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Abstract

Math word problem (MWP) is challenging due to
the limitation of training data where only one “stan-
dard” solution is provided. MWP models often fit
the solution rather than truly understand or solve
the problem. The generalization of models (to di-
verse word scenarios) is thus limited. To address
this problem, we propose a novel approach we call
TSN-MD that leverages a teacher network to in-
tegrate the knowledge of equivalent solution ex-
pressions such as to better regularize the learning
behavior of the student network. In addition, we
introduce the multiple-decoder student network to
generate multiple candidate solution expressions by
which the final answer is voted. In experiments, we
conduct extensive comparisons and ablative stud-
ies on two large-scale MWP benchmarks, and show
that using TSN-MD can surpass the state-of-the-art
works by large margins. Intriguingly, the visual-
ization results demonstrate that TSN-MD not only
produces correct answers but also generates diverse
equivalent expressions for the solution1.

1 Introduction
Introducing the math word problem (MWP) aims to develop
machine learning models, i.e., automated solvers, to answer
mathematical questions given in texts. It has been an interest-
ing natural language understanding task for more than a half
decade [Bobrow, 1964] and attracted much attention in re-
cent years [Koncel-Kedziorski et al., 2015; Shi et al., 2015;
Huang et al., 2017; Wang et al., 2018b; Liu et al., 2019;
Xie and Sun, 2019]. The MWP solving task is challenging
due to three reasons. (1) Math problems are often stated in
diverse word scenarios. (2) There are strong semantic gaps
between language logic and math expression. (3) It is not

*Corresponding Author
1Code and datasets: https://github.com/2003pro/TSN-MD

Text 𝑋 : Teddy bears are sold for $20 each and each hello kitty
takes $10. Jack has $200 and has bought 12 hello kitty. How many

teddy bears can he buy with the remaining money?

Buy hello kitty takes 12×10

(200 − 12×10) remains

Teddy bears are sold 20 each

200 can buy 200 ÷ 20 bears

Buy hello kitty takes 12×10

12×10 can buy 12×10 ÷ 20

200 − 12×10 ÷ 20 200 ÷ 20 − 12×10 ÷ 20

Solution 1 Solution 2

Answer : 4

Figure 1: Multiple solution expressions for an MWP and intermedi-
ate steps for problem solving.

obvious how to model the mathematical laws, e.g., commuta-
tive law of summation and multiplication, in machine learn-
ing paradigms.

Typically, an MWP is composed of a problem descrip-
tion text, a solution expression in math and a final answer
as a number. An example is given in Figure 1. With such
training examples, MWP solvers should have two objectives
to optimize, i.e., the generation loss of answers, as well as
the loss of solution expressions which indirectly minimizes
the answer loss. While, most existing approaches use only
the latter objective. In specific, their solvers are required to
identify the relevant numbers and compose solution expres-
sion from the inferred relations between/among those num-
bers [Wang et al., 2017; Wang et al., 2018a]. The state-of-
the-art framework is based on the deep generative neural net-
work composed by an encoder and a decoder [Xie and Sun,
2019]. The encoder encodes the problem text into latent em-
bedding which is then fed into the decoder to generate the
solution expression. The solution expression is represented
by either a sequential [Wang et al., 2017; Wang et al., 2018a;
Chiang and Chen, 2019] or a tree structure [Liu et al., 2019;
Xie and Sun, 2019]. Most of such frameworks deploy single
decoder and fit to the only one solution expression given on
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datasets. It is, therefore, hard for them to generate diverse but
equivalent solution expressions, limiting the generalization to
various word scenarios.

In order to overcome these limitations, we propose a novel
and effective MWP solver which we call Teacher-Student
Networks with Multiple Decoders (TSN-MD). We pre-train
the teacher network to guide the learning behavior of the
student network with the same training data. The intuition
is that the teacher observed through all solutions including
those with equivalent solution expressions under mathemat-
ical laws. It gains the knowledge of regularizing the learn-
ing behaviours of the student network. More intuitively,
when student predicts an equivalent solution expression to
the ground-truth but causes an undesirable loss, the teacher
network will help to amend this mistake. In addition, to en-
courage high-diversity predictions (i.e., solution expressions)
from the student network, we use multiple decoders, e.g., one
decoder is conventional and the other one has its input em-
bedding perturbed by a Gaussian noise.

