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ABSTRACT
The threats faced by cyber-physical systems (CPSs) in critical in-
frastructure have motivated the development of different attack
detection mechanisms, such as those that monitor for violations
of invariants, i.e. properties that always hold in normal operation.
Given the complexity of CPSs, several existing approaches focus
on deriving invariants automatically from data logs, but these can
miss possible system behaviours if they are not represented in that
data. Furthermore, resolving any design flaws identified in this
process is costly, as the CPS is already built. In this position paper,
we propose a systematic method for deriving invariants before a
CPS is built by analysing its functional requirements. Our method,
inspired by the axiomatic design methodology for systems, itera-
tively analyses dependencies in the design to construct equations
and process graphs that model the invariant relationships between
CPS components. As a preliminary study, we applied it to the de-
sign of a water treatment plant testbed, implementing checkers for
two invariants by using decision trees, and finding that they could
detect some examples of attacks on the testbed with high accuracy
and without false positives. Finally, we explore how developing our
method further could lead to more robust CPSs and reduced costs
by identifying design weaknesses before systems are implemented.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Security and privacy→ Intrusion detection
systems; • General and reference→ Design.

KEYWORDS
Cyber-physical systems; systematic design framework; anomaly
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1 INTRODUCTION
Cyber-physical systems (CPSs), in which software components
and physical processes are tightly integrated, are prevalent in the
automation of critical infrastructure, e.g. as the industrial con-
trol systems of power grids and water purification plants. The
potentially serious consequences of such systems being compro-
mised [29, 31, 37] has motivated the development of different coun-
termeasures for attack detection and prevention, including tech-
niques based on anomaly detection [3, 7, 10, 13, 18, 20, 25, 28, 30,
32, 34, 36, 38, 43, 45, 46], fingerprinting [8, 9, 22, 26, 35, 49], and
fuzzing [16, 17, 48].

Another popular approach is to monitor invariants of a CPS [23],
i.e. properties that always hold under normal operating conditions,
and the violation of which might suggest the presence of an attacker
in the system. Invariants are typically relations over the sensor
readings and actuator states of a system, a simple example being
that “if the tank level is above x , then pump p should be ON”. Given
the complexity of CPSs in general, several approaches (e.g. [14, 15,
21]) aim to derive such invariants automatically from sources of
data, for instance, the time series of sensor readings and actuator
states logged by a supervisory control and data acquisition system
(SCADA). There is a risk, however, that viable system behaviours are
missed if they are not represented in that data (e.g. rarely occurring),
and addressing any design flaws identified is costly as the CPS
is already built. Invariants can be derived manually by system
engineers [4–6, 12, 19], but if done so in an ad hoc manner, may
also lead to properties being missed.

In this position paper, we propose a systematicmethod to support
the derivation of invariants before a CPS is built by analysing its
functional requirements. Our goal is to further integrate security
concerns in the design stage, ensuring that invariants can be traced
from requirements through to implemented defence mechanisms,
and to potentially save costs by identifying weak points before the
design is executed. Our approach, inspired by axiomatic design [47]—
a design science methodology for systems—iteratively analyses
dependencies in the CPS to construct equations and process graphs
that model the required invariant relationships between sensors and
actuators. Checkers for these invariants can then be implemented
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using techniques such as decision trees, andwhen deployedwith the
built CPS, can monitor its data for any violations of the properties.

To evaluate the viability of our proposals, we applied our method
to the design of Secure Water Treatment (SWaT) [2, 40], a scaled-
down version of a real-world water purification plant. SWaT is
a complex multi-stage CPS involving physical and chemical pro-
cesses such as ultrafiltration, de-chlorination, and reverse osmosis.
We used our method to decompose eight high-level functional re-
quirements into 44 concrete ones, tracing dependencies down to
specific sensors and actuators. We illustrate how this information
can be used to construct invariants, represented either as equa-
tions or process graphs. Finally, as a preliminary study, we imple-
mented checkers for two of the invariants by training supervised
machine learning (ML) models (i.e. decision trees) on equation in-
puts/outputs, finding that they could detect relevant attacks in both
a dataset and on the real testbed with high levels of accuracy and
without false positives.

Summary of Contributions.We propose a method for systemati-
cally deriving invariants from the functional requirements of a CPS.
Through a preliminary study on a real-world critical infrastructure
testbed, we demonstrate the feasibility of constructing effective
invariant-based checkers for CPSs that can be traced all the way
back to the system’s requirements. Furthermore, our study demon-
strates the potential of a cross-disciplinary approach that utilises
methodologies from design science (i.e. axiomatic design) to struc-
ture and analyse the dependencies present in critical infrastructure.

This work extends the initial ideas of Palleti et al. [44], who
explored how axiomatic design could help analyse the requirements
of a water distribution network. We go further by applying it to a
water purification plant and deriving invariant-based checkers that
can be used for its defence.

Organisation. The rest of the paper is organised as follows. Sec-
tion 2 briefly describes the SWaT architecture, as well as the ax-
iomatic design theory our method is inspired by. Next, our system-
atic design framework is presented in Section 3. Section 4 discusses
the effectiveness of our invariant checkers in a preliminary study.
Finally, Section 5 concludes this paper.

2 BACKGROUND
In this section, we present an overview of the water purification
plant that forms the case study of this position paper. Following
this, we discuss the axiomatic design theory that our proposed
approach is based on.

2.1 SWaT Testbed
The Secure Water Treatment (SWaT) testbed [2, 40] is a scaled-
down version of a modern water purification plant, intended for
supporting research into cyber-security solutions for critical infras-
tructure. SWaT is able to produce up to five gallons of safe drinking
water per minute across six distinct co-operating stages (Figure 1)
involving chemical processes like ultrafiltration, de-chlorination,
and reverse osmosis. Each stage is controlled by a Programmable
Logic Controller (PLC), which communicates with sensors and ac-
tuators through a field-bus network, and with each other through a

24-port Ethernet switch. A SCADA workstation connects a human-
machine interface to all of the PLCs, facilitating monitoring and
control of the plant by human operators. The physical state of SWaT,
as observed by the sensors, is recorded by a historian server at pre-
specified intervals. A SWaT dataset is available, consisting of all the
data recorded by this server over a period of several days, including
a few during which the testbed was subjected to attacks [1, 24].

