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An Extended Framework of Privacy-Preserving
Computation With Flexible Access Control
Wenxiu Ding , Member, IEEE, Rui Hu, Zheng Yan , Senior Member, IEEE, Xinren Qian,

Robert H. Deng , Fellow, IEEE, Laurence T. Yang , Senior Member, IEEE,

and Mianxiong Dong , Member, IEEE

Abstract—Cloud computing offers various services based on
outsourced data by utilizing its huge volume of resources and
great computation capability. However, it also makes users lose
full control over their data. To avoid the leakage of user
data privacy, encrypted data are preferred to be uploaded
and stored in the cloud, which unfortunately complicates data
analysis and access control. In particular, few existing works
consider the fine-grained access control over the computational
results from ciphertexts. Though our previous work proposed a
framework to support several basic computations (such as addi-
tion, multiplication and comparison) with flexible access control,
privacy-preserving division calculations over encrypted data, as
a crucial operation in many statistical processes and machine
learning algorithms, is neglected. In this paper, we propose four
privacy-preserving division computation schemes with flexible
access control to fill this gap, which can adapt to various appli-
cation scenarios. Furthermore, we extend a division scheme over
encrypted integers to support privacy-preserving division over
multiple data types including fixed-point numbers and fractional
numbers. Finally, we give their security proof and show their effi-
ciency and superiority through comprehensive simulations and
comparisons with existing work.

Index Terms—Cloud computing, secure division computation,
privacy preservation, access control, data security.
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I. INTRODUCTION

CLOUD computing can efficiently store and process data
in the Internet by taking advantage of its huge volume

of resources and great computation. The arrival of cyberiza-
tion era has led to the demand of massive data generation,
analysis and processing, which causes high computation over-
head that cannot be handled by local devices [2], [3], [4].
Outsourcing computing to the cloud can greatly benefit
resource-constrained users [5]. However, the dynamic, ran-
dom and open nature of cloud computing makes it hard to be
fully trusted. It may disclose user private data, which seriously
impacts user privacy and threatens data security. Therefore,
cloud users prefer to first encrypt their sensitive data and
then outsource ciphertext to the cloud. However, encryption
introduces new challenges for data analysis and sharing as
described below.

First, encryption complicates data processing and analy-
sis, especially for division. Though partial/fully homomorphic
encryption (PHE/FHE) can be applied to perform operations
over encrypted data, PHE algorithms can only support mul-
tiplication and addition over encrypted data [6], [7]. FHE
algorithms can realize division computation over encrypted
data but introduce high computational and communication
overhead [8], [9], thus they are not applicable and efficient
in practice.

Second, flexible access control over outsourced data compu-
tation results is still an open issue. Most existing homomorphic
encryption systems only support single-user access to the
results [10]. The past literatures mainly focus on the access
control over the outsourced data, but ignore the security
requirement of access control over the processing results [11],
which is however especially significant and essential to sup-
port various intelligent applications, such as smart grid, smart
transportation, health-care services, and so on.

In our previous work, a framework [1] with two non-
colluding servers was proposed to achieve encrypted data
computation with flexible access control over the computa-
tion results in a privacy-preserving manner. However, division
computation is missed therein owing to its complexity. In
order to enhance the applicability, flexibility and scalability
of our framework, we extend and complement it by providing
privacy-preserving division computation on the basis of our
previous system model.

In this paper, we propose several novel schemes to realize
privacy-preserving division over ciphertext with fine-grained
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access control over division results. Specifically, this work has
the following contributions:

• We first extend our previous framework to support divi-
sion computation over encrypted integers without any
transformations or decompositions. Our scheme can pro-
vide the ciphertext of quotient and remainder values from
outsourced encrypted data to specified data requester or
user group, which preserve the confidentiality of both
original data and final computation result.

• We realize flexible access control over the division results
in a privacy-preserving manner. Our scheme can adapt to
different application scenarios with sound scalability.

• We further extend our scheme in terms of integers to sup-
port privacy-preserving division computation over other
types of data including fractional numbers and fixed-point
numbers, which obviously improves the precision and
practicability of division computation over ciphertext.

• We prove the correctness and security of our proposed
schemes, and further demonstrate its efficiency and scal-
ability through extensive simulations and comparisons
with existing works.

The rest of this paper is organized as follows. In Section II,
we briefly overview the existing work on secure division com-
putation and analyze their pros and cons, followed by the
system model, attack model and design goals of our schemes
in Section III. Section IV presents our proposed four division
schemes over integers as well as their extension for support-
ing fixed point numbers and fractional numbers. Then we give
correctness proof, security analysis and performance evalua-
tion in Section V. Finally, we conclude the whole paper in the
last section.

II. RELATED WORK

Secure division computation plays a crucial role in secure
statistical analysis [12], [13], secure clustering in machine
learning [14] and secure recommender systems [15]. Few
researchers implement secure division over encrypted data
based on FHE due to its high complexity. And most of related
works apply PHE, which mainly falls into two categories. One
is based on arithmetic transformations to convert the secure
division computation into addition and multiplication over
encrypted data, and the other achieves secure division based on
a secure bit decomposition protocol. However, both methods
suffer from either high communication overhead or high com-
putational complexity. In addition, they cannot provide flexible
access control over division result to support multiple result
requestors.

A. Secure Division Based on Arithmetic Transformations

Franz et al. [16] chose a tuple (ρx , σx , τx ) to represent a
value χ which belongs to a certain interval [−l; +l] with
l > 0, where ρx is a nonzero flag, σx encodes the sign of
the value x and τx indicates the absolute of the value. Then
the division result can be computed by basic operations on cor-
responding element through function LDIV ([x ], [y ]). Though
the representation of numbers can support secure computa-
tions on non-integers, its final computational division result

is an approximation with bounded relative error and encoding
increases the overhead of data preprocessing.

