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A Decomposition Method for Estimating Recursive Logit Based Route 
Choice Models 

Tien Mai*, Emma Frejinger, Fabian Bastin 

Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation 
(CIRRELT) and Department of Computer Science and Operations Research, Université de 
Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Canada H3C 3J7 

Abstract. Fosgerau et al. (2013) recently proposed the recursive logit (RL) model for 

route choice problems that can be consistently estimated and easily used for prediction 

without any sampling of choice sets. Its estimation however requires solving many large-

scale systems of linear equations, which can be computationally costly for real data sets. 

We design a decomposition (DeC) method in order to reduce the number of linear 

systems to be solved, opening the possibility to estimate more complex RL based models, 

such as, mixed RL models. We illustrate the approach on two mixed RL specifications, 

one using random coefficients and one incorporating error components associated with 

subnetwork (Frejinger and Bierlaire, 2007). The models are estimated on a real network 

with more than 3000 nodes and 7000 links, and a cross-validation study is performed. The 

results suggest that the DeC method significantly speeds up the estimation of the RL 

model and allows to estimate the mixed RL models in a reasonable time. The mixed RL 

model yields sensible parameter estimates and the fit and prediction are significantly 

better than the RL model.  
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1 Introduction

Given a transport network with a number of attributes associated with each link
or path, the objective of route choice models is to assign a choice probability to
each path in the network. Discrete choice models are typically used, despite two
main issues, namely (i) choice sets of paths are unknown to the analyst and the
set of all feasible paths for a given origin-destination pair cannot be enumerated in
this context, and (ii) path utilities may be correlated, for instance, due to physical
overlap in the network. This paper concerns recursive route choice models that
can be consistently estimated without sampling of choice sets and allows links and
paths to be correlated. The estimation of these models is expensive since it requires
solving many systems of linear equations to compute the log-likelihood function and
its gradients. We deal with this challenge by proposing a new method that allows to
reduce the number of systems to be solved, saving computational time significantly.

Most of the existing route choice models are based on choice sets of paths that
are sampled from the full choice sets. The sampled choice sets can be considered
as the actual choice sets (e.g. Ben-Akiva and Bierlaire, 1999), or can be used to
get consistent estimates by correcting the path choice probabilities (Frejinger et al.,
2009, Lai and Bierlaire, 2015). Recently, Fosgerau et al. (2013) propose the recursive
logit (RL) model, which considers the set of all feasible paths in the network. The
choice probability for each path is computed by means of dynamic programming, the
choice of a path being described as a sequence of link decisions. The model can be
consistently estimated and is quickly used for prediction without sampling of choice
sets. It however retains the well-know independence of irrelevant alternatives (IIA)
property which is undesirable in a route choice setting (Mai et al., 2015b). Mai et al.
(2015a) propose the nested RL (NRL) model that relaxes the IIA property over paths
by assuming that scale parameters are link specific.

The estimation of the RL model requires solving a dynamic programming (DP)
problem, which is considerably more time consuming than estimating the MNL model
with finite choice sets. The DP problems can become costly to solve, e.g., for very
large networks, large number of observations (destinations), or for models that re-
quire simulation (mixed logit). In order to address this issue, we propose a decom-
position (DeC) method that allows to reduce the number of linear systems to be
solved when tackling the DP problem of the RL model. This method speeds up the
estimation and opens the possibility to estimate mixed RL models or RL models
with nonlinear-in-parameters link utilities.

