
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2020

Privacy-preserving outsourced calculation toolkit in the cloud Privacy-preserving outsourced calculation toolkit in the cloud

Ximeng LIU
Singapore Management University, xmliu@smu.edu.sg

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Kim-Kwang Raymond CHOO

Yang YANG

Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
1

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5302&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Privacy-Preserving Outsourced Calculation
Toolkit in the Cloud

Ximeng Liu ,Member, IEEE, Robert H. Deng , Fellow, IEEE,

Kim-Kwang Raymond Choo , Senior Member, IEEE,

Yang Yang ,Member, IEEE, and HweeHwa Pang

Abstract—In this paper, we propose a privacy-preserving outsourced calculation toolkit, Pockit, designed to allow data owners to

securely outsource their data to the cloud for storage. The outsourced encrypted data can be processed by the cloud server to achieve

commonly-used plaintext arithmetic operations without involving additional servers. Specifically, we design both signed and unsigned

integer circuits using a fully homomorphic encryption (FHE) scheme, construct a new packing technique (hereafter referred to as

integer packing), and extend the secure circuits to its packed version. This achieves significant improvements in performance

compared with the original secure signed/unsigned integer circuit. The secure integer circuits can be used to construct a new data

mining application, which we refer to as secure k-nearest neighbours classifier, without compromising the privacy of original data.

Finally, we prove that the proposed Pockit achieves the goal of secure computation without privacy leakage to unauthorized parties,

and demonstrate the utility and efficiency of Pockit.

Index Terms—Privacy-preserving, outsourced computation, fully homomorphic encryption, cloud privacy

Ç

1 INTRODUCTION

WITH increasing digitization of our society (e.g., trend
in Internet and Cloud of Things), significantly more

data are created by digital devices. For example, it was esti-
mated that data created by the Internet of Things (IoT) devi-
ces will be 507.5 ZB per year (42.3 ZB per month) by 2019,
as compared to 134.5 ZB per year (11.2 ZB per month) in
2014 [1]. Due to the limited storage and computation ability
of IoT devices [2], outsourced massive data and heavy-
weight computation to the CP become more and more
attractive. It is because cloud computing offering real-time
and anytime, anywhere storage with large or unlimited
capacity is a popular option for users, individuals and
organizations (e.g., the U.S Federal Government’s Cloud
First policy [3]).

To mine or analyze data in the cloud, a number of techni-
ques such as data mining have been proposed and deployed.
For instance, Amazon uses item-to-item collaborative filtering
recommendation [4] to help identify customer buying pat-
terns and trends that lead to improved quality of customer

service. Deep learning tools [5], [6] have also been used to
integrate multiple modalities of very large, complex patient
data in order to allow scientists and doctors to better predict
clinical outcomes and work toward cures for diseases such as
cancer [7].

In order to enjoy benefits afforded by the use of the
remote data mining/analytics, the user’s data need to out-
source to the cloud or service provider for computation.
For example, a patient can use his/her electronic health
record (EHR) to achieve the remote disease prediction with
some data mining techniques constructed by the hospital
(for training the disease prediction model may cost hun-
dreds of million dollars). However, data security and pri-
vacy remain areas of ongoing focus [8], [9], [10], [11]. One of
the main challenges is to ensure that outsourced user data
protected from unauthorized disclosure [12]. Without ade-
quate protection, data owners may be reluctant to outsource
personal or confidential data to a cloud storage. In order to
perform data mining and other analytical tasks on out-
sourced data, basic commonly-used arithmetic operations,
including comparison and multiplication, need to be sup-
ported. In the event that outsourced data stored in the cloud
are encrypted, performing these essential arithmetic opera-
tions (directly on the encrypted data) without compromis-
ing the privacy of the original data remains a research
challenge. For example, a number of frameworks designed
to process encrypted data in outsourced cloud environment
have been proposed in the literature [13], [14], [15], [16],
[17], [18]; however, these existing frameworks generally
require either multi-round communications between the
user and the cloud, or additional server to perform the
computations. That leads to additional energy/electricity

� X. Liu and Y. Yang are with the School of Information Systems, Singapore
Management University, Singapore 188065 and also with the College of
Mathematics and Computer Science/College of Software, Fuzhou University,
Fuzhou 350108, China. E-mail: {snbnix, yang.yang.research}@gmail.com.

� R.H. Deng and H. Pang are with the School of Information Systems,
Singapore Management University, Singapore 188065.
E-mail: {robertdeng, hhpang}@smu.edu.sg.

� K.-K.R. Choo is with the Department of Information Systems and Cyber
Security, University of Texas at San Antonio, San Antonio, TX 78249-0631.
E-mail: raymond.choo@fulbrightmail.org.

Manuscript received 11 Jan. 2018; revised 12 Mar. 2018; accepted 13 Mar.
2018. Date of publication 16 Mar. 2018; date of current version 1 Sept. 2020.
(Corresponding author: Yang Yang.)
Digital Object Identifier no. 10.1109/TDSC.2018.2816656

898 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 5, SEPTEMBER/OCTOBER 2020

1545-5971� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Published in IEEE Transactions on Dependable and Secure Computing, vol. 17, no. 05, pp. 898-911, 2020.
doi: 10.1109/TDSC.2018.2816656

https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0001-9208-5336
https://orcid.org/0000-0001-9208-5336
https://orcid.org/0000-0001-9208-5336
https://orcid.org/0000-0001-9208-5336
https://orcid.org/0000-0001-9208-5336
https://orcid.org/0000-0002-7891-2670
https://orcid.org/0000-0002-7891-2670
https://orcid.org/0000-0002-7891-2670
https://orcid.org/0000-0002-7891-2670
https://orcid.org/0000-0002-7891-2670
https://orcid.org/0000-0001-7266-5712
https://orcid.org/0000-0001-7266-5712
https://orcid.org/0000-0001-7266-5712
https://orcid.org/0000-0001-7266-5712
https://orcid.org/0000-0001-7266-5712
mailto:
mailto:
mailto:

consumption (which can be unrealistic for resource-
constrained IoT devices) and increases the chance of data
leakage, respectively. Thus, in this paper, we seek to
address the following research challenge: How do we design a
system to securely perform commonly-used arithmetic operations
on-the-fly without involving additional (non-colluding) server(s)?

Specifically, in this paper, we propose a Privacy-Preserv-
ing Outsourced Calculation Toolkit for the cloud comput-
ing environment, hereafter referred to as Pockit, with the
following capabilities.

� Secure Data Storage: Pockit allows all parties in the
system to outsource their data to a cloud platform
for secure storage without compromising the privacy
of the data.

� Secure Data Processing On-the-fly: Outsourced data can
be securely computed and processed on-the-fly,
including commonly used unsigned integer computa-
tion as well as signed integer computation. Moreover,
our Pockit can be extended to support fix-point num-
ber calculation.

� Computation without Additional Servers: In most exist-
ing computation frameworks such as [13], [14], [15],
[16], [17], [18], two non-colluding servers (including
an additional server with decryption ability) are
required to perform some integer calculation, such
as multiplication, comparison, etc. In Pockit, all inte-
ger computations can be executed by a single server
without involving additional (decryption) server.
This decreases the chance of data leakage.

� Support Iterative Calculations: In order to perform
unlimited iterative calculations with large circuit, the
ciphertext should support the ‘refresh’ property.
Moreover, for integer calculation, the overflow prob-
lem should be addressed such that newly computed
ciphertext can be directly used as the input for the
next secure computation.

� Ease of Use: Pockit does not require the data owner
to perform any complex pre-processing prior to out-
sourcing. A data owner only needs to encrypt-and-
outsource the data to the cloud.Moreover, interactions
between data owner and the cloud server are kept to a
minimal since a data owner only needs to send a query
to the cloud server, for it to perform the computation,
and respond with the computed results in a single
round.

Technique Overview. In Pockit, we use one of the most effi-
ciency fully homomorphic encryption scheme at present called
BGV scheme as a basis. To achieve the outsourced arithmetic
operations, we construct commonly- used unsigned/signed
integer circuits (e.g., integer addition, comparison, multiplica-
tion, division) for both single-key and multiple-key setting.
Also, we design a new integer packing technique for Pockit to
store multiple integers in a single ciphertext according to the
Single InstructionMultiple Data (SIMD) feature of BGV. More
importantly, the basic commonly-used unsigned/signed inte-
ger circuits can be extended to support packed ciphertext.
It can simultaneously manipulate multiple integers which are
belonged to a single packed ciphertext. Also, the KeySwitch
algorithm in BGV can be used to extend the single-key compu-
tation circuits to single-key settings, and we use above packed

integer circuits to construct an important application called
secure k-NN classifier for the outsourced scenario.

2 BACKGROUND

In this section, we present the definition of a basic crypto
primitive called BGV scheme, and some basic circuits as the
building blocks to construct Pockit. Table 1 summarizes the
key notations used in this paper.

2.1 Fully Homomorphic Encryption Scheme–BGV
Scheme

The BGV scheme [19] contains five basic algorithms: Setup
for system parameter setup, KeyGen for private key genera-
tion, PKGen for public key generation, Enc for message
encryption, and Dec for ciphertext decryption (the construc-
tion of these five algorithms and basic homomorphic opera-
tions can be found in supplemental material Section B, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TDSC.2018.
2816656). Here, we only provide three basic homomorphic
operations provided by BGV scheme. Given two ciphertexts
~cða?Þ and ~cðb?Þ under a common public key, homomorphic
addition H:addð~cða?Þ; ~cðb?ÞÞ generates a new ciphertext for
the underlying plaintext a? þ b? 2 A2, while homomorphic
multiplication H:mulð~cða?Þ; ~cðb?ÞÞ produces a ciphertext for
plaintext a? � b? 2 A2. Moreover, homomorphic constant
multiplication H:cmulð~cða?Þ; k?Þ computes a new ciphertext
for plaintext a? � k? 2 A2, where k? 2 A2. We omit the con-
struction of the three homomorphic operations (here, and
refer reader to supplemental material Section B, available
online, or [20] for details).

In order to achieve iterative computation, two methods
are used to refresh a ciphertext, namely, Modulus-Switch-
ing (denoted as ModSwitch) & Key-Switching (denoted as
KeySwitch) [19] technique, and Bootstrapping (denoted as
Bootstrap) technique [21]. The former technique first
using ModSwitch to convert a level-ðiþ 1Þ ciphertext into a
level-i ciphertext without changing the private key (with
the noise in the ciphertext reduced by a factor of qi=qiþ1).
Then, it uses KeySwitch procedure with transformation
key Wsiþ1!si to transform the ciphertext with respect to
level-ðiþ 1Þ key siþ1 into a ciphertext with respect to level-i
key si. Once the ciphertext reaches level-0, the embedded
noise in it can no longer be reduced through ModSwitch &
KeySwitch. At this stage, the Bootstrap is needed to
“re-encrypt” the ciphertext ~c at level-0 to generate a new

TABLE 1
Summary of Notations

Notation Definition

pka=ska Party a’ public key/private key
FmðXÞ m’s cyclotomic polynomial
A A polynomial ring Z½X�=FmðXÞ
An A polynomial ring ðZ=nZÞ½X�=FmðXÞ
a? ; b? Element belonged to A2

~c; ~k;~t BGV ciphertexts
~cða?Þ BGV ciphertext with plaintext a?

a; b Element belonged to Z2

kSk the size of the set S

LIU ET AL.: PRIVACY-PRESERVING OUTSOURCED CALCULATION TOOLKIT IN THE CLOUD 899

http://doi.ieeecomputersociety.org/10.1109/TDSC.2018.2816656
http://doi.ieeecomputersociety.org/10.1109/TDSC.2018.2816656

ciphertext that encrypts the same element with respect to
some higher level i < ðL� 1Þ. In other words, the level-0
private key s0 can be encrypted to level-ðL� 1Þ ciphertext,
and the ciphertext ~c can be encrypted as level-ðL� 1Þ
ciphertext. The scheme can homomorphically perform the
decryption circuit inside the level-ðL� 1Þ ciphertext, and
finally to obtain the new ciphertext at level i (i < ðL� 1Þ,
the noise control technique should be applied during re-
encryption.