To overcome this issue and get an accurate result,
Dahl et al. [17] performed a Taylor expansion on the reciprocal
of a denominator to transform the division computation over
encrypted data into multiplication and addition over encrypted
data. Though the proposed protocol can guarantee the pri-
vacy of division, the implementation of several sub-protocols
bring high computational overhead. In addition, the frequent
interactions between two servers bring high communication
overhead.

Veugen [18] presented three protocols for dividing
encrypted data based on a client-server model in which
the ciphertext [x] and its corresponding decryption key K
are held by the client and the server, respectively. But
the divisor is known to the server in these three pro-
tocols, which unfortunately cannot ideally support privacy
preservation.

In order to improve the precision of division results, Catrina
and Saxena [19] tried to approximately get a division result
over two floating point numbers by applying the Goldschmidt’s
method [20]. But this scheme cannot support division compu-
tation over encrypted input data. To overcome this weakness,
Ugwuoke et al. [21] designed a division protocol to sup-
port encrypted floating point numbers based on homomorphic
encryption. However, both of the above two division schemes
use fixed rounds of iterative computations to guarantee fixed
precise of results, which results in high computational over-
head.

B. Secure Division Based on Bit Decomposition Protocol

The modulo value operation limits the length of the data in
division computation. To guarantee the confidentiality of both
the divisor and the dividend, one way is to add some random
numbers into these values. But this makes it difficult to gain an
accurate quotient from the masked data. Hence, some studies
use the secure bit-decomposition (SBD) protocol [22] to real-
ize secure division [23], [24]. After data providers upload their
encrypted data, the cloud first decomposes encrypted data as
binary string and then executes division to get a quotient and
a remainder by operating secure bit shift. But the bit decom-
position protocol is generally very complicated, thus hard to
be deployed.

Notably, all aforementioned works ignore the access con-
trol over the division results from ciphertext. In our previous
work [1], flexible access control over seven basic opera-
tions (such as addition, subtraction, etc.) from ciphertext
were achieved based on key-policy attributed-based encryption
(KP-ABE) [25], [26], [27], [28]. However, division computa-
tion over ciphertext is still not supported and needs further
investigation.

III. PROBLEM STATEMENTS

A. System Model

The division function is a novel addition and complement
to our previous work, which makes our previous framework
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Fig. 1. System model.

of privacy-preserving computations more generic and applica-
ble. In this paper, we follow the same models as in [1] for
the purpose of extending its functionality to further support
division computation. Concretely, the system is composed of
five kinds of entities in Fig. 1.

1) Data Service Provider (DSP) provided by a cloud server
takes the responsibility of data storage and computation
service.

2) Computation Party (CP) can be a private cloud service
provider or a department in charge, which mainly offers
the service of data computation and access control.

3) Data Providers (DPs) are cloud service consumers that
collect or generate data and upload them to DSP for
efficient storage and computation.

4) Data Requesters (DRs) as data consumers request for
the processing results. A DR can be a DP.

5) Authority is fully trusted and in charge of key
management.

B. Attack Model

In the system model above, we assume all entities except the
authority are semi-trusted. The authority acts honestly and has
no collusion with any other entities, while other entities strictly
follow the design of system protocols but are still curious about
others’ data. In addition, we assume that the DSP and the CP
would not collude with each other because their collusion will
decrease their reputations and impact their individual interests.
Herein, an adversary A∗ is introduced to the attack model. Its
goal is to gain the raw data by challenging data users (either
a DR or a DP) with some special capabilities as follows.

1) A∗ can eavesdrop all communication channels except
the ones between Authority and users to get those
transmitted messages;

2) A∗ may compromise one server (either DSP or CP) to
guess the raw data through the ciphertexts transmitted
between themselves and other users;

3) A∗ may compromise one server (either DSP or CP) and
some DPs to guess the final processing results;

4) A∗ may also compromise one server (either DSP or CP)
and the DR to guess the original data provided by DPs.

The adversary A∗ may compromise all entities, but it cannot
compromise the DSP and the CP simultaneously and cannot
compromise the challenged DR or DP.

TABLE I
NOTATION DESCRIPTION

C. Design Goals

1) Confidentiality: Our schemes should guarantee that only
the authorized entities can access the final computation results
and that no entity can access the raw data provided by the data
providers.

2) Correctness: The proposed schemes can offer DRs
accurate division results.

IV. PRIVACY-PRESERVING DIVISION SCHEMES WITH

FLEXIBLE ACCESS CONTROL

A. Notations and Preliminaries

1) Notations: In order to get a better understanding of
scheme details, Table I lists some key notations used through-
out this paper.

2) Ciphertext-Policy Attribute-Based Encryption
(CP-ABE): Herein, we introduce CP-ABE for applying
it to support fine-grained access control, which guarantees
the security of raw data through access policy. Generally, we
mainly use the following four algorithms of CP-ABE in [29]:

SetupABE → (PK ′,MSK ′): This algorithm first selects
a bilinear group G0 of prime order p with generator g0 as
well as two random exponents α, β ∈ Zp . Then, it outputs the
public key PK ′ and a master secret key MSK ′.

