
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2020

A new framework for privacy-preserving biometric-based remote A new framework for privacy-preserving biometric-based remote

user authentication user authentication

Yangguang TIAN
Singapore Management University, ygtian@smu.edu.sg

Yingjiu LI

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Nan LI

Pengfei WU

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
1

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5305&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yangguang TIAN, Yingjiu LI, Robert H. DENG, Nan LI, Pengfei WU, and Anyi LIU

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/5305

https://ink.library.smu.edu.sg/sis_research/5305

Journal of Computer Security 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

A New Framework for Privacy-Preserving
Biometric-Based Remote User
Authentication

Yangguang Tian a,∗, Yingjiu Li b, Robert H. Deng a, Nan Li c Pengfei Wu d, and Anyi Liu e

a School of Information Systems, Singapore Management University, Singapore
E-mails: sunshine.tian86@gmail.com, robertdeng@smu.edu.sg
b Computer and Information Science, University of Oregon, USA
E-mail: yingjiul@uoregon.edu
c School of Electrical Engineering and Computing, University of Newcastle, NSW, Australia
E-mail: nan.li@newcastle.edu.au
d School of Software and Microelectronics, Peking University, Beijing, China
E-mail: wpf9808@pku.edu.cn
e Department of Computer Science and Engineering, Oakland University, USA
E-mail: anyiliu@oakland.edu

Abstract. In this paper, we introduce the first general framework for strong privacy-preserving biometric-based remote user
authentication based on oblivious RAM (ORAM) protocol and computational fuzzy extractors. We define formal security
models for the general framework, and we prove that it can achieve user authenticity and strong privacy. In particular, the general
framework ensures that: 1) a strong privacy and a log-linear time-complexity are achieved by using a new tree-based ORAM
protocol; 2) a constant bandwidth cost is achieved by exploiting computational fuzzy extractors in the challenge-response phase
of remote user authentications.
Keywords: Remote User Authentication, Oblivious RAM, Computational Fuzzy Extractors, Strong Privacy, Constant
Bandwidth

1. Introduction

Privacy-Preserving Biometric-based Remote User Authentication (BRUA) allows an authorized user
to anonymously authenticate herself to a remote authentication server using her biometrics. In the lit-
erature, BRUA with biometrics privacy has been intensively studied [1–6]. Biometrics privacy means
that no biometrics should be stored in plaintext at server side, this is because a user may lose its secu-
rity forever if her secret biometrics is leaked to the authentication server or any outsiders. However, we
discover that none of existing schemes ever consider non-biometrics privacy, including identity privacy
and access privacy.

*Corresponding author. E-mail: sunshine.tian86@gmail.com.

0926-227X/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

Published in Journal of Computer Security, 2020, 28 (4), 469-498.
https://doi.org/10.3233/JCS-191336

mailto:sunshine.tian86@gmail.com
mailto:robertdeng@smu.edu.sg
mailto:yingjiul@uoregon.edu
mailto:nan.li@newcastle.edu.au
mailto:wpf9808@pku.edu.cn
mailto:anyiliu@oakland.edu
mailto:sunshine.tian86@gmail.com

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Identity privacy and access privacy are essential in the remote user authentication setting. A remote
user authentication, that does not achieve identity privacy and access privacy, may leak sensitive infor-
mation about a user to the authentication server or any outsiders. Let us consider a real-world application:
mobile health (mHealth), where patients wish to obtain healthcare information after being authenticated
by an authentication server through mobile devices. We assume an authentication server maintains a
database of records and each record contains a patient’s “encrypted” biometrics. We also assume that
the authentication server must access a patient’s record to authenticate the patient. Identity privacy can
ensure that a patient logs in to mHealth system without disclosing her real identity to the authentication
server.

We note that the previously mentioned login does not guarantee access privacy. Access privacy means
that the authentication server cannot determine which record is being accessed at any time. If the same
record is accessed twice, then the authentication server can easily link two accesses made by the same
anonymous patient [7, 8]. As a result, the authentication server can learn a patient’s sensitive information
such as interaction history and login behaviour, and disclose it to third parties afterwards [9]. In contrast,
access privacy aims to prevent the authentication server from obtaining such sensitive information.

The practicality of a remote user authentication system (e.g., mHealth) is evaluated by time-complexity
and bandwidth cost. First, the time-complexity means that the amount of time it takes for the authen-
tication server to authenticate a user. Second, the bandwidth cost means the number of records trans-
ferred between the authentication server and a user in order to authenticate the user. To analyze the
bandwidth cost in detail, we assume a remote user authentication includes three phases: early-reshuffle,
challenge-response and post-reshuffle. Both early-reshuffle and post-reshuffle allow a patient to reshuffle
and re-randomize a set of records in the database, so multiple logins by the same anonymous patient are
unlinkable by the authentication server. In the challenge-response phase, a patient proves her authentic-
ity to the authentication server by generating digital signatures based on any messages (e.g., nonces) and
transferred records.

In this work, we present the first general framework of biometrics-based remote user authentication
that satisfies strong privacy, including biometrics privacy, identity privacy and access privacy, while the
time-complexity is log-linear in the number of enrolled users, and the communication bandwidth in the
challenge-response phase is constant. We call our framework pBRUA for convenience.

Overview of Techniques. We now explain our key technical insights. First, biometrics privacy and iden-
tity privacy can be achieved using the existing techniques such as computational fuzzy extractors [10–12]
(note that fuzzy extractors are used to convert repeated noisy readings of a secret into the same key of
uniform distribution [13]) and anonymous digital signatures [14, 15]. Second, for achieving access pri-
vacy, to the best of our knowledge, there is no existing solution that can be directly applied to construct
pBRUA1. We shall show that some existing tree-based ORAM protocols can be used to construct BRUA
with log-linear time-complexity (see Appendix A). However, they cannot achieve constant bandwidth
cost in the challenge-response phase. Therefore, we propose a new tree-based ORAM (uORAM) proto-
col (see Figure 1). The uORAM not only supports a log-linear time-complexity in the number of records
(including all enrolled users’ real records and many dummy records) due to the structure of a binary tree,
but also achieves a constant bandwidth in the challenge-response phase.

Our Novel Technique. In pBRUA, a user first reshuffles and re-randomizes a set of records in a tree path
in the early-reshuffle phase, which includes a real record (which contains the user’s “encrypted” biomet-

1It is possible to use other alternative solutions to achieve access privacy such as private information retrieval [16] and shuffle
index [17], while the ORAM based solution may achieve lower bandwidth complexity.

2

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Fig. 1. uORAM in a multiple-user and single-server setting. The individual user stores a small amount of local data in a stash.
The server-side storage is treated as a binary tree where each node is a bucket that can hold up to a fixed number of records. If
the black record is mapped to the shaded path, then the record must reside in any slot along the path or in the stash.

rics) and many dummy records (which contains “encrypted” zeros). The user is required to replace the
“encrypted” zeros in the dummy records with secret randomness chosen by the user. In the challenge-
response phase, the authentication server “aggregates” the records in the tree path specified by the user
and sends the “aggregated” record to the user. Then, the user obtains a cryptographic key from the
“aggregated” record using her biometrics and the chosen secret randomness. Such cryptographic key
is used to generate a signing/verification key pair to prove her authenticity. In particular, we use the
Schnorr signature scheme [18]. This is because the cryptographic key is re-randomized by the user in
the early-reshuffles phase. As a result, the Schnorr signature generated by the derived signing key in
the challenge-response phase can achieve both user authenticity and constant bandwidth. We stress that
we do not use the previously mentioned anonymous digital signatures, which essentially compromise
the constant bandwidth, because the number of verification keys transferred between user and server for
verifying anonymous signatures has the log-linear time-complexity in the number of records.

Our Contributions. The major contributions of this work are summarized as follows.

• General Framework. We propose the first general framework pBRUA using learning with errors
(LWE) computational fuzzy extractors [10–12], digital signatures [19, 20] and a uORAM protocol.
The proposed pBRUA achieves the strong privacy, log-linear time-complexity and constant bandwidth
in the challenge-response phase. We prove that the proposed pBRUA can achieve user authenticity and
strong privacy under standard assumptions.
• New ORAM. We propose a new tree-based ORAM (uORAM) for remote user authentications in a

multi-user setting, which is built on top of Path ORAM [21] and Ring ORAM [22] (a variant of
Path ORAM). The proposed uORAM is proven secure under a variant of standard ORAM security
definition [23].
• Constant Bandwidth. We show the proposed uORAM (and pBRUA as well) can achieve the constant

bandwidth. Constant bandwidth in this work means that the authentication server transfers a single
record to an authorized user in the challenge-response phase.

3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 1
N is the total number of records, Z (e.g., Z = 4) is the number of real records per bucket (more details are referred to Section
3) and Z∗ (e.g., Z∗ = 3) is a smaller number than Z which means an improved overall bandwidth in Ring ORAM.

Criteria/Construction Path Ring uORAM uORAM + FE
Overall Bandwidth 2Z · logN Z∗ · logN 2Z · logN 2Z · logN
CR Bandwidth Z · logN logN logN 1

We highlight our contributions in Table 1. We can see that the pBRUA is achieved by proposing a uO-
RAM and exploiting the LWE-based fuzzy extractor (FE) altogether. We remark that the new uORAM
protocol can be regarded as an independent cryptographic primitive, if one does not consider the constant
bandwidth in the challenge-response (CR) phase.

1.1. Related Work

ORAM. Oblivious RAM was introduced by Goldreich and Ostrovsky [23] (GO-ORAM), that allows
a client to conceal her access pattern as seen by the untrusted storage server. They have proposed two
ORAMs: Square-root ORAM and Hierarchical ORAM. The main drawback is: the worst-case cost on
bandwidth is linear in the total number of records (or blocks) N. The bandwidth is to measure the amount
of communication cost between client and server to serve a client request. For example, the Hierarchical
ORAM is with O(N · log2N) (i.e., poly-logarithmic) complexity, so it hinders its practicality in realistic
settings. To reduce the worst-case cost, Shi et al. [24] proposed the tree-based ORAM which manages the
ORAM storage into a binary tree, so that achieving the worst-case bandwidth withO(log3N) complexity.

To further reduce the bandwidth cost while keeping a small client storage, Stefanov et al [21] proposed
the Path ORAM with O(logN) bandwidth complexity. The Path ORAM is extremely simple—just 16
lines of pseudocode. Each access can be expressed a fetching and storing a path in the tree stored re-
motely on the server. However, the overall bandwidth is too high because the server has to pass all blocks
in a tree path to client, and the overall bandwidth of Path ORAM depends on the bucket size. To remove
such dependence, Ren et al. proposed the Ring ORAM [22] such that fetching one block per bucket in
a tree path. Moreover, the Ring ORAM can achieve the O(1) on-line bandwidth efficiency by applying
the XOR technique [25], which means that returning a single block back to serve a user request. This
is important because the on-line bandwidth determines the response time to serve a user request. We
note that the Evict operation (see Section 3) in the Ring ORAM is NOT suitable for user authentications
because it does not execute on every user request. By contrast, the requested user should push blocks
back to ORAM tree after a valid authentication because multiple users share the same ORAM tree.

For achieving theO(1) on-line bandwidth efficiency, the untrusted server is allowed to perform matrix
multiplication on some blocks (e.g., SSS ORAM [26]) or XOR operation (e.g., Burst ORAM [25] and
Ring ORAM [22]). In particular, the Onion ORAM [27] can achieve a constant worst-case bandwidth
blowup by allowing the untrusted server to perform the (additive/somewhat) homomorphic encryption
on the involved blocks. The bandwidth blowup means the number of blocks transmitted between client
and server to serve a client request. For example, Circuit ORAM [28] incurs a O(logN) lower bound in
bandwidth blowup, while Onion ORAM has a O(1) bandwidth blowup.