Contributions. Our main contributions are three-fold. (i)
A novel and effective teacher-student approach that ad-
dresses the key limitations of solution expressions exist-
ing on the MWP data. (ii) A multiple-decoder architecture
that works for our teacher-student networks to improve the
diversity of generated expressions. (iii) Extensive experi-
ments and ablative studies on two large-scale MWP bench-
marks – Math23k [Wang et al., 2017] and MAWPS [Koncel-
Kedziorski et al., 2016], showing the superiority of the pro-
posed approach over related works. In addition, the visual-
ized results show that our model is really generating diverse
and equivalent expressions of the solution, explicitly reveal-
ing the reason behind our superiority.

2 Related Work
Math Word Problems. In the context of math word prob-
lems (MWP), the algorithms are designed to calculate the re-
sults of mathematical questions given in a natural language.
Therefore, the deep learning community tends to regard
MWP as one sort of natural language process (NLP) task.
Most of these existing methods adopt an encoder-decoder
framework, where the encoder is given the representations of
problem text and the decoder generates the corresponding so-
lution expression. For instance, Wang et al. [2017] proposed
a large-scale MWP dataset and applied a vanilla sequence-to-
sequence (Seq2Seq) model to translate the problem text to a
solution expression.

The later works took more exclusive characteristics of the
problem into account progressively. For instance, consider-
ing that the composition of the equations is based on some
clear regulars, Wang et al. [2018a] introduced an equation
normalization method to normalize the duplicated equations.
Inspired by the stack mechanism in the data structure, Chi-
ang and Chen [2019] introduced the copy mechanism with a
stack. Li et al. [2019] introduced MWP specific priors into
the intermediate representations.

The recent studies have attempted to improve the
generation of solution expressions using sequence-to-tree
(Seq2Tree) models [Wang et al., 2018a; Chiang and Chen,

2019; Wang et al., 2019; Liu et al., 2019; Xie and Sun,
2019]. For example, the Goal-driven Tree Structure model
(GTS) [Xie and Sun, 2019] achieved the state-of-the-art per-
formance by guiding the model to generate specific solution
equations using a tree structure.

However, all these methods suffer from same limitation.
In the beginning, researchers [Wang et al., 2018a] suggest
that the equation search space in the decoding process is large
with much ambiguity in solution expression. Therefore, these
models are optimized to generate a fixed target solution ex-
pression instead of finding the correct answers. This con-
straint to fit an MWP to single solution expression ignores the
possibility that an MWP can be solved by multiple solution
expressions. In many cases, the model will falsely penalize
the correct generated solution expression, which introduces
undesired bias.

Knowledge Distillation. Knowledge distillation (KD) was
first introduced by Hinton et al. [2015]. Aiming at com-
pressing neural networks, it transfers knowledge from a com-
plicated high-performance teacher model to a simple student
model without losing too much performance. To this end,
Hinton et al. [2015] reshaped the training procedure, where
they regarded the predictions of the teacher model as “soft
labels” and trained the student model to fit the soft labels.
Romero et al. [2015] trained the student model to mimic not
only the final outputs of the teacher model but also the in-
termediate feature map of the teacher model. This can help
to narrow the performance gap between teacher and student
models.

While knowledge distillation was firstly proposed for
model compression, the intuition behind the soft labels was
applied widely in different tasks and domains. Furlanello
et al. [2018] and Zhang et al. [2018] found that apply-
ing the soft labels as the training target can help the stu-
dent model achieve better performance. Zagoruyko and
Komodakis [2017] showed that the teacher-student learning
framework managed to distill the attention map from a strong
teacher model to the student model.

Some works also explored applying knowledge distillation
in natural language processing tasks. Kim and Rush [2016]
introduced a sequence-level distillation framework to distill
the structure loss for neural machine translation. Knowledge
distillation was also applied in other tasks such as text classifi-
cation [Zagoruyko and Komodakis, 2017], parsing [Kuncoro
et al., 2016] and machine reading comprehension [Hu et al.,
2018]. To the best of our knowledge, this is the first work that
explores the usage of knowledge distillation on MWP task.

Multiple-Decoder Networks. Multiple-decoder networks
are mainly applied in machine translation and image cap-
tioning tasks to generate diverse outputs [Jacobs et al., 1991;
Eigen et al., 2014]. For instance, Yang et al. [2018] proposed
to use multiple softmax heads after the encoding by recurrent
neural networks. Shen et al. [2019] and He et al. [2018] used
multiple decoders with uniform mixing coefficient to improve
diversity in machine translation. In this paper, we adapt mul-
tiple decoders to generate diverse solution expressions for a
given MWP.
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Figure 2: Overview of the proposed approach. The teacher network is trained in prior with baseline architectures — GTS. After that, the
student network is fed with the problem text X to generate intermediate embedding H . H1 is copied from H and H2 is computed by
perturbing H . Then, they are input to Tree Decoder 1 and Tree Decoder 2, respectively, which output solution expressions Y1 and Y2. In the
meantime, the teacher network outputs a soft prediction Yteacher for the same instance. Finally, ground-truth is used to calculate losses.

