect in reverse, we first need to reverse the field by multiplying
it everywhere by −1. Then, we apply the same process described
above from the ending positions towards the starting positions.
The final result is two particle traces for each point in the group as
shown in Figs. 3a and 3b. It is easy to find that the paths generated
from forward and reverse advection are good near the starting
position and ending position respectively. Although the reverse
vector field is used exactly, the paths for forward and reverse
advection computed with Runge-Kutta method can incur error,
resulting in the possible intersection of these paths.

In the next section, we describe how we can combine these
two paths into a single animated transition with high quality.

3.3.2 Interpolation of Particle Trajectories

The simplest way to combine these trajectories is through linear
interpolation. Fig. 3c shows the result for some data points in
the vector field. The forward and reverse advection process have
been run for exactly the same number of time steps 0 . . . tf by
definition. Let f(t) represent the location of a particle at time t
during the forward advection process. Similarly, let r(t) represent
the location of the particle at time t during the reverse advection
process. We define α(t) = t/tf to be a linear weighting for the
positions of the two particles. Given these definitions, we can
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linearly interpolate the two particle positions to obtain the final
position of the point in the transition (as shown in Fig. 4):

(1− α(t))f(t) + α(t)r(t) (8)

The value of α(t) ranges from 0 to 1. Intuitively, at the starting
position, the dark-green solid point in Fig. 4, α(t) = 0, r(t) has a
weight of 0, and f(t) has a weight of 1. As the point progressively
moves further and further away from the starting position, α(t)
increases the weight of r(t). As t→ tf , the position of the point is
nearly entirely determined by r(t). This is exactly analogous to the
formulation of Bézier curves in the Bernstein basis [48]. There, the
Bernstein basis {α 7→ t, α 7→ 1−t} is used to convert two Bézier
curves of degree n − 1 (one starting at point a, the other ending
at point b) into one Bézier curve of degree n starting at point a
and ending at point b. We use precisely the same formulation to
guarantee a trajectory that starts at f(0) and ends at r(t), smoothly
transforming between f and r in the process of going from 0 to t.

This interpolation function produces a smooth trajectory for
the point that follows a non-linear path from the starting position
to the ending position. Linear interpolation of f(t) and r(t) is just
one way of combining these two trajectories. If slow-in slow-out
is desired, a non-uniform weighting of α(t) can be used. In fact,
nearly all of the temporal distortions described in Dragicevic et
al. [5] can be defined using our method by modifying α(t) to have
the desired weighting of f(t) and r(t).

The approach described here is quite generic and can be
applied to a variety of datasets. Figs. 5 and 6 show the trajectories
of animated transitions for both randomly-generated datasets and
real datasets. These trajectories can reduce the possible crowding
during the animated transition and are generally smooth. Even
when some point groups are not well clustered (e.g., the group
of green points in Fig. 6 are sparsely distributed), the proposed
transition technique is still able to enhance coordinated motion of
the point groups, reduce crowding and provide a smooth transition.

4 EVALUATION

Following previous work on animated transition [4], [5], [6], we
evaluate the proposed approach from the perspective of both quan-
titative metric evaluation and object-tracking based user study. We
also conducted an informal user interview at first, evaluating the
usability of manual transition design and guiding further technique
design and evaluations.

4.1 Qualitative User Interview

In the development of the proposed transition design technique, we
first conducted an informal qualitative user interview to confirm
the factors affecting object tracking, evaluate the usability of
manual transition design and collect feedback about the strategy of
designing animated transitions. An early prototype of the system
(Fig. 1) is used in the interview. We involved 4 participants in
our interview and all of the participants are young researchers or
engineers with normal vision.

During the interview with each participant, we first gave
participants a basic introduction about animated transition design,
showed several animated transitions with crowding and asked
participants to track object identities. Then we explained how to
use the user interface to design transitions, and asked participants
to design transitions for two types of point groups: 5 groups
(10 points per group) and 10 groups (5 points per group). After

that, we interviewed participants to collect feedback about factors
influencing object tracking, the usability of manual transition
design and their strategy for manual sketching. Each interview
took 40 to 50 minutes. Basic observations from the interview are
summarized as follows:
• Crowding does affect tracking. Almost all the participants

agree that crowding during transition affects tracking accu-
racy, especially when several point groups cross at the same
area simultaneously. Other factors, including speed, target
number, and point sparsity also play an important role in the
tracking.