A separate line of research on ORAM is to handle the asynchronous user requests at multi-user setting
[29, 30], Sahin et al. [31] introduced a new ORAM: Taostore, which relies on a trusted proxy who
acts as a middle layer between multiple users and an untrusted server (i.e., “hybrid cloud” model [29]).

4

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Meanwhile, many practical ORAMs have been implemented for real-world applications, like secure
processors [21, 32], secure storage systems [25, 26, 29] and secure multi-party computations [28, 33].

Comparison with Existing ORAMs. First, we notice that some existing tree-based ORAMs can be
directly used to construct BRUA with log-linear time-complexity (e.g., the Path ORAM described in
Appendix A). Then, we compare our uORAM with some existing tree-based ORAMs in Table 2. Our
uORAM protocol is unique in design: 1) the authentication server generates certain number of dummy
records for padding each bucket during enrollment, in which the dummy records are common resources
shared by all enrolled users; 2) an enrolled user maintains her access privacy during authentication,
which is usually executed in a short time period; 3) multiple users store their individual key materials
securely and maintain stash independently. Our designed uORAM works at non-standard model, secures
against an honest-but-curious (or semi-honest) server. It has two round trips in total, and a single server
coordinates the authentication requests from multiple users in sequence. We note that the proposed
uORAM can store a generic data as required in the existing ORAMs. In this work, we use the LWE-
based fuzzy extractor to store biometrics with a specific format, so as to achieve a constant bandwidth
for user authentication. If the constant bandwidth is not required in the design goal, then many fuzzy
extractors in the literatue could be suitable for uORAM which can handle various types of biometrics.

Table 2
The overall comparison between our uORAM and some tree-based ORAMs. Bandwidth means on-line bandwidth complexity.
Standard means no server computation, non-standard means server can perform certain computation such as XOR. “1” round
trip means the O(logN) bandwidth complexity when processing the buckets in parallel. Multi-User means that whether a
single ORAM contains the blocks from multiple clients. Asynchronicity means whether server handles multiple client requests
asynchronously. Security means whether the untrusted server is semi-honest (SH) or malicious (M). In Ring [22], it achieves
O(1) on-line bandwidth complexity using the XOR technique. In Taostore [31], the total number of round-trips depends on the
number of asynchronous client requests (here we denote it as N/A). In uORAM, the on-line bandwidth complexityO(1) covers
the challenge-response phase of user authentications.

Criteria/ORAM Tree [24] Path [21] Ring [22] Onion [27] Taostore [31] Ours
Bandwidth O(log3N) O(logN) O(1) O(1) O(logN) O(1)
Standard X X × × X ×
Roundtrips 1 1 2 1 N/A 2
Multi-User × × × × X X
Asynchronicity × × × × X ×
Security N/A N/A SH SH/M SH SH

Fuzzy Extractor. Fuzzy extractor (FE) is one of the promising approaches to construct a biometric-
based user authentication [1, 2, 6]. Juels and Wattenberg [34] introduced a cryptography primitive called
“fuzzy commitment”. It can be used in the biometric-based authentication systems, because its error-
correcting technique can correct certain errors within a suitable metric (e.g., Hamming distance). Dodis
et al. [13] formally introduced the notions of “secure sketches” (the sketches are used to recover the
original biometrics from a nearby biometrics) and “fuzzy extractors”. In particular, they provided con-
crete constructions of secure sketches and FEs in three metrics (Hamming distance, set difference and
edit distance), and the constructions are information-theoretically secure.

Fuller et al. [10] introduced the first computationally-secure FE from LWE [35] such that the derived
cryptographic key equals to the entropy2 of the fuzzy biometrics. However, their computational FE is

2To obtain sufficient entropy at one time, a sensor that captures multiple biometrics (e.g., fingerprint and fingervein) has been
developed [36], but we do not survey on this research direction since it is beyond the scope of this work.

5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

not reusable. Reusability [1] means that a user can produce multiple key and sketch pairs using the
same biometrics w (i.e., {(si, pi)} ← Gen(w)). To achieve a reusable FE from LWE, Apon et al. [11]
provided a general method to convert non-reusable (resp. weakly reusable) computational fuzzy extrac-
tors to weakly reusable (resp. strongly reusable) ones. The strongly reusable FE allows an attacker to
obtain the secret key string si, in addition to the public sketch pi. We notice that the weakly reusable
FE will suffice for privacy-preserving remote user authentications in this work, and we can achieve the
strongly reusability by using the general method proposed in [11] when considering multiple authenti-
cation servers. In addition, we present the commonly used notations in Table 3.

Table 3
Summary of notations

Notation Meaning
n/N Total number of users/records (blocks)
L = logN Height of the binary tree T
ID/lea fID Block/leaf identifier
Z/S/S Real block/dummy block/Stash
pki/ski User i public/secret key pair
dist(x, y) Distance between vector x and vector y
t ∈ R+ Threshold value (positive real number)
w/w′ Enrolled biometrics/noised biometrics
SS(s,w) Secure sketch with a secret string s
P(lea fID) Tree path from leaf node lea fID to the root
P(lea fID, `) The bucket at level ` along the tree path P(lea fID)

position User’s local position map
lea fID = position(ID) Block ID resides somewhere along the path P(lea fID)

1.2. Paper Organization

In the next section, we present some preliminaries which will be used in our proposed construction.
In Section 3, we present our uORAM protocol and its security analysis. We then present our general
framework of pBRUA in Section 4 and formally prove its security in Section 5. The paper is concluded
in Section 6.

2. Preliminaries

In this section, we present the digital signatures with homomorphic property, a family of universal
hash functions and fuzzy extractors from LWE, which will be used in our proposed general framework.

2.1. Complexity Assumptions

Definition 2.1 (Decisional LWE [35]). Given a random matrix A ∈ Zm0×n0
q , X ∈ Zn0

q and χ be an arbi-
trary distribution on Zm0

q , the decisional LWE (D-LWEq,n0,m0,χ) problem is to distinguish the distribution
(A,A · X + χ) from a random distribution over (Zm0×n0

q ,Zm0
q). We say that D-LWEq,n0,m0,χ is (ε, ssec)

secure if no PPT distinguisher Dssec of size ssec can distinguish the LWE instances from uniform except
with probability ε, where ssec = poly(λ) and ε is a negligible function of the security parameter λ.

6

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Dottling and Muller-Quade [37] showed that one can encode biometrics w as the error term in a LWE
problem by splitting it into m0 blocks. Furthermore, to extract the pseudorandom bits, we rely on the
result from Akavia et al. [38] such that X ∈ Zn0

q has simultaneously many hardcore bits.

Lemma 2.1. If D-LWEq,n0−k,m0,χ is (ε, ssec) secure, then

δ
Ds′sec ((X1,··· ,k,A,A · X + χ), (U,A,A · X + χ)) 6 ε,

where U ∈ Zk
q and X1,··· ,k denotes the first k coordinates of x and s′sec ≈ ssec − n3

0.

2.2. Digital Signatures

We say a digital signature scheme Σ = (Setup,KG,Sign,Verify) is homomorphic, if the following
conditions are held.

(1) Simple Key Generation. (sk,pk) ← Σ.KG(pp) and pp ← Σ.Setup(λ), where pk is derived from
sk via a deterministic algorithm pk← KG′(pp,sk).

(2) Linearity of Keys. KG′(pp,sk + ∆(sk)) = Mpk(pp,KG′(pp,sk),∆(sk)), where Mpk denotes a
deterministic algorithm which takes pp, a public key pk and a “shifted” value ∆(sk), outputs the
“shifted” public key pk′.

(3) Linearity of Signatures. Two distributions are identical: {σ′ ← Σ.Sign(pp,sk + ∆(sk),m)} and
{σ′ ← MΣ(pp,pk,m, σ,∆(sk))}, where σ← Σ.Sign(pp,sk,m) and MΣ denotes a deterministic
algorithm which takes pp, a public key pk, a message-signature pair (m, σ) and a “shifted” value
∆(sk), outputs the “shifted” signature σ′.

(4) Linearity of Verifications. We require that Σ.Verify(pp,Mpk(pp,pk,∆(sk)),m,
MΣ(pp,pk,m, σ,∆(sk))) = “1”, and Σ.Verify(pp,pk,m, σ) = “1”.

Matsuda et al [20] showed that the Schnorr signature scheme [18] satisfies the homomorphic properties
regarding keys and signatures (see Lemma 2 in [20]).

2.3. Universal Hash Function

Let H be a universal hash function family whose domain is Zqn0 and whose range is Zq. Let Zqn0

be a vector space, which consists of n0 dimensional of finite ring with prime order q. We define an
isomorphism ψ : (Zq)n0 → Zqn0 (ψ−1 is its inverse), and n0 ∈ N. Note that (Zq)n0 = Zn0

q . A family of
universal hash functions is defined as H = {Hz : Zn0

q → Zq|z ∈ Zqn0}. Specifically, for each invertible
element z ∈ Z in the seed space Z ∈ Zqn0 , define the hash function Hz as follows: on input x ∈ (Zq)n0 ,
Hz(x) computes y ← ψ(x) · z, where “ · ” denotes the multiplication in the extension field Zqn0 . Let
(y1, · · · , yn0)← ψ−1(y), and the output of Hz(x) is y1 ∈ Zq. Since the isomorphism ψ between Zn0

q and
Zn0

q is applied to the universal hash function family, we can easily get the the desired linearity below

∀x, x′ ∈ (Zq)n0 and y1, y2 ∈ Zq : y1 · Hz(x) + y2 · Hz(x′) = Hz(y1 · x + y2 · x′).

7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Lemma 2.2. Assume a family of functions {Hz : Zn0
q → Zq}z∈Z is universal, for any random variable W

taking values in Zn0
q and any random variable Y,

SD((UZ ,Hz(W),Y), (UZ ,U,Y)) 6
1

2

√
2−H̃∞(W|Y) · |Zq|,

where UZ and U are uniformly distributed over Zqn0 and Zq respectively. In particular, such universal
hash functions are (average-case, strong) extractors with ε-statistically close to uniform. The detailed
description of (average) mini-entropy H̃∞ and statistical distance SD can be found in [13].

2.4. Fuzzy Extractors

Let m0 > n0 and q be a prime number, define two algorithms Gen, Rep of computational FE [10]
below.

(1) Input: w←M. B supposeM is a uniform distribution over Zm0
q .

(2) Sample A ∈ Zm0×n0
q , x ∈ Zn0

q uniformly.
(3) Compute p = (A,A · x + w), s = x1,··· ,n0/2.
(4) Output: (s, p).

(1) Input: w′, p. B where Hamming distance between w′ and w is at most t.
(2) Parse p as (A, c); let b = c− w′.
(3) Let x = Decodet(A, b).
(4) Output: s = x1,··· ,n0/2.

Note that p denotes the public helper string, and s denotes the secret string. The correctness of compu-
tational FE relies on the Decodet(A, b) algorithm [10], which is explicitly shown as follows.

(1) Input: (A, b = A · x + w− w′).
(2) Select 2n0 distinct indices i1, · · · , i2n0 ← {1, · · · ,m0}.
(3) Restrict A, b to rows i1, · · · , i2n0 ; Denote these by Ai1 , · · · ,Ai2n0

, b1, · · · , bi2n0
.