An overview of the six sub-processes of SWaT is given in Figure 1.
A number of the testbed’s 68 sensors and actuators are depicted,
with sensors including Flow Indicator Transmitters (FITs), Analyzer
Indicator Transmitters (AITs), and Level Indicator Transmitters
(LITs). Actuators include Motorised Valves (MVs) for controlling
the inflow of water into tanks, and Pumps (Ps) for pumping it out.

Stage One. At the bottom of raw water tank T-101, a motorised
valve (MV-101) is opened to allow raw water to flow in. An elec-
tromagnetic flow transmitter (FIT-101) reads the flow rate of this
water, and sends it to the PLC. Pump P-101 transfers water from
T-101 to the ultrafiltration feed water tank T-301 in stage three,
passing through the chemical dosing of stage two. The operation
of P-101 is interlocked to the level indicator transmitter (LIT-301)
in tank T-301.

Stage Two. Chemical dosing is applied in this stage. The chemical
properties of the incoming raw water are measured using anal-
yser indicator transmitters AIT-201, AIT-202, and AIT-203. This
information is used by the PLC to control pumps P-201, P-202, and
P-203, adjusting the dosing and thus the water’s chemical properties
before it enters stage three.

Stage Three. Ultrafiltration (UF) is performed in this stage. Raw
water, after being dosed with chemicals in stage two, is fed into
an UF unit. The operation of P-301 is interlocked with the level
indicator transmitter LIT-401 for the reverse osmosis (RO) feed
water tank (T-401) in stage four. Thus, P-301 is stopped when the
water level in T-401 is high, and P-301 is turned on and MV-302
opened when the water level in tank T-401 reaches the low marker.
Flow meter FIT-301 measures the incoming flow rate to the UF unit.
The differential pressure indicator transmitter (DPIT) continuously
monitors the difference in inlet pressure and outlet pressure. If
the UF membranes are clogged, the DPIT triggers an alarm and a
backwash sequence begins in stage six. AIT-301, AIT-302, and AIT-
303 measure and transmit (to the PLC) various chemical parameters
of the water entering the UF feed water tank T-301.

Stage Four. De-chlorination is performed in this stage: any free
chlorine in the water coming out of the UF unit is removed using a
combination of an ultraviolet de-chlorinator and sodium bisulphate.
P-401 is started when T-401 reaches the high marker, moving water
through the de-chlorinator unit. The hardness analyser (AIT-401)
monitors and indicates the level of hardness to avoid scaling within
the RO system.

Stage Five. Reverse osmosis (RO) is applied in stage five. The RO
system is designed to provide bulk reduction of inorganic impu-
rities. The RO permeate stream is channeled to the RO permeate
tank (T-601) when MV-501 is opened. Before reaching the tank,
the RO permeate conductivity analyser (AIT-504) analyses water
conductivity, and if above the threshold, water is diverted to a reject
tank T-602 by opening valve MV-503. The rejected water is used
to clean the UF membranes in the backwash process. RO permeate
pump P-601 recycles water from T-601 back to T-101.
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Figure 1: The sub-processes of SWaT

Stage Six. Finally, stage six consists of a backwash process. UF
membranes need cleaning to remove solid particles. This cleaning
is achieved through the backwash process, which is programmed
to start every 30 minutes. It is also started when the pressure drop
across the membrane goes above a pre-set threshold. The rejected
RO water from tank T-602 is moved through the UF unit by starting
pump P-602.

2.2 Axiomatic Design Theory
Axiomatic design is a systems design methodology, developed by
Nam Pyo Suh [47], that uses matrix methods to systematically
analyse the transformation of customer needs into functional re-
quirements, design parameters, and process variables. The objective
of the theory is to create a scientific base for the design process
by building upon a suite of fundamental theories from logic and
rationale thinking. Researchers have applied this theory in areas
such as manufacturing [41, 50] and software development [33, 42].

In axiomatic design, functional requirements (FRs) express what
we want to achieve, i.e. the specific behaviours we want from the
design. Design parameters (DPs) are elements of the physical design
that are chosen to realise the FRs. Finally, process variables (PVs) are
elements of the process design controlling the DPs (e.g. continuous
or discrete values characterising the process). Matrix methods are
used by the designer to map FRs to DPs in the physical domain. For
example, suppose that the top-level of a design involved two FRs

and two DPs. These can then be related using the following matrix:[
FR1
FR2

]
=

[
b11 b12
b21 b22

] [
DP1
DP2

]
The square matrix is a binary (or Boolean) matrix, indicating the
coupling between FRs and DPs. After identifying the couplings at
a high level (e.g. where one DP might represent all pumps), the
designer would decompose the FRs and DPs further (e.g. with one
DP representing exactly one of the pumps) until achieving a fine-
grained set of dependencies in the design. The decomposedmatrices
can then be subjected to analyses to assess and mitigate the effects
of coupling.

In our work (Section 3), axiomatic design is not used to design a
CPS from the ground-up, but rather, its principles are applied to an
existing design to support the derivation of invariants based on the
dependencies it implies, and to help assess where weak points might
exist (e.g. due to certain couplings). In SWaT, DPs will correspond to
components such as tank level sensors and motorised valves, each
of which can function within specific values of PVs. This paves the
way for a simple and high-level of analysis to establish the relations
between DPs that represent normal CPS behaviour. These relations
are then taken as our invariants.

3 DESIGN FRAMEWORK
Our proposed systematic design approach consists of three parts: an
axiomatic design analysis, the construction of mathematical equa-
tions over DPs, and the construction of process graphs, i.e. directed



Design framework

Customer
requirements

Systems defence model

Build/Update

Create
Axiomatic design process

Mathematical expression 
on DPs

DAG with states 
and conditions

Build/Update

Figure 2: Overview of our proposed method

acyclic graphs (DAGs) over physical states and conditions. These
equations and DAGs characterise invariant relationships between
the DPs, and their input/output relations are fed into supervised
ML algorithms to learn classifiers that can be used to detect attacks.
Figure 2 summarises the relationship between these steps.