We apply the DeC to mixed recursive logit models. The mixed logit is attractive
model since it relaxes the IIA assumption and is fully flexible, in the sense that it
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can approximate any random utility model (McFadden and Train, 2000). However,
it is rarely used in the context of route choice analysis due its estimation cost. For
example, Bekhor et al. (2002) estimate a mixed MNL model based on the Error
Component (EC) approach (Bolduc and Ben-Akiva, 1991) using route choice data
collected in Boston. Frejinger and Bierlaire (2007) also use the EC approach to
model path correlations using subnetwork components. These approaches are how-
ever based on generated choice sets of paths. The mixed RL models considered in
this paper take advantage of the RL model, as they can be consistently estimated
and used for prediction without sampling choice sets, while allowing path and links
to be correlated. The main concern is the computational cost of its estimation due
to the presence of numerous linear systems. We show how the DeC method can be
used for estimating mixed RL models and present estimation results for two mixed
RL models based on the Borlänge network in Sweden.

The paper is structured as follows. Section 2 reviews the RL model and Section
3 introduces the DeC method. The mixed RL model is presented in Section 4. The
subnetwork error components model is presented in Section 5. We provide in Section
6 numerical results based on real data, and finally, Section 7 concludes.

2 Recursive logit

The RL model proposed in Fosgerau et al. (2013) is based on the observation that
a path choice can be formulated as a sequence of link choices and modeled in a
dynamic discrete choice framework. A directed connected network (not assumed
acyclic) G = (A;V) is considered, where A is the set of links and V if the set of
nodes. For each link k ∈ A, we denote the set of outgoing links from the sink node
of k by A(k). We assume that D destinations are present, and we associate an
absorbing state with each destination by extending the network with a set of dummy
links D = {d1, . . . , dD}, each dl departing from the sink node of the destination l.
The set of all links is denoted as Ã = A ∪ D. Figure 1 shows a simple network
with 4 destinations i.e. d, c, e and f . Four dummy links d1, d2, d3, and d4, without
successors, are added to the destinations, respectively.

Given a destination d ∈ D and two links k ∈ A, a ∈ A ∪ {d}, a ∈ A(k), the
following instantaneous utility

un(a|k; β) = vn(a|k; β) + µ(ε(a)− γ) (1)

is associated with action a ∈ A(k) of individual n, where β is a vector of parameters to
be estimated, vn(a|k; β) is a deterministic utility, and γ is the Euler’s constant. The
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Figure 1: A small network with multiple destinations

deterministic utilities associated with destination d are set to zero, i.e., vn(d|k; β) = 0.
The random terms ε(a) are assumed to be i.i.d extreme value type I and the Euler’s
constant is used in order to ensure that the error terms have zero mean. We note
that, in the NRL model (Mai et al., 2015a), the scales µ are assumed to be link
specific so the model allows path utilities to be correlated in a fashion similar to the
nested logit model (Ben-Akiva, 1973, McFadden, 1978). For notational simplicity, we
omit from now an index for individual n but note that the utilities can be individual
specific.

As discussed in Fosgerau et al. (2013), given a link k ∈ A, the expected maximum
utility V d(k; β), from link k until the destination d, is given recursively by the logsum

1

µ
V d(k; β) = ln

 ∑
a∈A(k)

e
1
µ
(v(a|k;β)+V d(a;β))

 ∀k ∈ A,

and V d(d; β) = 0 by assumption. The superscript d indicates that the value functions
are destination specific. The choice probability of a given path σ = {k0, . . . , kJ} is

P (σ; β) = e−V
d(k0;β)

J∏
i=1

ev(ki+1|ki;β). (2)

The vector of parameters β can be estimated by maximizing the log-likelihood (LL)
function defined over path observations. The method introduced by (Fosgerau et al.,
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2013) to estimate the RL model requires to solve one linear system per destination,
at each iteration of the LL maximization, but this is computationally too costly when
dealing with complex models such as the mixed logit.

3 Decomposition method

In this section we propose a Decomposition (DeC) method that allows to consider
only one system of linear equations when computing the value functions associated
with all the destinations, thus significantly reducing the computational time of the
estimation process.