(4) Find n0 linearly independent rows of Ai1 , · · · ,Ai2n0
(if no such rows exist, output abort and stop),

and restrict Ai1 , · · · ,Ai2n0
, bi1 , · · · , bi2n0

to n0 rows. Denote the result by A′, b′.
(5) Compute x′ = A′−1 · b′.
(6) If b− A · x′ has at most t non-zero coordinates, then outputs x′; Otherwise, it returns to step 2.

Recall that A ∈ Zm0×n0
q , b ∈ Zm0

q , and Decodet algorithm can correct at most t = O(logn0) errors (of
Hamming distance) in a random linear code. Also note that with probability at least 1/poly(λ), none of
the 2n0 rows selected in step 2 have errors (i.e., nearby biometrics w and w′ agree on these rows), thus x′

is a solution to the linear system. Furthermore, we notice that the sketch from LWE satisfies the linearity
defined in [19, 20]. That is,

SS(w, x + ∆(x)) = A · (x + ∆(x)) + w = (A · x + w) + A ·∆(x),

where SS denotes a secure sketch procedure [10], which takes w ← M and a value x ∈ Zn0
q as input,

output a distribution over Zm0
q . The sketch from LWE is in the form of SS(w, x) = A · x + w.

8

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

The computational fuzzy extractors (FE) from LWE has an inherent property: “indistinguishability".
Informally, given two sketches (part of helper data) with respect to two independent biometrics, adver-
sary cannot distinguish them without having decryption keys. We formally prove that the computational
FE from LWE is secure in the IND model (note that the adversary here is allowed to access the sketch
only). In addition, we discover that both computational FE [10] and its variant reusable FEs [11, 12]
have such inherent property.

Definition 2.2. The IND experiment between an adversary A and a challenger C is defined below.

Experiment ExpIND
FE (λ)

b ∈ {0, 1},wb ←M,Q = ∅
(ri, pi)← Gen(wb)
Q ← Q∪ pi

return pi

b′ = A(guess, c∗), c∗ ← pb

Return 1, i f b′ = b ∧ pb /∈ Q; else, return 0.

In the guess stage, A is given a challenge sketch c∗, which was not previously simulated by C. We define
the advantage of A as

AdvIND
A (λ) = |Pr[C → 1]− 1/2|.

A computational FE from LWE is said to be IND secure if AdvIND
A (λ) is negligible in λ for any PPT A.

Lemma 2.3. The computational fuzzy extractors from LWE achieves the IND security if the D-LWEq,n0,m0,χ

assumption is (ε, ssec) secure.

Informally, we can think of the sketch A · x +w (part of helper data p) as an “encryption" of x that where
decryption works from any close w′ (i.e., decryption key). Furthermore, we can also think of any two
sketches A0 · x0 + w0 and A1 · x1 + w1 (in a multi-user setting, we set A0 = A1 which is shared among
all users) are indistinguishable by any third parties without having decryption keys (w′0,w

′
1).

Adversary C(A, v)

b ∈ {0, 1}, u R←− Zn0
q ,w

R←− Zm0
q

p0 ← A · X + χ+ w0; p1 ← A · (X + u) + χ+ w1

b′ = A(guess, c∗), c∗ ← pb

I f b′ = b, return 1; else, return 0.

Fig. 2. Description of adversary C for the proof

Proof. Assume that there exists a PPT A breaking the IND security of the computational fuzzy extrac-
tors from LWE, then we can construct an algorithm C to break the decisional LWE (D-LWEq,n0,m0,χ)

9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

assumption. The algorithm C has almost the same time complexity with A. For simplicity, we consider
the shared public parameter by all users such that A0 = A1.

The algorithm C uses A as a subroutine (see Fig. 2, note that v can be either A · X + χ or a random
distribution). C first generates another distribution which has the same property and distribution as its
own challenge distribution. That is, computed distribution (A,A · (X + u) + χ + w), where u and w are
randomly chosen by C. If C’s challenge is a real distribution, then it is the computed distribution; Other-
wise, it is a random distribution over (Zm0×n0

q ,Zm0
q). By using its challenge and computed distribution,

C can simulate two sketches (p0, p1) for A. At guess stage, C returns a challenge ciphertext c∗ to A
according to the bit b.

We then analyze the behaviour of C on ExpLWE-REAL
C and ExpLWE-RAND

C respectively. In the ExpLWE-REAL
C ,

the input (A,A · X + χ + w) satisfies the Rep algorithm of FE described in Section 2.4. Notice that the
computed distribution (A,A · (X + u) + χ + w) is also valid and they are uniformly and independently
distributed over (Zm0×n0

q ,Zm
q), because A · (X + u) + χ + w = A · X + χ + A · u + w and u is a

randomly element in Zn0
q . Thus, C can simulate the proper distribution of two challenge sketches (i.e.,

p0 ← A · X + χ + w0 and p1 ← A · (X + u) + χ + w1), and the challenge ciphertext c∗ is distributed
exactly like a real sketch which associates with wb.

c0← A · X + χ+ w0.B i f b = 0

c1← A · (X + u) + χ+ w1.B otherwise

Therefore, we have ExpLWE-REAL
C below, which includes the experiment with respect to b = 1 (i.e.,

IND-1) and b = 0 (i.e., IND-0).

Pr[ExpLWE-REAL
C (λ) = 1] = 1/2 · Pr[ExpIND-1

A (λ) = 1] + 1/2 · (1− Pr[ExpIND-1
A (λ) = 1])

= 1/2 + 1/2 · AdvIND
A (λ).

As for ExpLWE-RAND
C , the input distributions to C in Fig. 2.4 are all uniformly distributed over

(Zm0×n0
q ,Zm0

q). Therefore, the corresponding computed distribution above are also uniformly and inde-
pendently distributed over (Zm0×n0

q ,Zm0
q). In particular, the challenge ciphertext is a random distribution

over (Zm0×n0
q ,Zm0

q), and independent of bit b. Hence we have

Pr[ExpLWE-RAND
C (λ) = 1]6 1/2 + 1/2λ−1.

The last term indicates that the random distribution to C happen to have the distribution of a real
distribution, which is bounded by 1/2λ−1 since 2λ−1 < q < 2λ. By combing all equations above, we
have

AdvLWE
C (λ) = Pr[ExpLWE-REAL

C (λ) = 1] + Pr[ExpLWE-RAND
C (λ) = 1]

> 1/2 · Pr[ExpIND
A (λ)− 1/2λ−1.

We can also show that A0 6= A1 when public parameter is chosen at random over Zm0×n0
q , while C

will slightly change to p0 ← (A0 = A,A0 · X + χ+ w0); p1 ← (A1 = A0 ·A∗,A1 · (X + u) + χ+ w1),
where A∗ R←− Zm0×n0

q .

10

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

�

3. A New Oblivious RAM

In this section, we present our proposed tree-based ORAM (uORAM). The uORAM protocol is com-
prised of some novel techniques from Path ORAM [21] and Ring ORAM [22].

Binary Tree T . We assume a binary tree of height L = logN and 2L leaves. Levels in the tree are
numbered from 0 (the root) to L.

Bucket. Each node in the tree is called a bucket with a fixed number (e.g., 4 or 5) of blocks. We guarantee
that each bucket has exactly Z real blocks, and we allow the server to pad real blocks if a bucket has less
than Z real blocks. We assume S dummy blocks are generated and padded for each bucket by the server.
If the client tries to access her real blocks and maintain her access privacy, then she needs to update
at least one dummy block in each bucket, which is similar to Path or Ring ORAM. Consequently, the
server does not learn any information about the accessed blocks.

Path. Let lea fID ∈ {0, 1, · · · , 2L − 1} denote the leaf node in the tree. We define P(lea fID) as a set of
buckets along the path from leaf lea fID to the root, and P(lea fID, `) denotes the bucket in P(lea fID) at
level ` in T .

Stash. During the course of the data access, a small number of blocks might overflow from the tree
buckets on the server. The client can locally store these overflowing blocks in a local data structure S
called stash.

Position Map. The client also locally maintains a position map (see Figure 1), which stores a public
leaf identifier lea fID and a secret block identifier ID such that lea fID ← position[ID] (i.e., a block ID
is currently mapped to a leaf node with identifier lea fID). The block ID either resides in some buckets
in path P(lea fID), or in the stash S. The position map changes over time as blocks are accessed and
remapped.

Operations. uORAM includes the following key operations: EarlyReshuffles, ReadPath and Evict.
Here we provide a high-level of these operations.

• ReadPath (from Ring ORAM). This operation reads one block from each bucket — the block of
interest if found or a dummy block otherwise. Specifically, the ReadPath operation is to select a single
block to read from that bucket. The index of the block to read (either real or random) is returned by
the GetBlockOffset function. According to the random offset o f f set per bucket and the leaf identifier
lea fID, the server fetches these blocks and passes them to the client. Specifically, the client relies
on a small-size Bucket Metadata, which is used to store the o f f set per bucket. We stress that the
o f f set is chosen at random by client. The client must read through all the buckets in a tree path
` ∈ {0, 1, · · · , L}, and each bucket returns either the interested block or a randomly-chosen dummy
block.

(1) ReadPath(lea fID, ID)
(2) data←⊥, for ` ∈ {0, 1, · · · , L}:

(a) o f f set← GetBlockOffset(P(lea fID, `), ID)

(b) data′ ← P(lea fID, `, o f f set)

11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(c) if data′ 6=⊥ then data← data′, return data.

• EarlyReshuffles (from Ring ORAM). To ensure the ReadPath operation securely read one block
per bucket, it requires a maintenance task called EarlyReshuffles on P(lea fID), the path accessed by
ReadPath. That is, the client reshuffles the bucket in the path lea fID.

(1) EarlyReshuffles(lea fID)
(2) for ` ∈ {0, 1, · · · , L}:

(a) S← S
⋃

ReadBucket(P(lea fID, `))

(b) WriteBucket(P(lea fID, `),S).

• Evict (from Path ORAM). This operation is to push blocks back from the stash S to the ORAM
tree and keep the stash S occupancy low. First, it reads all the buckets along the lookup path, all the
(remaining) real blocks are added to the stash S (i.e., ReadBucket). Meanwhile, the Evict operation
writes as many blocks as possible from the stash S back to the lookup path, and the evicted blocks
from the stash get pushed down as far as they can go (i.e., WriteBucket). This operation terminates
after writing all real blocks from the stash S back to the lookup path, and each bucket is guaranteed to
have Z real blocks. We denote the ReadBucket and WriteBucket functions as Evict(lea fID) operation,
and the pseudocode is also shown in EarlyReshuffles(lea fID) (Line 2-4).

We briefly show the GetBlockOffset, ReadBucket, WriteBucket functions below, we refer reader to [22]
for detailed descriptions.

• GetBlockOffset is to find the block of interest ID and return the permuted location of that block, or to
return the permuted location of a random dummy block.
• ReadBucket is to read exactly Z real blocks in a bucket into the stash S. If the bucket contains less than

Z real blocks, then the remaining blocks read out are updated dummy blocks (see Main Invariants
below).
• WriteBucket is to evict up to Z blocks from stash S to a bucket. In particular, the location of Z + S

blocks are randomly reshuffled based on pseudo-random permutation or a truly random permutation.
Eventually, the permuted data and its o f f set are encrypted and written into the bucket.

Main Invariants. uORAM has three invariants, and we maintain these invariants at any time since they
will determine the security of uORAM.

(1) Invariant 1. Every block is mapped to a leaf chosen uniformly at random in the ORAM tree T . If a
block ID is mapped to leaf lea fID, block ID is contained either in the stash S or in a bucket along
the path from the root to leaf lea fID.