For ease of reading, we will omit the level representation
and use ~chpkiiða?Þ to represent data owner i’s ciphertext
(i.e., encryption of plaintext a? 2 A2, and pki is data owner
i’s public key). We also omit hpkii in ~xhpkii, and use ~x instead
if all the ciphertexts belong to the same user.

2.2 Basic Unsigned Integer Circuits

Given two unsigned m-bit integers a ¼ ðam�1; . . . ; a0Þ and
b ¼ ðbm�1; . . . ; b0Þ, the following circuits output the result
for the various functions. Note that � denotes bit-wise XOR
operation while ^ denotes bit-wise AND operation. Also,
we use aten ¼

Pm�1
j¼0 aj2

j to represent the integer value of a,
where a is the binary representation of aten. The operation
aten � bten denote the integer operation � 2 fþ;�;�; < g
between integers aten and bten. See supplemental material
Section C, available online, and [16] and supplemental
material, available online, for the construction of addition
circuit, comparison circuit, and equality circuit (their secure
version are called secure unsigned integer addition
(I.add), secure unsigned integer comparison (I.cmp), and
secure unsigned integer equality (I.equ)). Here, we give
two unsigned integer multiplication and division circuits
before constructing their corresponding secure versions.

Multiplication Circuit. The circuit produces a 2 	 m-bit
result n. If initially n ¼ 0, then we use the integer addition
circuit to add ci (i ¼ 0 to m� 1) to n, where ci is a 2m length
vector ðci;2m�1; . . . ; ci;0Þ with ci;jþi ¼ aj ^ bi for every 0
 i;
j
 m� 1, and let ci;t ¼ 0 for every 0
 t
 2m� 1 and
t 6¼ iþ j. Finally, it takes the 2m least significant bits as the
final output.

Division Circuit. Given dividend a and divisor b, the circuit
outputs a m-bit quotient q and remainder r as follows.
Construct a 2m-bit vector e, and denote the m least significant
bits as ðem�1; . . . ; e0Þ ¼ ðqm�1; . . . ; q0Þ q� and the mmost sig-
nificant bits as ðe2m�1; . . . ; emÞ ¼ ðrm�1; . . . ; r0Þ r�. Initialize
q� a and r� 0. The following procedurewill then execute
for m times: Shift e left by 1 bit, and compare r�ten and bten.
If r�ten < bten, denote e0 0, d 0, and calculate q�ten
q�ten þ dten. If r

�
ten � bten, let e0 ¼ 1, dten �bten and calcu-

late q�ten q�ten þ dten. After m rounds of calculation, the out-
puts produced are q ðem�1; . . . ; e0Þ and r ðe2m�1; . . . ; emÞ.

3 SYSTEM MODEL AND PRIVACY REQUIREMENT

3.1 System Model

The systemmodel in Pockit comprises a key generation center
(KGC), a cloud platform (CP), and data users (DUs)–see Fig. 1.

1. KGC is an entity trusted by all the other entities in
the system, and tasked with distributing and manag-
ing all public and private keys.

2. CP effectively has ‘unlimited’ data storage space,
and stores and manages encrypted data outsourced

from the registered parties in the system. Also, CP
provides computation power to perform homomor-
phic operations over encrypted data.

3. Generally, a DU uses its public key to encrypt data,
before storing the encrypted data with CP. The data
user may also request CP to perform calculations on
the outsourced data.

We assume the system contains S DUs, one KGC, and
one CP. KGC first generates public-private key pairs for the
S DUs (denote as ðpkj; skjÞ, j ¼ 0 to S � 1). Also, the trans-
formation keys W

ðjÞ
siþ1!si for DU j to refresh ciphertext is

sent to CP for storage.

3.2 Attack Model

In attack model, CP, DUs are curious-but-honest parties,
which strictly follow the protocol, but are interested to learn
data belonging to the challenger DU. Therefore, we introduce
an active adversary A in our model. The goal of A is to
decrypt challenger DU’s ciphertext, andA possesses with the
following capabilities: 1) A may eavesdrop on all the public
communication links to obtain encrypted data. 2)Amay com-
promise CP’s storage which stores all the parities ciphertext.
The goal of A is to guess the plaintext values of ciphertexts
encrypted by the challenger DU’s public key, even to the
extent of including CP to colludewith non-challenger DUs.

Adversary A is, however, restricted from compromising
the challenger DU. We remark that such restrictions are
typical in adversary models used in [18].

4 SECURE SIMD UNSIGNED INTEGER CIRCUIT

AND INTEGER PACKING TECHNIQUE

In this section, we explain how an integer plaintext is
mapped to a ciphertext, create the basic secure SIMD circuits
over ciphertexts, present our packing techniques and finally
achieve the integer packed version of secure SIMD circuits.

4.1 System Initialization

Given an appropriate m, we obtain m’s cyclotomic polyno-
mial FmðXÞ, and decompose FmðXÞ mod 2 into ‘ ¼ fðmÞ=d
irreducible polynomials such that each has the same degree
d, i.e., FmðXÞ ¼

Q‘�1
j¼0 FjðXÞðmod 2Þ. Thus, we have the

isomorphism

A2 ffi L‘�1 � 	 	 	 � L0 :¼ A2;

where Li ¼ ðZ=2ZÞ½X�=FiðXÞ (for i ¼ 0; . . . ; ‘� 1). Note that
the rings Li are all isomorphic to L0, and their direct

Fig. 1. System model.

900 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 5, SEPTEMBER/OCTOBER 2020

product A2 is isomorphic to A2. Thus, we can think of opera-
tions in A2 as operations on L‘�1 � 	 	 	 � L0; we call
L‘�1; . . . ;L0 as slot ‘� 1 to slot 0 respectively. In designing
the integer circuits, we encode a single bit in one slot for
storage. Formally, we choose an irreducible polynomial
GðXÞ ¼ Xþ 1 2 ðZ=2ZÞ½X� and define K ¼ ðZ=2ZÞ½X�=
GðXÞ. Also, we define Ci as a distinct homomorphic
embedding from K into Li ¼ ðZ=2ZÞ½X�=FiðXÞ: Our basic
plaintext space is defined as ‘ copies of K, i.e., M¼ ðKÞ‘,
where addition and multiplication are defined component-
wise. We can therefore define a map

C� : M ! A2

ða‘�1; . . . ; a0Þ 7! ðC‘�1ða‘�1Þ; . . . ;C0ða0ÞÞ ;
�

which map ‘-bit plaintext to A2. Using the Chinese Remain-
der Theorem (CRT), we can further batch element a 2 A2

into a? 2 A2 (denote as a? ¼ CRT2ðaÞ), and encrypt it as
ciphertext. Using this method, we can “pack” a ‘-bit mes-
sage into a single ciphertext for storage.

Moreover, we can use another operation to manipulate
elements in A2 called automorphism ’j of the form
a?ðXÞ ! a?ðXjÞ, where j 2 Z�m and a?ðXÞ; a?ðXjÞ 2 A2.
Using the automorphism, we can achieve slot rotation by
implementing ’gk (k ¼ 1 to ‘� 1) for some element g 2 Z�m,
where g has the order ‘ in both group Z�m and the quotient
group Z�m=h2i. That is, we can use ’gk to rotate the content of
slot by k positions, thus moving the content of slot j to slot
jþ kmod ‘. Using the automorphism, we define another
BGV operation called plaintext slot rotation, and we denote
~c0 H:rotateð~c; kÞ. For more details, the interested reader
is referred to [22], [23]. Next, we show how to achieve basic
SIMD circuit calculations.

4.2 Secure SIMD Unsigned Integer Computation
Circuit

Given the decimal representation unsigned of an integer
aten, we can transform the integer into binary form a ¼
ðam�1; . . . ; a0Þ–see Table 2. We then use slot 0 to m� 1 to
store the m-bit integer, i.e., pad ‘� m “0” to the top of a to
derive ‘-bit vector a ¼ ð0; . . . ; 0; am�1; . . . ; a0Þ 2 Z‘

2 (usually,
‘
 m). Then, we use the above method to encode the plain-
text as a? ¼ CRT2ðC�ðaÞÞ 2 A2, encrypt a? , and denote the
ciphertext as ~cða?Þ (or ~cðCRT2ðC�ðaÞÞ). We simply write the
~cðCRT2ðC�ðaÞÞ as ~cðaÞ to make the notation more readable.
Within a ciphertext, each m-slot is considered as a block. We
use block 0 (slot 0 to m� 1) to store the integer; such a
ciphertext is an Unpacked Ciphertext (see Fig. 2). For

unpacked ciphertext ~cðaÞ, we may easily verify that

aten ¼
P‘�1

j¼0 aj2
j. Before constructing the secure circuit, we

define p?
i; �p?

i 2 A2 where p?
i stores 1 in slot i (0
 i < ‘)

and 0 in the other slots, while �p?
i stores 0 in slot i and 1 in

the other slots. Moreover, we define p?
Im�1 2 A2 which

stores 1 from slot 0 to slot m� 1, and 0 in the other slots.

Note that H.add can be considered the bit-wise XOR opera-
tion for the individual plaintext slots of two ciphertexts,
while H.mul can be considered the bit-wise AND operation
for the individual plaintext slots.

4.2.1 Secure Slot Copy – Scpyð~cðaÞ; kÞ
Given an unpacked ciphertext ~cðaÞ with data stored in slot z
and 0 in the other slots, the Scpy algorithm outputs ~cðnÞ
where n ¼ fn‘�1; . . . ; n0g with nkþz ¼ 	 	 	 ¼ nz ¼ az and 0
otherwise. The algorithm works as follows:

1) Intialize ~cðnÞ ~cðaÞ.
2) If k > 0, calculates the following recurrently for i ¼ 1

to k, ~ci H:rotateð~cðaÞ; iÞ and ~cðnÞ H:addð~cðnÞ;~ciÞ:
Otherwise, k < 0 and calculate the following recurrently

for i ¼ �1 to k,

~c�i H:rotateð~cðaÞ; ‘þ iÞ; ~cðnÞ H:addð~cðnÞ;~c�iÞ:

4.2.2 Secure Unsigned Integer SIMD Multiplication

Given two unpacked ciphertexts ~cðaÞ and ~cðbÞ, we obtain
~cðnÞ where n ¼ fn‘�1; . . . ; n0g with n‘�1 ¼ 	 	 	 ¼ n2m ¼ 0 and
n2m�1; . . . ; n0 storing the multiplication result, and denote
the algorithm as I:mulð~cðaÞ;~cðbÞÞ:
1) First, ~cðnÞ is set to 0. Then, for i ¼ 0 to m� 1, the

following calculations are executed recurrently

~ci H:cmulð~cðbÞ;p?
iÞ; ~ki Scpyð~ci;m� 1Þ;

~ti H:rotateð~cðaÞ; iÞ; ~c0i H:mulð~ti; ~kiÞ:

2) We add ~c00; . . . ;~c
0
m�1 together using I.add, i.e.,

~cðnÞ I:addð~cðnÞ;~c0iÞ: (1)

After the calculation, ~cðnÞ contains the final output with
information stored in block 0 (which has block size 2m).