3 Teacher-Student Networks with Multiple
Decoders (TSN-MD)

As illustrated in Figure 2, the proposed TSN-MD is com-
posed of a teacher network and a student network. The stu-
dent network includes an encoder and two decoders. Teacher
network is pre-trained (in the baseline way) and it regularizes
the learning behaviour of the student network by reducing the
loss when student predicts solution expressions that are math-
ematically equivalent to the ground-truth. Here, we note that
student network has one more decoder than teacher network
in order to output more diverse solution expressions.

Notations. We denote a math word problem X by a set of
n words {xi}ni=1, whose word embedding vectors {ei}ni=1
are obtained through a linear projection of word embedding
matrixE, i.e., ei = E xXi , and its corresponding ground-truth
solution expression by Y .

Considering choosing important numbers from problem
text, we follow Wang et al. [2017] which proposed to map-
ping numbers into special tokens following these two rules:
1) All numbers appeared in the problem text are determined if
they are significant numbers, which means they will be used
in the solution expression. This is the so-called Significant
Number Identify (SNI) mechanism [Wang et al., 2017]; 2)
All the recognized significant numbers in a problem X are
mapped to a list of mapped position symbols {n1, ..., nl} ac-
cording to their appearing orders in the problem text. Simul-
taneously, numbers in solution expression are then mapped as
the position symbols {n1, ..., nl}. For example, the position
symbols and mapped solution expression of the problem in
Figure 1 are {n1 = 20, n2 = 10, n3 = 200, n4 = 12} and
(n3−n4×n2)÷n1 respectively. Then, solution expressions
are normalized to prefix expression following the pre-defined
rules.

Our baseline model is the goal driven tree structure solver
(GTS) [Xie and Sun, 2019]. Based on its architecture, we
introduce how to build our TSN-MD — the teacher-student
networks with one conventional decoder as well as one per-
turbed decoder.

3.1 Teacher-Student Networks
It is often the case that there exists correct solution expres-
sions different from the annotation solution expression. Pre-
vious models will falsely penalize these correct solutions as
the training objective only fits the fixed solution expression.

For example, the label solution expression of the problem
in Figure 1 is (200 − 12 × 10) ÷ 20, although 200 ÷ 20 −
12 × 10 ÷ 20 is also a correct solution expression and can
compute the right answer. The previous training objective
will undoubtedly penalize this kind of generation results.

In the empirical analysis on GTS’s generated solution ex-
pression, we found that the number of exactly matched gen-
erated solution expressions is lower than generated solution
expressions that can get the correct answer. That is to say,
GTS model can find some correct solution expressions differ-
ent from annotated ones. This also demonstrates the existence
of the undesired bias in training objective.

A simplest solution is to improve solution annotations and
add extra training examples. However, the current datasets
all only give the single solution expression annotation. Here,
based on the interesting fact that GTS model can find some
correct new solution expressions, we propose to use teacher-
student learning, which is also known as knowledge distilla-
tion, to transfer these kinds of multi-solution knowledge to
the student model.

More concretely, consider the classical MWP solving set-
ting where we have training set consisting of tuples of prob-
lem texts and solution expressions (x, y) with possible classes

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4013



V . We aim at obtaining the function f(x) : X 7→ Y , which
can achieve good results in unseen data. Commonly, the func-
tion f(x) is parametrized as a neural network f(x, θ). θ rep-
resents parameter of this neural network. The common train-
ing criteria is to minimize negative log-likelihood (NLL) loss
for each example from the training data:

LNLL(θ) = −
|V |∑
k=1

1{y = k}log p(y = k|x; θ)

where 1 is the indicator function and p is the output distribu-
tion from the model with parameter θ. From the viewpoint of
cross entropy, this loss function can be regarded as the cross
entropy between the degenerate data distribution (with all the
probabilities focusing on one class) and the model output dis-
tribution.