(2) Invariant 2. For every bucket in the tree T , the physical position of the Z +S real and dummy blocks
in each bucket are randomly permuted with respect to all past and future writes to that bucket.

(3) Invariant 3. For every bucket along the path from the root to leaf lea fID, at least one dummy block
in each bucket is randomly updated.

Data Access. uORAM takes (op, ID, data∗, time) as input, outputs data.

(1) EarlyReshuffles(lea fID) B from Ring ORAM
(2) lea fID ← position[ID]

12

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(3) position[ID]← Uni f ormRandom(0, 2L − 1)
(4) data← ReadPath(lea fID, ID) B from Ring ORAM
(5) data← read block ID from S
(6) if op = read then return data to client end if
(7) if op = write then S← (S− {(ID, data)})

⋃
{(ID, data∗)} end if

(8) Evict(lea fID, time). B from Path ORAM

To access a block ID, the client first invokes an operation EarlyReshuffles(lea fID) to read and write
the real and dummy blocks on the path with leaf identifier lea fID (Line 1). As a result, the client can
determine the physical positions of a block of interest ID and dummy blocks per bucket. Second, the
block of interest is remapped to a new random path and the position map is updated accordingly (Line
2 to 3). Third, the client invokes a read path operation ReadPath(lea fID, ID) to read one block per
bucket on that path, and then read that block into stash S (Line 4). If block ID is not found on path `,
it must be in Stash S (Line 5). Forth, if the access is read/write, then the client updates the content of
block ID (Line 6 to 7). Last, the protocol invokes an eviction operation Evict(lea fID, time) that reads all
remaining real blocks on that path into stash S and writes the same path we just read from, percolating
blocks down that path (Line 8). We remark that the dummy blocks in the read/write path can be updated
using either randomness (w.r.t. EarlyReshuffles operation) or timestamp (w.r.t. Evict operation), both
randomness and timestamp are chosen at random by client. We note that timestamp is linked to “time-
locked” dummy block, which means we embed a time-lock in a dummy block using a timestamp time
during Evict operation. In other words, the “time-locked” dummy block can be updated again once
the specified timestamp time is reached (or “unlocked”). For example, another client may update the
“unlocked” dummy block using a new randomness during his EarlyReshuffles operation.

3.1. Security Definition

We modify the standard ORAM security definition [23]. That is, adding a designated timestamp to
the operation of an access pattern. Informally, two access patterns in a specific time-window (i.e., a
time period that is considered best from starting to finishing some tasks such as user authentications)
should be computationally indistinguishable. A crucial point is, the client makes data requests within an
allowable time-window does not leak any useful information about the access pattern.

Definition 3.1 (Security Definition). Let

←
y = ((opM, IDM, dataM, timeM), · · · , (op1, ID1, data1, time1))

denote a data sequence of M, where opi denotes the i-th operation is a read or a write, IDi denotes the
address for that access, datai denotes the data being written, and timei denotes the designated times-
tamp such that timei ∈ %, where % denotes an allowable time-window. Let uORAM(

←
y) be the resulting

sequence of operations between client and server under an uORAM protocol. The uORAM protocol

guarantees that: 1) for any
←
y and

←
y′ , uORAM(

←
y) and uORAM(

←
y′) are computationally indistinguish-

able (by anyone except the client) if |
←
y | = |

←
y′ |; 2) for any

←
y the data returned to the client using

uORAM is consistent with
←
y (i.e., the uORAM behaves like a valid RAM) with overwhelming probability.

13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Security Analysis. We prove the security of uORAM using the similar approach described in [22].

Lemma 3.1. EarlyReshuffles operation leaks no information.

Proof. We let ReadBucket function read exactly Z′ = Z + “1” real blocks from random slots. If the
bucket contains less than Z′ real blocks, the remaining blocks read out are updated dummy blocks. The
number “1” means that at least one dummy block in each bucket is updated by the client when reading.
Meanwhile, the number of dummy blocks per bucket becomes S ′ = S − “1”. Similarly, WriteBucket
function writes Z′ + S ′ (i.e., Z + S) encrypted blocks in a data-independent fashion. If there are z′ 6 Z′

real blocks to be evicted to that bucket, then Z′ − z′ updated dummy blocks are added. In particular, the
Z′ + S ′ real and dummy blocks are randomly shuffled by the client. Overall, A learns nothing during
EarlyReshuffles operation. �

Lemma 3.2. ReadPath operation leaks no information.

Proof. The path selected for reading will look random toA due to Invariant 1 such that leaves are chosen
uniformly at random. From Invariant 2, we know that every bucket is randomly reshuffled. In particular,
the real and updated dummy blocks we read are indistinguishable to A due to Invariant 3 (the Lemma
2.3 confirms such fact). Therefore, A learns nothing during ReadPath operation. �

Lemma 3.3. Evict operation leaks no information.

Proof. The path selected for eviction is chosen uniformly and is public. ReadBucket function reads all
remaining real and updated dummy blocks from the bucket stored on the server. The real and updated
dummy blocks on the lookup path are stored into stash S after ReadBucket. WriteBucket function writes
the real and updated dummy blocks from the stash S into the specified bucket on the server. In particular,
the client writes back all updated dummy blocks to their original format. Meanwhile, the client erases
her random permutation in the Bucket Metadata. If there is z 6 Z real blocks to be evicted to that
bucket, then Z− z “time-locked” blocks are added. The “time-locked” blocks are the blocks that cannot
be updated until a designated timestamp is reached. We remark that the real and “time-locked” blocks
we write back are indistinguishable to A because the specified timestamp time is randomly chosen by
the client (otherwise, the server may keep a history of the updated dummy blocks if a client updates them
multiple times within a time-window %, thus break the unlinkability of uORAM). Therefore, A learns
nothing during Evict operation within %. �

3.2. Stash and Bandwidth Analysis

Since a small number of blocks might overflow from the tree bucket on the server after Evict oper-
ation, the client locally stores these overflowing blocks in the stash S. To analyze the stash usage (i.e.,
measuring the number of real blocks that remain in the stash after Evict operation), we rely on the theo-
retical result of Path ORAM [21]. The Theorem 1 in [21] has shown that the probability (i.e., the number
of real blocks in the stash exceeds R) decreased exponentially in R (i.e., the stash size).

Now, we analyze the overall bandwidth of proposed uORAM, including EarlyReshuffles, ReadPath
and Evict operations. The EarlyReshuffles operation reads exactly Z + “1” real blocks and writes back
Z + S real and dummy blocks per bucket, so the bandwidth is (2Z + S + “1”)(L + 1) (L = logN). The
number “1” means that at least one dummy block per bucket is updated by the client due to Invariant 3.

14

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

We observe that the ReadPath operation first transfers L + 1 blocks — one from each bucket. Then, the
client reads the remaining real and updated dummy blocks into the stash and writes back Z + S real and
dummy blocks per bucket during Evict operation. So, the overall bandwidth is 2(2Z + S + “1”)(L + 1).
We notice that the overall bandwidth of uORAM is higher than a Path or Ring ORAM. However, neither
Path ORAM nor Ring ORAM can achieve our design goal (see Appendix A).

4. The Proposed General Framework

In this section, we first present the security models (user authenticity and strong privacy) for our
proposed pBRUA. Then, we show the proposed general framework of pBRUA.

States. We define a system user set U with n users, i.e. |U| = n. We say an instance oracle Πi
pk (i.e.,

session i of user pk) may be used or unused, and a user pk has an unlimited number of instances called
oracles. The oracle is considered as unused if it has never been initialized. Each unused oracle Πi

pk can be
initialized with a secret key sk. The oracle is initialized as soon as it becomes part of a group. After the
initialization the oracle is marked as used and turns into the stand-by state where it waits for an invocation
to execute a protocol operation. Upon receiving such invocation, the oracle Πi

pk learns its partner id
pidi

pk (i.e., a collection of recognized users by the instance oracle Πi
pk) and turns into a processing state

where it sends, receives and processes messages according to the description of the protocol. During
that stage, the internal state information statei

pk is maintained by the oracle. The oracle Πi
pk remains

in the processing state until it collects enough information to finalize the user authentications. As soon
as the user authentication is accomplished, Πi

pk accepts and terminates the protocol execution meaning
that it would not send or receive further messages. If the protocol execution fails then Πi

pk terminates
without having accepted. We define sidi

pk as the unique session identifier belonging to user pk of session
i. Specifically, sidi

pk = {m j}n
j=1, where m j ∈ {0, 1}∗ is the message transcript among users in pidi

pk. The
session identifier means that the session which Πi

pk participates in is defined by a unique session id sidi
pk,

and this value is known to all oracles participating in the same session.

4.1. Definition

A pBRUA framework consists of the following algorithms:

• Setup: The algorithm takes a security parameter λ as input, outputs a public parameter pp.
• Enrollment: This is a non-interactive protocol between a user and an authentication server in a secure

channel. The user first generates a secret/public key pair (sk,pk) using public parameter pp, derives
a sketch SS(s,w) from her biometrics w and a secret string s. Then, she enrolls her identity ID, public
key pk and sketch SS(s,w) to the authentication server. The enrolled users become authorized ones
after enrollment. We assume a uniform3 biometrics sourceM and w ∈M.
• Authentication: This is an interactive protocol between an authorized user and an authentication server

over a public channel. An authorized user takes public parameter pp, her nearby biometrics w′ and her
enrolled sketch SS(s,w) as input, outputs a message-signature pair (m, σ). The authentication server
accepts the user if the message-signature pair (m, σ) is verified as valid under her enrolled public key

3One may question a uniform source is not practical, we stress that the uniform source can be replaced by a non-uniform
source (e.g., symbol-fixing source [39]) while the security of FE is held. We use a uniform source here just for simplicity, and
the case of the non-uniform source was explicitly discussed in [10, 12].

15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

pk. The message m contains the ephemeral data transmitted during user authentication, and the nearby
biometrics satisfies dist(w′,w) 6 t.

4.2. Security Models

A secure pBRUA framework should achieve several security goals: user authenticity and user privacy.
Below we present corresponding security models to capture these requirements.

Authenticity. Informally, an adversary attempts to impersonate an authorized user and authenticate
herself to an authentication server. We define a formal authenticity game between a probabilistic
polynomial-time (PPT) adversary A and a challenger C below.

• Setup. C first generates public/secret key pairs {(pkiski)}n
i=1 (i ∈ {1, n}) for n users and an authenti-

cation server S in the system. C also generates biometrics information wi and its corresponding sketch
SS(si,wi) for individual users. Eventually, C sends all users’ public keys and sketches to A.
• Training. A can make the following queries in an arbitrary sequence to C.

∗ Send: If A issues a send query in the form of (pk, i,m) to simulate a network message for the i-
th session of user pk, then C would simulate the reaction of instance oracle Πi

pk upon receiving
message m, and return to A the response that Πi

pk would generate; If A issues a send query in the
form of (pk′, ′start′), then C creates a new instance oracle Πi

pk′ and returns to A the first protocol
message.
∗ Biometrics Reveal: If A issues a biometrics reveal query to user i, then C returns user i’s biometrics

information wi to A.
∗ Secret Key Reveal: If A issues a secret key reveal query to user i, then C returns user i’s enrolled

secret key ski to A.

• Challenge. A wins the game if all of the following conditions hold.

(1) S accepts user pki. It implies sids
S (i.e., session s of server S) exist.