The workflow begins by transforming the customer’s needs
(e.g. build a six-stage water treatment plant) into a list of high-level
FRs (e.g. track water level of tanks) with some associated high-level
DPs (e.g. sensing mechanisms) and PVs (e.g. value ranges). These
are systematically and iteratively decomposed into fine-grained FRs,
with particular sensors/actuators as DPs, as guided by the axiomatic
design theory. At this stage, the dependencies between particular
DPs are transformed into invariants, i.e. mathematical equations
over the DP states (e.g.“if DP1 is on and DP2 is low then the system
is anomalous”). The design engineers determine which combina-
tion of DP states are normal/anomalous, optionally using DAGs
with states and conditions to guide their reasoning about paths
through the system. Supervised ML algorithms are then trained on
the input/output relations of these equations or paths, resulting in
classifiers that detect when sensor and actuator data is violating
the underlying invariants.

The classifiers, and the invariants underlying them, embody key
characteristics of the design as identified by the engineer through
a systematic method. We envisage that this has the potential to
complement defence mechanisms based on black-box approaches
(e.g. [15]), where invariant relationships are based only on observ-
able data after the system has been implemented, and which might
not reflect all invariants implied by the design. Furthermore, as our
invariants are constructed at the design stage, it may be possible to
involve them in early simulations of the processes, and to iteratively
modify the system design before it is implemented (Figure 2) if any
weak points are identified.
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For the rest of this paper, we use the SWaT water purification
testbed as a worked example to show how the steps of our approach
are applied, and how invariant-based classifiers can be derived.

3.1 Axiomatic Design Process
Based on the requirements of SWaT, a top-level decomposition and
design are given in Table 1. By the axiomatic design principles, this
first level should be a functionally uncoupled design guaranteeing
that each DP satisfies exactly one FR. This is reflected by the matrix
of Equation (1), a diagonal matrix in which each FR is related only
to its given DP from Table 1.

Next, the engineer analyses the DPs against the FRs and updates
the corresponding Boolean value of the matrix if there is an infor-
mation state coupling between them. This type of coupling differs



Table 1: Top-level decomposition of SWaT

No Functional Requirements (FRs) Design Parameters (DPs) Process Variables (PVs)
1 FR1: Feed water to water tanks/systems DP1: DOL/VSD Pumps Features - Switch (On/Off) and Speed
2 FR2: Track level of water in tanks DP2: Sensing mechanisms Value range
3 FR3: Track flow rate of water DP3: EMF sensors Value range
4 FR4: Monitor chemical properties of water DP4: Chemical properties sensors Value range
5 FR5: Feed chemicals to water DP5: Dosing Pumps Switch (On/Off)
6 FR6: Track water pressure DP6: Pressure sensors Value range
7 FR7: Direct flow of water DP7: Motorised valves Switch (On/Off)
8 FR8: Track level of chemicals in tanks DP8: Level switch Value range

Table 2: Second-level decomposition of FRs and DPs

No Functional Requirements (FRs) Design Parameters (DPs) Process Variables (PVs)
1 FR1.1: Pump raw water from stage one to UF feed tank in stage three DP1.1: P-101,P-102 On/Off
2 FR1.2: Pump water from stage three to RO feed tank in stage four DP1.2: P-301,P-302 On/Off
3 FR1.3: Pump water from stage four through de-chlorination system DP1.3: P-401,P-402 On/Off
4 FR1.4: Pump (VSD) water from stage five to tanks in stage six DP1.4: P-501,P-502 On/Off
5 FR1.5: Pump water from RO permeate tank to raw water tank in stage one DP1.5: P-601 On/Off
6 FR1.6: Pump water for UF backwash system DP1.6: P-602 On/Off
7 FR1.7: Pump water for RO/UF cleaning DP1.7: P-603 On/Off
8 FR2.1: Determine water level in raw water tank of stage one DP2.1: LIT-101 0 <= α <= maxa
9 FR2.2: Determine water level in UF feed tank of stage three DP2.2: LIT-301 0 <=α <= maxb
10 FR2.3: Determine water level in RO feed tank of stage four DP2.3: LIT-401 0 <= α <= maxc
11 FR2.4: Determine water level in RO permeate tank of stage six DP2.4: LS-601 Lowd <= α <= Highd
12 FR2.5: Determine water level in UF backwash tank of stage six DP2.5: LS-602 Lowe <= α <= Highe
13 FR2.6: Determine water level in CIP tank of stage six DP2.6: LS-603 Lowf <= α <= Highf
14 FR3.1: Measure raw water flow rate in stage one DP3.1: FIT-101 Lowд <= α <= Highд
15 FR3.2: Measure water flow rate in stage two DP3.2: FIT-201 Lowh <= α <= Highh
16 FR3.3: Measure water flow rate in stage three DP3.3: FIT-301 Lowi <= α <= Highi
17 FR3.4: Measure water flow rate in stage four DP3.4: FIT-401 Lowj <= α <= Highj
18 FR3.5: Measure water flow rate in stage five DP3.5: FIT-501,FIT-502,FIT-503,FIT-504 Lowk <= α <= Highk
19 FR3.6: Measure water flow rate in stage six DP3.6: FIT-601 Lowl <= α <= Highl
20 FR4.1: Calculate chemical properties of water DP4.1: AIT-201,AIT-202,AIT-203,AIT-301,AIT-302,AIT-303 Lowm <= α <= Highm

AIT-401,AIT-402,AIT-501,AIT-502,AIT-503,AIT-504
21 FR5.1: Pump chemicals to water DP5.1: P-201,P-202,P-203,P-204,P-205,P-206,P-207,P-208, On/Off

P-403,P-404
22 FR6.1: Measure UF filter differential pressure DP6.1: DPIT-301 0 <= α <= maxn
23 FR6.2: Measure RO membrane inlet pressure DP6.2: PIT-501 0 <= α <= maxo
24 FR6.3: Measure RO membrane pressure DP6.3: PIT-502 0 <=α <= maxp
25 FR6.4: Measure RO reject pressure DP6.4: PIT-503 0 <= α <= maxq
26 FR7.1: Control water flow direction DP7.1: MV-101,MV-201,MV-301,MV-302,MV-303,MV-304, On/Off