PK ′ =
(
G0, g0, h = g0

β , f = g0
1/β , e(g0, g0)α

)
(1)

MSK ′ = (β, g0
α). (2)

EncABE (M , T ,PK ′) → CK ′: The algorithm inputs mes-
sage M, access policy T and PK′. It chooses a polynomial qx
for each node and sets qx (0) according to Eq. (3) except for
the root node x. Then it outputs CK ′ as shown in Eq. (4),
where s is a randomly chosen number and Y is the set of leaf
nodes in T .

qx (0) = qparent(x)(index (x )) (3)

CK ′ =
(
T , C̃ = Me(g0, g0)

αs ,C = hs ,

∀y ∈ Y : Cy = g0
qy (0),C ′

y = H (att(y))qy (0)
)
. (4)

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on September 24,2020 at 09:20:42 UTC from IEEE Xplore.  Restrictions apply. 
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KeyGenABE (MSK ′,S) → SK ′: The key generation algo-
rithm takes in MSK′ and a set of attributes S, and generates
a secret key SK ′.

SK ′ =
(
D = g0

(α+r)/β ,

∀j εS : Dj = g0
r · H (j )rj ,D ′

j = g0
rj

)
. (5)

DecABE (PK ′,SK ′,CK ′) → M : If the set of attributes
embedded in the private key SK′ satisfy the access policy, the
decryption algorithm can successfully decrypt the ciphertext
CK′ to get the message M.

Notably, KP-ABE [25] can also be used in our scheme.
If two pieces of data are encrypted with the same access
policy, the CP-ABE is multiplicative homomorphic. That is,
given CP-ABE ciphertext of M1 and M2 encrypted with the
same access structure, the ciphertext of M1 ∗ M2 can be
obtained through the multiplication of these two pieces of
ciphertext with Eq. (6), denoted as HEABE . We prove the
homomorphism of CP-ABE later.

EncABE (
M1 ∗ M2, T ,PK ′)

= EncABE (
M1, T ,PK ′) ∗ EncABE (

M2, T ,PK ′) (6)

In this paper, we introduce the CP-ABE in [29] for access
control, which only considers the static scenarios. Hence, our
scheme cannot support dynamic environment and fails to sup-
port user revocation. In order to solve this issue, we can apply
a revocable ABE [30] and integrate into our scheme or use
a blacklist to block revoked users. User revocation is not the
focus of this paper and can play as a part of our future work.

3) Homomorphic Re-Encryption System (HRES): We
proposed homomorphic re-encryption system (HRES) in [31],
which lays the foundation of all seven data operations in our
previous work [1]. Herein, we also apply HRES for data
outsourcing in this paper. A brief introduction to HRES is
presented as below.

Key Generation (KeyGen): During system setup, it generates
the public parameters: a big integer n, a system generator g. In
addition, each entity i (including DSP and CP) generates one
key pair (ski , pki ). Further DSP and CP negotiate their Diffie-
Hellman key PK. which should be issued to its customers.
Hence, the public system parameters include {g, n, P K}.

Encryption: Enc(m, pki ) → [m]pki , as shown in Eq. (7).

[m]pki = {(1 + m ∗ n)pkr
i , gr} mod n2 (7)

Decryption: Dec([m]pki , ski ) → m .
Encryption With PK: EncTK (m,PK ) → [m]PK . The

ciphertext under PK, will be denoted as [m] in the following
sections.

Partial Decryption With skDSP : PDec1([m], skDSP ) →
[m]pkCP

.
Partial Decryption With skCP : PDec2([m]pkCP

,
skCP ) → m .

Besides the additive homomorphism shown in Eq. (8),
Eqs. (9), (10) and (11) illustrate several features of HRES,
where r in Eq. (9) denotes a random number and ([m]pki )

1,t

in Eq. (11) represents that an exponential operation that only

performs on the first part of the ciphertext.

[m1]pk i
∗ [m2]pk i

= [m1 + m2]pk i
(8)

[r ∗ m]pki =
(
[m]pki

)r
(9)

(
[m]pki

)n−1
= [−m]pki (10)

(
[m]pki

)1,t
=

{
{(1 + m ∗ n)pkr

i }t , gr
}

mod n2.

(11)

B. Privacy-Preserving Division Over Integers With Flexible
Access Control

In this section, we design four different division schemes to
support division computation over encrypted integers, which
are suitable for different scenarios. First of all, we outline four
schemes.

The first scheme aims to obtain the quotient value from
two encrypted data that can be accessed by a specified
data requester DR. Given two piece of encrypted data [m1]
and [m2], it can provide the ciphertext of division result
[�m1/m2�]pkDR , which guarantees that only the targeted data
requester can access the quotient.

The second scheme is designed to enable flexible access
control over computational result. Given ciphertext [m1]
and [m2], the second scheme can provide the division
result [�m1/m2�]pkck , while the corresponding secret key is
encrypted via ABE. Hence, the data requesters who satisfy
the access policies can obtain the secret key and get the final
quotient.

The third scheme further calculates division remainder com-
pared to the first scheme to provide an accurate division
computational result.

Similarly, the fourth scheme is proposed to further provide
the remainder of division based on the second scheme.

In what follows, we introduce the details of four schemes.
1) Privacy-Preserving Division Computations for a

Targeted Data Requester (Scheme 1): In Scheme 1, DSP
and CP process data collected from DP by following the
procedure as shown in Fig. 2.

Step 1 (System Setup @ All Entities): The authority invokes
KeyGen to complete the setup of HRES.

Step 2 (Data Upload @ DPs): DPs call EncTK (mi ,PK )
to encrypt their data mi as [mi ] and then upload them to
DSP. To avoid the overflow of middle results, it should ensure
L(m1) < 3L(n)/4 and L(m2) < L(n)/2.