• Slightly curved trajectory is acceptable but highly curved
trajectory is harmful. Almost all of them agree that slightly
curved trajectory will not affect their tracking accuracy, but
when there is a sharp turn or the trajectory is highly curved,
it will make tracking difficult.

• Transition design strategy: plan the trajectory globally. All
the participants said that they attempt to do manual sketching
and reduce crowding by relying on their intuitive estimation
of time and space. One participant suggested: “the easier the
first”, i.e., sketching first for the groups with short transition
distances or no inter-group crowding helps to find good
transitions. In subsequent formal user study, we find that this
strategy does help and adopt it to guide manual sketching.

• User enjoys the flexibility of designing transition themselves,
as the desirable transition effect cannot always be achieved
by existing automated animation techniques in visualization.
Participants agree that the manual sketching is easy to learn.

• More groups mean more difficulty for manual sketching.
Participants appreciate the flexibility of manual transition
design. But at the same time, three of them feel that sketching
trajectory for 10 groups is more difficult than 5 groups. There
are two reasons for this: groups are hard to distinguish when
many groups are overlaid on the screen, and optimal tra-
jectory sketching is challenging for more groups, especially
when they have long trajectories and serious crowding.

In summary, feedback from participants confirmed the impor-
tant factors for animated transition design and provided us with
some implications about the strategy and usability of manual
transition design. These findings would be used to guide our
further development of the proposed technique and its evaluation
in subsequent sections.

4.2 Metric Evaluation

Quantitative metrics [4], [6] have been proposed to evaluate an-
imated transitions from three perspectives: occlusion, dispersion,
and deformation. Occlusion is a metric that quantifies the overlap
between targets and distractors during the animated transition.
Occlusion provides a way to quantify crowding [11], [36], [37],
[38] and measures how often two objects pass close to each
other, which may cause confusion in their identities. Dispersion
is a metric that measures how compact the moving objects are
to each other. By the Gestalt principle of Common fate [21],
nearby objects that undergo similar operations tend to be perceived
together. Deformation is a metric that measures the consistency
of the shape of the object formed by the targets. Low deformation
means that the shape of the object remains consistent, which Yantis
[10] has demonstrated to be useful for object tracking.

The quantitative metrics used in this study are based on those
proposed by Du et al. [6]. Du et al. [6] focus on membership in
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(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Fig. 5: Trajectories of animated transitions for randomly-generated datasets. The paths of different groups of points are indicated with
different colors.

(a) Example 1 of Iris Flower Dataset (b) Example 2 of Iris Flower Dataset (c) Example 1 of Breast Tissue Dataset (d) Example 2 of Breast Tissue Dataset

Fig. 6: Trajectories of animated transitions for real datasets such as Iris Flower Dataset [49] and Breast Tissue Dataset [50]. The paths
of different groups of points are indicated with different colors.

a group of targets. However, in our work, we adapt these metrics
to measure the ability to distinguish the individual identities of
the targets within a group. Table 1 defines the terms used in our
complexity metrics.

Notation Definition

P all the points in a dataset
G ⊂ P the set of all targets
p, q ∈ P two points in the dataset
T the set of all time steps in the animation
t a particular time step in the animation
K the total number of groups in the dataset
C a cluster of points with similar moving patterns

TABLE 1: Definition of terms used in the metric equations

We begin by describing the metrics used in our evaluation and
then run a quantitative study on 50 transitions using these metrics.

4.2.1 Occlusion
Occlusion is a metric that essentially measures “crowding” or
when the targets pass too close to each other and can have
their identities confused [11]. Previous studies have shown that
crowding impairs object tracking performance [38]. Franconeri et
al. [37] claimed that crowding may be the most important factor
affecting the accuracy of multiple object tracking. We propose

three variants of occlusion to characterize the degree of crowding
in animated transitions: outer occlusion, inner occlusion, and
overall occlusion.