4.3 Secure Packed Ciphertext Storage & Calculation

Beside using SIMD technique to accelerate the integer circuits
[16], we also design a new technique called integer packing/
unpacking technique to further increases both storage and
computation efficiency for an integer circuit. Given a0

unpacked ciphertexts ~cðaa0�1Þ; . . . ;~cða0Þ (0 < a0
 b‘=m0c),
each ciphertext uses slot 0 tom� 1 to store information (a.k.a.,
block label 0 with block size m). The goal of integer packing is
to better utilize a ciphertext ~csp such that its block i stores ai.
(Fig. 3 illustrates packing two unpacked ciphertext into a
packed one). To avoid overflow across different blocks, the
new block size m0 (m0 ¼ mþ þ m� þ m) is related to different
types of calculations, where mþ and m� are the parameters

Fig. 2. Data format.

Fig. 3. Integer packing/unpacking procedure.

LIU ET AL.: PRIVACY-PRESERVING OUTSOURCED CALCULATION TOOLKIT IN THE CLOUD 901

used to solve computation overflow andunderflowproblems.
For example, we can choose m0 � mþ 1 if we only need one
round of secure integer addition, where mþ � 1 and m� ¼ 0:
For a circuit for once-off unsigned integer comparison,
we need m0 � 2dlog 2me where mþ � 2dlog 2me � m and m� ¼ 0.
If we only need to store information without any integer
calculation, then we simply have m0 ¼ m. Next, we will show
how to construct the integer packing/unpacking technique.

Integer Packing (Ipack): The Ipack first initializes
~csp ~cð0Þ. Then, for i ¼ 0; . . . ;a0 � 1, the algorithm calcu-
lates the following two formulas recurrently

~c0i H:rotateð~cðaiÞ;m0 	 iþ m�Þ; ~csp H:addð~csp;~c0iÞ:
Finally, the algorithm outputs ~csp

~csp Ipackð~cðaa0�1Þ; . . . ;~cða0Þ : m0Þ;
which uses block i (slot m0i to m0iþ m0 � 1) to store plain-
text ai.

Integer Unpacking (IUpack): Given a packed ciphertext
~csp, we can recover ~cðaa0�1Þ; . . . ;~cða0Þ as follows.

For i ¼ 0; . . . ;a0 � 1, recurrently calculate the following
~c0 H:rotateð~csp; ‘� m0i� m�Þ and ~cðaiÞ H:cmulð~c0;p?

I0 Þ,
where pI0 ? 2 A2 stores 1 from slot 0 to m0 � 1, while the other
slots store 0.

Extension for Packed Ciphertext Calculation. The SIMD
property allows the manipulation of block 0 to be reflected
to all the other blocks simultaneously. Thus, we can use the
unpacked SIMD circuit to achieve packed SIMD calculation,
with changes to the following parameters: The slot selection
parameter p?

j (in which slot j (0
 j < m) stores 1, and the
other slots store 0, where m is the block size) is changed to
h?

j;m0 (in which slot jþ m� þ km0 stores 1 and the other slots
store 0, where k ¼ 0 to a0 � 1). Also, �p?

j (in which slot j
(0
 j < m) stores 0, and the other slots store 1, where m is
the block size) is changed to �h?

j;m0 (in which slot
jþ m� þ km0 stores 0 and the other slots store 1, where k ¼ 0
to a0 � 1). Moreover p?

Im�1 (in which slots 0 to m� 1 store 1,
and the other slots store 0) is changed to h?

Im�1;m0 (in which
slots km0 þ m� to slot m� 1þ km0 þ m� store 1 for k ¼ 0 to
a0 � 1, and the other slots store 0) for all the integer calcula-
tions. Furthermore, in PI.add, the ciphertext ~t0;j in I.add is
changed so that the ciphertext stores 1 in slot jþ km0 þ m�
(j ¼ 0; . . . ;m� 1, k ¼ 0; . . . ;a0 � 1) and 0 in the other slots.
The above transformation from unpacked integer SIMD com-
putation to packed one is simple, and we denote the packed
integer secure SIMD addition, equality, comparison andmul-
tiplication as PI.add, PI.equ, PI.cmp and PI.mul,

1

respectively. We next show how to use the packing technique
to construct the secure protocols and optimize performance.

4.3.1 Secure Group Integer Sum Circuit (GSum)

Given unpacked ciphertexts ~cða0Þ; . . . ;~cðakÞ, the goal is to
calculate unpacked ciphertext ~cðnÞ such that n stores the
integer sum of a0; . . . ; ak. A naive solution is to directly
use I.add to add these ciphertexts successively. However,
the overhead of such a naive solution is high when the num-
ber of inputs is large. Instead, we use GSum to improve the
running efficiency, with the algorithm executing as follows:

Put ~cða0Þ; . . . ;~cðakÞ in a set S, and denote them as ~c0; . . . ;
~ckSk�1. The following procedure is executed recurrently
until only one element is left in S, i.e., if kSk ¼ 1, the remain-
ing element is the final output ~cðnÞ; otherwise, the GSum

processes according to the conditions.

� If kSkmod 2 ¼ 0 and kSk > 1, 1) for i ¼ 0; . . . ;
bkSk=ð2aÞc, calculate ~ci Ipackð~c2aiþ2ða�1Þ; . . . ;~c2ai :
m0Þ; ~c0i Ipackð~c2aiþ2a�1; . . . ; ~c2aiþ1 : m0Þ; ~c�i
PI:addð~ci;~c0iÞ and f~c�aiþa�1; . . . ;~c�aig IUpackð~c�i ;m0Þ;
where a ¼ b‘=m0c, and add f~c�aiþa�1; . . . ;~c�aig to set S0;
2) clear set S and let S S0.

� If kSkmod 2 6¼ 0 and kSk > 1, pop the last element
~ckSk�1 from set S so that kSk=2 ¼ 0. Execute the
above procedure (kSk=2 ¼ 0 and kSk > 1) to generate
~c�0; . . . ;~c

�
ðkSk�1Þ=2�1, clear set S, put ~c�0; . . . ;~c

�
ðkSk�1Þ=2�1;

~ckSk�1 into set S, and denote the algorithm as ~cðnÞ
GSumð~cða0Þ; . . . ;~cðnkÞ : m0Þ:

Optimization of I.mul: Using GSum, we can further boost
the running time of I:mul. Step-1 is similar to that for I:mul.
For step-2, to sum up ~c00; . . . ;~c

0
m�1

~cðnÞ GSumð~c00; . . . ;~c0m�1 : 2 	 mÞ: (2)

For the optimization of PI.mul, if 2m 	 h	 > ‘=2, no opti-
mization method may be done as the ciphertext cannot be
further packed. If 2m 	 h	
 ‘=2, to sum up ~c00; . . . ;~c

0
m�1, we

combine k� ¼ b‘=ð2m 	 hÞc partially packed ciphertext into a
fully packed ciphertext, i.e., we can GSum to add 2k� integers
at the same time, which would improve performance by up
to k� times as compared to PI:add. Next, we use the packing
technique to achieve another algorithm called Secure Group
Integers Min Circuit (GMin).

4.3.2 Secure Group Integer Min Circuit (GMin)

Given unpacked ciphertexts T0 ¼ ð~cða0Þ;~cðI0ÞÞ; . . . ;
Tk ¼ ð~cðakÞ;~cðIkÞÞ, the goal is to calculate the unpacked
ciphertext T ¼ ð~cðaÞ;~cðIÞÞ such that a stores the minimum
integer value among a0; . . . ; ak and I is a’s corresponding
identity. The algorithm executes as follows: Put T0; . . . ; Tk in
a set S. The following procedure is executed recurrently
until one tuple is left in S, i.e., if kSk ¼ 1, the tuple remain-
ing is the final output; otherwise, the GMin processes
according to the conditions.

� If kSkmod 2 ¼ 0 and kSk > 1, 1) for i ¼ 0; . . . ;
bkSk=ð2aÞc, pack the ciphertexts into a packed
ciphertext before performing the comparison

~ci Ipackð~cða2aiþ2ða�1ÞÞ; . . . ;~cða2aiÞ : m0Þ;
~cid;i Ipackð~cðI2aiþ2ða�1ÞÞ; . . . ;~cðI2aiÞ : m0Þ;

where a ¼ b‘=m0c. Similar, pack ~cða2aiþ2a�1Þ; . . . ;
~cða2aiþ1Þ into ciphertext ~c0i and pack ~cðI2aiþ2a�1Þ; . . . ;
~cðI2aiþ1Þ into ~c0id;i. Moreover, compare the plaintext
relationship between ~ci and ~c0i. If the integer in block
j of ~ci is less than the corresponding block of ~c0i, then
the algorithm selects a2aiþ2j and I2aiþ2j. Otherwise,
the algorithm selects a2aiþ2jþ1 and I2aiþ2jþ1, i.e., com-
pute ~cp PI:cmpð~ci;~c0iÞ; ~c0p H:addð~cp;~cðh?

0;m0 ÞÞ;
~ch Scpyð~cp;m� 1Þ; ~c0h Scpyð~c0p;m� 1Þ; such that
each slot of block j in ~ch stores 1 if a2aiþ2j < a2aiþ2jþ1
and 0 otherwise, while ~c0h stores exclusive OR value

1. Beside changing p?
i to h?

i;m0 , I.add in step 2 of PI.mul also
needs to be changed to PI.add.

902 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 5, SEPTEMBER/OCTOBER 2020

for each slot of ~ch. Next, both H.mul and H.add can
be used to get ~c�i and ~c�id;i, i.e., compute ~cf
H:mulð~ci;~chÞ; ~c0f H:mulð~c0i;~c0hÞ;~cd H:mulð~cid;i;~chÞ;
~c0d H:mulð~c0id;i;~c0hÞ; and calculate ~c�i H:addð~cf ;~c0fÞ;
~c�id;i H:addð~cd;~c0dÞ: Finally, use IUpack to unpack
~c�i and ~c�id;i to obtain ~cða02aiþ2ða�1ÞÞ; . . . ;~cða02aiÞ and
ð~cðI02aiþ2ða�1ÞÞ; . . . ;~cðI02aiÞ, respectively. Add ð~cða0jÞ;
~cðI0jÞÞ ðj ¼ 2ai; . . . ; 2aiþ 2ða� 1ÞÞ to set S0. 2) clear
set S and let S S0.

� If kSkmod2 6¼ 0 and kSk > 1, pop the last tuple
ð~cðakSk�1Þ;~cðIkSk�1ÞÞ from set S so that kSk=2 ¼ 0.
Execute the above procedure (kSk=2 ¼ 0 and kSk >
1) to generate ð~cða0jÞ;~cðI0jÞÞ ðj ¼ 0; . . . ; kSk� 1Þ=2� 1Þ,
clear set S, and put ð~cðakSk�1Þ; ~cðIkSk�1ÞÞ and ð~cða0jÞ;
~cðI0jÞÞ ðj ¼ 0; . . . ; kSk � 1Þ=2� 1Þ into a set S.