Given a destination d, we introduce a destination-specific matrix Md of size (|A|+
1)× (|A|+ 1), whose elements are defined for all k, a ∈ A ∪ {d} as

mka =

{
δ(a|k)e

1
µ
v(a|k) if k ∈ A

0 if k = d,

where δ(a|k) = 1 if a ∈ A(k), and 0 otherwise. We impose that the last column and
last row correspond to the dummy link d, so

Md =


m1,1 m1,2 · · · m1,|A|+1

m2,1 m2,2 · · · m2,|A|+1
...

...
. . .

...
0 0 · · · 0

 .

A vector zd of size |A| + 1 is also defined with elements zdk = e
1
µ
V (k) for all states

k ∈ A∪{d} and bd is a vector of size |A|+ 1 with zero values for all states except for
dummy d, the corresponding component being equal to one. Fosgerau et al. (2013)
show that components of z are solutions to the following linear system

zd = Mdzd + bd. (3)

We now describe the DeC method based on the set of destinations taken from the
observations. We first define a matrix M0 of size (|A|+ 1)× (|A|+ 1) with entries

m0
ka =

{
mka if k, a ∈ A
0 otherwise

.
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Moreover, we define a matrix Ud of size (|A|+1)× (|A|+1), for each absorbing state
d ∈ D, with entries

udka =

{
δ(d|k)e

1
µ
v(d|k) if a = d

0 otherwise.

So for each d ∈ D we have Md = M0 + Ud, or more explicitly
m1,1 m1,2 · · · m1,|A|+1

m2,1 m2,2 · · · m2,|A|+1
...

...
. . .

...
0 0 · · · 0


︸ ︷︷ ︸

Md

=


m1,1 m1,2 · · · 0
m2,1 m2,2 · · · 0

...
...

. . .
...

0 0 · · · 0


︸ ︷︷ ︸

M0

+


0 0 · · · m1,|A|+1

0 0 · · · m2,|A|+1
...

...
. . .

...
0 0 · · · 0


︸ ︷︷ ︸

Ud

.

Since V d(d) = 0, zd|A|+1 = eV
d(d)/µ = 1 and

Udzd =


0 0 · · · m1,|A|+1

0 0 · · · m2,|A|+1
...

...
. . .

...
0 0 · · · 0




zd1
zd2
...

zd|A|+1

 =


m1,|A|+1

m2,|A|+1
...
0

 ,

we can therefore write (3) as

zd = M0zd + Udzd + bd = M0zd + td + bd,

where td is the last column of the matrix Ud. Let Z be a matrix of size (|A|+1)×|D|
whose columns are the vectors zd, for all d ∈ D

Z = [zd1 , ..., zd|D| ],

and B be a matrix of size (|A| + 1) × |D| whose columns are the vectors td + bd,
∀d ∈ D. We obtain a new system of linear equations

Z = M0Z +B

equivalent to
(I −M0)Z = B. (4)

The system has a solution if I −M0 is invertible. The conditions to ensure that
I−Md is invertible are discussed in Fosgerau et al. (2013), and they can be extended
to I −M0. In essence, the existence of a solution to the above system depends on
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the size of the scaled instantaneous utilities and on the balance between the number
of paths connecting the nodes in the network. It is easy to find a feasible solution
by using large enough magnitude of the model parameters.

For a given dummy dt ∈ D and a link k ∈ A, the corresponding value function is

V dt(k) = µ ln(zkdt),

where zkdt is the element of matrix Z corresponding to column dt and row k. Hence,
the associated LL function is

LL(β) =
1

N

N∑
n=1

(v(σn, β)− ln zondn(β)) ,

where v(σn, β) =
∑In−1

i=0 v(kni+1|kni ) is the sum of the deterministic link utilities of path
σn and on, dn are the origin and dummy link of path σn, respectively. The gradient
and Hessian of the LL function require the derivatives of the value functions. These
can be obtained by deriving the Jacobian of vector Z with respect to a parameter βi
as

∂Z

∂βi
= (I −M0)−1

∂M0

∂βi
Z + (I −M0)−1

∂B

∂βi
,

and the Hessian with respect to two parameters βi, βj is

∂2Z

∂βi∂βj
= (I −M0)−1

(
∂2M0

∂βi∂βj
Z +

∂M0

∂βi

∂Z

∂βj
+
∂M0

∂βj

∂Z

∂βi
+

∂2B

∂βi∂βj

)
.