(2) A issued neither Biometrics Reveal nor Secret Key Reveal query to user pki.
(3) m ∈ sids

S, but there exists no instance oracle Πs
pki

which has sent m (m denotes the message
transcript from user pki).

We define the advantage of an adversary A in the above game as

AdvA(λ) = |Pr[A wins]|.

Definition 4.1. We say a pBRUA protocol has user authenticity if for any PPTA, AdvA(λ) is a negligi-
ble function of the security parameter λ.

Strong Privacy. Informally, an authentication server S is not allowed to identify who are the authorized
users in a certain time-window. We define a game between an adversaryA and a challenger C as follows:

• Setup: C generates public/secret key pairs {(pkiski)}n
i=1 for n users and an authentication server S in

the system. In addition, C generates biometrics information wi and its corresponding sketch SS(si,wi)
for individual users. Eventually, C sends all public information toA, and the authentication server S is
completely controlled byA. C tosses a random coin b which will be used later in the game. We denote
the original n users set as U .

16

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• Training: A is allowed to issue Send query and at most n-2 Secret Key Reveal and Biometrics Reveal
queries to C. We denote U ′ as the set of honest users whose biometrics as well as secrets keys are not
corrupted.
• Challenge:A randomly selects two users pki,pk j ∈ U ′ as challenge candidates, then C removes them

from U ′ and simulates pk∗b to A by either pk∗b = pki if b = 1 or pk∗b = pk j if b = 0. C chooses a
time-window %, lets A interact with challenge user pk∗b in the time-window %.

A ⇔ pk∗b =

{
pki b = 1
pk j b = 0

Finally, A outputs b′ as its guess for b. If b′ = b, then C outputs 1; Otherwise, C outputs 0. We define
the advantage of A in the above game as

AdvA(λ) = Pr[C → 1]− 1/2.

Definition 4.2. We say a pBRUA protocol has strong privacy if for any PPTA, AdvA(λ) is a negligible
function of the security parameter λ.

4.3. Proposed Construction

Fig. 3. High-level user authentication via uORAM.

High-level Description. Suppose at most n users enroll themselves to an authentication server, and
the authentication server built a binary tree to store all users’ enrolled information. Next, an uORAM
protocol is executed between an authorized user and the authentication server for user authentications
(including early-reshuffle phase, challenge-response phase, and post-reshuffle phase), which is described
in Figure 3. Specifically, in the early-reshuffle phase, an authorized user randomizes and permutes either
her real block or a dummy block in each bucket along a tree path (i.e., EarlyReshuffles operation,
and the tree path must include her real block). In the challenge-response phase, the authorized user
first obtains the permutation of either her real block or a dummy block in each bucket by performing
the ReadPath operation. Then, the authorized user derives a message-signature pair based on her real
block and the randomized dummy blocks for proving her authenticity. In the post-reshuffle phase, the
authorized user re-randomizes all blocks in the tree path (i.e., Evict operation). The proposed pBRUA
framework is mainly used to achieve strong privacy for valid user authentications. The proposed pBRUA
framework consists of the following building blocks. Meanwhile, we note that a blind signature scheme
[40] could be used to prevent an unauthorized user with NO enrolled biometrics from performing a valid
user authentication in the pBRUA framework (the detailed explanation is referred to Remark 2).

17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• A LWE-based computational fuzzy extractor FE = (Gen,Rep).
• An Existential Unforgeability under Chosen Message Attack EUF-CMA secure digital signature Σ =

(Setup,KG,Sign,Verify).
• An Indistinguishability of Keys under Chosen Plaintext Attack IK-CPA secure public key encryption

PKE = (KG,Enc,Dec).
• The uORAM protocol.

Block Structures. The real block consists of two parts: user i’s public key and sketch (pk2,SS(s2,w2)).
The dummy block is of the form (pk1,SS(s1, empty)), where pk1 denotes a random public key, the data
in sketch SS is empty (i.e., “0”) and the secret string s1 is chosen at random. We stress that the dummy
block is a public resource during Enrollment, it becomes a private one during Authentication. The status
of real block (pk2,SS(s2,w2)) and dummy block (pk1,SS(s1, 0)) at different phases are shown in
Figure 4, respectively.

Fig. 4. The status of real or dummy block in a bucket. The physical position of real or dummy block in the bucket will be
permuted at random under EarlyReshuffles operation and Evict operation, respectively. Meanwhile, the hidden message (r1
denotes the randomness and T1 denotes the timestamp) in dummy sketch will be updated accordingly.

Our Construction. Let {Hz : Zn0
q → Zq} be a universal hash function with linearity that we reviewed

in Section 2.3. For each seed z ∈ Zqn0 and y ∈ Zq, we define “H−1
z (y)” as the set of pre-images of y

under Hz. That is, H−1
z (y) = {x ∈ Zn0

q : Hz(x) = y}. In particular, x R←− H−1
z (y) means that we choose

an element x uniformly from the set H−1
z (y), and its dimension is n0. We run the Setup algorithm first to

generate the public parameter pp in the system. Then, we use a user i and an authentication server S to
illustrate our general framework.

• Enrollment. A user i enroll herself to an authentication server S will perform the following

∗ generate a secret/public key pair (ski,pki)← Σ.KG(pp).

∗ obtain a secret/public string pair (si, pi) ← FE.Gen(pp,wi), where si
R←− H−1

z (ski), wi ← M (the
biometrics distributionM is referred to Section 2.4), and public string pi = SS(si,wi).
∗ send public values (pki,SS(si,wi)) to S.

18

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

User i Bandwidth Server S

This is early-reshuffle phase:

EarlyReshuffles(lea fidi)
Z·logN blocks←−−−−−−→ T = {(pki,SS(si,wi))}

This is challenge-response phase:
ReadPath(IDi, lea fidi)

Request
−−−−−−−−−→

Challenge : n j

(C∗(i,1),C
∗
(i,2))

C∗(i,2), n j
←−−−−−−−−−

Response : ni

m(i, j) = (ni, n j,Request)
s∗i ← FE.Rep(C∗(i,2),w

′
i)

iff dist(w′i,wi) 6 t
sk∗i ← (pp, s∗i)

σi ← Σ.Sign(sk∗i ,m(i, j))
m(i, j), σi

−−−−−−−−−→ Σ.Verify(C∗(i,1),m(i, j), σi)
?
=1

This is post-reshuffle phase:

Evict(lea fidi)
Z·logN blocks←−−−−−−→ T = {(pki,SS(si,wi))}

Fig. 5. The Authentication includes early-reshuffle, challenge-response, and post-reshuffle phases. The bandwidth of ear-
ly-reshuffle phase and post-reshuffle phase are Z · logN, respectively. In the challenge-response phase, server S returns a
ciphertext C∗

i,2 (i.e., aggregated “sketch”) only.

According to the uORAM protocol, S regards user i’s public information (pki,SS(si,wi)) as an en-
rolled record, stores into a bucket and returns the leaf identifier lea fidi of that tree path to user i. The
user i can identify her block of interest in a bucket of the lookup path using leaf identifier lea fidi and
block identifier IDi, where lea fidi ← position[IDi] and IDi is the secret block identifier.

• Authentication. The detailed interaction between a user i and authentication server S is described in
Figure 5. We use the previously mentioned three phases to present the general framework.

∗ Early-reshuffle Phase: User i performs the EarlyReshuffles(lea fidi) operation to update the o f f set j

(j ∈ {0, L}) for all buckets along the lookup path. Specifically, user i: 1) updates a dummy
block as (pk j,SS(s j, r j)) in a bucket, where the randomness r j ← M is chosen at random by
user i (see remark below for detailed description); 2) writes o f f set into BucketMetadata j ←
PKE.Enc(pki, o f f set j) per bucket along the lookup path.

19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

∗ Challenge-response Phase: User i performs the ReadPath(lea fidi , IDi) operation to obtain the ran-
dom o f f set j ← PKE.Dec(ski,BucketMetadat j) per bucket in the lookup path. Upon receiving
an authentication request (i.e., a set of offset {o f f set j}L

j=0 and leaf identifier lea fidi) from user i, S
computes an “aggregated” version of requested blocks, which consists of a (L+1 size) set of pub-
lic keys and sketches: C∗(i,1) ←

∏L
i=0 pki,C∗(i,2) ←

∑L
i=0(SS(si,wi)) (see correctness below), and

returns a single ciphertext C∗(i,2) and a challenge randomness n j to user i.
∗ Challenge-response Phase: User i performs the following

(1) choose a response randomness ni and generate the message m(i, j) = (ni, n j,Request).
(2) extract the secret string by running algorithm s∗i ← FE.Rep(C∗(i,2),w

′
i) iff dist(w′i,wi) 6 t, and

obtain the “aggregated” secret key sk∗i ← Hz(s∗i).
(3) generate a message-signature pair (m(i, j), σi)← Σ.Sign(sk∗i ,m(i, j)) and send it to S.

∗ Challenge-response Phase: S verifies 1
?
=Σ.Verify(C∗(i,1),m(i, j), σi) under the “aggregated” public key

C∗(i,1). If the signature passes the verification, it accepts; Otherwise, it aborts.
∗ Post-reshuffle Phase: User i performs the Evict(lea fidi) operation. Specifically, Evict(lea fidi) oper-

ation reads all remaining real blocks along the lookup path into the local stash S, writes real and
updated dummy blocks back to the lookup path.

Instantiations. We hereby try to instantiate the underlying cryptographic building blocks. First, to in-
stantiate the LWE-based computational fuzzy extractors, we could use the fuzzy extractor scheme in
[10–12]. In particular, we require that all enrolled users share the common public parameters, just like
the first reusable fuzzy extractor scheme in [11]. Second, we use the Schnorr signature scheme with
homomorphic property to instantiate the underlying digital signatures. Meanwhile, the Waters signature
scheme described in [19] should be also suitable for our general framework. Last, the public key encryp-
tion scheme (which was used in Bucket Metadata) can be instantiated to ElGamal cryptosystem [41]
for achieving IK-CPA security, and we refer readers to [42] for Cramer-Shoup cryptosystem [43] with
IK-CCA security which might be alternatively applicable to instantiate our general framework.

Correctness. In the challenge-response phase of user authentication, the returned block is either a
block of interest or an updated dummy block in a bucket. Specifically, ReadPath opreation will re-
quest L+1 blocks in a tree path—one from each bucket. That is, (pk0,SS(s0, r0)), (pki,SS(si,wi)), · · · ,
(pkL,SS(sL, rL)), where pki = gski and SS(si,wi) = A · si + wi (g,A ∈ pp). We notice that a dummy
block after EarlyReshuffles operation will be updated as (pk0,SS(s0, r0)) = (gsk0 ,A · s0 + r0), where
randomness r0 is independently chosen and stored by user i (see remark below). To achieve a constant
bandwidth, the authentication server S returns a single “aggregated” ciphertext (underline part) to user
i: (C∗(i,1),C

∗
(i,2)), where C∗(i,1) = pk0 · pk1 · · ·pkL, C∗(i,2) = SS(s0, r0) + SS(si,wi) + · · · + SS(sL,wL)

and · denotes the multiplication. More specifically,

C∗(i,1) = pk0 · pk1 · · ·pkL = g
∑L

i=0(ski)

C∗(i,2) = SS(s0, r0) + SS(si,wi) + · · ·+ SS(sL, rL) = A(

L∑
i=0

(si)) +

L−1∑
i=0

(ri) + wi

where
∑L

i=0(ski) = Hz(
∑L

i=0(si)). The user i can obtain the “aggregated” sketch (includes her in-
terested sketch SS(si,wi)) by removing the randomness {ri}L−1

i=0 , and the challenge-response of user
authentications proceeds as the protocol specified.