We denote the algorithm T GMinðT0; . . . ; Tk : m
0Þ:

5 SECURE SIGNED INTEGER COMPUTATION

CIRCUIT

In this section, we will explain how to securely store the
signed integer and achieve basic secure signed integer
circuits over ciphertexts.

5.1 Two’s Complement Representation

A two’s-complement number system encodes positive and
negative numbers in a binary number representation. The
weight of each bit is a power of two, except for the most
significant bit, whose weight is the negative of the corre-
sponding power of two. The (integer) value aten of an m-bit
integer a ¼ ðam�1; am�2; . . . ; a0Þ is given by the following

formula: aten ¼ �am�12m�1 þ
Pm�2

i¼0 ai2
i. Using the two’s com-

plement number system, all integers from �2m�1 to 2m�1 � 1
may be represented. Given ðam�1; am�2; . . . ; a0Þ, we calculate
�aten by first executing ð1� am�1; 1� am�2; . . . ; 1� a0Þ, then
adding integer ð0; 	 	 	 0; 1Þ to it. Next, we will show how to
securely achieve the conversion (see supplemental material
D, available online).

5.1.1 Secure Two’s Complement Conversion (STC)

The protocol converts the plaintext of unpacked ciphertext
~cðaÞ into its two’s complement form, stored in ~cðnÞ. The con-
struction is as follows: ~cða0Þ H:addð~cðaÞ; ~cðp?

Im�1ÞÞ;
~c1 I:addð~cða0Þ;~cðp?

0ÞÞ; ~cðnÞ H:cmulð~c1;p?
Im�1Þ:

Before designing the signed integer circuit, we need another
protocol called obvious two’s complement conversion,
designed to convert an integer into its two’s complement
according to the symbol value.

5.1.2 Obvious Two’s Complement Conversion (OTC)

Input unpacked ciphertext ~cðaÞ and ~cðsÞ, and output ~cðnÞ,
where s‘�1 ¼ 	 	 	 ¼ sm ¼ sm�2 ¼ 	 	 	 ¼ s0 ¼ 0. The protocol
can converts a to its two’s complement n if sm�1 ¼ 1; other-
wise, the input remain unchanged.

1) Use STC to compute ~cða0Þ STCð~cðaÞÞ:
2) The final output is securely selected according to

sm�1, i.e., select a0 if sm�1 ¼ 1 and a if sm�1 ¼ 0. The
algorithm calculates: ~cðs0Þ H:addð~cðsÞ;~cðp?

m�1ÞÞ;

~cðs1Þ Scpyð~cðsÞ;m�Þ; ~cðs2Þ Scpyð~cðs0Þ;m�Þ; ~c1
H:mul ð~cðs2Þ;~cðaÞÞ; ~c2 H:mulð~cðs1Þ; ~cða0ÞÞ; ~cðnÞ
H:addð~c1;~c2Þ; where m� ¼ �ðm� 1Þ. Note that, if
sm�1 ¼ am�1, the plaintext of ~cðnÞ in the OTC protocol
is the absolute value of a, i.e., nten ¼ jatenj. Next, we
introduce secure signed integer circuits.

5.2 Secure Signed Integer Computation Operations

Here, we introduce basic signed integer SIMD operations
for addition, subtraction, comparison, multiplication and
division.

5.2.1 Secure Signed Integer SIMD Addition

Circuit– I:Saddð~cðaÞ; ~cðbÞÞ
Given two unpacked ciphertexts which store signed inte-
gers a and b, I.Sadd outputs two ciphertexts, namely, ~cðnÞ
and ~cðfÞ which store the addition result and error infor-
mation, respectively. The construction directly uses I.add,
only takes m bits, and discards the carry-out.

Step-1. As we use the two’s-complement number system,
I.add is used to add the two numbers and keep the m bit,
i.e., ~c1 I:addð~cðaÞ;~cðbÞÞ and ~cðnÞ H:cmulð~c1;p?

Im�1Þ:
Step-2. Any of the following two situations signifies an

error: 1) two positive numbers produce a negative addition
result (am�1 ¼ 0, bm�1 ¼ 0, nm�1 ¼ 1), 2) two negative num-
bers produce a positive addition result (am�1 ¼ 1, bm�1 ¼ 1,
nm�1 ¼ 0). We use slot 0 of ~cðfÞ to store the overflow infor-
mation, i.e., f0 ¼ ð1� am�1 � bm�1Þ ^ ðbm�1 � nm�1Þ, such that
overflow occurs when f0 ¼ 1, and f0 ¼ 0 otherwise. Step-2
proceeds as follows: ~c01 H:addð~cðaÞ; ~cðbÞÞ; ~c02 H:addð~c01;
~cðp?

m�1ÞÞ; ~c03 H:addð~cðbÞ;~cðnÞÞ; ~ca H:mulð~c02; ~c03ÞÞ; ~cb
H:cmulð~ca;p?

m�1Þ; ~cðfÞ H:rotateð~cb; ‘� ðm� 1ÞÞ:

5.2.2 Secure Signed Integer SIMD Subtraction Circuit

Given two unpacked ciphertexts ~cðaÞ and ~cðbÞ, output
ciphertext ~cðnÞ. Using two’s complement, we can convert
any subtraction operation into an addition, i.e., aten� bten ¼
aten þ ð�btenÞ. The secure signed integer subtraction circuit
(I.Ssub) involves calculating ~c0 STCð~cðbÞÞ and ð~cðnÞ;
~cðfÞÞ I:Saddð~cðaÞ; ~cðbÞÞ:

5.2.3 Secure Signed Integer SIMD Comparison Circuit

Given two unpacked ciphertexts ~cðaÞ and ~cðbÞ, output
ciphertext ~cðnÞ. If the sign bits are different, we choose the
number with a positive sign bit as the larger one. Otherwise,
we directly use I.cmp to compare the two integers. I.Scmp
contains the following steps:

Step-1: Construct ciphertext ~c�a and ~c�b , in which slot 0
stores am�1 and bm�1, respectively. Moreover, we use ~cðdÞ to
store the comparison result in slot 0. i.e., ~ca H:cmulð~cðaÞ;
p?

m�1Þ; ~cb H:cmulð~cðbÞ; p?
m�1Þ; ~c�a H:rotateð~ca; ‘� ðm�

1ÞÞ; ~c�b H:rotateð~cb; ‘� ðm� 1ÞÞ; ~cðdÞ I:cmpð~cðaÞ; ~cðbÞÞ:
Step-2: Compute ðam�1 ^ ðam�1 � bm�1ÞÞ � ½ð1� am�1�

bm�1Þ ^ d0� and store it in slot 0 of final result ~cðnÞ; i.e.,
~cx H:addð~c�a;~c�bÞ; ~cy H:addð~cx;~cðp?

0ÞÞ; ~c1 H:mulð~c�a;~cxÞ;
~c2 H:mulð~cðdÞ;~cyÞ; ~cðnÞ H:addð~c1;~c2Þ:

5.2.4 Secure Signed Integer SIMD Multiplication Circuit

Given two unpacked ciphertexts ~cðaÞ and ~cðbÞ, output
ciphertext ~cðnÞ in which slots 0 to 2m� 1 store the result.

LIU ET AL.: PRIVACY-PRESERVING OUTSOURCED CALCULATION TOOLKIT IN THE CLOUD 903

Step-1. Same as Step-1 of I.mul.
Step-2. Invert the plaintext bit in slot iþ m� 1 of ciphertext

~c�i ði ¼ 0; . . . ;m� 2Þ, i.e., for i ¼ 0 to m� 2, calculate ~c�i
H:addð~c0i;~cðp?

iþm�1ÞÞ: For ~c0m�1, we need to invert the plaintext
bits stored from slot m� 1 to slot 2m� 3, i.e., calculate
~c�m�1 H:addð~c0m�1;~cðp?

xÞÞ where p?
x stores 1 between slots

m� 1 and 2m� 3, and 0 in the other slots. Then, for i ¼ 0 to
m� 1, calculate ~cðnÞ I:addð~cðnÞ;~c�i Þ: After performing I.

add for m times, compute ~cðnÞ I:addð~cðnÞ;~cðp?
yÞÞ where

p?
y stores 1 in slots 2m� 1 and m, and 0 in the other slots.

Finally, keep the plaintext from slots 0 to 2m� 1 of ~cðnÞ, i.e.,
~cðnÞ H:cmulð~cðnÞ;p?

I2m�1Þ:
Optimize I.Smul: Similar to the optimization method in

Section 4.3, we use GSum method to optimize our I.Smul,
i.e., for step-2-2, all ~c�0; . . . ;~c

�
m�1 and ~cðp?

yÞ can be added
together where p?

y stores 1 in slots 2m� 1 and m, and 0 in the
other slots, i.e., ~cðnÞ GSumð~c�0; . . . ;~c�m�1;~cðp?

yÞ : 2 	 mþ 1Þ:
Then, calculate ~cðnÞ H:cmulð~cðnÞ;p?

I2m�1Þ:

5.2.5 Secure Signed/Unsigned Integer SIMD Division

Circuit

Given unpacked ciphertexts ~cðaÞ and ~cðbÞ, the I.Sdiv

output unpacked ciphertexts ~cðqÞ and ~cðrÞ which store the
quotient and remainder results.

Step-1. Construct ciphertexts ~c�a and ~c�b for the two plain-
texts or their two’s complement, depending on their sign bits,
i.e., ~csa H:cmulð~cðaÞ; p?

m�1Þ; ~csb H:cmulð~cðbÞ; p?
m�1Þ;

~cða�Þ OTCð~cðaÞ;~csaÞ; ~cðb�Þ OTCð~cðbÞ;~csbÞ;
Step-2. Initialize ~cRQ ~cða�Þ, execute phase 1-3 below m

times.

1) Use block 0 of ~cRQ to store the intermediate result of q
and use block 1 to store r, rotate the plaintext slots of
~cRQ and unpack them into ~cðq�Þ and ~cðr�Þ, i.e., ~c1
H:rotateð~cRQ; 1Þ; ~cðq�Þ H:cmul ð~c1;p?

Im�1Þ; ~c2
H:rotateð~c1; ‘� mÞ; ~cðr�Þ H:cmulð~c2;p?

Im�1Þ:
2) Compare r� and b� under the encrypted domain. If

r�ten < b�ten, then set slot 0 of q� to 0 and compute
r0ten ¼ r�ten; otherwise, set slot 0 of q� to 1 and calculate
r0ten ¼ r�ten � b�ten, i.e., ~cq I:cmpð~cðr�Þ; ~cðb�ÞÞ; ~cw
H:addð~cp;~cðp?

0ÞÞ; ~cðq0Þ H:addð~cðq�Þ;~cwÞ; ~c3 Scpyð~cw;
m� 1Þ; ~cb H:mulð~cðb�Þ;~c3Þ; ~cðr0Þ I:Ssubð~cðr�Þ;~cbÞ:

3) If this is the mth round, send ~cðq0Þ and ~cðr0Þ to the
next step; otherwise, pack ~cðq0Þ and ~cðr0Þ together
and denote it as the new ~cRQ, i.e.,

~c4 H:rotateð~cðr0Þ;mÞ and ~cRQ H:addð~c4;~cðq0ÞÞ:
Step-3. Determine the sign of the remainder and quotient.