Outer occlusion quantifies the number of occlusions that oc-
cur between targets and distractors during the animated transition.
This metric is exactly the same as occlusion as defined by Du et
al. [6]:

outerOcclude(G) =
1

|T |
∑
t∈T

∑
p∈G,q/∈G overlap(p, q, t)

|G|(|P | − |G|)
(9)

Where overlap(p, q, t) is a binary function that returns 1 if
there is an overlap between points p and q (i.e., dist(p, q, t) ≤ 2r)
and 0 otherwise. Outer occlusion has a maximum value of 1 when
every pair of points overlaps in the animated transition.

As we would like to distinguish the individual identities of
points within a group of targets, the overlap between two or
more targets is also harmful. In this paper, we propose an inner
occlusion to measure how often targets overlap in the animated
transition:

innerOcclude(G) =
1

|T |
∑
t∈T

∑
p,q∈G,p 6=q overlap(p, q, t)

|G|(|G| − 1)

(10)
Targets and distractors depend on the clustering of points in

the dataset and the selection of targets. Overall occlusion does
not distinguish between these two types of overlap. We propose
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this metric to quantify any type of overlap between two points in
the dataset:

overallOcclude(G) =
1

|T |
∑
t∈T

∑
p,q∈P,p6=q overlap(p, q, t)

|P |(|P | − 1)

(11)
As in outer occlusion, inner and overall occlusion have a maxi-
mum value of 1 when all measured pairs overlap.

4.2.2 Dispersion
Dispersion has been proposed to capture the compactness of the
moving group of targets. In our paper, we directly adopt the
definition of Du et al. [6] and use it in our study. However, instead
of computing dispersion for one group of points, we consider the
dispersion of all K groups in the dataset. Therefore, the average
dispersion of an animated transition is as follows:

avgDisperse(G) =
1

|K|
∑

1≤i≤K

disperse(Ci) (12)

where disperse() is the metric of Du et al. [6] and Ci is the i-th
group of grouped points.

4.2.3 Deformation
Deformation measures the stability of the shape formed by the
targets or the degree of coordinated motion. Yantis [10] provides
evidence that we form perceptual groups, such as moving poly-
gons, of these targets to track them, improving accuracy. We use
the metric defined by Du et al. [6] directly and define average
deformation for a dataset of K groups as follows:

avgDeform(G) =
1

|K|
∑

1≤i≤K

deform(Ci) (13)

where deform() is defined in [6].

4.2.4 Metric Experiment on Generated Data
Given these five metrics, we compare the performance of our
animated transition design technique to both straight trajectories
and bundled trajectories [6], since straight-line transition are com-
monly used and trajectory bundling transition is a representative
technique that is also designed for point group transitions like the
proposed technique. To comprehensively evaluate the proposed
technique, both manual transition design and automated transition
design are tested.

Dataset Generation: The testing datasets were generated in
the following way. First, we randomly generated K virtual centers
for each group and further generated random point positions using
these centers. Points are guaranteed to be within a threshold radius
of its virtual center with no overlap between points or groups. In
each randomly-generated dataset, a point group is randomly se-
lected and all the points within this group are chosen as the targets.
As manual transition design requires a user to manually specify
constraints, it is prohibitive to specify a very large number of
datasets. We, therefore, generated 50 randomly-generated datasets:
one half consisting of 80 points (8 groups with 10 points/group)
and the other half consisting of 36 points (6 groups with 6 points
per group). An author of the paper as an expert user sketched
the manual transitions for this condition. During the sketching,
the sketching strategies suggested by general users in Section 4.1
were followed, e.g., avoiding highly curved trajectory, sketching
first for the point groups with short movements, etc..

Procedures: We measured the metric scores on the 50
randomly-generated datasets. All the distances in the metric calcu-
lation are normalized by the size of the animation window. We first
ran a Shapiro-Wilk test on each distribution to check for normality.
Usually, the data was not normally distributed. Thus, we use a
non-parametric Friedman with a Nemenyi-Damico-Wolfe-Dunn
for post-hoc analysis. In the one case that all the distributions
were normal (average dispersion), we checked our results with
an ANOVA and Tukey post-hoc analysis and confirmed that
the results did not change. All the tests were conducted with
a standard significance level of α = 0.05. Means and 95%
confidence intervals for each transition technique are shown in
Fig. 7. Statistically significant results are also indicated.