Hence, we only need to solve the system of linear equations (4) once, and vector Z
contains all the value functions for all destinations.

Finally, it is important to note that the RL model and its extensions may be useful
for traffic simulation. In this context, one needs to compute the next-link choice
probabilities P (a|k), ∀k ∈ A, a ∈ A(k), and link flows in the network. The next-link
choice probabilities given by matrix P are computed using the value functions, and
the link flows can be obtained by inverting matrix I − P T , where I is the identity
matrix. Baillon and Cominetti (2008) show that I − P T is invertible. The DeC
method allows to compute matrix P quickly, hence it is useful for prediction and
simulation, in addition to the maximum likelihood estimation.

4 Mixed recursive logit

The choice probability of a path given by the RL model can be computed using
(2). In the mixed multinomial logit framework, the values v(ki+1|ki; β) themselves
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contain random elements. Following Train (2003), we assume that β is derived from
a random vector ω and a parameters vector θ, i.e. β = β(θ, ω). For example, if
β is a K-dimensional normally distributed random vector, whose components are
mutually independent, we may chose ω = (ω1, . . . , ωK) with ωi ∼ N(0, 1), i =
1, . . . , K and let θ specify the means and the standard derivations of the components
of β. The unconditional choice probability is obtained by taking the expectation
over the random coefficients

P (σ; θ) = Eω[P (σ; β)] =

∫
P (σ; θ, ω)f(ω)dω, (5)

where the expectation is taken with respect to ω and f(·) is its density function.
The vector θ can be estimated by maximizing the LL function defined over the set
of path observations n = 1, . . . , N

LL(θ) =
1

N

N∑
n=1

lnP (σn; θ).

This involves the computation of P (σn; θ) for each observation, and therefore, by
(5), one multidimensional integral per individual. An analytical expression of (??)
can usually not be obtained, it therefore has to be numerically approximated, either
by quadrature methods, or by simulation.

Assuming that the integral dimension is K, (5) is approximated as

P̃ (σn; θ) =
Rn∑
i=1

wn,iP (σn; θ, ωn,i), (6)

where ωn,i are the integration nodes and wn,i are the integrations weights. The
nodes and weights can be deterministically produced or, for Monte-Carlo methods,
randomly drawn from the distribution of ω, and (6) becomes

P̃ (σn; θ) =
1

Rn

Rn∑
ri=1

P (σn; θ, ωn,i). (7)

The Monte Carlo approach better scales with the integral dimension, and under mild
conditions, the estimators derived from the simulated log-likelihood converge almost
surely towards the true maximum likelihood estimators as the number of draws Rn

tend to infinity (Bastin et al., 2006). Randomized quasi-Monte Carlo methods have
also been considered for mixed logit models, while the improvement is sometimes
limited (Munger et al., 2012).
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A major burden is however that different integration nodes produce different
linear systems of the form (4), that have to be solved, inducing a significant numerical
cost increase. We can limit it by requiring the integration nodes to be the same among
the observations, i.e.

wn,i ≡ wi, ωn,i ≡ ωi, n = 1, . . . , N.

The integration error still converges to zero as the number of integration is growing
to infinity, the convergence being almost sure in the case of Monte Carlo methods. In
the latter case, the simulated choice probabilities are no longer independent between
the observations, resulting in an additional simulation bias that nevertheless goes
to zero asymptotically with the number of draws, and in practice, it can often be
neglected.