The sign of the remainder is the same as that of the divisor
a, while the sign of the quotient is the XOR of the signs of
divisor a and dividend b. i.e., ~cðrÞ OTCð~cðr0Þ;~csaÞ and
~cðqÞ OTCð~cðq0Þ; H:addð~csa;~csbÞÞ:

Moreover, if dividend bten ¼ 0, use ~cðfÞ to store the
exception information, ~cðfÞ I:equð~cðb;~cð0ÞÞ:

Construction of I.div: If both divisor a and dividend b are
unsigned integers, then unsigned version of I.Sdiv is much
simpler, which we denote it as I.div. The construction is as
follows.

(1) Let ~cða�Þ ~cðaÞ, and ~cðb�Þ ~cðbÞ. (2) Same as Step-2
in I.Sdiv. (3) Let ~cðqÞ ~cðq0Þ; ~cðrÞ ~cðr0Þ; and calculate
~cðfÞ I:equð~cðbÞ;~cð0ÞÞ:

5.3 Extension for Packed Signed Integer
Calculation

Adopting the two’s complement number system, we directly
use Ipack to pack the ciphertext. The input and output of all
the secure signed circuits have the same m. We pay special
attention to the setting ofm andm0. For example,�1 is stored as
ð111Þ with m ¼ 3. If we directly use Ipack to pack the cipher-
text with a new size m0 ¼ 4, the datum is changed to ð0111Þ. If
we then usem0 ¼ 4 to decrypt, then the result is 7which is erro-
neous. If instead we use m ¼ 3 to decrypt, then the plaintext is
still�1. Usually,m0 is larger thanm due to overflow and under-
flow problems (for a similar reason as that in the packed
unsigned Integer calculation, see Section 4.3). Extending the
secure signed integer computation circuit to its packed version
is same as in Section 4.3, i.e., change p?

j to h?
j;m0 , �p?

j to �h?
j;m0 ,

p?
Im�1 to h

?
Im�1;m0 , and the unpacked unsigned integer circuit to

its packed version. We denote the packed version of STC and
OTC as P.STC and P.OTC, respectively. Also, the packed ver-
sion of secure signed integer SIMD addition, comparison, mul-
tiplication, and division are denoted as PI.Sadd, PI.Scmp,
PI.Smul

2 and PI.Sdiv,3 respectively (see supplemental
material D, available online, for construction).

6 APPLICATION AND EXTENSION

In this section, we use the above secure computation circuits
to construct an application called secure k-Nearest Neigh-
bors (k-NN) classifier, and extend the secure integer circuits
to support multiple keys and achieve fix-point number stor-
age and calculation.

6.1 Secure k-Nearest Neighbors Classifier

The k-NN classifier [24] is one of the most important data
mining methods, and its application ranges from language
recognition [25] to computational geometry [26] to graphs
[27], and so on. k-NN classifier classifies an object by the
majority vote of its neighbors; in other words, an object is
assigned to the class that ismost common among its k nearest
neighbors (where k is a positive, typically small integer). For-
mally, a data set contains b instances fð~x0; y0; id0Þ; . . . ;
ð~xb�1; yb�1; idb�1Þg, where ~xi is an input sample with x fea-
tures ðxi;x�1; . . . ; xi;0Þ, yi 2 fc1; c2g is the class label of~xi, and
idi is the identity label of instance i. Given input data
~xp ðxp;x�1; . . . ; xp;0Þ, the goal of k-NN classifier is to deter-
mine the class label of~xp. The classifier proceeds as follows.
I. Calculate the distance between each instance ~xi from ~xp,
denoting it by ai. II. Find the k smallest distances and the cor-
responding instances, denoting them as ð~x00; y00; id00Þ; . . . ;
ð~x0k�1; y0k�1; id0k�1Þ. III. Set the class label of ~xp according to
those k instances. If the majority of y0i ði ¼ 0 to k� 1Þ belong
to class c1, let yp c1; otherwise, yp c2. For secure data
storage, all data are stored in encrypted form, i.e., xi;j is
stored as unpacked ciphertext ~cðxi;jÞ, idi as ~cðIiÞ and yi as
~cðyiÞ. When ~cðxp;x�1Þ; . . . ;~cðxp;0Þ are given, the secure k-NN

2. In addition to changing p?
i to h?

i;m0 , I.add in step 2 should be
changed to PI.add. Moreover, p?

x should be changed to h?
x that stores

1 from slots m� 1þ m� þ km0 to 2m� 3þ m� þ km0, and p?
y is changed

to h?
y so that stores 1 in slots 2m� 1þ m� þ km0 and mþ m� þ km0, 0 in

the other slots, where k ¼ 0 to b‘=m0c.
3. The new packed block size requires m0 � 3m. Also, all the secure

circuits in PI.Sdiv should be changed to their packed versions.

904 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 5, SEPTEMBER/OCTOBER 2020

classifier derives the class label of~xp in a privacy-preserving
manner as follows:

Step-1. Calculate the Manhattan distance between xi and
xp, i.e., ai ¼

Px�1
j¼0 jxi;j � xp;jj.

1) The goal is to calculate hi;j ¼ jxi;j � xp;jj. As the
ciphertext may not fit within a single packed cipher-
text, for i ¼ 0; . . .b� 1; t1 ¼ 0; . . . ; bx=a1c, calculate

~ci;t1 Ipackð~cðxi;a1t1þa1�1Þ; . . . ;~cðxi;a1t1Þ : m1Þ;
~c0i;ti PI:Ssubð~ci;ti ;~ci;pÞ;

~c�i;ti H:cmulð~c0i;ti ; h?
m�1;m1

Þ; ~c00i;ti P:OTCð~c0i;ti ;~c�i;tiÞ;
ð~cðhi;i;a1t1þa1�1Þ; . . . ;~cðhi;a1t1ÞÞ IUpackð~c00i;ti ;m1Þ;

where m1 � mþ 1 and a1 ¼ b‘=m1c. After this step,
CP obtains ~cðhi;x�1Þ; . . . ;~cðhi;0Þ, where hi;j resides in
block 0 of ~cðhi;jÞ.

2) For each instance i, sum hi;j to get ai ¼
Px�1

j¼0 hi;j. We
use Ipack to pack different instances i with the
same specific feature j before performing the addi-
tion, i.e, for t2 ¼ 0; . . . ; bb=a2c and j ¼ 0; . . . ;x� 1,
pack and generate ~cðzt2;jÞ as

~cðzt2;jÞ Ipackð~cðha2t2þa2�1;jÞ; . . . ;~cðha2t2;jÞ : m2Þ;
where m2 � mþ x and a2 ¼ b‘=m2c. After packing,
initialize ~cðvt2Þ ¼ ~cðzt2;0Þ: Then, for j ¼ 1 to x� 1, cal-
culate ~cðvt2Þ PI:addð~cðvt2Þ;~cðzt2;jÞ;m2Þ:

3) Finally, unpack all ciphertexts for t2 ¼ 0; . . . ; bb=a2c,
execute

ð~cðaa2t2þa2�1Þ; . . . ;~cðaa2t2ÞÞ IUpackð~cðvt2Þ;m2Þ:
At the end of Step-1, we obtain ~cðab�1Þ; . . . ;~cða0Þ which

stores ab�1; . . . ; a0 in block 0 with block size m2 of each
ciphertext, respectively.

Step-2. Find the smallest k Manhattan distances among
ab�1; . . . ; a0, execute for k times ðt3 ¼ 0; . . . ; k� 1Þ. (1) Use
GMin to find the encrypted minimum Manhattan distance
value and its corresponding identity ~cðnÞ and ~cðIÞ in
~cðab�1Þ; . . . ;~cða0Þ; specifically, calculate ð~cðnÞ;~cðIÞÞ
GMinðð~cðab�1Þ;~cðIb�1ÞÞ; . . . ; ð~cða0Þ;~cðI0ÞÞ : m3Þ; where m3 �
2dlog2m2e and a3 ¼ b‘=m3c. (2) Use identity I to test all b iden-
tities to determine whether I is equal to Ii ði ¼ 0; . . . ;b� 1Þ.
If I ¼ Ii, then set ai to the system maximum value. Other-
wise, the value of ai remains unchanged. For i ¼ 0; . . . ;
bb=ð2a3Þc, calculate ~cða0Þ Ipack ð~cðaa3iþa3�1Þ; . . . ;~cðaa3iÞ :
m3Þ; ~cðwÞ Ipack ð~cðIa3iþa3�1Þ; . . . ;~cðIa3iÞ : m3Þ; ~cðw0Þ
Ipackð~cðIÞ; . . . ;~cðIÞ : m3Þ:

Then, PI.equ is used to compare the relationship
between w and w0. If the value stored in block j of w equals
to the value in the corresponding block of w0, set each slot
of this block in ~cða0Þ to 1. Otherwise, the value stored in this
block remains unchanged.

~cðpÞ PI:equð~cðwÞ;~cðw0ÞÞ;
~cðp0Þ H:addð~cðpÞ;~cðh?

0;m3
ÞÞ; ~cðp1Þ Scpyð~cðpÞ;m3 � 1Þ;

~cðp2Þ Scpyð~cðp0Þ;m3 � 1Þ; ~c1 H:mulð~cðp2Þ;~cða0ÞÞ;
~c2 H:mulð~cðp1Þ;~coneÞ;4 ~cðn0Þ H:addð~c1;~c2Þ;

ð~cða0a3iþa3�1Þ; . . . ;~cða0a3iÞÞ IUpackð~cðn0Þ;m3Þ:

Moreover, judge the class label of Ii, i.e., letting b0i ¼ 1, if
I ¼ Ii then ðyiÞten ¼ c1; otherwise, let ðyiÞten ¼ 0

~cpy Ipackð~cðya3iþa3�1Þ; . . . ;~cðyaiÞ : m3Þ;
~c3 PI:equð~cpy;~cðy�ÞÞ; ~c00i H:mulð~cðpÞ;~c3Þ;

ð~cðb0a3kþa3�1;jÞ; . . . ;~cðb
0
a3k;j
ÞÞ IUpackð~c00i ;m3Þ;

where ~cðy�Þ stores integer c1 in each block. After the calcula-
tion, the algorithm obtains ~cða0bÞ; . . . ; ~cða00Þ and ~cðb0bÞ; . . . ;
~cðb00Þ.

(3) Refresh the value of ab�1; . . . ; a0 by replacing
~cðab�1Þ; . . . ;~cða0Þ with ~cða0b�1Þ; . . . ; ~cða00Þ. Also, add
b0b; . . . ;b

0
0 to a single element b0t3 because only the element

which I ¼ Ii stores information and all the other elements
store 0. To perform the calculation, initialize ~cðbt3Þ ~cðb00Þ.
Then, for j ¼ 1; . . . ;b� 1, calculate ~cðbt3Þ I:addð~cðbt3 ;b

0
jÞ.