Results: Fig. 7 shows the metric evaluation results on the
randomly-generated dataset: 1) For the occlusion metrics, the
proposed transition design technique consistently has good perfor-
mance. More specifically, Fig. 7a shows that automated transition
design (ATD) and manual transition design (MTD) are comparable
to straight trajectory (ST) in terms of inner occlusion, and all of
them are significantly better than bundled trajectory (BT). For
overall occlusion, ATD performs significantly better than all the
other techniques. MTD is similar to ST and all of them are
significantly better than BT (Fig. 7c). For outer occlusion, both
ATD and MTD are significantly better than ST and have lower
mean values than BT (Fig. 7b), where the means of ATD and
MTD (about 0.0005) is only 1/3 of ST’s (about 0.0015) and
1/2 of BT’s (about 0.0010). 2) BT has the lowest dispersion, as
it bundled trajectories of points in the same group at the cost
of the high inner occlusion and deformation (Fig. 7d). 3) For
deformation, BT performs worst, as its trajectories are highly
curved. The deformation of our transition design is similar to or
slightly more than ST (Fig. 7e).

4.2.5 Metric Experiment on Real Data
Apart from the randomly-generated dataset, we also conducted a
metric experiment on real datasets in order to further evaluate
the proposed technique. We chose Iris Flower Dataset [49] and
Breast Tissue Dataset [50]. Iris Flower Dataset is a benchmark
dataset commonly used in the visual analysis of multivariate data.
It consists of 150 point samples from 3 species of iris flower (50
samples per species) and each species is regarded as one point
group. Breast Tissue Dataset contains 106 samples of impedance
measurements of breast tissue and we merged four of the original
six tissue classes into one class (i.e., the non-fatty tissues [50]
including carcinoma, fibro-adenoma, mastopathy and glandular
tissues), as they share similar attributes. We regard the sample
points within the same class as one group. Thus, the data is
grouped into three groups, having 14, 22 and 70 point samples in
each group respectively. For the two real datasets, we use the pro-
posed technique to design the transitions between two scatterplots
showing their different attributes. Also, since some scatterplots
look similar and the transitions between them are inappropriate
for comparing the effectiveness of transition techniques, we chose
10 transitions with a noticeable movement distance of point groups
from each dataset by visual inspection, consisting of 20 transitions
in total. Similar to the randomly-generated dataset, we also tested
both manual transition design and automated transition design on
the real datasets.

As in Section 4.2.4, we also conduct statistical testing on the
real datasets. The Shapiro-Wilk tests show that the data was gener-
ally not normally distributed, so we ran a non-parametric Friedman
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(a) Inner Occlusion (b) Outer Occlusion (c) Overall Occlusion (d) Average Dispersion (e) Average Deformation

Fig. 7: Metric evaluation on randomly-generated datasets: the metric means of the transition techniques, including Automated Transition
Design (ATD), Manual Transition Design (MTD), Straight Trajectory (ST), Bundled Trajectory (BT). The error bars are 95% confidence
intervals. The transition techniques that have statistically significant differences are indicated above the bars. Friedman test statistics
are reported at the right bottom corner of each figure.

(a) Inner Occlusion (b) Outer Occlusion (c) Overall Occlusion (d) Average Dispersion (e) Average Deformation

Fig. 8: Metric evaluation on real datasets: the metric means of the transition techniques, including Automated Transition Design (ATD),
Manual Transition Design (MTD), Straight Trajectory (ST), Bundled Trajectory (BT). The error bars are 95% confidence intervals. The
transition techniques that have statistically significant differences are indicated above the bars. Friedman test statistics are reported at
the right bottom corner of (a-d). For average deformation with normal distribution, the ANOVA test statistics are also reported.

with a Nemenyi-Damico-Wolfe-Dunn for post-hoc analysis and
report the results in Fig. 8. For the average deformation, where
all the distributions are normal, we used an ANOVA and Tukey
post-hoc analysis and the result is reported in Fig. 8e.