In order to illustrate this point, we compare the estimates obtained by the two
approaches using the small network in Figure 1. The network is composed of 15
nodes and 28 arcs. There are two origin nodes a, b and four destination nodes which
are c, d, e, f . Note that each origin connects to all destinations, so there are eight OD
pairs in total. Travel time is the only attribute considered in our example and they
are generated uniformly in interval [0, 1]. We note that dummy links d1, d2, d3, d4
are added to destinations c, d, e, f , respectively for the estimation of the mixed RL
model. Following the simulation literature, we say that we use independent random
numbers (IRN) when the values ωn,i are independently drawn between the route
choice observations, and common random numbers (CRN) when we use the same set
of random draws between the observations.

We assume that each link a is associated with a travel time TT (a) and we consider
the following instantaneous utility with respect to link a given link k

u(a|k) = β1TT (a) + β2 + (ε(a)− γ), (8)

where ε(a) follows an extreme value type I, γ is the Euler’s constant, β1 and β2 are
normally distributed. We assume that β1 = N(θTT , σ

2
TT ) and β2 = N(0, σ2). The

path observations are simulated using parameters {θ0TT , σ0
TT , σ

0} = {−11, 0.1, 0.1}.
5 paths are simulated for each OD pair, so the sample contains 40 path observations
in total. We note that the number of observations is kept small because we do not
aim at recovering the true parameters and even with small number of observations,
the LL function is well defined.

We estimate the mixed RL model with CRN and IRN approaches. All the re-
ported estimated parameters and final LL values are based on 100 independent sim-
ulations. For each estimation with CRN or IRN we use 50, 200 and 1000 Monte
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Carlo draws. The means and standard derivations over 100 simulations are reported
in Table 1. We also compute a t-test for the null hypothesis that the mean of the
estimated parameters given by the CRN is not significant different from its respective
value given by the IRN approach. The results show that the estimated parameters
as well as the final LL given by the CRN method are not significantly different with
the ones given by the IRN method at the 0.05 significance level. As expected, the
standard deviations are larger for the lower numbers of draws. The parameter es-
timates of CRN and IRN can be different (e.g. 0.089 versus 0.461) without being
significantly different. When the number of draws is large enough (e.g. 1000) the
LL and parameter estimates have similar values and small standard deviations. In
summary, for this example, the CRN method is an alternative to the standard IRN.

Number of draws 50 200 1000
CRN IRN CRN IRN CRN IRN

LL(β̂) mean 0.699 0.698 0.700 0.699 0.701 0.701
std. dev. 0.002 0.003 0.001 0.001 0.0005 0.0008
t-test 0.137 - 0.433 - 0.137 -

θ̂TT mean -12.433 -11.810 -11.787 -11.667 -11.501 -11.410
std. dev. 0.554 0.597 0.289 0.440 0.136 0.400
t-test -1.044 - -0.273 - -0.226 -

σ̂TT mean 0.284 0.971 0.089 0.461 0.107 0.193
std. dev. 0.161 0.683 0.077 0.437 0.069 0.184
t-test -1.007 - -0.849 - -0.465 -

σ̂ mean 0.670 0.479 0.553 0.487 0.501 0.417
std. dev. 0.121 0.110 0.069 0.113 0.035 0.165
t-test 1.730 - 0.585 - 0.514 -

Table 1: Estimation results with IRN and CRN

Finally, we note that, thanks to the DeC method, the computational time for
estimating the model using the CRN is from 10 to 50 times less than when estimating
the model using the IRN. We also observe that, for the CRN, the optimization
algorithm often converges faster in terms of number of iterations, compared to the
conventional IRN.

5 Modeling correlations with subnetwork compo-

nents

In this section we present a route choice modeling approach that is convenient to use
with the mixed RL model. It was proposed by Frejinger and Bierlaire (2007), and
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it as called the subnetwork approach. A subnetwork is a set of components where
each component is defined as a sequence of links. A component can, for instance,
corresponds to a main road in the transport network. The approach is based on the
assumption that paths may be correlated if they share a subnetwork component. To
capture this correlation, Frejinger and Bierlaire (2007) propose an Error Component
(EC) model (see for instance Bekhor et al., 2002). Inspired by this approach, in the
following, we propose an EC model for the mixed RL model that allows to capture
the correlation between paths and links that share subnetwork components in the
network.