Step 3 (Data Preparation @ DSP): DSP first randomly
selects two numbers r1, r2 and conceals the raw data to
get [m1r1], [m2r1] and [m2r1r2] through Eq. (8), where
L(ri ) < L(n)/4. Then it acquires [m1r1 + m2r1r2] by using
Eq. (12). Next, DSP performs partial decrytion on [m2r1] and
[m1r1 +m2r1r2] to get [m2r1]pkCP

and [m1r1 +m2r1r2]pkCP

by calling PDec1(∗, skDSP ). Afterwards, DSP sends the data
packet ([m2r1]pkCP

, [m1r1 + m2r1r2]pkCP
) to CP.

[m1r1 + m2r1r2] = [m1r1] ∗ [m2r1r2]. (12)

Step 4 (Data Process @ CP): CP calls PDec2(∗, skCP )
to decrypt the data received from DSP and get the masked
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Fig. 2. The procedure of division computation for a targeted data requester.

data m2r1 and (m1r1 + m2r1r2). Then CP performs division
on plaintext according to Eq. (13), where �m1

m2
� represents

the quotient and ignores the remainder. CP further calls
Enc(∗, pkDR) to encrypt the computational result and sends
the ciphertext [�m1

m2
� + r2]pkDR

to DSP.

(m1r1 + m2r1r2)/m2r1 =
⌊
m1

m2

⌋
+ r2. (13)

Step 5 (Additional Process @ DSP): DSP encrypts the ran-
dom number r2 as [r2]pkDR

and computes ([r2]pkDR
)n−1.

Then DSP removes the mask from received ciphertext with
Eq. (14).[⌊

m1

m2

⌋
+ r2

]

pkDR

∗
(
[r2]pkDR

)n−1
=

[⌊
m1

m2

⌋]

pkDR

(14)

Note: Herein, we use �m1
m2

� to represent the quotient
regardless of remainder.

Step 6 (Data Access @ DR): Upon receiving final ciphertext
from DSP, the targeted DR can call Dec([�m1

m2
�]pkDR

, skDR)
to get the final quotient of division.

2) Privacy-Preserving Division Computations With Flexible
Access Control (Scheme 2): In Scheme 2, DSP and CP process
encrypted data from DP as shown in Fig. 3.

Step 1 (System Setup @ All Entities): The authority first
invokes KeyGen and SetupABE to set up the system and gen-
erate the key parameters PK ′ and MSK ′ of ABE algorithm.
Then, the authority publishes public parameters to its service
consumers.

Step 2 (Data Upload @ DPs): Similar to Step 2 of
Scheme 1, DPs upload encrypted data [mi ] to DSP.

Step 3 (Data Preparation @ DSP): DSP selects two random
numbers r1, r2 ∈ [1,n/4], and preprocesses data to mask raw

data, which is same as Scheme 1. Similarly, DSP sends the
data packet ([m2r1]pkCP

, [m1r1 + m2r1r2]pkCP
) to CP.

Step 4 (Data Process @ CP): CP calls PDec2(∗, skCP ) to
decrypt the received data from DSP and performs division on
masked plaintext with Eq. (13). Then it encrypts the compu-
tational result by calling Enc(∗, pkCP ) and sends encrypted
data [�m1

m2
� + r2]pkCP

to DSP.
Step 5 (Data Reprocess @ DSP): DSP chooses a partial

key ck1 and sets a random number c1 as (ck1)−1 mod n .
Furthermore, it removes the mask from received ciphertext
through Eq. (15) and then uses Eq. (16) to perform exponential
compuation. Finally DSP sends [c1�m1

m2
�]pkCP

to CP.

[⌊
m1

m2

⌋
+ r2

]

pkCP

∗
(
[r2]pkCP

)n−1
=

[⌊
m1

m2

⌋]

pkCP

(15)

[
c1

⌊
m1

m2

⌋]

pkCP

=

([⌊
m1

m2

⌋]

pkCP

)c1

. (16)

Step 6 (Data Reprocess @ CP): CP first calls
PDec2(∗, skCP ) to decrypt received ciphertext as c1�m1

m2
�.

Then it chooses a partial key ck2 to generate a key pair
(ck2, pkck2

) and calls Enc(∗, pkck2
) to encrypt the data.

In addition, CP calls EncABE (ck2, T ,PK ′) to obtain the
ABE ciphertext CK2, which is sent to DSP along with the
ciphertext [c1�m1

m2
�]pkck2 .

Step 7 (Additional Process @ DSP): DSP operates partial
modular computation on received ciphertext with its par-
tial key ck1 according to Eq. (11) and gets the ciphertext
[�m1

m2
�]pkck with Eq. (17). Then it calls EncABE (ck1, T ,PK ′)

to get CK1 and obtains an encrypted access key CK through
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Fig. 3. The procedure of division computation with flexible access control.

Eq. (18) by calling HEABE algorithm.

[⌊
m1

m2

⌋]

pkck

=

([
c1

⌊
m1

m2

⌋]

pkck2

)1,ck1

(17)

CK = CK1 ∗ CK2 (18)

Finally, DSP keeps [�m1
m2

�]pkck and CK for user access.
Step 8 (Data Access @ DRs): Upon receiving the compu-

tational result and CK from DSP, the DRs who satisfy the
access policy can obtain the secret key SK ′ from Authority.
Thus, the authorized DRs can obtain ck by calling DecABE ()
to decrypt CK, and further get the final quotient by calling
Dec([�m1

m2
�]pkck , ck).