MV-501,MV-502,MV-503,MV-504
27 FR8.1: Determine NaCl level in NaCl tank of stage two DP8.1: LS-201 Lowr <= α <= maxr
28 FR8.2: Determine HCl level in HCl tank of stage two DP8.2: LS-202 Lows <= α <= maxs
29 FR8.3: Determine NaOCl level in NaOCl tank of stage two DP8.3: LS-203 Lowt <= α <= maxt
30 FR8.4: Determine NaHSO3 level in NaHSO3 tank of stage four DP8.4: LS-401 Lowu <= α <= maxu

from the physical coupling used in the conventional axiomatic de-
sign theory because it considers state information. Inserting this
information state coupling into Equation (1) results in Equation (2),
where y (or X on the diagonal) indicates some dependencies, and a
zero (0) denotes the absence of them. Note that these dependencies
are represented symmetrically: for example, if DP7 is (information
state) coupled with FR2, then FR7 is coupled with DP2.

Equation (2) shows that DP7 is depended on by FR1, FR2, and FR7:
for example, a motorised valve (DP7) is opened to feed water into a
tank when the level is low (FR2) and the pump is on (FR1), i.e. the
state of some valve depends on the state of some tank and pump.
Note however that Equation (2) presents design information that
is very high-level and broadly defined. For instance, FR3—“track

flow rate of water”—relates to multiple different locations and flow
sensors in SWaT. Another example is FR1—“feed water to water
tanks/systems”—when in reality there are multiple water pumps
in six different stages of SWaT. In order to derive meaningful in-
variants that relate concrete components of the CPS, our method
requires that the top-level design of Equation (2) is iteratively de-
composed until there is only a point-to-point mapping between each
FR and DP. For illustration purposes, such a mapping is shown in
the third-level decomposition of Table 6 at the end of the paper.

For simplicity, rather than use a point-to-point mapping, we
decompose the eight FRs of Equation (2) into the 30 FRs of the
second-level decomposition in Table 2. This is much more concrete
than the top-level decomposition as it factors in particular sensors
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y y 0 0 0 0 0 0 X 0 0 0 0 0 y 0 0 0 0 0 0 0 0 0 0 y 0 0 0 0
0 y y 0 0 0 0 0 0 X 0 0 0 0 0 y y 0 0 0 0 0 0 0 0 y 0 0 0 0
0 0 0 0 y 0 0 y 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 y 0 0 0 0 0 X 0 0 0 0 0 0 y 0 0 0 0 0 0 y 0 0 0 0
0 0 0 0 0 0 y 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 y 0 0 0 0
0 0 0 0 0 0 0 y 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 y 0 0 0 0
y 0 0 0 0 0 0 0 y 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 y 0 0 0 0
0 y 0 0 0 0 0 0 0 y 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 y 0 0 0 0
0 0 y 0 0 0 0 0 0 y 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 y y 0 0 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 y 0 0 0 0
0 0 0 0 0 y 0 0 0 0 0 y 0 0 0 0 0 0 X 0 0 0 0 0 0 y 0 0 0 0
y y y y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X y 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 y X 0 0 0 0 0 y y y y
0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 y 0 0 0 0
0 0 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0
0 0 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 0 y 0 0 0 0
0 0 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X y 0 0 0 0
y y 0 y 0 y 0 y y y 0 y y y y y 0 y y 0 0 y 0 y y X 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 y 0 0 0 0 0 X 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 y 0 0 0 0 0 0 X 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 y 0 0 0 0 0 0 0 X 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 y 0 0 0 0 0 0 0 0 X
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and actuators from different stages, but groups some of them to-
gether for convenience (e.g. P-101 and P-102 are the same DP, as
the latter pump is simply a backup for the former). Next, Equation
(3) is constructed by mapping down the information-state coupling
from Equation (2) and adjusting according to the FRs of Table 2. At
this second level, we use the notational format FRi .j and DPi .j with
i denoting the number from the top-level design and j the number
from the second-level.

Finally, Tables 3 and 4 present the dependent DPs for each second-
level FR from Table 2, using the information-state coupling as identi-
fied by the CPS designer in Equation (3). These sets of dependencies
identified in the design can then be used to construct invariants
(see Sections 3.2 and 3.3).

Applying axiomatic design here has given the advantage of being
able to follow a systematic approach, which guides the analysis
of dependencies from a simple top-level design down to one that
considers particular sensors and actuators. Furthermore, it allows
(in the following) for design-justified invariants to be derived for
a complex system like SWaT without the need for any complex
mathematical modelling, such as other methods that use Petri-nets
[39] or Bayesian networks [27] to analyse dependencies.

3.2 Mathematical Expressions over DPs
With the sets of dependencies between DPs in Tables 3 and 4, we
can then construct mathematical state expressions that characterise
the invariant relationships between them. Consider, for example,
row 26 of Table 4: here, DP7.1.1 expresses that motorised valve
MV-101 has a dependency on LIT-101 (and vice versa).

Given these two components, we then construct mathematical
equations to characterise their invariant relationship, i.e. the com-
binations of states they will always be in during normal operation.
These consist of the states that the DPs are in (‘inputs’) and assign-
ments of anomalous or non-anomalous (‘output’). In the case of
LIT-101, we use the low/high thresholds to determine two discrete
states of interest, then relate them against the possible discrete
values of MV-101 (open or closed). These equations are given in Ta-
ble 5, where MV-101 (resp. !MV-101) denotes that the valve is open
(resp. closed), and LIT-101 (resp. !LIT-101) denotes that the tank
level is high (resp. low). The table also reflects the judgement of an
engineer as to which of these four combinations reflect anomalous
configurations. For example, if the valve is open and the tank level
is high, this is anomalous as it could cause the tank to overflow.

At this stage of our work, when constructing equations, we
assume that all DPs have one of two states, and thus the total
number of equations to analyse will be 2n where n is the number
of components involved. For large numbers of n, the number of
equations may grow too large to manually complete, hence our use
of decision trees and other supervised ML algorithms in Section 4
to generalise from the inputs/outputs that we do have.