Step-3. After obtaining ~cðbk�1Þ; . . . ;~cðb0Þ, determine
whether

Pk�1
i¼0 ðbiÞten � dk=2e. If

Pk�1
i¼0 ðbiÞten � dk=2e, set the

class label of xp to c1; otherwise, the class label is c2. (1) Add
b0; . . . ;bk�1 with GSum and achieve secure comparison
with I.cmp, i.e., ~cl GSumð~cðbk�1Þ; . . . ;~cðb0Þ : m4Þ;~cðsÞ
I:cmpð~cl; ~cðBÞÞ; ~cðs0Þ H:addð~cðsÞ;~cðp�0ÞÞ:

(2) We need to pad the comparison result s and s0 from
slot 0 to all the slot in block 0, and use H:add and H:mul
to select c1 and c2 as follows: ~cðo1Þ Scpyð~cðs0Þ;m� 1Þ;
~cðo2Þ Scpyð~cðsÞ;m� 1Þ; ~cðy1Þ H:mulð~cðo1Þ;~cðk1ÞÞ; ~cðy2Þ
H:mulð~cðo2Þ;~cðk2ÞÞ; and ~cðypÞ H:addð~cðy1Þ;~cðy2ÞÞ; where
~cðk1Þ stores c1 in block 0 and ~cðk2Þ stores c2, ~cðBÞ stores inte-
ger dk=2e in block 0, and m4 � mþ k.

6.2 Secure Computation with Multiple Keys

All the secure circuits above can only be computed under
the same key. If calculation across different domains is
needed, Pockit cannot be applied directly. A straightfor-
ward solution is to use a multiple-key fully homomorphic
encryption (MK-FHE) scheme to construct the circuits.
However, existing MK-FHE schemes under the standard
assumption [28] is still inefficient in terms of storage
requirement and computational overhead. Another solution
is to use KeySwitch—the transformation key is used to
map encrypted domain of one user to that of another user,
as in ~chpkji KeySwitchð~chpkii;Wski!skjÞ. That transforms
user i’s ciphertext ~chpkii to user j’s ~chpkji. In general, all the
data can be transformed to the same public key domain,
before applying Pockit for the computation. As the trans-
formation key is the public key, KeySwitch can be stored
and performed in CP without compromising the privacy of
the DUs (see the efficiency of KeySwitch in Section 7.3).

6.3 Extension for Fix-Point Number Storage and
Calculation

The above secure integer storage and calculation proce-
dures can be easily extended to fix-point numbers. Indeed,
integers can be considered a special case of fix-point num-
ber with the decimal point behind the least significant bit.
(see supplemental material Section E, available online, for
the construction).4. ~cone; is the ciphertext which stores 1 in all the slots.

LIU ET AL.: PRIVACY-PRESERVING OUTSOURCED CALCULATION TOOLKIT IN THE CLOUD 905

7 SECURITY & PERFORMANCE ANALYSIS

In this section, we prove the security of the circuits in Pockit
based on the security model defined in Section 3.2,5 analyze
Pockit, and demonstrate its efficiency.

7.1 Security Analysis

Theorem 1. The BGV scheme used in our paper is secure,
assuming the semantic security of the underlying ring learning
with errors (RLWE) hard problem.

Proof. The security and hardness of the RLWE problem and
security of the BGV scheme can be found in [19]. tu

Theorem 2. The secure unsigned/signed integer SIMD calcula-
tion circuits constructed in our paper securely computes integer
calculation of plaintext over ciphertext in the presence of semi-
honest adversaries A in Section 3.2.

Proof. All calculations are performed on ciphertexts. With-
out the private key of the challenger DU, it is impossible
for an adversary to decrypt the ciphertexts to obtain the
plaintexts due to the semantic security of the BGV scheme
(see Theorem 1). tu

7.2 Analysis of Pockit

Why FHE scheme? Partial homomorphic encryption (PHE)
can be used to achieve efficient secure integer computations
on encrypted data, however, multiple (at least two) non-col-
luding servers are still required with executing some secure
interactive protocols, and it hampers the large-scale applica-
tion in the cloud. All the FHE based secure integer computa-
tion circuits can be performed on a single cloud server
which reduces the risk of data leakage.

Why RLWE-based BGV scheme? The RLWE-based BGV is
appropriate for designing our Pockit in two aspects: 1) Stor-
age consideration. The RLWE-based BGV can store fðmÞ
bits per ciphertext,6 while the learning with errors (LWE)
based BGV scheme can only store one bit. 2) SIMD calcula-
tion. The operations in RLWE ciphertext can be carried out
on all the slots concurrently, which accelerates the computa-
tion by up to ‘ ¼ fðmÞ=d times.

Why Bootstrapping? The RLWE-based BGV used in our
system is a levelled homomorphic encryption scheme (which
reduces noise by moving ciphertext from an upper level to a
lower level). In order to support large circuits without boot-
strapping, a very largeL is requiredwhichmakes the system
inefficient and impractical. In other words, we would need a
largerm and large ciphertext modular qL�1, which results in
significant ciphertext storage overhead because of Double-
CRT representation (see the definition in [31]). Themodulus-
key-switching and bootstrapping techniques make Pockit
more practical as we no longer require significant storage to
store the ciphertexts, or significant RAM to load the cipher-
texts during the computation.

Why use message space Z2? As binary circuits are time-con-
suming, Naehrig et al. [32] and Cheon et al. [16] provided a
method to reduce the integer addition and multiplication
computation overheads, using message space Zt. The idea
is straightforward: break each message a into (at most m)
bits a ¼ ðam�1; . . . ; a0Þ 2 Z

m�1
2 , code the message as a?ðXÞ ¼P

j ajX
j 2 At, and sum k of them to obtain a?

addðXÞ ¼Pk
i¼1 a?

iðXÞ. As long as t > k, this does not wrap around

modulo t and upon decryption, and the final result is
obtained by calculating a?

addð2Þ. For multiplication, if we
encode a as polynomials of degree at most fðmÞ=d0, then the
final result a?

mulðXÞ ¼
Qd0

i¼1 a?
iðXÞ do not wrap around

modulo FmðXÞ if it undergoes less than d0 multiplication
operations, and the final result is a?

mulð2Þ. However, we still
adopt message space Z2 due to the following reasons:

- m and t cannot be too large. Large m and t values
greatly affect the storage cost and computation over-
head, especially for bootstrapping (see [33] for a
detailed comparison).

- Inability to perform mixed operations. The Zt

method allows either integer additions or integer
multiplications; it cannot support mixed operations
(e.g., it does not permit integer addition after integer
multiplications, since wraping around modulo will
result in errors in the final result).

- Difficulty in designing integer arithmetic circuits.
Designing integer arithmetic circuits are much more
complicated than binary circuits.

7.3 Experiment Analysis

We evaluated the performance of our proposed secure cir-
cuits on a virtual machine (3.6 GHz single-core processor
and 4 GB DDR3-1600 RAM memory). Due to the use of
HElib [31], all programs are single-threaded safe with built
in C++. To test the efficiency of our Pockit, Three types of
metrics are considered, runtime, communication cost, and secu-
rity level. The runtime refers to the outsourced secure circuits
executing duration in our testbed (with the unit in second (s)
or millisecond (ms)). As the data are outsourced before
computation, communication cost (with the unit in MegaByte
(MB)) refers to the total size of data (including encrypted
data outsourced and retrieved) transmitted between DU
and CP during one-time executing secure computation for
secure circuits. Moreover, the security level is an indication
of the security strength of a cryptographic primitive.

7.3.1 The Helib Parameter Initial

To select an appropriateFðmÞ, the security level � should be
used, and in our context, FðmÞ � log 2ðQ=sÞð�þ110Þ

7:2 with RLWE
instance with modulus Q and noise s [20]. Next, the modu-
lar chain are generated with pi which p0 is half the bit-size
of the other pi’s. Thus, the odd indexed moduli in the chain
are a product of the primes starting at p0 (qi ¼

Qbi=2c
j¼0 pj) and

the even indexed moduli are products that do not include
p0 (qi ¼

Qi=2
j¼1 pj). For example, the length of q0 has 23-25

bits, and the length of full-sized primes have 46-50 bits
when � ¼ 76: The element in Aqt uses (Double-CRT) repre-
sentation, and the length of one ciphertext will not exceed
ðkq0k þ 	 	 	 þ kqtkÞ � fðmÞ (t� fðmÞ matrix), where kq0k

5. The privacy model described in Section 6.2 can be employed to
protect the content of the data (including the input data and final out-
put). However, this model is unable to capture information leakage
due to data access pattern. The latter can be solved using oblivious
RAM, which is beyond the scope of this paper. We refer interested
reader to [29], [30] for the construction.

6. To support integer calculation, we only use ‘ bits for storage.

906 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 5, SEPTEMBER/OCTOBER 2020

denotes the bit-length of q0. Thus, the level-t ciphertext
needs two elements in Aqt , which requires 2� ðkq0k þ 	 	 	 þ
kqtkÞ � fðmÞ:

7.3.2 Performance of Basic Operations

With the above parameters, we choose three security levels
(� ¼ 76; 123; 145) to test the basic operations. For integer
and ring element transformation (for � ¼ 76=123=145), it
takes 0.857/1.19/2.49 ms to encode an 16-bit unsigned inte-
ger into an A2 element, while it takes 89.12/118.41/480.61
ms to encode a 16-bit signed integer into an A2 element.
Also, it takes 1.15/1.45/2.76 ms to decode an A2 element
into a 16-bit unsigned integer, and 89.61/119.36/481.92 ms
to decode an A2 element into a 16-bit signed integer. More-
over, it cost 0.1/0.12/0.39 ms for H.add, 22.704/50.383/
218.959 s for Ipack, and 28.467/58.893/255.836 s for
IUpack (with block size is 32-bit). For other parameters and
homomorphic operations, we list the performance of basic
operations in Table 1. Note that multiple generators are
used to construct the hypercube structure to perform the H.
rotate in Helib.

7.3.3 Performance of Secure Unsigned Integer Circuit

Here, we compared our circuit with the existing circuits
(I.add, I.cmp, and I.equ) in [16], and use second per inte-
ger (short for s=i) to measure performance. For illustration,
we choose security level � ¼ 76 and let plaintext size m ¼ 8
and Ipack parameter m0 ¼ 16. Note that the running time
of the packed unsigned integer circuit includes the running
time of Ipack and IUpack. For evaluate the efficiency of
the basic unsigned computation circuits and their packed
version, we use our testbed to test the runtime and commu-
nication cost of the circuits for both single key setting and
multiple keys settings in Table 3. Moreover, we evaluate
two factors (bit-length and the number of input) which
affects the performance of secure circuits. Also, the bit-
length affects the performance of the circuits. From Figs. 4a,
4b, and 4c, we observe that the runtime of the circuits
with single key and multiple keys setting increase with the
plaintext bit-length, and packed secure unsigned integer
circuits are much more efficient than their unpacked coun-
terparts. The runtime of our packed circuit only needs
tpv ¼ 1=a0tup þ ða0 � 1Þð2trt þ tadÞ þ a0tcml for single key

TABLE 2
Performance of the Basic Operations

Security jFðmÞj Slots d Enc Dec KS MS H.mul H.cmul H.rotate Bootstrap CL (B/A)

76 16,384 1,024 16 0.135 0.051 0.199 0.129 0.381 0.012 0.426/0.517 196.36 22/10
123 23,040 960 24 0.147 0.064 0.235 0.153 0.448 0.013 0.625/0.957 247.81 24/11
145 46,080 1,920 24 0.304 0.128 0.480 0.315 0.918 0.028 1.29/1.95 672.12 40/25

– In the table, the unit of runtime is seconds, KS represents KeySwitch, MS represents ModSwitch, H.rotate has two values (kmod d ¼ 0/kmod d 6¼ 0),
where k is the rotated number. CL (B/A) represents the ciphertext level (before/after bootstrapping)

Fig. 4. Evaluations.