3) Privacy-Preserving Remainder Computation for a
Targeted Data Requester (Scheme 3): Herein, we omit the
same first three steps as in Scheme 1 and only introduce the
additional part as below.

Step 4 (Data Process @ CP): Once getting the data for-
warded by DSP, CP first calls PDec2(∗, skCP ) to obtain
concealed plaintext and seperately employs Eqs. (13) and (19)
to get masked quotient and remainder through computation on
plaintext.

Rr1 = (m1r1 + m2r1r2) − m2r1 ∗
(⌊

m1

m2

⌋
+ r2

)
(19)

Then CP calls Enc(∗, pkDR) to encrypt the above compu-
tational result as [�m1

m2
� + r2]pkDR

and [Rr1]pkDR
, and sends

the ciphertext to DSP.
Step 5 (Data Additional Process @ DSP): DSP removes the

mask from received ciphertext to get encrypted quotient and

remainder by applying Eqs. (14) and (20) respectively.

[R]pkDR
=

(
[Rr1]pkDR

)r−1
1

. (20)

Step 6 (Data Access @ DR): Upon receiving the compu-
tational results from DSP, the targeted DR can decrypt the
ciphertext [�m1

m2
�]pkDR

and [R]pkDR
to get the final quotient

and remainder of the division by calling Dec(∗, skDR).
4) Privacy-Preserving Remainder Computation With

Flexible Access Control (Scheme 4): We introduce its details
below by omitting the same first three steps as in Scheme 2.

Step 4 (Data Process @ CP): CP decrypts the data packet
from DSP by invoking PDec2(∗, skCP ) and obtains two mes-
sages m2r1 and (m1r1 + m2r1r2). Then it performs basic
operations to get �m1

m2
� + r2 and Rr1. Furthermore, CP

calls Enc(∗, pkCP ) to encrypt the computational results and
sends the encrypted data packet {[�m1

m2
�+r2]pkCP

, [Rr1]pkCP
}

to DSP.
Step 5 (Data Reprocess @ DSP): DSP first selects a

partial secret key ck1 and sets a random number c1 as
(ck1)−1 mod n . Then it removes the mask from received
ciphertext to get encrypted quotient with Eq. (15) and
encrypted remainder with Eq. (21). Moreover, DSP uses
Eqs. (16) and (22) to conceal the quotient and remainder from
CP respectively.

[R]pkCP
=

(
[Rr1]pkCP

)r1−1

(21)

[c1R]pkCP
=

(
[R]pkCP

)c1
(22)
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Next, the data packet {[c1�m1
m2

�]pkCP
, [c1R]pkCP

} is sent
to CP.

Step 6 (Data Reprocess @ CP): With received data packet,
CP first performs PDec2(∗, skCP ) on encrypted data. Then, it
chooses a partial key ck2 to generate a key pair (ck2, pkck2

)
and calls Enc(∗, pkck2

) to encrypt the masked data. Detailed
processes are described as below.

1) [c1�m1
m2

�]pkCP

PDec2(∗,skCP )
−→ c1�m1

m2
�

Enc(∗,pkck2 )
−→ [c1�m1

m2
�]pkck2 ;

2) [c1R]pkCP

PDec2(∗,skCP )
−→ c1R

Enc(∗,pkck2 )
−→ [c1R]pkck2 ;

In addition, CP calls EncABE (ck2, T ,PK ′) to encrypt ck2

as CK2.
The data packet {[c1�m1

m2
�]pkck2 , [c1R]pkck2 ,CK2} is sent

to DSP.
Step 7 (Additional Process @ DSP): Upon receiving data

packet from CP, DSP performs exponential operations accord-
ing to Eq. (11), and applys Eqs. (17) and (23) to obtain final
encrypted quioent and remainder respectively. In addition, it
calls EncABE (ck1, T ,PK ′) to get CK1 and obtains the access
key CK through Eq. (18).

[R]pkck =
(
[c1R]pkck2

)1,ck1
(23)

Finally, DSP keeps the encrypted data packet
{[�m1

m2
�]pkck , [R]pkck } and the key CK for user access.

Step 8 (Data Access @ DR): The DRs whose attributes
meet the access policy can get a secret key SK ′ from
Authority, which can be used to get ck by calling
DecABE (PK ′,SK ′,CK ). Then DRs decrypt the received
ciphertext [�m1

m2
�]pkck and [R]pkck obtained from DSP to get

the final quotient and remainder of the division computation.

C. Scheme Extension

In this section, we extend the above schemes to support
various types of numbers including fixed-point numbers and
fractional numbers.

1) Division Over Fixed Point Numbers: We extend the
above division scheme to obtain a floating result with a
fixed number of digits after the decimal point. Assuming
that the length of the fractional field is k, DP should first
scale the numerator m1 to m ′

1 through Eq. (24). DSP receives
the encrypted data {[m ′

1], [m2]} and processes the data coop-
erating with CP. The DR requests the final result and decrypts
it as �m′

1
m2

�, then the result with fixed number of digits can be
computed by Eq. (25).

m ′
1 = m1 ∗ 2k (24)

Q =
⌊
m ′

1

m2

⌋
∗ 2−k (25)

Herein, we can evaluate deviation of the computation result
from the actual division result with Eq. (26).