3.3 DAGs with States and Conditions
We also use the directed acyclic graph (DAG) concept of graph
theory [11] for sketching process graphs to assist the engineer in
analysing the relationship between states of DPs. In particular, we
use nodes to represent the states of DPs and edges to represent the
conditions that cause the states of DPs to change.



Table 3: Linking second-level decomposition of FRs to dependent DPs

No Functional Requirements (FRs) Design Parameters (DPs)
1 FR1.1: Pump raw water from stage one to UF feed tank in stage three DP1.1: P-101, P-102

DP1.1.1: P-101 Other DPs: DP2.1(LIT-101), DP2.2(LIT-301), DP7.1(MV-201)
DP1.1.2: P-102 Other DPs: DP2.1(LIT-101), DP2.2(LIT-301), DP7.1(MV-201)

2 FR1.2: Pump water from stage three to RO feed tank in stage four DP1.2: P-301, P-302
DP1.2.1: P-301 Other DPs: DP2.2(LIT-301), DP2.3(LIT-401), DP7.1(MV-302)
DP1.2.2: P-302 Other DPs: DP2.2(LIT-301), DP2.3(LIT-401), DP7.1(MV-302)

3 FR1.3: Pump water from stage four through de-chlorination system DP1.3: P-401, P-402
DP1.3.1: P-401 Other DPs: DP1.4(P-501,P-502), DP2.3(LIT-401)
DP1.3.2: P-402 Other DPs: DP1.4(P-501,P-502), DP2.3(LIT-401)

4 FR1.4: Pump (VSD) water from stage five to tanks in stage six DP1.4: P-501, P-502
DP1.4.1: P-501 Other DPs: DP1.3(P-401,P-402), DP7.1(MV-501)
DP1.4.2: P-502 Other DPs: DP1.3(P-401,P-402), DP7.1(MV-501)

5 FR1.5: Pump water from RO permeate tank to raw water tank in stage one DP1.5: P-601 Other DPs: DP2.1(LIT-101), DP2.4(LS-601)
6 FR1.6: Pump water for UF backwash system DP1.6: P-602 Other DPs: DP2.5(LS-602), DP7.1(MV-301)
7 FR1.7: Pump water for RO/UF cleaning DP1.7: P-603 Other DPs: DP2.6(LS-603)
8 FR2.1: Determine water level in raw water tank of stage one DP2.1: LIT-101 Other DPs: DP1.1(P-101,P-102), DP1.5(P-601), DP2.4(LS-601), DP7.1(MV-101)
9 FR2.2: Determine water level in UF feed tank of stage three DP2.2: LIT-301 Other DPs: DP1.1(P-101,P-102), DP1.2(P-301,P-302), DP7.1(MV-201)
10 FR2.3: Determine water level in RO feed tank of stage four DP2.3: LIT-401 Other DPs: DP1.2(P-301,P-302), DP1.3(P-401,P-402), DP7.1(MV-302)
11 FR2.4: Determine water level in RO permeate tank of stage six DP2.4: LS-601 Other DPs: DP1.5(P-601), DP2.1(LIT-101)
12 FR2.5: Determine water level in UF backwash tank of stage six DP2.5: LS-602 Other DPs: DP1.6(P-602), DP7.1(MV-301)
13 FR2.6: Determine water level in CIP tank of stage six DP2.6: LS-603 Other DPs: DP1.7(P-603), DP7.1(MV-301)
14 FR3.1: Measure raw water flow rate in stage one DP3.1: FIT-101 Other DPs: DP2.1(LIT-101), DP7.1(MV-101)
15 FR3.2: Measure water flow rate in stage two DP3.2: FIT-201 Other DPs: DP1.1(P-101,P-102), DP2.2(LIT-301), DP7.1(MV-201)
16 FR3.3: Measure water flow rate in stage three DP3.3: FIT-301 Other DPs: DP1.2(P-301,P-302), DP2.3(LIT-401), DP7.1(MV-302)
17 FR3.4: Measure water flow rate in stage four DP3.4: FIT-401 Other DPs: DP1.3(P-401,P-402), DP2.3(LIT-401)
18 FR3.5: Measure water flow rate in stage five DP3.5: FIT-501,FIT-502,FIT-503,FIT-504

DP3.5.1: FIT-501 Other DPs: DP1.3(P-401,P-402)
DP3.5.2: FIT-502 Other DPs: DP1.4(P-501,P-502)
DP3.5.3: FIT-503 Other DPs: DP1.4(P-501,P-502)
DP3.5.4: FIT-504 Other DPs: DP1.3(P-401,P-402)

19 FR3.6: Measure water flow rate in stage six DP3.6: FIT-601 Other DPs: DP1.6(P-602), DP2.5(LS-602), DP7.1(MV-301)
20 FR4.1: Calculate chemical properties of water DP4.1: AIT-201,AIT-202,AIT-203,AIT-301,AIT-302,AIT-303,

AIT-401,AIT-402,AIT-501,AIT-502,AIT-503,AIT-504
DP4.1.1: AIT-201 Other DPs: DP1.1.1(P-101), DP1.1.2(P-102)
DP4.1.2: AIT-202 Other DPs: DP1.1.1(P-101), DP1.1.2(P-102)
DP4.1.3: AIT-203 Other DPs: DP1.1.1(P-101), DP1.1.2(P-102)
DP4.1.4: AIT-301 Other DPs: DP1.2.1(P-301), DP1.2.2(P-302)
DP4.1.5: AIT-302 Other DPs: DP1.2.1(P-301), DP1.2.2(P-302)
DP4.1.6: AIT-303 Other DPs: DP1.2.1(P-301), DP1.2.2(P-302)
DP4.1.7: AIT-401 Other DPs: DP1.3.1(P-401), DP1.3.2(P-402)
DP4.1.8: AIT-402 Other DPs: DP1.3.1(P-401), DP1.3.2(P-402)
DP4.1.9: AIT-501 Other DPs: DP1.3.1(P-401), DP1.3.2(P-402)
DP4.1.10: AIT-502 Other DPs: DP1.3.1(P-401), DP1.3.2(P-402)
DP4.1.11: AIT-503 Other DPs: DP1.3.1(P-401), DP1.3.2(P-402)
DP4.1.11: AIT-504 Other DPs: DP1.4.1(P-501), DP1.4.2(P-502)