Assuming that the network is composed of Q subnetwork components. We add
error component factors to the instantaneous utilities as

u(a|k; β, σ) = v(a|k; β) + F (a)TT (σ)ζ + µ(ε(a)− γ), ∀k ∈ A, a ∈ A(k),

where F (a) is a vector of dimension Q and each element F (a)q associates link a in
overlaps with subnetwork component q (i.e. if link a is a part subnetwork component
q, F (a)q =

√
l(a) and F (a)q = 0 otherwise, where l(a) is the length of link a),

T (σ) = diag(σ1, . . . , σQ) where σ is a vector of covariance parameters to be estimated,
and ζ is a vector of size Q where each element is a N(0, 1) random variable.

6 Numerical results

In this section we use the same data and network used in Frejinger and Bierlaire
(2007), Fosgerau et al. (2013) and Mai et al. (2015a) to apply the DeC method and
provide estimation and prediction results for the mixed RL models with random
parameters and error components. The network consists of of 3077 nodes and 7459
links, and with static and deterministic travel times. The sample consists of 1832
trips corresponding to simple paths with a minimum of five links. There are 466
destinations, 1420 different origin-destination (OD) pairs and more than 37,000 link
choices in this sample. For the sake of comparison, we also estimate the RL models
(Fosgerau et al., 2013).

As in Frejinger and Bierlaire (2007), the subnetwork components of the Borlänge
network are defined based on the main roads for traversing the city center. Two
of the Swedish national roads traverse Borlänge. The subnetwork is composed of
these national roads (referred to as R.50 and R.70) and there are two subnetwork
components for each national road (north and south directions), leading to a total of
four subnetwork components, denoted R.70N, R.70S, R.50S and R.50N. In addition,
there is one component for the road segment in the city center which is denoted RC.
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Figure 2 shows the Borlänge network and 5 subnetwork components. Reader can
consult Frejinger and Bierlaire (2007) for more details.

Figure 2: Borlänge subnetworks (Frejinger and Bierlaire, 2007)

6.1 Specification of models

The same four attributes as in Fosgerau et al. (2013) are used in the instantaneous
utilities: link travel time TT (a), a left turn dummy LT (a|k) that equals to one if
the turn angle from link k to a is larger than 40 degrees and less than 177 degrees,
a u-turn dummy UT (a|k) that equals to one if the turn angle is larger than 177,
and a link constant LC(a) set to 1 for all links in our experiments. Fosgerau et al.
(2013) also propose the link size (LS) attribute for overlapping paths. This attribute
is however origin-destination specific and is not compatible with the DeC model,
therefore we do not use this attribute for the mixed RL models.

We specify the instantaneous utilities for different models for link a given link k,
a ∈ A(k) as
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• RL
uRL(a|k; β) =βTTTT (a) + βLTLT (a|k) + βLCLC(a)

+ βUTUT (a|k) + (ε(a)− γ),

• RL with the LS attribute (RL-LS)

uRL−LS(a|k; β) =βTTTT (a) + βLTLT (a|k) + βLCLC(a)

+ βUTUT (a|k) + βLSLS(a) + (ε(a)− γ),

• mixed RL with random parameters (MRL-RP)

uMRL
RP (a|k; β) =β∗TTTT (a) + βLTLT (a|k) + βLCLC(a)

+ βUTUT (a|k) + (ε(a)− γ),

• mixed RL with EC (MRL-EC)

uMRL
EC (a|k; β, σ) = βTTTT (a) + βLTLT (a|k) + βLCLC(a)