Results: Fig. 8 shows the results on the real datasets and
the results are almost the same: 1) For occlusion metrics, the
experiment result is generally similar to the findings on the
randomly-generated dataset. For example, the proposed technique
(ATD and MTD) has similar or slightly lower inner and overall
occlusions than straight line transition and all of them perform
significantly better than bundled transition (Fig. 8a and Fig. 8c).
For outer occlusion, our transition design technique still has
significantly better performance than straight line transition, where
the means of the proposed technique are about 1/2 of the mean
of straight line transition. However, bundled transition has the

lowest outer occlusion (Fig. 8b), which differs from our results
on randomly-generated datasets (Fig. 7b). 2) For the average
dispersion and deformation (Figs. 8d and 8e), we have almost the
same results as the randomly-generated datasets. Our transition
design technique and straight line transition perform similar to
each other, while bundled transition has the least dispersion and
highest deformation.

4.2.6 Discussion
Given the results of our metric experiments, we discuss the
advantages and disadvantages of our transition design technique.

Balance in reducing occlusions. For outer occlusion, Figs. 7b
and 8b show that our transition design technique (both ATD
and MTD) has significantly fewer outer occlusions than straight
line transition, as the non-linear paths can move around groups.
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Dataset
Attributes Time Cost (seconds)

Groups Points Path Generation VF Computation Point Advection All
Generated Dataset 1 8 80 0.143 0.448 0.102 0.693
Generated Dataset 2 6 36 0.125 0.382 0.048 0.556

Iris Flower [49] 3 150 0.026 0.132 0.130 0.288
Breast Tissue [50] 3 106 0.023 0.143 0.104 0.270

TABLE 2: Average running time of the proposed technique when testing on both the randomly-generated datasets and real datasets.

This finding is consistently observed in both metric experiments.
When compared with bundled transition, our proposed technique
outperforms bundled transition on the randomly-generated dataset,
but performs worse than bundled transition on the real datasets. We
conjecture that such a difference may be related to the number of
point groups, as the real datasets have fewer point groups than the
randomly-generated datasets (3 vs. 6 or 8) and a small number of
groups can reduce the chance of crowding between the bundled
trajectories. Also, this reduction of outer occlusion in the bundled
transition is likely at the cost of inner occlusion and deformation.
For inner occlusion (Figs. 7a and 8a) and overall occlusion
(Figs. 7c and 8c), ATD and MTD perform similarly to straight line
transition and all of them have significantly better performance
than bundled transitions. Overall, our transition design technique
performs better and strikes a good balance in reducing occlusions
when comprehensively considering all the three occlusion metrics.
This provides evidence that our technique incurs less crowding,
meaning that the chance of confusing the identities of similarly
looking objects in the transition is lower.

Preservation of low deformation. As shown in Figs. 7e and
8e, though our transition design technique also uses non-linear
paths like bundled transition, both automated transition design and
manual transition design have low deformation like straight-line
transition and perform significantly better than bundled transition.
Such a finding is consistent in both metric experiments. Thus,
our technique preserves the shape of moving groups better than
bundled trajectories, helping users keep track of the group of
points, as they move. This result confirms, from a metric sense,
our second desired property.

Relatively high dispersion. Figs. 7d and 8d show that both
manual transition design and automated transition design perform
similarly to straight line trajectories in terms of dispersion. All
of them were significantly less compact than bundled transition.
Bundled transition is the most compact as the moving points in
a group are bundled very close together. When dispersion is low,
points act like a single object, making group identities easier to
track [6]. Thus, bundled trajectories have an advantage when only
group identities are required. However, low dispersion is often at
the expense of crowding and deformation, which can make the
individual point identities difficult to track and will be shown in
the tracking accuracy results in Section 4.3.

In conclusion, animated transition design strikes a balance
that allows for low crowding and low deformation transitions,
supporting the tracking of groups of points through the scene.
Compared with straight line transition, the proposed technique
preserves the advantages of straight line transitions, including low
deformation, low inner occlusion and low overall occlusion, but
our transition technique also has significantly fewer outer occlu-
sions. Compared with bundled transition, the metric evaluation
also provides evidence that our technique has significantly fewer
inner and overall occlusions and less deformation. Since points

of the same group are using the same vector field, the proposed
technique also has the benefit of coordinated motion like bundled
transition.