21 FR5.1: Pump chemicals to water DP5.1: P-201,P-202,P-203,P-204,P-205,P-206,P-207,P-208,P-403,P-404
DP5.1.1: P-201 Other DPs: DP4.1.1(AIT-201), DP7.1.2(MV-201)
DP5.1.2: P-202 Other DPs: DP4.1.1(AIT-201), DP7.1.2(MV-201)
DP5.1.3: P-203 Other DPs: DP4.1.2(AIT-202), DP7.1.2(MV-201)
DP5.1.4: P-204 Other DPs: DP4.1.2(AIT-202), DP7.1.2(MV-201)
DP5.1.5: P-205 Other DPs: DP4.1.3(AIT-203), DP7.1.2(MV-201)
DP5.1.6: P-206 Other DPs: DP4.1.3(AIT-203), DP7.1.2(MV-201)
DP5.1.7: P-207 Other DPs: DP4.1.5(AIT-302)
DP5.1.8: P-208 Other DPs: DP4.1.5(AIT-302)
DP5.1.9: P-403 Other DPs: DP4.1.8(AIT-402)
DP5.1.10: P-404 Other DPs: DP4.1.8(AIT-402)

22 FR6.1: Measure UF filter differential pressure DP6.1: DPIT-301 Other DPs: DP1.2.1(P-301), DP1.2.2(P-302), DP7.1(MV-302)
23 FR6.2: Measure RO membrane inlet pressure DP6.2: PIT-501 Other DPs: DP1.4.1(P-501), DP1.4.2(P-502)
24 FR6.3: Measure RO membrane pressure DP6.3: PIT-502 Other DPs: DP1.4.1(P-501), DP1.4.2(P-502), DP7.1.7(MV-501),

DP7.1.9(MV-503)
25 FR6.4: Measure RO reject pressure DP6.4: PIT-503 Other DPs: DP1.4.1(P-501), DP1.4.2(P-502), DP7.1.8(MV-502),

DP7.1.10(MV-504)

Figure 3(a) shows a subsystem in stage one of SWaT and the
interconnection of some dependent devices identified from the ax-
iomatic design analysis (row 26 of Table 4), along with the physical
tank (T-101) and PLC that controls the components. Figures 3(b) and

4 then visualise how the state of one DP (MV-101) changes accord-
ing to the other (LIT-101), for both the normal and the (inverted)
anomalous cases. In both graphs, we consider the cases when the
tank level is below one of its low thresholds (Low or LowLow), or



Table 4: Linking second-level decomposition of FRs to dependent DPs (continued)

No Functional Requirements (FRs) Design Parameters (DPs)
26 FR7.1: Control water flow direction DP7.1: MV-101,MV-201,MV-301,MV-302,MV-303,MV-304,MV-501,MV-502,MV-503,MV-504

DP7.1.1: MV-101 Other DPs: DP2.1(LIT-101)
DP7.1.2: MV-201 Other DPs: DP1.1.1(P-101), DP1.1.2(P-102), DP2.2(LIT-301)
DP7.1.3: MV-301 Other DPs: DP1.6(P-602), DP2.5(LS-602), DP2.6(LS-603)
DP7.1.4: MV-302 Other DPs: DP1.2.1(P-301), DP1.2.2(P-302), DP2.3(LIT-401)
DP7.1.5: MV-303 Other DPs: DP1.2.1(P-301), DP1.2.2(P-302)
DP7.1.6: MV-304 Other DPs: DP1.2.1(P-301), DP1.2.2(P-302)
DP7.1.7: MV-501 Other DPs: DP1.4.1(P-501), DP1.4.2(P-502)
DP7.1.8: MV-502 Other DPs: DP1.4.1(P-501), DP1.4.2(P-502)
DP7.1.9: MV-503 Other DPs: DP1.4.1(P-501), DP1.4.2(P-502)
DP7.1.10: MV-504 Other DPs: DP1.4.1(P-501), DP1.4.2(P-502)

27 FR8.1: Determine NaCl level in NaCl tank of stage two DP8.1: LS-201 Other DPs: DP5.1.1(P-201), DP5.1.2(P-202)
28 FR8.2: Determine HCl level in HCl tank of stage two DP8.2: LS-202 Other DPs: DP5.1.3(P-203), DP5.1.4(P-204)
29 FR8.3: Determine NaOCl level in NaOCl tank of stage two DP8.3: LS-203 Other DPs: DP5.1.5(P-205), DP5.1.6(P-206), DP5.1.7(P-207), DP5.1.8(P-208)
30 FR8.4: Determine NaHSO3 level in NaHSO3 tank of stage four DP8.4: LS-401 Other DPs: DP5.1.9(P-403), DP5.1.10(P-404)
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Figure 3: (a) Subsystem in stage one of SWaT; (b) A process graph in stage one of SWaT for normal cases

Table 5: Mathematical state expressions and assessments

State Expression (Input) Assessment (Output)

!MV-101 and !LIT-101 Anomaly
!MV-101 and LIT-101 No anomaly
MV-101 and !LIT-101 No anomaly
MV-101 and LIT-101 Anomaly

above one of its high thresholds (High or HighHigh). MV-101 can
be either open or closed, and the graphs reflect the states it should
switch to according to different level thresholds of the tank. The
idea is that the designer traverses through the different paths in
the normal case of Figures 3(b), and then concludes that all other
possible paths are abnormal cases, thus deriving Figure 4. For exam-
ple, if the tank level is low (L or LL), then the correct behaviour is
for the valve to open and allow water to flow in; remaining closed
(risking an underflow scenario) is thus anomalous.