TABLE 3
Performance of the Secure Unsigned Integer Circuits (m ¼ 6, m0 ¼ 16)

Circuits Runtime for Single Key (s/i) Runtime for Multiple Keys (s/i)

Unpacked Packed Improvement Unpacked Packed Improvement

I.add 36.02 2.40 15X 37.00 2.41 15.4X
I.cmp 12.26 2.03 6.0X 13.24 2.04 6.5X
I.equ 6.37 1.94 3.3X 7.35 1.95 3.8X
I.mul 2883 46.88 61.5X 2,883.98 46.90 61.5X
OptimizedI.mul 1,775.37 29.58 60X 1,776.35 29.6 60X
I.div 8,563.01 135.63 63.1X 8564 135.65 63.1X

LIU ET AL.: PRIVACY-PRESERVING OUTSOURCED CALCULATION TOOLKIT IN THE CLOUD 907

setting and tpv ¼ 1=a0tup þ ða0 � 1Þð2trt þ tadÞ þ a0tcml þ
3tMS þ 3tKS for multiple keys setting, where tup is runtime
of its corresponding unpack circuit and a0 ¼ b‘=m0c:7
Note our packed version can be accelerated if and only if

tup � a0ð2trt þ tadÞþ ða0Þ2
a0�1 tcml. Moreover, the communication

cost of our packed circuits (i.e., sending two packed cipher-
texts to CP to obtain the encrypted result costs 6.509 MB) is
a0 times smaller than the unpacked version for all the secure
unsigned circuits of both single/multiple-key setting.
Besides plaintext bit-length, GSum is also affected by the
number of inputs. From Figs. 4a, 4b, and 4c, we observe that
the running time of GSum/GMin increases with the number
of inputs for both single and multiple key settings, and
GSum/GSum is more efficient than using the corresponding
I.add/I.cmp in [16] under the same m, as our packing
technique are adopted (see Table 4).

7.3.4 Performance of Secure Signed Integer Circuit

Similar to the experiments for unsigned integer circuits, we
set the plaintext size m ¼ 8 and security level � ¼ 76. The
difference is to choose the Ipack parameter m0 ¼ 17 to
avoid block overflow/underflow when preforming I.Smul

(see the discussion in Section 5.3). Before testing signed

integer circuits, we first evaluated the performance of both
single-key and multiple-key setting for STC, OTC, I.Sadd,
I.Smul and I.Sdiv and its packed version, and list the
results in Table 5. Also, we observe that the running time of
all the above secure signed integer circuits (single key set-
ting from Figs. 4a, 4b, and 4c, and multiple-key setting from
Figs. 4a, 4b, and 4c,) increase with the plaintext bit-length,
and our packed signed integer circuits are much more
efficient than their corresponding unpacked counterparts.
Similar to the unpacked secure circuits, the communication
cost of our packed circuits are a0 times smaller than the
unpacked version for all the secure signed circuits of both
single/multiple key setting. The computation complexity of
the unpacked/packed secure signed circuits are the same to
the analysis in Section 7.3.3.

7.3.5 Performance of Secure k-NN Classifier

There are four factors that affect the performance of the
secure k-NN classifier, namely: plaintext bit length m, num-
ber of instances b, number of features x and parameter k. In
Figs. 4d and 4e, we observe that the running time of the
secure k-NN classifier increases with m;b;x; k, but only
slightly with a. This is because only fixed levels (only 10 lev-
els for � ¼ 76) are left after bootstrapping, and more boot-
strappings are required when m and k are large, which has a
more pronounced impact by k. Fortunately, k cannot be too
large in practice (see the discussion in Section 6).

TABLE 5
Performance of the Secure Signed Integer Circuits (m ¼ 6, m0 ¼ 16)

Circuits Runtime of Single Key (s/i) Runtime of Multiple Keys (s/i)

Unpacked Packed Improvement Unpacked Packed Improvement

STC 37.15 2.41 15.4X 38.13 2.43 15.7X
OTC 49.67 2.61 19.0X 50.65 2.63 19.3X
I.Sadd 37.3 2.42 15.4X 38.28 2.43 15.8X
I.Scmp 15.37 2.08 7.4X 16.35 2.09 7.8X
I.Smul 3,227.72 52.27 61.8X 3,328.7 53.85 61.8X
OptimizedI.Smul 2,179.09 35.88 60.7X 2,180.1 35.9 60.7X
I.Sdiv 9,396.91 148.66 63.2X 9,397.9 148.68 63.2X

TABLE 6
Comparative Summary

Function/Algorithm [18] [13] [15] [14] [32] [16] Proposed

No additional server � � � � @ @ @
Multiple Keys @ � � @ � � @
Communication round (between servers) Multiple Multiple Multiple Multiple 0 0 0
Communication round (user & server) Multiple One One One One One One
Solve Overflow Problem � � @ � � � @
Numbers of integer Calculation Arbitrary Arbitrary Arbitrary Arbitrary Limit Limit Arbitrary
Crypto Homomorphic Type Additive Additive Additive Additive Somewhat Somewhat Fully
Process Signed Integer @ @ @ @ � � @
Semi-honest Model @ @ @ @ @ @ @

TABLE 4
Performance of Improved Secure Circuits (m ¼ 6, m0 ¼ 16)

Runtime of Single Key (s/i) Runtime of Multiple Keys (s/i)
I.add GSum Improve I.add GSum Improve

4,499.5 1,351.2 3.3X 4,500.5 1,352.2 3.3X

7. The trt; tad; tml; tcml; tMS; tKS denote the runtime of H.rotate, H.
add, H.mul, H.cmul, ModSwitch, KeySwitch in BGV, respectively.
(see Table 1 for efficiency).

908 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 5, SEPTEMBER/OCTOBER 2020

7.4 Comparative Analysis

Here, we compare related schemes reported in [13], [14], [15],
[16], [17], [18]. In [18], Liu et al. used a secure computation
protocol to construct a Na€ıve Bayesian classifier. The system
requires a data user to communicate with the cloud server
over multiple rounds. Different from [18], Peter et al. [13]
introduced an additional server to hold a strong private key
in order to decrypt the ciphertexts in the system and execute
the secure computation protocols, in order to avoid multiple
rounds of communication between the user and the cloud.
However, any leakage or (insider) abuse would compromise
the system. To mitigate this limitation, Liu et al. [15] pro-
posed a framework for outsourced integer calculation. The
authors provided calculation toolkits for multiple keys set-
ting [14], which separate strong trapdoor into two shares to
reduce key leaking risk. Although these frameworks are effi-
cient, two non-colluding servers are still required which lim-
its the applicability of the frameworks in practice. In order to
avoid needing an additional server during computation,
Naehrig et al. [32] used the somewhat homomorphic encryp-
tion scheme [34] to perform unsigned integer calculation on
encrypted data. More recently, Cheon et al. [16] used the
somewhat homomorphic encryption scheme to perform
search and computation over encrypted unsigned integer
data. However, the computation circuit in these two schemes
cannot be too large (i.e., they only support a limited number
of calculations) and the schemes work only some simple cir-
cuits (unsigned integer addition, comparison, and equality
circuits) in the single key setting. A comparative summary
among these schemes is shown in Table 6.

8 RELATED WORK

Partial homomorphic encryption (PHE) (including additive
[35] and multiplicative [36]) is often considered viable solu-
tions to address privacy computation challenges (see Table 6).
However, an additional server is generally required to assist
the computation server to execute the underlying secure
protocols. Somewhat homomorphic encryption (SWHE) [34]
can support both addition and multiplication at the same
time. Unfortunately, only finite steps of homomorphic opera-
tions can be executed which limits its application. Fully
homomorphic encryption (FHE) allows the cloud server to
manipulate over ciphertexts to effect operations on the corre-
sponding plaintexts, and is widely considered to be the ulti-
mate solution for secure computation. The first generation of
FHEwas proposed by Gentry [37], who constructed a SWHE
scheme and made it bootstrappable, i.e., capable of evaluat-
ing its own decryption circuit and then at least one more
operation. Although several optimizations and refinements
were proposed [38], [39], these schemes were impractical as
the ciphertext size and computation time significantly with
the security level.

Brakerski and Vaikuntanathan [40] proposed a scheme
based on the hardness of the Learning with errors (LWE)
problem. In a separate work, Brakerski et al. [19] built a new
efficient tool to reduce ciphertext noise. Gentry et al. [41]
also presented the approximate eigenvector method,
designed to make homomorphic addition and multiplica-
tion more efficient. Smart and Vercauteren [22] outlined a
technique to enable packing of many plaintext values in a

single ciphertext and operate on all the plaintext values in a
SIMD fashion. Halevi and Shoup [31] built the HElib library
to implement the BGV cryptosystem and bootstropping
method [33]. Gentry et al. [20] implemented the AES-
encryption circuit under HElib. Although a number of FHE
schemes have been proposed in the literature, all homomor-
phic operations are build over the ring and cannot be
directly deployed in a real-world environment, such as con-
structing efficient integer operations. That is the gap that
this paper tries to bridge.

9 CONCLUSION AND DISCUSSION

In this paper, we proposed Pockit, a novel privacy-preserv-
ing outsourced calculation toolkit for cloud computing envi-
ronment. Pockit is designed to achieve secure outsourced
computation. We proposed a new methodology for secure
outsourced unsigned/signed integer number calculation
over packed ciphertext in the SIMD fashion. We then dem-
onstrated the security and practicality of our proposed solu-
tions. There are a number of extensions for this work,

1) How to design a more efficient FHE scheme? The
FHE scheme that we use in Pockit is not as efficient as
the framework using partial homomorphic encryp-
tion, particularly during ciphertext noise reduction
such as bootstrapping which negatively impacts the
performance of the overall system.

2) How to design secure circuits to perform calcula-
tions on large integers? The running time of the cir-
cuits in Pockit grows significantly as the plaintext
size increases; thus, it is highly desirable to propose
new techniques for constructing secure circuits that
supports efficient large integer calculations.

ACKNOWLEDGMENTS

The authors thank the associate editor and reviewers for
their constructive and generous feedback. This research is
supported in part by the AXA Research Fund, National Nat-
ural Science Foundation of China under No. 61702105 and
No. 61402112.

REFERENCES

[1] Cisco, “Cisco global cloud index: Forecast and methodology,
2014–2019 white paper,” (2018, Feb.). [Online]. Available: http://
www.cisco.com/c/en/us/solutions/collateral/service-provider/
global-cloud-index-gci/Cloud_Index_White_Paper.html

[2] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and
J. Heidemann, “An evaluation of multi-resolution storage for
sensor networks,” in Proc. 1st Int. Conf. Embedded Netw. Sensor
Syst., 2003, pp. 89–102.