+ βUTUT (a|k) + F (a)TT (σ)ζ + (ε(a)− γ),

• mixed RL with EC and random parameters (MRL-REC)

uMRL
REC (a|k; β, σ) = β∗TTTT (a) + βLTLT (a|k) + βLCLC(a)

+ βUTUT (a|k) + F (a)TT (σ)ζ + (ε(a)− γ),

where ε(a) are i.i.d standard extreme value type I, β∗TT is specified to be normal
distribution β∗TT ∼ N(µTT , σ

2
TT ), ζ is a vector of size 5 where each element is a

N(0, 1) random variable, and F (a) is a vector of size 5 where each element F (a)q
with respect to link a and subnetwork component q is defined as

F (a)q =

{
0 if a /∈ q√
TT (a) otherwise.

The vector of the covariance parameters is σ = {σR50N , σR50S, σR70N , σR70S, σRC}.

6.2 Estimation results

For the estimation of the the mixed RL model we adopt the nested fixed point
algorithm designed by Rust (1987). This algorithm combines an outer iterative non-
linear optimization algorithm for searching over the parameter space with an inner
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algorithm for solving the value functions. Note that the value functions are solved
for each MC draw using the DeC method and we use the basic trust region method
(for instance Nocedal and Wright, 1999) with BFGS (Broyden, 1970, Fletcher, 1970,
Goldfarb, 1970, Shanno, 1970) as the non-linear optimization algorithm.

We estimate the mixed RL models (MRL-RP, MRL-EC, MRL-REC) and report
the results based on 10 independent simulations and for each simulation we use
R = 500 Monte Carlo random draws. The parameter estimates are reported in the
appendix, Tables 6, 7, and 8. The β estimates are comparable to those previously
published using the same data. The parameter estimates have their expected signs
and are all highly significantly different from zero. Over 10 simulations, the β es-
timates are closer in values, compared to the σ estimates. We note that Frejinger
and Bierlaire (2007) estimate path-based models using the same data and the sub-
network approach, and report that all the σ estimates are significantly different from
zero except σ̂R50S.

We plot the final LL values over 10 repetitions in Figure 3. The averaged final LL
values over 10 MC repetitions are reported in Table 2. For the sake of comparison
we also include the RL models (RL and RL-LS). We only report the final LLs given
by these models and reader can consult Fosgerau et al. (2013) for more details of
the estimation results. The mixed RL models with EC performs better than the RL
models in fit (the likelihood ratio test results are reported in Table 3 based on the
averaged final LL values in Table 2).

Before presenting the prediction results, we make some remarks on computational
time. The code is implemented in MATLAB 2013a (available upon request) and we
use an Intel(R) machine, CoreTM i5-3210M CPU 2.50GHz. We use the trust region
algorithm with BFGS to estimate all the models. The estimation of the mixed RL
models is much more costly, compared to the RL models. We need from 3 to 5
days to estimate the mixed RL models, while it takes half day for estimating the RL
models.

RL RL-LS MRL-RP MRL-EC MRL-REC

LL(β̂) -6303.90 -6045.60 -6229.69 -5970.29 -5921.61

Table 2: Averaged final log-likelihood values

6.3 Prediction results

In this section we use a cross validation approach to compare the prediction perfor-
mance of the different models considered above, i.e, the RL and mixed RL models.
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Models χ2 p-value
RL & MRL-RP 148.42 3.84e-34
RL & MRL-EC 667.22 6.00e-142

MRL-RP & MRL-REC 616.16 6.52e-131
MRL-EC & MRL-REC 97.36 5.78e-23

Table 3: Likelihood ratio test results

1 2 3 4 5 6 7 8 9 10

−6,300

−6,200

−6,100

−6,000

−5,900

−5,800

Samples

L
L

MRL-RP MRL-EC MRL-REC

Figure 3: Final log-likelihood over 10 MC repetitions

The real sample (1832 observations) is divided into two sets by drawing observations
uniformly: one set of 80% of observations is used for estimation, and one set of the
remaining 20% observations is used as holdout to evaluate the predicted probabili-
ties. We generate 20 different holdout samples of the same size by reshuffling the real
sample. The LL loss values then are used to evaluate the prediction performance.