These paths in Figures 3(b) and 4 provide direct and indirect in-
formation for deciding the outcome of an attack, and the identified
anomaly cases should be investigated further to prevent successful
attacks. This information is useful because it gives the designer
the possibility to employ different types of defence mechanisms
at certain locations based on cost and impact analysis. The graphs
provide visual representations of paths which may be easier to com-
municate and analyse in comparison to mathematical expressions.
A deeper analysis of Figures 3(b) and 4 by the designer may lead to
the discovery of a successful concrete attack such as spoofing of
data. For example: if LIT-101 for T-101 is spoofed to be at H instead
of L, then P-101 starts pumping water out of T-101. In a short time,
T-101 is going to be emptied. A prolonged period of pumping water
from an empty tank can damage the pumps. A solution to prevent
such an attack is to use data encryption for network communica-
tion between devices. As this weakness is determined at the design
phase of the system, the cost of protecting against such an attack
is likely to be less than if the attack had been discovered after the
implementation of hardware and software.
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Figure 4: A process graph depicting anomalous cases

4 PRELIMINARY EVALUATION
In this section, we present a preliminary study in which we assess
how effective our invariants are for implementing attack detection
mechanisms in SWaT. First, we derive two invariants from our de-
sign framework: one concerning sensors and actuators in stage
one only, and another concerning sensors and actuators across
three stages (1–3). Next, we train supervised machine learning algo-
rithms (e.g. decision trees, naïve Bayes) on the inputs/outputs of the
equations and process graphs associated with the invariants. The
training results in classifiers that can judge actual sensor/actuator
data as ‘normal’ or ‘anomalous’ with respect to the invariant rela-
tionships they were trained on. Finally, we deploy these classifiers
on both the SWaT dataset [1] as well as the actual testbed to assess
how effective they are at detecting some relevant attacks.

Experiment and Results. The first invariant (#1) we derived con-
cerns the relationship between MV-101 and LIT-101. This depen-
dency was identified from our design analysis, in particular, from
DP7.1.1, row 26 of Table 4. The completed mathematical equa-
tions and their corresponding process graphs are given in Table 5,
Figure 3(b), and Figure 4. As this dependency involved only two
components, it was feasible to completely classify all Boolean com-
binations of their discretised values as normal or anomalous. This
might not be the case for larger sets of dependencies, which is why
supervised learning algorithms may be required in general.

The second invariant (#2) concerns the relationship between
LIT-301, MV-201, P-101, and P-102. These dependencies were also
identified from our design analysis, in particular, from DP7.1.2, row
26 of Table 4. Mathematical equations and process graphs were
constructed for these components in an analogous way to the first
invariant.

We trained both supervised decision tree and naïve Bayes learn-
ing algorithms on the inputs/outputs of the mathematical equations
and process graphs of these invariants. We applied the classifiers

to the SWaT dataset [1] and found that no false positives were re-
ported, i.e. at no point did ‘normal’ data in the labelled dataset
get misclassified as ‘anomalous’. Likewise, when implemented for
the actual testbed, we found that the classifiers did not report any
false positives throughout our experiments. We investigated the
effectiveness of the classifiers against relevant attacks in both the
SWaT dataset as well as on the testbed itself. We found that our
decision tree classifiers achieved 100% accuracy in the prediction
of normal/anomalous labels throughout these attacks, and that our
naïve Bayes classifiers achieved 100% and 93.75% accuracy for the
two invariants respectively. The two attack tests we considered for
the SWaT testbed (of potentially many more) are discussed below.

While we are motivated by the results, we are actively working
on building a larger set of invariants/classifiers to be sure that the
results do generalise, and are keen to compare the effectiveness
of our invariants against those derived using other approaches,
e.g. those that used only data and not the system design at all.

Attack Test #1. The following attack scenario was successfully
detected using the SWaT testbed.

Components to attack: Motorised valve MV-101, and level indica-
tor transmitter LIT-101 (both in stage one).

Objective: Damage or reduce the reliability of MV-101.
Launch state: At time t , the water level of LIT-101 is above

800mm.
Attack: At time t++, an attacker beginsmanually turningMV-101

on and off several times.
Results: Successfully detected. The attack violated the classifier

of invariant #1 for MV-101, LIT-101.
SWaT’s defences could be strengthened against this attack by

overriding attempts to manually turn on MV-101 if the water level
reported by LIT-101 is above its high (H) or critically high (HH)
thresholds. This would block the attack, although would rely on
the assumption that the value of LIT-101 is correct can be trusted
(additional invariants and classifiers concerning LIT-101 could help
to mitigate this threat).

Attack Test #2. This second attack test case was also successfully
executed and detected using the SWaT testbed.

Components to attack: Pumps P-101, P-102, and motorised valve
MV-201.

Objective: Damage or reduce the reliability of P-101, P-102, and
MV-201.

Launch state: At time t , the water level reported by LIT-301 is
above 1000mm.

Attack: At time t ++, an attacker manually turns on MV-201.
Next, the attacker manually starts pump P-102. Finally, the attacker
manually starts pump P-101.

Results: Successfully detected. The attack violated the classifier
of invariant #2 for LIT-301, MV-201, P-101, P-102.

SWaT’s defences could be strengthened by overriding attempts
to turn on MV-201 if the water level reported by LIT-301 is above
its high (H) or critically high (HH) thresholds. This would prevent
the attack from happening, but again, would require additional
mechanisms or improvements to the design to ensure that the
value of LIT-301 can be trusted.



5 CONCLUSION
In this position paper, we proposed a method for systematically
deriving invariants from the functional requirements of a CPS, in
order to: (1) integrate security concerns at the design stage; (2) en-
sure that invariants can be traced from requirements through to
implemented defence mechanisms; (3) identify all invariants im-
plicit in the design, not just those represented in datasets; and
(4) potentially save costs by identifying weak points before the CPS
is built. Inspired by the axiomatic design methodology for systems,
our method iteratively analyses dependencies in a given CPS to
construct equations and process graphs that represent invariant
relations between sensor readings and actuator states. We demon-
strated the potential use of this approach in a preliminary study
on the SWaT water treatment testbed, implementing checkers for
two invariants using decision trees, and finding that they detected
relevant attacks without false positives.

Our method provides a step-by-step approach from requirements
to the implementation of invariant checkers, and does not require
any complex mathematical modelling or dataset-based training.
This may help to ensure that detected attacks or system malfunc-
tions can be explained, not just in terms of the equations or process
graph that they violated, but also in terms of the functional require-
ments that they were derived from, providing systems engineers
with a rich amount of context.