In teacher-student network, we assume to have access to
a well-trained teacher network parametrized with θT . More
precisely, we choose GTS [Xie and Sun, 2019] as our teacher
network. The output distribution q(y|x; θT ) of teacher net-
work can provide extra source of training information and this
has been proved in previous work. Thus, we tried to minimize
the cross entropy between our network’s output distribution
and teacher network’s output distribution:

LKD(θ, θT ) = −
|V |∑
k=1

q(y = k|x; θT )log p(y = k|x; θ)

The student network should not only aim at fitting the
teacher network’s output, which has the risk of being limited
by the teacher’s performance, but also learn from the original
label. Thus, we interpolate between the two loss functions:

LTS(θ; θT ) = (1− α)LNLL(θ) + αLKD(θ, θT )

where α is the interpolation coefficient.

3.2 Multiple Decoders
If only simply borrow the idea of teacher-student learning,
we may suffer from false guidance given by teacher model.
After all, teacher model still predicts false results in test set.
In other words, if the teacher model falls into some local op-
timization point, the student model possibly also falls into
the similar local optimization points. In addition, we suggest
teacher-student learning is not enough to overcome the issue.
In order to alleviate this extra undesired bias given by teacher
model, we propose to use multiple decoder structure to fur-
ther increase the possibility of getting diverse solutions.

More precisely, this novel multiple decoder structure is
composed with one conventional decoder and many perturbed
decoders. This can improve both prediction accuracy and di-
versity.

The Overall Multiple Decoder Architecture
Our TSN-MD model naturally incorporates diversity in the
architecture both during training and inference. Furthermore,
we try to encourage the diversity by feeding these decoders
with different latent variable inputs.

Perturbations to Get Multiple Decoders. In the student
network, all of the decoders share the encoder, i.e., this model
requires processing the input sentence only once. Aiming at
getting different outputs from different decoders, we try to
feed latent variables to different decoders. Here, except for
the conventional decoder which is directly fed with encoder
output, we introduce perturbed decoder. In this perturbed de-
coder, perturbation masks Maskp are added to the output of
encoder H to get different input Hl for perturbed decoder:

Hl =Maskp ⊗H

where ⊗ represents element-wise production. In order to get
Maskp, we first define the mask rate Pmask. Next, we sam-
ple Pmask percent region in H according to Gaussian dis-
tribution. we define a zero matrix Maskzero with the same
shape of H and assign one to positions that locate in the re-
gion.
Diversity Regularization. After getting the masked latent
variable set H = {h1, h2, · · · }, we feed hl to the l-th tree
decoder and get outputs yl. In order to encourage different
decoders to generate different results, we introduce the di-
verse regularization item. More specifically, we adopt the co-
sine similarity to quantify the difference of different outputs
generated by different decoders. Our intuition is consistent
with promoting the diversity of generation. For two output
solution expressions (yl, yl+1) , if they are far apart, the reg-
ularization item should give larger penalty:

Ldiv,t = 1 + scos(yl,t, yl1,t)

where t represents the position of word, and l and l1 mean
two outputs from two different decoders. The regularization
loss on the completed sequence is:

Ldiv =
∑
l,l1

T∑
t

Ldiv,t

where T means the length of generated sequence.
Separate Beam Search per Component. When it comes
the inference, separate beam search is executed per mixture
component. As different components tend to focus on differ-
ent information and grab different patterns, performing inde-
pendent beam search encourages the diversity of generation.
Note that we have |H| different components and the beam
size as b. Overall, this requires processing |H|× b candidates
at each step.

It is worth noticing that the solver can only output one solu-
tion expression. Therefore, we vote to get the output solution
expression according to the prediction score given by differ-
ent decoders.

3.3 The Overall Training Objectives
In the stage of training teacher network, we follow GTS train-
ing process [Xie and Sun, 2019] and save the output classi-
fication probability distribution of training set as the soft la-
bel. In the stage of training student network, we feed both
soft label and one-hot hard label to the model. Also, the di-
versity regularization term and teacher-student learning ob-
jectives are combined. Consequently, the overall objective
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function is formed as:

L = βLdiv +
N∑
i

LTS,N

where β is the weight of the regularization term and N is the
number of decoders.