δ = m1 − Q ∗ m2. (26)

2) Secure Computations on Fractional Numbers: Given
two fractional numbers m1,1/m1,2 and m2,1/m2,2, we can
perform following computations based on the above proposed

division schemes, multiplication and addition proposed in our
previous work [1].

a) Addition over fractional numbers: The addition of two
fractional numbers can be represented as Eq. (27).

m1,1

m1,2
+

m2,1

m2,2
=

m1,1 ∗ m2,2 + m2,1 ∗ m1,2

m1,2 ∗ m2,2
(27)

When DSP receives the encrypted data packet
{[m1,1], [m1,2], [m2,1], [m2,2]}, it first interacts with CP
to perform privacy-preserving multiplication to gain cipher-
texts [m1,1 ∗ m2,2], [m2,1 ∗ m1,2] and [m1,2 ∗ m2,2], then
computes [m1,1 ∗ m2,2. +m2,1 ∗ m1,2] through additive
homomorphism. Finally, DSP and CP cooperate to perform
corresponding division computation on the two ciphertexts
[m1,1 ∗ m2,2 + m2,1 ∗ m1,2] and [m1,2 ∗ m2,2] by applying
Scheme 1-4 according to concrete scenarios.

b) Multiplication over fractional numbers: The prod-
uct of two encrypted factional numbers can be computed as
[m1,1∗m2,1

m1,2∗m2,2
]. Thus, DSP and CP first perform secure multipli-

cation to get [m1,1∗m2,1] and [m1,2∗m2,2]. Then, an encrypted
division result can be acquired with the cooperation of DSP
and CP through division computation.

c) Division over two fractional numbers: The division
calculation over the two fractional numbers is equivalent to
m1,1 ∗ m2,2/m1,2 ∗ m2,1. After obtaining ciphertext products
[m1,1 ∗ m2,2] and [m1,2 ∗ m2,1] by conducting multiplication
over encrypted data, DSP executes the division computation
over the two encrypted data by cooperating with CP.

V. SECURITY ANALYSIS AND PERFORMANCE EVALUATION

A. Correctness Proof of Multiplicative Homomorphism of
CP-ABE

Herein, we prove the multiplicative homomorphism of CP-
ABE. The ciphertext of two messages M1 and M2 under the
same ABE access policy T can be obtained with Eq. (28):

Enc(Mi ) =
{
Mie(g , g)αsi ,Ci = hsi , ∀yi ∈ Y : Cyi = gqyi (0),

C ′
yi

= H (att(yi ))
qyi (0)

}
, (i = 1, 2) (28)

Then we can get the product of two ciphertexts through
Eq. (29).

Enc(M1) ∗ Enc(M2)

=
{
M1 ∗ M2e(g , g)α(s1+s2),C = hs1+s2 ,∀y ∈ Y :

Cy = gqy1 (0)+qy2 (0),C ′
y = H ( att(y))qy1 (0)+qy2 (0)

}

(29)

1) For the leaf node y from the access tree T , if the attribute
i ∈ S, the recursive decryption algorithm can be defined as
follows.

DecryptNode
(
Enc(M1) ∗ Enc(M2),SK ′, y

)

=
e
(
Di ,Cy

)

e
(
D ′

i ,C
′
y

) =
e
(
gr · H (i)ri , hqy1 (0)+qy2 (0)

)

e
(
gri ,H (i)qy1 (0)+qy2 (0)

)

= e(g , g)r(qy1 (0)+qy2 (0)) (30)
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2) For the non-leaf node x from the access tree T ,
DecryptNode(Enc(M1) ∗ Enc(M2),SK ′, x ) calls
DecryptNode(Enc(M1) ∗ Enc(M2),SK ′, y) for all nodes y
that are children of x to perform decryption. Then, we can
get Eq. (31) according to the linearity of the access structure.

DecryptNode
(
Enc(M1) ∗ Enc(M2),SK ′, x

)

= e(g , g)r(qx1 (0)+qx2 (0)) (31)

Thus, for the root node of the access tree T , we can get
Eq. (32) as follows.

DecryptNode
(
Enc(M1) ∗ Enc(M2),SK ′, r

)

= e(g , g)rqR(0) = e(g , g)r(s1+s2). (32)

Finally, the ciphertext can be decrypted as Eq. (33).

M1 ∗ M2e(g , g)α(s1+s2)

e(hs1+s2 ,g(α+r)/β)
e(g,g)r(s1+s2)

=
M1 ∗ M2e(g , g)α(s1+s2) · e(g , g)r(s1+s2)

e(g , g)(α+r)(s1+s2)

= M1 ∗ M2 (33)

In summary, we can get the conclusion shown in Eq. (34).

Dec(Enc(M1) ∗ Enc(M2)) = M1 ∗ M2. (34)

B. Correctness Proof of Division Schemes

Here, we take Scheme 1 as an example to prove its correct-
ness. As its encryption and decryption restricts the length of
data, we should guarantee that Scheme 1 can get the correct
quotient from ciphertext.

Upon data received from DSP, CP can decrypt them to get
m2r1 mod n and m1r1 + m2r1r2 mod n where m2r1 < n
and m1r1 +m2r1r2 < n owing the limitation to the length of
data selected. Hence, we can get Eqs. (36) and (37) based on
the assumption as Eq. (35).

m1 = A ∗ m2 + R,where R < m2 (35)

(m1r1 + m2r1r2) = Am2r1 + Rr1 + m2r1r2 (36)

(m1r1 + m2r1r2)/(m2r1) = A + R/m2 + r2 (37)

As R < m2, then R/m2 is smaller than 1. Therefore, we
can get Eq. (38), which is the quotient.