In ongoing work, we plan extend our preliminary study for SWaT
by implementing more invariant-based checkers from our require-
ments analysis, and evaluating them against a wider array of attacks.
We also plan to compare the effectiveness of our invariants against
those derived by other approaches (both automated and manual
ones) in order to better understand the added security benefits of
analysing the CPS design directly. Finally, we plan to assess the
generalisability of our approach by applying it to other industrial
control systems (e.g. the WADI water distribution plant), and poten-
tially to CPSs from other domains, such as building management
or healthcare systems.
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Table 6: Third-level decomposition of FRs and DPs

No Functional Requirements (FRs) Design Parameters (DPs) Process Variables (PVs)
1 FR1.1.1: Feed raw water from stage one to UF feed tank in stage three using pump P-101 DP1.1.1: P-101 On/Off
2 FR1.1.2: Feed raw water from stage one to UF feed tank in stage three using pump P-102 DP1.1.2: P-102 On/Off
3 FR1.2.1: Feed water from stage three to RO feed tank in stage four using pump P-301 DP1.2.1: P-301 On/Off
4 FR1.2.2: Feed water from stage three to RO feed tank in stage four using pump P-302 DP1.2.2: P-302 On/Off
5 FR1.3.1: Pump water from stage four through de-chlorination system using pump P-401 DP1.3.1: P-401 On/Off
6 FR1.3.2: Pump water from stage four through de-chlorination system using pump P-402 DP1.3.2: P-402 On/Off
7 FR1.4.1: Pump (VSD) water from stage five to tanks in stage six using pump P-501 DP1.4.1: P-501 On/Off
8 FR1.4.2: Pump (VSD) water from stage five to tanks in stage six using pump P-502 DP1.4.2: P-502 On/Off
9 FR3.5.1: Compute RO membrane inlet flow meter in stage five DP3.5.1: FIT-501 0 <= α <= maxk1
10 FR3.5.2: Compute RO permeate flow meter in stage five DP3.5.2: FIT-502 0 <= α <= maxk2
11 FR3.5.3: Compute RO reject flow meter in stage five DP3.5.3: FIT-503 0 <= α <= maxk3
12 FR3.5.4: Compute RO re-circulation flow meter in stage five DP3.5.4: FIT-504 0 <= α <= maxk4
13 FR4.1.1: Calculate chemical dosing conductivity of water in stage two DP4.1.1: AIT-201 0 <= α <= maxm1
14 FR4.1.2: Calculate chemical dosing pH of water in stage two DP4.1.2: AIT-202 0 <= α <= maxm2
15 FR4.1.3: Calculate chemical dosing ORP of water in stage two DP4.1.3: AIT-203 0 <= α <= maxm3
16 FR4.1.4: Calculate UF permeate pH of water in stage three DP4.1.4: AIT-301 0 <= α <= maxm4
17 FR4.1.5: Calculate UF permeate ORP of water in stage three DP4.1.5: AIT-302 0 <= α <= maxm5
18 FR4.1.6: Calculate UF permeate conductivity of water in stage three DP4.1.6: AIT-303 0 <= α <= maxm6
19 FR4.1.7: Calculate RO feed hardness of water in stage four DP4.1.7: AIT-401 0 <= α <= maxm7
20 FR4.1.8: Calculate RO ORP of water in stage four DP4.1.8: AIT-402 0 <= α <= maxm8
21 FR4.1.9: Calculate RO feed pH of water in stage five DP4.1.9: AIT-501 0 <= α <= maxm9
22 FR4.1.10: Calculate RO feed ORP of water in stage five DP4.1.10: AIT-502 0 <= α <= maxm10
23 FR4.1.11: Calculate RO feed conductivity of water in stage five DP4.1.11: AIT-503 0 <= α <= maxm11
24 FR4.1.12: Calculate RO permeate conductivity of water in stage five DP4.1.12: AIT-504 0 <= α <= maxm12
25 FR5.1.1: Feed NaCl dosing in stage two using pump P-201 DP5.1.1: P-201 On/Off
26 FR5.1.2: Feed NaCl dosing in stage two using pump P-202 DP5.1.2: P-202 On/Off
27 FR5.1.3: Feed HCl dosing in stage two using pump P-203 DP5.1.3: P-203 On/Off
28 FR5.1.4: Feed HCl dosing in stage two using pump P-204 DP5.1.4: P-204 On/Off
29 FR5.1.5: Feed NaOCl dosing in stage two using pump P-205 (FAC) DP5.1.5: P-205 On/Off
30 FR5.1.6: Feed NaOCl dosing in stage two using pump P-206 (FAC) DP5.1.6: P-206 On/Off
31 FR5.1.7: Feed NaOCl dosing to stage three UF cleaning using pump P-207 (UF) DP5.1.7: P-207 On/Off
32 FR5.1.8: Feed NaOCl dosing to stage three UF cleaning using pump P-208 (UF) DP5.1.8: P-208 On/Off
33 FR5.1.9: Feed NaHSO3 dosing in stage four using pump P-403 DP5.1.9: P-403 On/Off
34 FR5.1.10: Feed NaHSO3 dosing in stage four using pump P-404 DP5.1.10: P-404 On/Off
35 FR7.1.1: Direct raw water inlet in stage one DP7.1.1: MV-101 On/Off
36 FR7.1.2: Direct water flow in stage two DP7.1.2: MV-201 On/Off
37 FR7.1.3: Direct UF backwash in stage three DP7.1.3: MV-301 On/Off
38 FR7.1.4: Direct UF feed water in stage three DP7.1.4: MV-302 On/Off
39 FR7.1.5: Direct UF backwash drain in stage three DP7.1.5: MV-303 On/Off
40 FR7.1.6: Direct UF drain in stage three DP7.1.6: MV-304 On/Off
41 FR7.1.7: Direct RO permeate in stage five DP7.1.7: MV-501 On/Off
42 FR7.1.8: Direct RO backwash in stage five DP7.1.8: MV-502 On/Off
43 FR7.1.9: Direct RO permeate reject in stage five DP7.1.9: MV-503 On/Off
44 FR7.1.10: Direct RO reject in stage five DP7.1.10: MV-504 On/Off
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