4 Experiments
In this section, we conduct extensive ablation studies to val-
idate the effectiveness of our contributing components —
teacher-student networks and multiple decoders. We also
demonstrate a case study to show the effects by using our
proposed methods.
Datasets. Two large-scale MWP benchmarks, i.e.,
Math23K [Wang et al., 2017] and MAWPS [Koncel-
Kedziorski et al., 2016], are used in our experiments.
Baselines. We compare TSN-MD to following baseline
and state-of-the-art models: DNS [Wang et al., 2017] uses
a vanilla seq2seq model to generate expressions. Math-
EN [Wang et al., 2018a] proposes an equation normalization
to reduce target space. T-RNN [Wang et al., 2019] applies
recursive neural networks over the predicted tree-structure
templates. S-Aligned [Chiang and Chen, 2019] introduces
a stack structure decoder to track the semantic meanings of
operands. GROUP-ATT [Li et al., 2019] applies the idea
of multi-head attentions from Transformer [Vaswani et al.,
2017]. AST-Dec [Liu et al., 2019] proposes to generate ex-
pression tree by a tree LSTM decoder. GTS [Xie and Sun,
2019] develops a tree structured neural network in a goal-
driven manner.
Implementation Details and Evaluation Metric In TSN-
MD, we use a word embedding with 128 units. The dimen-
sion of the hidden state for all the other layers are set to 512.
Besides, we use two heads decoder in TSN-MD. Our model
is trained for 80 epochs. Mini-batch size and dropout rate are
set to 64 and 0.45, respectively. For optimizer, we use Adam
with learning rate set to 0.001, β1 = 0.94 and β2 = 0.99, and
the learning rate will be halved every 20 epochs. Also, We
use a beam size of 5 in beam search.

4.1 Overall Results

MAWPS Math23K Math23K*
DNS 59.5 - 58.1
Math-EN 69.2 66.7 -
T-RNN 66.8 66.9 -
S-Aligned - - 65.8
GROUP-ATT 76.1 69.5 66.9
AST-Dec - 69.0 -
GTS 82.6 75.6 74.3
TSN-MD 84.4 77.4 75.1

Table 1: Solution accuracy of TSN-MD and various baselines. Note
that Math23K denote results on public test set and Math23K* denote
5-fold cross-validation. For the MAWPS dataset, the models are
evaluated with 5-fold cross-validation.

The main results are shown in Table 1. For evaluation with
test set on Math23k, the single model performance achieved

by our proposed TSN-MD achieves the state-of-the-art. As
the code for GTS is made available2, we implemented GTS
and tested it on all dataset settings. The empirical results
show the effectiveness of teacher-student learning and mix-
ture of decoder structure. On all the benchmark datasets, our
model achieves the new state-of-the-art performance.

4.2 Solution Expression Prediction Analysis
We report the accuracy of solution expression prediction
by the sequence-to-sequence model (Math-EN), sequence-
to-tree model (GTS) and our TSN-MD in Table 2. If the
predicted solution expression exactly matches the annotated
solution, we consider it a positive example. Here, we can
compute the number of alternative solution that each model
can provide, which can partly tell the degree of diversity of
a model. It can be observed that the accuracy of solution ex-
pression generation is lower than the final accuracy of prob-
lem solving. This reflects that these MWP solvers have spon-
taneously learned to adapt the situation that a certain problem
may have multiple solutions.

Equation-ac Answer-ac
Math-EN 60.1 66.7
GTS 64.8 75.6
TSN-MD 65.8 77.4

Table 2: Accuracy of equation generation.

4.3 Ablation Study and Parameter Analysis
Effect of Different Components
To better understand the performance contributed by different
components adopted in this paper, we perform a series of ab-
lation tests. All the performance in ablation study is evaluated
by the test set on Math23k.

Math23K
TSN-MD 77.4
GTS 75.6
GTS + Teacher-Student Learning + Multi-Decoder 76.8
GTS + Teacher-Student Learning 76.8
GTS + Multi-Decoder + regularization 76.2
GTS + Multi-Decoder 75.9

Table 3: Solution accuracy with various model configurations in
TSN-MD. Here BASE means GTS in Table 1.

We investigate the effects from different modules. The
results of different MWP solver variants on Math23K are
shown in Table 3. Taking GTS as the base model, we try
to verify the effectiveness of proposed techniques. First,
we evaluate the vanilla teacher-student network by remov-
ing multiple decoder structure. The results show that the
teacher-student network contributes a lot to improve the per-
formance. Next, we observe that it is beneficial to use multi-
ple decoders. Using 2 decoders with diversity regularization
item, the accuracy improved by approximately 0.6%. We

2https://github.com/ShichaoSun/math Seq2Tree
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also notice that it is necessary to include the diversity reg-
ularization techniques. We ablate the regulation item both
for the full model and the model with only multiple de-
coders structure. The results in Table 3 show performance
degradation to different extents. In addition, we have ver-
ified that “GTS+Teacher-Student Learning+Multi-Decoder”
and “GTS+Teacher-Student Learning” in Table 3 solve dif-
ferent parts of MWPs while sharing accuracy. It is not fair to
infer that “Multi-Decoder” is unnecessary from this compar-
ison. Compared with single decoder, the model can get more
different solutions with multiple decoders. In this case, diver-
sity regularization item can have larger influence. Therefore,
although the impact on the multiple decoders without teacher-
student network is relatively small, the influence on the full
model is large.