⌊
m1

m2

⌋
= A. (38)

C. Security Analysis

Similar to our previous work [1], the security of all
schemes in this paper inherits from the semantic security of
HRES in [31] and ABE. To prove their security, we follow
the security model and attack model with the existence of
four semi-honest adversaries. Except the Authority, all other
entities may be compromised. Hence, we construct four sim-
ulators (SimDP ,SimDSP ,SimCP ,SimDR) to fight against
their corresponding adversaries (ADP ,ADSP ,ACP ,ADR)
that compromise DP, DSP, CP and DR, respectively.

Scheme 1 can securely obtain the quotient from encrypted
data through the cooperation between two servers of
DSP and CP in the existence of semi-honest adversaries
(ADP ,ADSP ,ACP ,ADR).

Here we construct four simulators including SimDP ,
SimDSP , SimCP and SimDR .

SimDP simulates ADP : SimDP only needs to out-
source its data by calling EncTK (mi ,PK ), hence its security
can directly inherit from the original HRES. Though DP
may colludes with one server (for example, DSP), ADSP
can only get the partial decryption result [mi ]pkCP

through
PDec1([mi ], skDSP ) in Step 3. Finally, ADP can get the
ciphertext [mi ]pkCP

and [mi ]. Owing to the security of HRES,
ADP cannot get anything from the data outsourced from other
users.

SimDSP simulates ADSP as follows: first SimDSP
calls EncTK (∗,PK ) to encrypt random messages m̃1

and m̃2; then it chooses some random numbers to
obtain [m̃2r1], [m̃1r1 + m̃2r1r2] and then further decrypts
them into [m̃2r1]pkCP

, [m̃1r1 + m̃2r1r2]pkCP
by calling

PDec1(∗, skDSP ). In Step 5, it receives [� m̃1
m̃2

� + r2]pkDR

by accessing SimCP , which is encrypted with the pub-
lic key of the targeted DR. Then it use the addi-
tive homomorphism to remove the mask and obtain
[� m̃1

m̃2
]]pkDR

. Finally, SimDSP outputs {[m̃2r1], [m̃1r1 +
m̃2r1r2]., [m̃2r1]pkCP

, [m̃1r1+m̃2r1r2]pkCP
, [� m̃1

m̃2
�+r2]pkDR

,

[� m̃1
m̃2

]]pkDR
} to SimDSP . If SimDSP replies with ⊥, SimDSP

returns ⊥.
The views of SimDSP are merely the ciphertexts under the

public keys of DR and CP. Though the SimDSP may col-
lude with the DR, it can only get the raw data from the
compromised DR rather than the challenged users. Hence,
SimDSP cannot get any information about the division and
original data owing to intrinsic security of HRES and the
honesty of challenged cloud users. As DSP chooses random
numbers in operations, SimDSP still cannot obtain any other
information by analyzing the results obtained from several
challenges.

SimCP simulates ACP as follows: SimCP accesses
SimDSP to get the ciphertexts [m̃2r1]pkCP

, [m̃1r1 +
m̃2r1r2]pkCP

. Then it decrypts them to get the masked raw
data � m̃1

m̃2
� + r2 and [� m̃1

m̃2
� + r2]pkDR

. Finally, it sends
them to ACP . If ACP replies with ⊥, SimCP returns
⊥. Owing to the security of HRES and the random num-
bers, the security can be guaranteed that ACP can get
nothing.

SimDR simulates ADR as follows: Besides the challenged
data, any random ciphertexts are chosen and decrypted to gain
the original data. And SimDR sends them to ADR . But owing
to the semantic security of HRES and the random numbers
selected for each encryption, it guarantees the indistinguisha-
bility of the ciphertext of challenged data and the random
message.

Similar security proof to Scheme 1 can be performed for
Scheme 2-4. The proofs of Scheme 2 and Scheme 4 are a
bit different from Scheme 1, but their security can be directly
guaranteed by HRES and CP-ABE.
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TABLE II
COMPUTATIONAL COMPLEXITY ANALYSIS

D. Performance Evaluation

To show the performance of our schemes, we first give
the analysis of computational complexity of CP-ABE and
HRES algorithms, followed by the computational com-
plexity of our proposed division schemes. Furthermore,
we tested their efficiency and scalability by extensive
simulations.

1) Computational Complexity: We assume that there are |S|
attributes embedded in access tree T and that access policy
needs at most ϑ attributes to be satisfied for successful decryp-
tion. Due to paper length limitation, we omit analysis details.
The computational complexity is shown in Table II.

2) Experimental Results: We further simulated the
proposed four division schemes and tested their performance
to verify aforementioned theoretical analysis. The simulations
were performed in a desktop computer with Intel Core i3-
3240 CPU 3.4 GHz and 4GB RAM with jPBC library. To
ensure higher accuracy, we performed each test at least 200
times and recorded the average values of consumed time.
Unless specifically stated, we set the length of ck1 and ck2

as 255 bits, the length of m1 as 255 bits, the length of m2

as 250 bits and the length of random number L(ri ) as 255
bits. In our test machine, one bilinear pairing costs about
7 milliseconds.

By changing the length of n, we first analyzed the efficiency
of data processing in each step of four division schemes.
Then we verified the scalability of our proposed scheme
with different length of input data L(m1) and L(m2), where
we keep difference between L(m1) and L(m2) as 5 bits
(L(m1) > L(m2)). Finally, we compared with existing works
to show advantages of our schemes.

a) Efficiency of data processing:
Test 1 (Efficiency of CP-ABE for access control): First of

all, we tested the efficiency of CP-ABE with different numbers

Fig. 4. Cost of CP-ABE with different number of attributes.