20

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Remark 1. The ReadPath operation relies on a metadata: Bucket Metadata. We use an example to
illustrate its workflow, and we assume a bucket includes 4 blocks. We also assume the bucket includes
a block interested by user i (pki,SS(si,wi)), a block interested by another user j (pk j,SS(s j,w j)) and
two dummy blocks (pk0,SS(s0, 0)), (pk1,SS(s1, 0)), where s0, s1 are chosen at random by server S.

The EarlyReshuffles operation includes ReadBucket and WriteBucket functions. The ReadBucket
function will read all real blocks from the bucket into the local stash. Specifically, a user i finds her
block of interest (interest) and one dummy block (dummy) per bucket in a “compute and compare”
manner. In particular, user i updates one dummy block (updated). More concretely,

pki = gski ,ski ← FE.Rep(SS(si,wi),w′i).B interest

pk0 = gsk0 ,sk0 ← FE.Rep(SS(s0, 0), 0).B dummy

pk′0 = gsk
′
0 ,sk′0 ← FE.Rep(SS(s0, r0), r0).B updated

where randomness r0 ←M is chosen by user i and the updated dummy block can be decrypted by user
i only. Afterwards, use i writes back 3 blocks (i.e., one updated dummy block pk′0 and two real blocks
pki and pk j) and writes the permuted o f f set into the Bucket Metadata (i.e., WriteBucket function).
Specifically, user i chooses the o f f set ∈ {0, · · · , 3} at random and encrypts the random o f f set by
running Ci ← PKE.Enc(pki, o f f set). Later, if user i performs the ReadPath operation, then she can
obtain the random o f f set← PKE.Dec(ski,Ci).

The Evict operation requires that the block of interest IDi must be re-randomized as (pk′i,SS(s′i, data)) =
(gsk

′
i ,A · s′i + data), where sk′i is chosen at random and s′i = H−1

z (sk′i). Other blocks (include
dummy blocks) in the same bucket should also be re-randomized accordingly. For example, a block
(pk j,SS(s j,w j)) is re-randomized as (pk′j,SS(s′j,w j) = (pk j · g∆(sk j),SS(s j,w j) +A ·∆(s j)), where
∆(s j) ← H−1

z (∆(sk j)), and ∆(sk j) is chosen at random. Note that the data can be a new biomet-
rics such as wi 6= wi. According to the design of uORAM protocol, the dummy block is a common
resource shared by all enrolled users, user i should remove her randomness r0 in sketch SS(s0, r0).
To maintain the security of Definition 3.1, user i updates the dummy block to a “time-locked” format:
SS(s0, time0) = A · s0 + time0, where time0 ← M denotes a designated timestamp. Once the des-
ignated timestamp is reached, the “time-locked” dummy block becomes a public one. We note that an
extra (mapping) mechanism could be used to transform a timestamp with the standard format into a
distribution over Zm0

q .
Since multiple users share an uORAM protocol and each user has an individual stash, the user should

push all real blocks back to the uORAM tree during Evict operation. This is because if real blocks reside
in the local stash S, then user authentication may fail. We leave it as a future work to ensure a policy
such that the user must push real blocks back to the uORAM tree, or to ensure a valid user authentication
even when real blocks are resided in the stash S.

Remark 2. One may notice that an unauthorized (or unenrolled) user with NO biometrics data can be
successfully authenticated by the authentication server. This is because the dummy blocks in the tree are
common resources, any third parties can distinguish them from real blocks (as described previously). In
this way, the unauthorized user updates at least one dummy block in each bucket in a tree path, and uti-
lizes them for generating a valid message-signature pair and authenticating herself to the authentication
server. We stress that such security threat is independent from the security concern in our proposed user
authenticity model (an adversary tries to impersonate an authorized user). In particular, the unauthorized
user authentication will NOT help the adversary (e.g., impersonator) to win the user authenticity game.

21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

To tackle such security threat, we rely on an extra cryptographic tool: signatures on randomizable ci-
phertexts [40], such that given a signature on a ciphertext, any third parties (know neither the signing key
nor the encrypted message) can randomize the ciphertext and adapt the signature to the re-randomized
ciphertext. A pair of ciphertext and its signature can be randomized simultaneously and consistently.
In particular, a given signature can be transformed into a new one on the same message, which in turn
yields a blind signature scheme.

The modified pBRUA framework is described as follows: an authorized user runs the interactive blind
signature scheme proposed in [40], to derive a publicly verifiable ciphertext-signature pair (C, σ) during
Enrollment. Let the encrypted message be denoted as IDi (i.e., user i’s secret block identifier). In the
challenge-response phase of Authentication, an authorized user sends the derived ciphertext-signature
pair to the authentication server as the authentication request. The authentication executes the pBRUA
protocol if the ciphertext-signature pair is valid (i.e., the anonymous authorized user is an enrolled one).
We stress that, the authentication server still cannot link the anonymous authorized user across different
authentication sessions, because the ciphertext-signature pair has the blindness, and it can be randomzied
by the authorized user with the same encrypted message IDi.

5. Security Analysis

In this section, we show the security result of our proposed pBRUA framework.

Theorem 5.1. The proposed pBRUA achieves user authenticity if the D-LWEq,n0−k,m0,χ assumption is
(ε, s′sec) secure, the family of universal hash functions H← {Hz : Zn0

q → Zq}z∈Z is ε-statistically secure
and the digital signature scheme Σ is EUF-CMA secure.

Proof. We define a sequence of games {Gi} and let AdvpBRUA
i denote the advantage of the adversary

A in game Gi. Assume that A activates at most m sessions in each game. We highlight the differences
between adjacent games by underline. For simplicity, we ignore the technique for constant bandwidth in
the following and subsequent proofs.

• G0: This is the original game for user authenticity security.
• G1: This game is identical to game G0 except that the challenger C will output a random bit if the

authentication server S accepts a user i, but sids
i 6= sids

S (i.e., a session s between user i and server S).
Since n users involved in this game, we have:∣∣∣AdvpBRUA

0 − AdvpBRUA
1

∣∣∣ 6 n · m2/2λ. (1)

• G2: This game is identical to game G1 except the following difference: C randomly chooses g ∈ {1,m}
as a guess for the index of the Challenge session. C will output a random bit if A’s challenge query
does not occur in the g-th session. Therefore we have

AdvpBRUA
1 = m · AdvpBRUA

2 . (2)

• G3: This game is identical to game G2 except that in the g-th session, the k-size pseudorandom bit of
hidden secret in the sketch SS(si,wi) of user i is replaced by a random value U. Below we show that
the difference between G2 and G3 is negligible under the D-LWEq,n0−k,m0,χ assumption.

22

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Let C denote a distinguisher against the D-LWEq,n0−k,m0,χ assumption, who is given a tuple
(X1,··· ,k,A,A · X + χ), aims to distinguish the real LWE tuple from a random tuple (U,A,A · X + χ)

where U ∈ Zk
q. C simulates the game for A as follows.

∗ Setup. C sets up the game for A by creating n users with the corresponding block identifiers {IDi}.
C randomly selects index i and guesses that the g-th session will happen with regard to user i. C
sets the sketch of user i as SS(sb,wi) such that SS(sb,wi) = A · Xb + χ, where Xb = X1,··· ,k. C sets
user i’s enrolled secret key as skb ← Hz(Xb) (its public key is pkb ← Σ.KG(pp,skb)). C honestly
generates biometrics, public/secret key pairs and sketches as Enrollment specified for n-1 users. In
addition, C generates certain dummy public keys and sketches in the system. Eventually, C sends all
real/dummy enrolled public keys and references to A. Note that we choose a random vector from
Zn0−k

q to generate Xb ∈ Zn0
q , we omit it in the following proof.

∗ Training. C answers A’s queries as follows.
∗ If A issues a Send query in the form of (n j,C∗(i,2)) to C, where C∗(i,2) includes a re-randomized

real sketch SS(s′b,wi) and L dummy sketches {SS(s j, r j)}. C chooses a response randomness
ni first, then C honestly generates the protocol transcript Ti using user i’s enrolled secret key
skb. Specifically, Ti = (m(i, j), σi), where σi ← MΣ(pp,pkb,Sign(skb,m(i, j)),∆(si)), and the
correct offset ∆(si) derives from C∗(i,2). More specifically, C first obtains the randomness {r j}
from updated dummy sketches, in which the dummy sketch is SS(s j, r j) = A · s j + r j. Next, C
can obtain the correct offset ∆(si) from a real sketch SS(s′b,wi) = A · Xb + χ + A ·∆(s) and L
dummy sketches, where the offset ∆(s) and the randomness {r j} are chosen at random by A.
In the g-th session of user i, upon receiving a Send query fromA, C first obtains X′b = Xb +∆(si),
where Xb = U and the computation of correct offset ∆(si) using the same method described
above; C then generates the re-randomized secret key sk′b from X′b (i.e., sk′b ← Hz(X′b)) for
producing message-signature pair while A verifies it using the corresponding public key pk′b.
∗ If A issues a Biometrics Reveal query to user i, then C aborts.
∗ If A issues a Secret Key Reveal query to an instance oracle Πg

pki
(g-th session of user i), then

C returns a (re-randomized) secret key sk′b to A. Notice that A is not allowed to obtain user i’s
enrolled secret key skb.

In the Challenge session of user i, if the challenge of C is X1,··· ,k, then the simulation is consistent with
G2; Otherwise, the simulation is consistent with G3. If the advantage of A is significantly different
in G2 and G3, then C can break the D-LWEq,n0−k,m0,χ. Since at most n users involved in the system,
hence we have∣∣∣AdvpBRUA

2 − AdvpBRUA
3

∣∣∣ 6 n · AdvD-LWEq,n0−k,m0 ,χ

C (λ). (3)

• G4: This game is identical to game G3 except that in the g-th session, the enrolled secret key ski is
replaced by a random value u. Below we show that the difference between G3 and G4 is bounded by
a negligible probability.
Let C simulate the whole environment honestly according to the protocol specification, and it is easy
to see that all the queries made to a user can be simulated perfectly using the user’s secret keys and
biometrics. In particular, the enrolled secret key of user i is ski. In the g-th session of user i, to answer
the Send query from A, C will simulate the protocol transcript Ti = (n j,C∗(i,2)) as follows. C first

simulates the real sketch as SS(s′i,wi)← A ·(si +∆(s))+wi, where s′i = si +∆(s), si
R←− H−1

z (u), u ∈

23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Zq, and ∆(s) is randomly chosen by C; C then generates a secret/public key pair (sk′i,pk
′
i) from a

real sketch (with hidden secret s′i) and L dummy sketches for producing the message-signature pair,
where sk′i ← Hz(s′i).
We then analyze the statistical distance between distribution Ti = (n j,C∗(i,2)) at game G4 and distri-

bution Ti at previous game G3. We notice that the only difference is the simulated value si
R←− H−1

z (u)
instead of taking the real enrolled secret key ski as input, and according to Lemma 2.2, we have the
statistically distance between ski ← Hz(si) and u ∈ Zq with probability no greater than ε. Hence we
have ∣∣∣AdvpBRUA

3 − AdvpBRUA
4

∣∣∣ 6 AdvH
C (λ). (4)

• G5: This game is identical to game G4 except that in the g-th session, C outputs a random bit if Forge
event happens where A’s Send query includes a valid forgery σ∗ while user i’s enrolled secret key is
not corrupted. Then we have∣∣∣AdvpBRUA

4 − AdvpBRUA
5

∣∣∣ 6 Pr[Forge]. (5)

Let F denote a forger against a signature scheme Σ with EUF-CMA security, who is given a public
key pk∗ and a signing oracle O, aims to find a forgery σ∗. C simulates the game for A as follows.