Parameter Analysis

Dec1 Dec2 Dec3 Comb
TSN-MD static mask

1% mask 75.8 76.4 - 76.3
3% mask 76.2 74.6 - 75.8
5% mask 77 76.7 - 77.4
10% mask 74.7 73.8 - 75.1

TSN-MD dynamic mask
1% mask 75.1 74.2 - 75.2
3% mask 74.6 75.3 - 75.2
5% mask 75.6 75.8 - 76
10% mask 74.7 75.1 - 75.6

TSN-MD static 3 decoder 76.2 74.9 74.9 76.3
TSN-MD dynamic 3 decoder 75.3 75.1 75.1 75.4

Table 4: Accuracy for various hyperparameter configurations.

Mask Rate. The percentage of mask rate is a tune-able hy-
perparameter in our TSN-MD. Thus, we investigate the effect
of the percentage of mask rate on our model’s performance.
Table 4 suggests 5% achieves the best performance.

Dynamic or Static. We explore whether to fix the mask in
the beginning (static) or dynamically change it during training
(dynamic). The results show that in most cases, the static
strategy can get better results. We argue that as the dynamic
mask keeps changing the decoder inputs, it is harder to get
effective information.

Number of Decoders. At last, we investigate the effect of
increasing number of decoders. As adding decoders will
bring a lot of extra computation cost, we only examine the
effect of adding to 3 decoders. The experiment results show
that the 2 decoder is the best configuration.

Besides, Table 4 has also shown the importance of random
perturbation.

4.4 Case Study
We present several generation examples sampled from the
Math23k dataset in Table 5. In the first example, the prob-
lem is asking the proportion of the fired ones. However,
GTS falsely predicts the solution expression to compute the
proportion of the remaining members and Decoder1 gets the
same error. Our model gives the right solution with the help

of Decoder2 exploring one more possibility. For the second
example, GTS generates a new solution different from the
ground-truth. Two decoders also give diverse correct solu-
tions. For the third example, there are key words in the prob-
lem text like “quotient” and “remainder” while the solution
actually needs “×” and “+”. This case asks for model to
handle the confusing descriptions. Our TSN-MD can better
deal with this situation.

Problem Text: There used to be 120 staff members in a gov-
ernment department. Currently, the number
of staff members is 90. What is percentage
of fired people over original total number of
staff members?

GT Solution: (120− 90)÷ 120
Teacher (GTS): 90÷ 120

Decoder1: 90÷ 120
Decoder2: (120− 90)÷ 120
TSN-MD: (120− 90)÷ 120

Problem Text: A factory plans to produce 5,000 TVs in this
month. In fact, 60% of the plan is completed
in the first half a month, and 70% of the
plan is completed in the second half of the
month. How many TVs are over-produced
this month?

GT Solution: 5000× 60% + 5000× 70%− 5000
Teacher (GTS): 5000× (60% + 70%− 1)

Decoder1: 5000× (60% + 70%)− 5000
Decoder2: 5000× 60% + 5000× 70%− 5000
TSN-MD: 5000× (60% + 70%)− 5000

Problem Text: The quotient of a number divided by 54 is 6,
and the remainder is 20. What is this num-
ber?

GT Solution: 54× 6 + 20
Teacher (GTS): (54− 20)÷ 6

Decoder1: 6× 54 + 20
Decoder2: 6× 54 + 20
TSN-MD: 6× 54 + 20

Table 5: Generated examples from Math23k dataset.

5 Conclusions
In this paper, we propose a novel approach Teacher-Student
Networks with Multiple Decoders (TSN-MD) to tackle the
MWP problems. The key components in our approach, i.e.,
teacher-student regularization and multiple decoders in stu-
dent network, are validated to be of high effectiveness. The
new state-of-the-art results are achieved on the Math23k and
MAWPS benchmarks. Furthermore, our approach is actually
generic and should be easy to plug in other WMP solvers.
Exploring such possibility can be an interesting direction for
our future work.
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