Fig. 5. Operation time of DPs with different length of n.

of attributes involved in policy, which vary from 2 to 10 as
shown in Fig. 4. SetupABE does not vary with the number of
involved attributes, while the computation cost of EncABE ()
and keyGenABE () grow with increased number of attributes.
One attribute should be satified in the policy tree, which indi-
cates the operation time of DecABE () is constant. In addition,
HEABE () only takes less than 1 ms, which is not showed in
Fig. 4.

Test 2 (Influence of the length of n on performance): Fig. 5
presents the execution time of DP when the length of n is set
to different values, which is similar in all division schemes.
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Fig. 6. Execution time of scheme 1 with different n.

Fig. 7. Execution time of scheme 2 with different n.

Fig. 8. Execution time of scheme 3 with different n.

It is observed that the data processing on DP is efficient and
applicable in devices with limited resources.

Scheme 1 and Scheme 3 performs four steps except for the
first two steps of system setup and data uploading. Their oper-
ation time are shown in Fig. 6 and Fig. 8 respectively, which
indicate the increasing computation time of DSP in Step 3
(DSP3), CP in Step 4 (CP4), DSP in Step 5 (DSP5) and DR
in Step 6 (DR6) with the growth of the length of n. We can
observe that data processing and computation of DSP in both
schemes are similar in Step 3. However, the data process-
ing in other steps of Scheme 3 that contain the calculations
for getting the remainder is more time-consuming than that
in Scheme 1, which conforms with our aforementioned com-
plexity analysis in Section V-D1. The data processing of DSP
in Step 5 is the most time-consuming, which costs about 190
milliseconds (ms) in Scheme 1 and 350ms in Scheme 3 when
the length of n is 2048 bits. While operating other steps takes
about 100ms.

Scheme 2 and Scheme 4 introduce CP-ABE to support flex-
ible access control and add a round of interaction between
DSP and CP, their operation time of each step is shown in
Fig. 7 and Fig. 9 respectively. In this test, we set the number
of attributes as 4. We can observe that data processing time of
DSP in Step 3 is also similar to Scheme 1 and Scheme 3. In

Fig. 9. Execution time of scheme 4 with different n.

Fig. 10. Execution time of four schemes with different length of provided
data.

TABLE III
THE COMPARISON OF OUR PROPOSED SCHEMES

addition, the computational cost of added two steps are about
200ms in both Scheme 2 and Scheme 4. the computation time
of DSP in Step 5 is still the most time-consuming, which costs
about 300ms in Scheme 2 and 600ms in the Scheme 4 when
the length of n is 2048 bits.

In all four schemes, the computational cost of DR is
less than 50ms, which is well accepted by cloud users with
constrained resources.

In summary, most computational costs are undertaken by
two servers while the computational overheads of cloud users
are acceptable, which implies the efficiency and practicality
of our proposed schemes.

b) Scalability of proposed schemes:
Test 3 (Influence of length of provided data on data pro-

cessing): In this experiment, we tested the whole execution
time from data uploading to data access of each scheme with
different lengths of provided raw data, which varies from 16
to 512 bits. From Fig. 10, we can observe that the operation
time do not vary with the changing bit length of data, which
indicates that our proposed division schemes are applicable
for both normal value data and big value data.
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TABLE IV
THE COMPARISON OF OUR WORK WITH EXISTING WORKS

Fig. 11. Execution time of SBD in [22] with different length of provided data.

Based on the experimental result shown in Fig. 10 and the
analysis in Table II, we can find that Scheme 1 and Scheme 3
are more efficient than other two schemes and that Scheme 1 is
a little more efficient than Scheme 3. But Scheme 1 only pro-
vides the quotient. Compared with Scheme 1 and Scheme 3,
Scheme 2 and Scheme 4 incur higher computational costs,
but they enable flexible access control by adopting ABE.
Similarly, Scheme 4 incurs a little higher computational cost
than Scheme 2, but it provides the remainder of the division.
A brief comparison of the four schemes is given in Table III.

c) Comparison with existing work:
Test 4 (Performance comparison with an existing secure

division protocol in [24]): Before comparing with existing
work in [24], we tested the execution time of SBD proto-
col in [22] with different lengths of original provided data,
which varies from 8 to 256 bits as shown in Fig. 11. We can
observe that the computation cost of SBD grows fast with the
increasing bit length of data and that it needs up to 25s to
decompose 256-bit data. Thus, our scheme is superior to the
division protocol based on SBD [22] in terms of processing
large integers. Herein, we set the length of input data l as
10 bits and compared the cost of DSP and CP in Scheme 4
with the cost of CSP and CP to compute encrypted quotient
and remainder in existing work [24], which vary with the bit
length of n. From Fig.12, we can find that Scheme 4 as the
most time-consuming scheme in the four proposed schemes
is much more efficient than the existing division scheme over
encrypted integer.

Fig. 12. Operation time of our scheme 4 compared with existing work.

Based on aforementioned discussion and evaluation, we
summarize the comparison results of our work with existing
work in Table IV to demonstrate its superiority.

VI. CONCLUSION

In this paper, we proposed four privacy-preserving divi-
sion schemes over integers with flexible access control and
extended them to support computations over encrypted frac-
tional numbers and fixed-point numbers. We seriously ana-
lyzed the correctness and security of our schemes. Through
experimental simulations and comparison with existing work,
we further showed the efficiency and scalability of our
schemes. Thus, we greatly extended the framework of privacy-
preserving computation with flexible access control [1] by
offering one missed important computation–division and addi-
tionally supporting computations over encrypted fractional
numbers and fixed-point numbers. In the future, we will apply
our schemes into real application scenarios to demonstrate
their practicality.
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