∗ Setup. F sets up the game for A by creating n users with the corresponding block identifiers and
biometrics. F sets up user i’s enrolled block as (pk∗,SS(si,wi)), where sketch is SS(wi,ski) =
A · si + wi, si ∈ Zn

q. F also honestly generates public/secret key pairs and sketches as Enrollment
specified for n-1 users. Eventually, F sends all enrolled real/dummy public keys and sketches to A.
Note thatA cannot link the simulated sketch SS(si,wi) to the public key pk∗ sinceA is not allowed
to access user i’s biometrics wi.
∗ Training. F answers A’s queries as follows.
∗ If A issues a Send query in the form of (n j,C∗(i,2)) to F , F chooses a response randomness ni

first, then F simulates the protocol transcript Ti = (m(i, j), σ
′
i) as follows

· invoke the signing oracle O to obtain a message-signature pair (m(i, j), σi), where m(i, j) =
(ni, n j,Request);
· obtain the correct offset ∆(si) from C∗(i,2), where C∗(i,2) includes a (L+1 size) set of (re-

randomized) real and dummy sketches. Note that the real sketch is SS(s′i,wi) ← SS(si,wi) +
A ·∆(si);
· generate a signature σ′i ← MΣ(pp,pk∗, σi,∆(si)) by using the deterministic algorithm MΣ

described in Section 2.2; Note that sk′i ← H(s′i).
· return (m(i, j), σ

′
i) to A.

∗ IfA issues a Secret Key Reveal query to an instance oracle Πi
pk∗ , then F returns a re-randomized

secret key sk′i to A. Since A is not allowed to reveal the enrolled secret key Dlog(pk∗), the
simulation is perfect.

∗ When Forge event occurs (i.e., A outputs (m∗, σ∗
′
,C∗

′

(i,2)), where C∗
′

(i,2) = {SS(s∗
′

i ,wi)}), F checks
whether:
∗ the Forge event happens at g-th session;

24

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

∗ the message-signature pair (m∗, σ∗
′
) was not previously simulated by C, where m∗ =

(ni, n j,Request);
∗ verifies Σ.Verify(pk∗

′
,m∗, σ∗

′
) = 1, where pk∗

′ ← pk∗ · KG′(pp,∆(sk∗)) and ∆(sk∗) derives
from C∗

′

(i,2) that includes a (L+1 size) set of (re-randomized) real/dummy sketches. Note that

∆(sk∗) is the correct “offset” between Dlog(pk∗
′
) and Dlog(pk∗).

If all the above conditions hold, F confirms that it as a successful forgery from A, then F extracts
the forgery via σ∗ ← MΣ(pp,pk∗, σ∗

′
,∆(sk∗)) using the homomorphic property of Σ. To this

end, F outputs σ∗ as its own forgery; Otherwise, F aborts the game. Therefore, we have

|Pr[Forge]| 6 AdvEUF-CMA
F (λ). (6)

It is easy to see that in game G5, A has no advantage, i.e.,

AdvpBRUA
5 = 0. (7)

Combining the above results together, we have

AdvpBRUA
A (λ)6 n · m2/2λ + m[n · AdvD-LWEq,n0−k,m0 ,χ

C (λ) + AdvH
C (λ) + AdvEUF-CMA

F (λ)].

�

Theorem 5.2. The proposed pBRUA achieves strong privacy if the family of universal hash functions
H ← {Hz : Zn0

q → Zq}z∈Z is ε-statistically secure, the underlying computational fuzzy extractor is IND
secure, public key encryption scheme is IK-CPA secure, and the access pattern under uORAM protocol
is computationally IND secure.

Proof. We define a sequence of games {Gi} and let AdvpBRUA
i denote the advantage of the adversary

A in game Gi. We also highlight the differences between adjacent games by underline. We assume the
Challenge stage between adversary A and challenger C is executed in a specific time-window.

• G0: This is the original game for user anonymity security.
• G1: This game is identical to game G1 except that at the Challenge stage, we replace the real sketch

SS(si,wi) (i.e., pi) by a random vector r ∈ Zm0
q . Below we show the difference between G0 and G1 is

negligible under the assumption that the computational fuzzy extractor (FE) is IND secure.
Let C denote an attacker, who is given a common public matrix A and two sketches (pk0,pk1) (pk←
A · X + χ), aims to break the IND security of the computational FE. C simulates the game for A as
follows.

∗ Setup. C sets up the game for A by creating n users with corresponding block identifiers {IDi} and
leaf identifiers {lea fIDi}. C sets the common public matrix in the system as A. C randomly chooses
users i, j from user set U and sets the enrolled sketches as pi = pk0, p j = pk1, and generates
biometrics and sketches for other users. In addition, C honestly generates enrolled public/secret key
pairs {pki,ski} for n users.
∗ Training. If A issues a Send query in the form of {pki, pi} (assuming the bucket includes a real

block) to user i during EarlyReshuffles, then C performs the following steps

25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

∗ re-randomize the received real/dummy blocks to {pk′i, p′i} by using the homomorphic property
of public key and computational FE respectively; Note that p′i is derived from pi.
∗ reshuffle the updated blocks according to the random offset which is based on PRP;
∗ encrypt the IDi, random offset and leaf identifier lea fIDi under enrolled public key pki, and gen-

erate the Bucket MetaData;
∗ write back to the specified bucket as EarlyReshuffles operation specified.
If A issues a Send query in the form of ({p′i}, n j) (the set {p′i} includes one real sketch and the
involving dummy sketches) to user i, then C performs the simulation as follows.
∗ choose the randomness ni as response;
∗ simulate the message-signature pair (m(i, j), σ

∗
i) using user i’s enrolled secret key and correct offset

which derives from two re-randomized sketches {pi} and {p′i}.
∗ perform the Evict operation.
Note that C can easily identify the real block by the enrolled public key pki, and meanwhile, C
records the re-randomized real public key pk′i. Similarly, C simulates the response of user j using
the same method as above.
∗ Challenge. If A issues a Send query in the form of {pki, pi} (include a re-randomized block of

user i) to challenge user pkb during EarlyReshuffles, then C updates (re-randomizes) the received
real/dummy blocks to {(pk′i, c∗

′
), (pkl, pl)} (l 6= i), where the re-randomized ciphertext c∗

′
derives

from a challenge ciphertext c∗ due to the linearity property of computational FE. Note that c∗ is the
challenge ciphertext on message m∗ (the message is the offset between two re-randomized sketches).
C performs the simulation of pkb during Evict operation using the same method described above.
Similarly, C simulates the response of pkb using the same method when A issues a Send query that
includes a real block of user j.

Finally, C outputs whatever A outputs. If A guesses the random bit correctly, then C can break the
IND security of computational FE. Since at most n users involved in the system, hence we have∣∣∣AdvpBRUA

0 − AdvpBRUA
1

∣∣∣ 6 n · AdvFE
C (λ). (8)

• G2: This game is identical to game G1 except that at the Challenge stage, we replace the real secret
key ski by a random key r ∈ Zq. By following the same analysis as described in game G4 of previous
proof, we have∣∣∣AdvpBRUA

1 − AdvpBRUA
2

∣∣∣ 6 AdvH
C (λ). (9)

• G3: This game is identical to game G2 except that at the Challenge stage, we replace the real public
key pki by a random key r ∈ Zq. Below we show the difference between G2 and G3 is negligible
under the assumption that the public key encryption (PKE) scheme is IK-CPA secure.
Let C denote an attacker, who is given two public key pair (pk0,pk1), aims to break the IK-CPA
security of the PKE. C simulates the game for A as follows.

∗ Setup. C sets up the game forA by creating n users with corresponding biometrics {wi} and sketches
pi (i.e., {SS(si,wi)}). C randomly chooses users i, j from user set U and sets pki = pk0,pk j = pk1,
and generates public/secret key pair for other users honestly. In addition, C honestly generates block
identifiers {IDi} and leaf identifiers {lea fIDi} for n users in the system.

26

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

∗ Training. If A issues a Send query in the form of either {pki, pi} or ({p′i}, n j) to user i, then C
performs the simulation by following the protocol specification honestly. In particular, C simu-
lates the message-signature pair (m(i, j), σ

∗
i) using the method as described in [18], where m(i, j) =

(ni, n j,Request). Note that C can obtain the (one-time) public key pk∗i (pk∗i is derived from pki)
since the correct offset can be computed from the received real/dummy sketches. C simulates the
response of user j using the same method.
∗ Challenge. If A issues a Send query in the form of {pki, pi} to challenge user pkb during Ear-

lyReshuffles, then C simulates the ciphertext stored in the Bucket MetaData as c∗, where the
challenge ciphertext c∗ is on message m∗ (e.g., m∗ ← (IDi, o f f set, lea fIDi)) obtained from his
challenger. C honestly performs the simulation of pkb during Evict operation according to the pro-
tocol specification. Similarly, C can simulate the response of pkb when A issues a Send query that
includes a real block of user j.

Finally, C outputs whatever A outputs. If A guesses the random bit correctly, then C can break the
IK-CPA security of PKE. Since at most logN buckets involved during the EarlyReshuffles operation,
we have∣∣∣AdvpBRUA

2 − AdvpBRUA
3

∣∣∣ 6 logN · AdvPKE
C (λ). (10)

• G4: This game is identical to game G3 except that at the Challenge stage, we replace the real block
identifier IDi by a random string. Below we show the difference between G3 and G4 is negligible
under the assumption that the access patten under uORAM protocol is computationally IND secure.
Let C denote an attacker, who is given two access patterns (

←
y0,
←
y1) with equal length in the time-

window % such that
←
y0= {(opi, IDi, datai, timei)}, aims to break the IND security of uORAM protocol.

C simulates the game for A as follows.

∗ Setup. C sets up the game for A by creating n users with corresponding biometrics {wi}, sketches
pi (i.e., {SS(si,wi)}) and public/secret key pairs {(pki,ski)}. In addition, C randomly chooses
users i, j from user set U and sets user i, j’s access pattern as (

←
y0,
←
y1) respectively, and generates

both block identifier and leaf identifier for other users honestly. Note that user i’s block identifier
is implicitly sets as IDi = ID0 with respect to access pattern

←
y0 (assuming a user has one unique

block identifier ID0). Also note that C generates user i, j’s leaf identifiers.
∗ Training. If A issues a Send query in the form of either {pki, pi} or ({p′i}, n j) to user i, then C sim-

ulates the response of user i by following the protocol execution honestly. In particular, C perfectly
simulates the message-signature pair using user i’s secret key and biometrics. A faithfully follows
the access pattern

←
y0 w.r.t. user i, the same rule applies to user j.

∗ Challenge. If A issues a Send query in the form of either {pki, pi} or ({p′i}, n j) to challenge user

pkb, then C constructs an equal length access pattern
←
y∗0 which includes a random block identifier

r. Then C sends two access patterns to his challenge oracle and obtains a challenge sequence of
operations under uORAM protocol uORAM(

←
yb) and returns it to A. In addition, C simulates the

message-signature pair of pkb using user i’s secret key and correct offset which derives from a
(L + 1 size) set of real/dummy sketches that obtained from its challenger. Note that C can also
simulate the response of pkb when A issues a Send query that includes a real block of user j.