When comparing automated transition design with manual
transition design, Figs. 7 and 8 show that automated transition
design has almost the same or slightly better performance than
manual transition design for the occlusion metrics. These find-
ings are consistent on both randomly-generated dataset and real
datasets. Manual and automated transition design also have similar
performance on dispersion and deformation. It makes sense, since
the same principles in the path generation for each point group
are used for both manual transition design and automated tran-
sition design. Therefore, the metric evaluation demonstrates that
automated transition design is a comparable alternative to manual
transition design in terms of performance, which would be helpful
when manual sketching is not preferred by users.

Considering the choice of dataset, Figs. 7 and 8 demonstrate
that almost all the performances of all the transition techniques are
consistent on both randomly-generated dataset and real datasets.
The only exception is that bundled transition has relatively fewer
outer occlusions on the real datasets than it has on randomly-
generated dataset (Figs. 8c and 7c), when compared with other
transition techniques. It may be due to the fewer point groups of
the real datasets, reducing the possibility of crowding.

The running time of the proposed technique is also evaluated,
as shown in Table 2. We recorded the average running time of
each algorithm component when testing on both the randomly-
generated datasets and real datasets. It was implemented in
Javascript and run on a Mac laptop with an Intel Core i5 CPU and
8GB of memory. Only automated transition design is tested, since
manual sketching is required for manual transition design. Table 2
shows that the average running time of the proposed technique
on each dataset is less than 1 second, which is fast enough for
designing animated transitions. Among the three stages, vector
field computation is the most costly. With an increasing number
of groups, more time is needed as more paths and vector fields
need to be generated.

4.3 User Study
To further investigate the effectiveness of the proposed animated
transition technique, we performed a formal user study. The formal
user study also compared our animated transition design technique
to both trajectory bundling and straight line transitions, because
they are either widely used in transitions or a representative
transition technique for point groups. Since the above metric
evaluation indicates that our proposed technique has an advantage
of reducing outer occlusions, the user study here focuses on testing
its effectiveness in helping object tracking in transitions of high
occlusion.

In this user study, only manual transition design is tested,
because of the similar performance between automated transi-
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(a) Overall (b) Five groups (c) Ten groups (d) Two targets (e) Three targets

Fig. 9: The means of tracking accuracy as measured by the normalized distance/error between the correct and entered answer. The
evaluated techniques include Manual Transition Design (MTD), Straight Trajectory (ST), Bundled Trajectory (BT). The error bars
are 95% confidence intervals. Techniques with a pairwise statistically significant difference are listed above each bar. Friedman test
statistics are reported at the right bottom corner of each figure.

(a) Overall (b) Five groups (c) Ten groups (d) Two targets (e) Three targets

Fig. 10: The mean response time (seconds) recorded in the user study. The error bars are 95% confidence intervals. The evaluated
techniques include Manual Transition Design (MTD), Straight Trajectory (ST), Bundled Trajectory (BT). Techniques with statistically
significant differences are listed above the bars. Friedman test statistics are reported at the right bottom corner of each figure.

tion design and manual transition design (Section 4.2). Some
guidelines based on the observations in Section 4.1 are followed
to generate path for each point group. For example, draw short
transition first, as it can be helpful to globally plan the group path
and avoid occlusion. In addition, make the manual sketching as
smooth as possible and avoid highly curved trajectories, since
it shows that highly curved trajectory can be misleading for
object tracking. Randomly-generated datasets are used in the user
study. An author of this paper manually sketched the transitions
for this user study. Because the adopted sketching strategies are
exactly the same, the generated manual sketching results should
be comparable to what other users would draw.

4.3.1 Study Design

We adopted a within subject design. Overall, the study considered
3 transition techniques (straight line, bundled, transition design)

× 2 numbers of targets to be tracked (high: 3, low: 2) ×
2 different group sizes (high: 10 points/group and 5 groups,
low: 5 points/group and 10 groups) × 5 repetitions. Thus, each
participant undertook 60 trials in our experiment. The duration
of the transition is 2 seconds. These settings are based on our
observations in the informal qualitative user interview, and we
want to make sure that the task we used is neither too easy nor
difficult.