[3] V. Kundra, “Federal cloud computing strategy.” (2011). [Online].
Available: http://www.whitehouse.gov/sites/default/files/
omb/assets/egov_docs/federal-cloud-computing-strategy.pdf

[4] G. Linden, B. Smith, and J. York, “Amazon.com recommenda-
tions: Item-to-item collaborative filtering,” IEEE Internet Comput.,
vol. 7, no. 1, pp. 76–80, Jan./Feb. 2003.

[5] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[6] J. Schmidhuber, “Deep learning in neural networks: An over-
view,”Neural Netw., vol. 61, pp. 85–117, 2015.

[7] A.A. Cruz-Roa, J. E. A.Ovalle, A.Madabhushi, and F. A. G.Osorio,
“A deep learning architecture for image representation, visual
interpretability and automated basal-cell carcinoma cancer
detection,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assisted
Intervention, 2013, pp. 403–410.

LIU ET AL.: PRIVACY-PRESERVING OUTSOURCED CALCULATION TOOLKIT IN THE CLOUD 909

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
http://www.whitehouse.gov/sites/default/files/omb/assets/egov_docs/federal-cloud-computing-strategy.pdf
http://www.whitehouse.gov/sites/default/files/omb/assets/egov_docs/federal-cloud-computing-strategy.pdf

[8] R. Agrawal and R. Srikant, “Privacy-preserving data mining,”
ACM SIGMOD Rec., vol. 29, no. 2, pp. 439–450, 2000.

[9] X.Wu, X. Zhu,G.-Q.Wu, andW.Ding, “Dataminingwith big data,”
IEEETrans. Knowl. Data Eng., vol. 26, no. 1, pp. 97–107, Jan. 2014.

[10] D. He, N. Kumar, H. Wang, L. Wang, K. R. Choo, and A. Vinel,
“A provably-secure cross-domain handshake scheme with symp-
toms-matching for mobile healthcare social network,” IEEE Trans.
Depend. Secure Comput., 2016, doi: 10.1109/TDSC.2016.2596286.

[11] Q. Alam, S. U. R. Malik, A. Akhunzada, K. R. Choo, S. Tabbasum,
and M. Alam, “A cross tenant access control (CTAC) model for
cloud computing: Formal specification and verification,” IEEE
Trans. Inf. Forensics Secur., vol. 12, no. 6, pp. 1259–1268, Jun. 2017.

[12] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proc.
Int. Conf. Financial Cryptography Data Secur., 2010, pp. 136–149.

[13] A. Peter, E. Tews, and S. Katzenbeisser, “Efficiently outsourcing
multiparty computation under multiple keys,” IEEE Trans. Inf.
Forensics Secur., vol. 8, no. 12, pp. 2046–2058, Dec. 2013.

[14] X. Liu, R. H. Deng, K. R. Choo, and J. Weng, “An efficient privacy-
preserving outsourced calculation toolkit with multiple keys,”
IEEE Trans. Inf. Forensics Secur., vol. 11, no. 11, pp. 2401–2414,
Nov. 2016.

[15] X. Liu, K. R. Choo, R. H. Deng, R. Lu, and J. Weng, “Efficient and
privacy-preserving outsourced calculation of rational numbers,”
IEEE Trans. Depend. Secure Comput., vol. 15, no. 1, pp. 27–39, Jan./
Feb. 2016.

[16] J. H. Cheon, M. Kim, and M. Kim, “Optimized search-and-
jcompute circuits and their application to query evaluation on
encrypted data,” IEEE Trans. Inf. Forensics Secur., vol. 11, no. 1,
pp. 188–199, Jan. 2016.

[17] Y. Rahulamathavan, S. Veluru, R. C.-W. Phan, J. A. Chambers, and
M. Rajarajan, “Privacy-preserving clinical decision support sys-
tem using Gaussian kernel-based classification,” IEEE J. Biomed.
Health Informat., vol. 18, no. 1, pp. 56–66, Jan. 2014.

[18] X. Liu, R. Lu, J. Ma, L. Chen, and B. Qin, “Privacy-preserving
patient-centric clinical decision support system on naive Bayesian
classification,” IEEE J. Biomed. Health Informat., vol. 20, no. 2,
pp. 655–668, Mar. 2016.

[19] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully
homomorphic encryption without bootstrapping,” in Proc. 3rd
Innovations Theoretical Comput. Sci. Conf., 2012, pp. 309–325.

[20] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation
of the AES circuit,” in Proc. Annu. Cryptology Conf. Advances
Cryptology, 2012, pp. 850–867.

[21] C. Gentry, S. Halevi, and N. P. Smart, “Better bootstrapping in
fully homomorphic encryption,” in Proc. Int. Workshop Public Key
Cryptography, 2012, pp. 1–16.

[22] N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD oper-
ations,” Des. Codes Cryptography, vol. 71, no. 1, pp. 57–81, 2014.

[23] C. Gentry, S. Halevi, and N. P. Smart, “Fully homomorphic
encryption with polylog overhead,” in Proc. Annu. Int. Conf. The-
ory Appl. Cryptographic Techn., 2012, pp. 465–482.

[24] T. Denoeux, “A k-nearest neighbor classification rule based on
Dempster-Shafer theory,” IEEE Trans. Syst. Man Cybern., vol. 25,
no. 5, pp. 804–813, May 1995.

[25] M. Mohandes, M. Deriche, and J. Liu, “Image-based and sensor-
based approaches to arabic sign language recognition,” IEEE
Trans. Human-Mach. Syst., vol. 44, no. 4, pp. 551–557, Aug. 2014.

[26] P. B. Callahan and S. R. Kosaraju, “A decomposition of multidi-
mensional point sets with applications to k-nearest-neighbors and
n-body potential fields,” J. ACM, vol. 42, no. 1, pp. 67–90, 1995.

[27] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, “k-nearest
neighbors in uncertain graphs,” Proc. VLDB Endowment, vol. 3,
no. 1/2, pp. 997–1008, 2010.

[28] M. Clear and C. McGoldrick, “Multi-identity and multi-key lev-
eled FHE from learning with errors,” in Proc. Annu. Cryptology
Conf., 2015, pp. 630–656.

[29] B. Pinkas and T. Reinman, “Oblivious RAM revisited,” in Proc.
Annu. Cryptology Conf., 2010, pp. 502–519.

[30] M. T. Goodrich and M. Mitzenmacher, “Privacy-preserving access
of outsourced data via oblivious RAM simulation,” in Proc. 38th
Int. Conf. Automata Languages Programm., 2011, pp. 576–587.

[31] S. Halevi and V. Shoup, “HElib-an implementation of homomor-
phic encryption,” 2014. [Online]. Available: https://github.com/
shaih/HElib

[32] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomor-
phic encryption be practical?” in Proc. 3rd ACM Workshop Cloud
Comput. Secur. Workshop, 2011, pp. 113–124.

[33] S. Halevi and V. Shoup, “Bootstrapping for HElib,” in Proc. Annu.
Int. Conf. Theory Appl. Cryptographic Techn., 2015, pp. 641–670.

[34] J. Loftus, A. May, N. P. Smart, and F. Vercauteren, “On CCA-
secure somewhat homomorphic encryption,” in Proc. Int. Work-
shop Sel. Areas Cryptography, 2011, pp. 55–72.

[35] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Proc. Int. Conf. Theory Appl. Cryptographic
Techn., 1999, pp. 223–238.

[36] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” in Proc. Workshop Theory Appl.
Cryptographic Techn., 1984, pp. 10–18.

[37] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dis-
sertation, Dept. Comput. Sci., Stanford Univ., Stanford, CA, USA,
2009.

[38] D. Stehl�e and R. Steinfeld, “Faster fully homomorphic
encryption,” in Proc. Int. Conf. Theory Appl. Cryptology Inf. Secur.,
2010, pp. 377–394.

[39] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption
with relatively small key and ciphertext sizes,” in Proc. Int. Work-
shop Public Key Cryptography, 2010, pp. 420–443.

[40] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomor-
phic encryption from (standard) LWE,” SIAM J. Comput., vol. 43,
no. 2, pp. 831–871, 2014.

[41] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-
faster, attribute-based,” in Proc. Advances Cryptology–CRYPTO,
2013, pp. 75–92.

[42] J. Gallian, Contemporary Abstract Algebra. Boston, MA, USA:
Cengage Learning, 2016.

[43] I. D. V. Pastro, N. Smart, S. Zakarias, et al., “Multiparty computa-
tion from somewhat homomorphic encryption,” in Proc. Annu.
Cryptology Conf. Advances Cryptology, 2012, pp. 643–662.

Ximeng Liu (S’13-M’16) received the BSc
degree in electronic engineering from Xidian
University, Xian, China, in 2010 and the PhD
degrees in cryptography from Xidian University,
China, in 2015. Now, he is a research fellow with
the School of Information System, Singapore
Management University, Singapore. He has pub-
lished more than 80 research articles include the
IEEE Transactions on Information Forensics and
Security, the IEEE Transactions on Dependable
and Secure Computing, the IEEE Transactions

on Computers, the IEEE Transactions on Services Computing, the IEEE
Transactions on Industrial Informatics, and the IEEE Transactions on
Cloud Computing. His research interests include cloud security, applied
cryptography, and big data security. He is a member of the IEEE.

Robert H. Deng (F’16) is AXA chair professor of
cybersecurity and professor of InformationSystems
with the School of Information Systems, Singapore
Management University since 2004. His research
interests include data security and privacy, multi-
media security, network, and system security. He
served/is serving on the editorial boards of many
international journals, including the IEEE Transac-
tions on Information Forensics and Security and the
IEEE Transactions on Dependable and Secure
Computing. He is a fellow of the IEEE.

Kim-Kwang Raymond Choo (SM’16) received
the PhD degree in information security from the
Queensland University of Technology, Australia,
in 2006. He currently holds the Cloud Technology
Endowed professorship with the University of
Texas at San Antonio. He is the recipient of vari-
ous awards including ESORICS 2015 Best Paper
Award, Winning Team of the Germany’s Univer-
sity of Erlangen-Nuremberg (FAU) Digital Foren-
sics Research Challenge 2015, and British
Computer Society’s Wilkes Award in 2008. He is

also a fellow of the Australian Computer Society, and a senior member
of the IEEE.

910 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 5, SEPTEMBER/OCTOBER 2020

http://dx.doi.org/10.1109/TDSC.2016.2596286
https://github.com/shaih/HElib
https://github.com/shaih/HElib

Yang Yang (M’17) received the BSc degree from
Xidian University, Xi’an, China, in 2006 and the
PhD degrees from Xidian University, China, in
2012. She is a research fellow (postdoctor) under
supervisor Robert H. Deng with the School
of Information System, Singapore Management
University. She is also an associate professor
with the College of Mathematics and Computer
Science, Fuzhou University. Her research inter-
ests include the area of information security and
privacy protection. She is a member of the IEEE.

HweeHwa Pang received the BSc (first class
honors) and MS degrees from the National Uni-
versity of Singapore, in 1989 and 1991, respec-
tively, and the PhD degree from the University of
Wisconsin-Madison, in 1994, all in computer
science. He is a professor with the School of
Information Systems, Singapore Management
University. His current research interests include
database management systems, data security,
and information retrieval.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LIU ET AL.: PRIVACY-PRESERVING OUTSOURCED CALCULATION TOOLKIT IN THE CLOUD 911

	Privacy-preserving outsourced calculation toolkit in the cloud
	Citation

	Privacy-Preserving Outsourced Calculation Toolkit in the Cloud

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