27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Finally, C outputs whatever A outputs. If A guesses the random bit correctly, then C can break the
computationally IND security of uORAM. Hence we have∣∣∣AdvpBRUA

3 − AdvpBRUA
4

∣∣∣ 6 AdvuORAM
C (λ). (11)

It is easy to see that in game G4, A has no advantage, i.e.,

AdvpBRUA
4 = 0. (12)

Combining the above results together, we have

AdvpBRUA
A (λ)6 n · AdvFE

C (λ) + AdvH
C (λ) + logN · AdvPKE

C (λ) + AdvuORAM
C (λ).

�

6. Conclusion

In this work, we have proposed the first general framework of strong privacy-preserving remote user
authentication based on a new uORAM protocol and computational fuzzy extractors. The proposed
general framework achieves the strong privacy against an honest-but-curious authentication server. In
particular, the general framework supports a constant bandwidth cost in the challenge-response phase
of user authentications. We have proved the security of the proposed general framework under standard
assumptions. As for the future work, we would try to design a strong privacy-preserving user authenti-
cation that 1) handles multiple user requests in a concurrent and asynchronous manner [29, 30]; or 2)
secures against malicious servers [31, 44].

References

[1] X. Boyen, Reusable cryptographic fuzzy extractors, in: ACM CCS, 2004, pp. 82–91.
[2] X. Boyen, Y. Dodis, J. Katz, R. Ostrovsky and A.D. Smith, Secure Remote Authentication Using Biometric Data., in:

EUROCRYPT, Vol. 3494, 2005, pp. 147–163.
[3] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk and T. Toft, Privacy-preserving face recognition, in: PET,

2009, pp. 235–253.
[4] M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R. Donida Labati, P. Failla, D. Fiore, R. Lazzeretti, V. Piuri, F. Scotti

et al., Privacy-preserving fingercode authentication, in: Proceedings of the 12th ACM workshop on Multimedia and secu-
rity, 2010, pp. 231–240.

[5] Y. Huang, L. Malka, D. Evans and J. Katz, Efficient Privacy-Preserving Biometric Identification, in: NDSS, 2011.
[6] N. Li, F. Guo, Y. Mu, W. Susilo and S. Nepal, Fuzzy Extractors for Biometric Identification, in: ICDCS, 2017, pp. 667–

677.
[7] M.S. Islam, M. Kuzu and M. Kantarcioglu, Access Pattern disclosure on Searchable Encryption: Ramification, Attack and

Mitigation., in: NDSS, 2012, p. 12.
[8] M. Maffei, G. Malavolta, M. Reinert and D. Schröder, Privacy and access control for outsourced personal records, in:

Security and Privacy (SP), 2015, pp. 341–358.
[9] Is Your Information on Mobile Health Apps Safe?.

[10] B. Fuller, X. Meng and L. Reyzin, Computational fuzzy extractors, in: ASIACRYPT, 2013, pp. 174–193.
[11] D. Apon, C. Cho, K. Eldefrawy and J. Katz, Efficient, reusable fuzzy extractors from LWE, in: International Conference

on Cyber Security Cryptography and Machine Learning, 2017, pp. 1–18.
[12] Y. Wen and S. Liu, Robustly reusable fuzzy extractor from standard assumptions, in: ASIACRYPT, 2018, pp. 459–489.

28

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

[13] Y. Dodis, L. Reyzin and A. Smith, Fuzzy extractors: How to generate strong keys from biometrics and other noisy data,
in: EUROCRYPT, 2004, pp. 523–540.

[14] D. Chaum and E. Van Heyst, Group signatures, in: EUROCRYPT, 1991, pp. 257–265.
[15] F. Zhang and K. Kim, ID-based blind signature and ring signature from pairings, in: ASIACRYPT, 2002, pp. 533–547.
[16] B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan, Private information retrieval, in: Proceedings of IEEE 36th Annual

Foundations of Computer Science, 1995, pp. 41–50.
[17] S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi and P. Samarati, Shuffle index: Efficient and private access

to outsourced data, ACM Transactions on Storage (TOS) 11(4) (2015), 19.
[18] C.-P. Schnorr, Efficient identification and signatures for smart cards, in: CRYPTO, 1989, pp. 239–252.
[19] K. Takahashi, T. Matsuda, T. Murakami, G. Hanaoka and M. Nishigaki, A signature scheme with a fuzzy private key, in:

ACNS, 2015, pp. 105–126.
[20] T. Matsuda, K. Takahashi, T. Murakami and G. Hanaoka, Fuzzy signatures: relaxing requirements and a new construction,

in: ACNS, 2016, pp. 97–116.
[21] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu and S. Devadas, Path ORAM: an extremely simple oblivious

RAM protocol, in: ACM CCS, 2013, pp. 299–310.
[22] L. Ren, C.W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. Van Dijk and S. Devadas, Constants Count: Practical Improve-

ments to Oblivious RAM., in: USENIX, 2015, pp. 415–430.
[23] O. Goldreich and R. Ostrovsky, Software protection and simulation on oblivious RAMs, JACM 43(3) (1996), 431–473.
[24] E. Shi, T.-H.H. Chan, E. Stefanov and M. Li, Oblivious RAM with O ((logN) 3) worst-case cost, in: ASIACRYPT, 2011,

pp. 197–214.
[25] J.L. Dautrich Jr, E. Stefanov and E. Shi, Burst ORAM: Minimizing ORAM Response Times for Bursty Access Patterns.,

in: USENIX, 2014, pp. 749–764.
[26] E. Stefanov, E. Shi and D.X. Song, Towards Practical Oblivious RAM, in: NDSS, 2012.
[27] S. Devadas, M. van Dijk, C.W. Fletcher, L. Ren, E. Shi and D. Wichs, Onion ORAM: A constant bandwidth blowup

oblivious RAM, in: TCC, 2016, pp. 145–174.
[28] X. Wang, H. Chan and E. Shi, Circuit ORAM: On tightness of the goldreich-ostrovsky lower bound, in: ACM CCS, 2015,

pp. 850–861.
[29] E. Stefanov and E. Shi, Oblivistore: High performance oblivious cloud storage, in: Security and Privacy (SP), 2013,

pp. 253–267.
[30] V. Bindschaedler, M. Naveed, X. Pan, X. Wang and Y. Huang, Practicing oblivious access on cloud storage: the gap, the

fallacy, and the new way forward, in: ACM CCS, 2015, pp. 837–849.
[31] C. Sahin, V. Zakhary, A. El Abbadi, H. Lin and S. Tessaro, Taostore: Overcoming asynchronicity in oblivious data storage,

in: Security and Privacy (SP), 2016, pp. 198–217.
[32] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubiatowicz and D. Song, Phantom: Practical oblivious

computation in a secure processor, in: ACM CCS, 2013, pp. 311–324.
[33] J. Doerner and A. Shelat, Scaling ORAM for secure computation, in: ACM CCS, 2017, pp. 523–535.
[34] A. Juels and M. Wattenberg, A fuzzy commitment scheme, in: ACM CCS, 1999, pp. 28–36.
[35] O. Regev, On lattices, learning with errors, random linear codes, and cryptography, JACM 56(6) (2009), 34.
[36] T. Murakami, T. Ohki and K. Takahashi, Optimal sequential fusion for multibiometric cryptosystems, Information Fusion

32 (2016), 93–108.
[37] N. Döttling and J. Müller-Quade, Lossy codes and a new variant of the learning-with-errors problem, in: EUROCRYPT,

2013, pp. 18–34.
[38] A. Akavia, S. Goldwasser and V. Vaikuntanathan, Simultaneous hardcore bits and cryptography against memory attacks,

in: TCC, 2009, pp. 474–495.
[39] J. Kamp and D. Zuckerman, Deterministic extractors for bit-fixing sources and exposure-resilient cryptography, SIAM

36(5) (2006), 1231–1247.
[40] O. Blazy, G. Fuchsbauer, D. Pointcheval and D. Vergnaud, Signatures on randomizable ciphertexts, in: PKC, 2011,

pp. 403–422.
[41] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE transactions on

information theory 31(4) (1985), 469–472.
[42] M. Bellare, A. Boldyreva, A. Desai and D. Pointcheval, Key-privacy in public-key encryption, in: ASIACRYPT, 2001,

pp. 566–582.
[43] R. Cramer and V. Shoup, A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext

Attack, in: CRYPTO, 1998, pp. 13–25.
[44] M. Backes, A. Herzberg, A. Kate and I. Pryvalov, Anonymous RAM, in: ESORICS, 2016, pp. 344–362.

29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Appendix A. Trivial Solution

Suppose that we use a single instance of Path ORAM as a black-box with N records of n users (N > n),
and we show that we can achieve strong privacy and log-linear time-complexity, not constant bandwidth.
Specifically, we let the authentication server construct a binary tree, in which each leaf/non-leaf node is
a bucket, each bucket contains a certain number of records and each record contains a user’s enrolled
verification key and helper data (or sketch). Note that helper data and a cryptographic key are derived
from a user’s biometrics, and the same key can be extracted by inputting a “nearby” biometrics and the
helper data [13]. In particular, the cryptographic key is used to derive a signing/verification key pair. The
idea is, upon an authentication request, the authentication server retrieves a set of records which reside in
the same tree path from the database and returns them back to the user. The authorized user first obtains
a cryptographic key from her “nearby” biometrics and her enrolled helper data that are included in the
returned helper data set, and then generates an anonymous signature (e.g., group signature [14] or ring
signature [15]) using a signing key derived from the cryptographic key. The authentication server verifies
the anonymous signature under a number of verification keys that are involved in the returned records
set. This solution naturally achieves the log-linear time-complexity due to the structure of a binary tree.
However, the bandwidth overhead has the log-linear time-complexity in the number of records N.

To highlight the advantage of uORAM over Path/Ring ORAM in user authentications, we present the
following points. First, Path ORAM protocol cannot support a constant bandwidth because the server
simply returns all blocks in a tree path to the client. In uORAM (and Path ORAM), the server returns only
one block from each bucket on the path, so that eliminating the dependence on the bucket size. Second,
Path ORAM cannot support an EarlyReshuffles procedure. The uORAM utilizes an EarlyReshuffles
procedure (same as Ring ORAM) to reshuffle the buckets, because the dummy blocks may have been
updated too many times. In other words, the user must perform an EarlyReshuffles procedure before
actual user authentication, in order to ensure the unlinkability across multiple authentications. Third,
Ring ORAM is not suitable for user authentications, due to its Evict procedure (as discussed in the
Related Work). Therefore, we must select the ideas from both Path ORAM and Ring ORAM to construct
our uORAM, which should be particularly suitable for user authentications. We stress that the constant
bandwidth in the challenge-response phase can be achieved if and only if we exploit the LWE-based
fuzzy extractor. The benefit is to let the user authenticate herself to the server in a practical manner. In
other words, the user can perform a fast login during challenge-response phase, while the early-reshuffle
and post-reshuffle phases are used to maintain strong privacy. Lastly, the overall bandwidth in the whole
user authentication can be summarized to read and write all real blocks (also includes some “updated”
dummy blocks) in a tree path twice.

30

	A new framework for privacy-preserving biometric-based remote user authentication
	Citation
	Author

	Introduction
	Related Work
	Paper Organization

	Preliminaries
	Complexity Assumptions
	Digital Signatures
	Universal Hash Function
	Fuzzy Extractors

	A New Oblivious RAM
	Security Definition
	Stash and Bandwidth Analysis

	The Proposed General Framework
	Definition
	Security Models
	Proposed Construction

	Security Analysis
	Conclusion
	References
	Appendix A. Trivial Solution