In each trial, we asked participants to track the precise identity
of two or three randomly-chosen targets within a single group
of the animated transition. Targets were visually indicated with
different colors and alphabetic labels before the transition began.
When the transition started, all identifying features were removed
from the targets and the color of them was set to black, the same
color for all other points in the transition. When the transition
concluded, participants were asked to select the targets by clicking
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on them in alphabetic order. The time it took the participants
to answer and the distance between the entered and correct
answer were measured. As the three techniques compared in the
experiment are quite different, we separated them into three blocks
of twenty trials each. These blocks were counterbalanced across
participants through Latin squares. Within each block, the order
of the twenty trials was randomized to avoid the learning effects
that could arise when the same dataset is presented repeatedly.

Dataset Generation: Similar to Section 4.2.4, we also ran-
domly generated K virtual group centers first and further gener-
ated random positions for points of each group. In order to gener-
ate our five repetitions, we randomly generated 1,000 datasets for
each of the five and ten point conditions. Ten of these datasets were
randomly selected from the top 25% of datasets with high average
outer occlusion under the straight line condition. This average
outer occlusion is computed by calculating the average outer
occlusion with each point group as the targets. As we conjecture
a primary advantage of our animated transition design technique
is avoiding outer occlusions, the study was designed to test if this
was helpful for users in such kind of situations. For each of the five
repetitions per target level, a set of points (2 or 3 points) within
the same point group were randomly selected as the targets, and
we considered three rotations of this dataset randomized across
techniques. The measure of tracking correctness is the distance
between the selected and correct answer instead of binary correct-
or-wrong counting, as the distance can delineate more details of
object tracking accuracy.

Apparatus and Configuration: We conducted the user study
on a laptop connected to a 23-inch display with a 1920×1080
pixels resolution and 60 Hz refresh rate. All transitions are shown
in a square window of 640×640 pixels with a white background.
Targets and other points in the scene are black circles of nine
pixels in radius. Groups of ten points have a group radius of 180
pixels while groups of five points have a radius of 120 pixels.
All measurements of the distance between the correct and entered
answers are normalized by the size of the window.

Participants: Overall, 24 participants (10 female, age: 22
to 29 (mean: 25.6)) took part in our experiment. Participants
had a computer science background and were recruited from our
university.

Procedure: We first explained the user study system and tasks
to the participants. Each participant performed a training session
that included all three techniques, where participants were given
the correct answer once they finished each object tracking task
and were provided an opportunity to ask questions. Between each
block of twenty trials, participants could take a short break. After
the completion of the user study, a quick interview took place
where we asked the participants about how they think of the three
different animated transitions and what are their advantages and
disadvantages.

4.3.2 Results
Fig. 9 shows the means and their 95% confidence intervals of nor-
malized distance between the entered and correct answers in the
experiment. We first show the overall tracking accuracy (Fig. 9a)
and subsequently divide by the number of groups (Figs. 9b and 9c)
and the number of targets (Figs. 9d and 9e). The same analysis is
performed with respect to response time (Fig. 10).

We first ran a Shapiro-Wilk test on each distribution to
check for normality and found that the data is not usually
normally distributed. Therefore, we further use a Friedman test

with a Nemenyi-Damico-Wolfe-Dunn test for post-hoc analysis.
For overall accuracy and time, a standard significance level of
α = 0.05 was chosen. When dividing by the group or target
number, we apply a Bonferroni correction, reducing the signif-
icance level to α = 0.025. Significant differences between the
techniques are marked above each bar (Figs. 9 and 10).

From Fig. 9, we found that transition design performs best
when comparing the means of object tracking accuracy for transi-
tions, as measured by the distance. Such an optimality is consistent
when analyzing the results from a perspective of different point
groups or targets. For bundled trajectories, they have much worse
object tracking accuracy than the proposed transition technique
with statistical significance. The reason for it is that bundled
trajectories suffer from high crowding and large deformation,
which has been confirmed in Section 4.2. Straight line transitions
have better tracking accuracy than bundled trajectories, but our
proposed technique has better tracking accuracy than straight line
transitions (though not significantly so). For instance, transition
design improves the overall tracking performance on datasets
(Figs 9a), where the mean error of MTD (around 0.015) is only
about 60% of ST’s (around 0.025). When divided by the group
number, transition design has an advantage over straight line
transitions. When there are five groups (Fig. 9b), transition design
significantly outperforms straight line transitions and the mean
error of MTD (around 0.01) is only about 40% of ST’s (around
0.025). As for ten groups, transition design also has better mean
accuracy than straight line transition (Fig. 9c). When divided by
the target number, the same observation still holds. The mean
tracking error of MTD is less than that of ST (Figs. 9d) for two
targets. With a greater number of targets, such an improvement
becomes greater (Fig. 9e) and the error of MTD is only about
50% of ST’s. The possible reason for it is that crowding becomes
a more serious issue in straight line transitions when more objects
need to be tracked, but transition design can consistently avoid
crowding.

Fig. 10 shows that participants take statistically significantly
more time to select their answers with bundled transitions, which
is consistent with object tracking accuracy (Fig. 9) and our
previous metric evaluation (Figs. 7 and 8). Bundled trajectories,
which suffer from high inner occlusion, are quite difficult to use
for this task and thus require higher response time. On the contrary,
though transition design also uses non-linear paths like bundled
trajectories, its response time is still comparable to or only slightly
more than straight line transitions, which means using non-linear
paths in transition design is not more difficult to use. In the case
with more targets (Fig. 10e), transition design even takes less
response time.

In our post-study interview, almost all participants mentioned
that high occlusion was noted for the bundled trajectory condition
due to high inner occlusion, but as it greatly reduces dispersion,
tracking each point group without point identity required is easier.
For the straight line condition, participants said that occlusion was
once again the major factor, especially when it occurred around
targets. Most participants confirmed that transition design reduces
occlusion between groups and helps them track object identities
accurately. The possible drawback of the technique is that it would
be not as predictable as straight lines if the trajectory is highly
curved. However, similar to observations in our previous informal
user interview, most participants of the user study did not find
this a major issue, as trajectories were generally smooth and well
designed.
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5 DISCUSSION AND CONCLUSION

In this paper, we introduced a vector-field based technique for
animated transition design of clustered points. This approach
offers users with great flexibility by providing users with both
manual and automated transition design. The generated transition
can avoid occlusions while maintaining coordinated motions of
clustered points. These objectives are accomplished by leveraging
vector field design methods, heavily used in the area of scientific
visualization, to design and utilize a vector field that can be further
used to advect the points. Linear interpolation between forward
and reverse advection from the starting and ending positions of
the points allows the technique to produce a smooth, non-linear
transition for all points in the scene.

We first conducted a user interview to confirm the usability
of the proposed technique. Several findings from it are also used
for guiding the subsequent design and evaluation of the proposed
technique. Then a metric evaluation, consistent with previous
work, was performed on both the randomly-generated datasets
and real datasets. It not only demonstrates the similar performance
between automated and manual transition design but also provides
some evidence that the proposed animated transition technique
can avoid occlusions while maintaining low deformation. The
user study further demonstrates the effectiveness of the proposed
transition technique in improving object tracking accuracy when
high occlusion exists. It consistently outperforms both straight
line transitions and bundled trajectories in tracking accuracy,
showing its advantages of avoiding occlusion and striking a
balance between deformation and coordinated motion. Response
time analysis indicates that the non-linear path of our technique
does not bring additional difficulty to users of the technique.

However, our technique is not without limitations. First, the
proposed technique is able to reduce crowding and occlusion in
animated transitions while preserving coordinated motion. But
this crowding reduction is not unlimited, when there are an
extremely large number of points on the limited screen, the
proposed technique may also fail to reduce crowding. Secondly,
as in bundled transition [6], the proposed technique needs the pre-
defined clustering of points where a group of points are spatially
close and move in a similar direction in the transition. A clustering
of this type is required for the technique to be effective. Clusters
without a similar spatial position and motion may not perform
well. Finally, we follow previous work [4], [5], [6] and conducted
our experiments based on scatterplots. Applying this technique
in other animated transition design scenarios, such as dynamic
graphs, has not been fully explored.

In future work, we will explore the application of the proposed
technique in other transition scenarios (e.g., dynamic graph anima-
tion and other graphical animations). It would also be interesting to
extend the proposed technique to show the dynamic movement of
people in the visual analytics of sparse trajectory data such as telco
big data [51]. Furthermore, we would like to investigate methods
for relaxing our clustering constraints and conduct more user
studies with general users being involved in designing animated
transitions to further evaluate the effectiveness of our technique.
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