For each holdout sample i, 0 ≤ i ≤ 20, we estimate the parameters θ̂i based
on the respective estimation sample, and we compute the test errors erri using the
holdout sample and these parameter estimates as

erri = − 1

|PSi|
∑

σj∈PSi

ln P̃R(σj, θ̂i),

where PSi is the set of observations corresponding to holdout sample i, and |PSi| is
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the size of PSi. Indeed, erri depends on PSi. Similarly to Mai et al. (2015a), we
compute the average of erri values over samples in order to have unconditional test
error values

errp =
1

p

p∑
i=1

erri ∀1 ≤ p ≤ 20. (9)

We plot the values of errp, 1 ≤ p ≤ 20 in Figure 4 (lower the value, the better
is the performance) and in Table 4, we report the average of the test error values
given by five models over 20 samples. Indeed, the value of errp becomes stable when
p increases for each model. The mixed RL models are better than the RL model
in term of prediction. The MRL-REC has a significant better fit and also a better
prediction performance, compared to the other models.

RL RL-LS MRL-RP MRL-EC MRL-REC
3.39 3.34 3.36 3.22 3.19

Table 4: Average of test error values over 40 holdout samples

0 5 10 15 20
3.1

3.2

3.3

3.4

3.5

3.6

3.7

Holdout samples

er
r p

RL RL-LS MRL-RP MNL-EC MRL-REC

Figure 4: Average of the test error values over holdout samples
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6.4 Evaluation of computational time for the decomposition
method

In this section, we provide a comparison of computational time to show how the DeC
method speeds up the estimation of the RL model. We compare the performance
of the DeC method with the original approach based on the same data used in the
previous section.

For the sake of comparison we estimate the path-based logit models proposed by
Frejinger et al. (2009) based on the same data set. The models require sampling of
choice sets and we draw 50 samples for each OD pair observation. The computational
times associated with evaluating the LL and gradients are reported for two models,
one with and one without the Extended Path Size attribute (Frejinger et al., 2009).
We denote them PL and PSL, respectively. Recall that all the models are estimated
with 1832 path observations (466 destinations).

The code is also implemented in MATLAB and it has not been parallelized. The
computational times are reported in Table 5. For each “LL and gradients” evaluation,
the DeC method is about 30 times faster, compared to the original method. The
computations associated with the path-based logit models are also fast because the
LL can be directly evaluated without computing the value functions. However, the
total computational time for the estimation of the path-based models is high because
choice sets need to be sampled before estimating. Finally, we note that the RL model
with LS attribute is costly to estimate, compared to the model without.

DeC method Original method Path-based models
Models RL RL RL-LS PL PSL

LL & gradients 10 284 1274 5.28 7.6
Estimation 230 18279 29638 3560 4146

Table 5: Comparison of computational times (in seconds)

7 Conclusion

In this paper we proposed a decomposition (DeC) method to speed up the estima-
tion of the RL modelss. We have shown that the DeC approach can be used to
estimate the mixed RL model in reasonable time. We provided estimation and pre-
diction results using a real data set. We estimated the mixed RL models based on
two different approaches which use random parameters and EC using subnetwork
components. The results showed that the MRL-REC model has significantly better
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fit and better prediction than the RL models (with and without LS attribute) and
other mixed RL models.

The DeC method significantly speeds up the estimation of the RL model. Our
next steps will be dedicated to applying and testing the DeC method to other complex
extensions of the RL model, e.g., the NRL model Mai et al. (2015a), the RL model
for stochastic time-dependent networks and regret-based RL models. We are also
interested in applying the mixed RL to other networks with panel data and different
EC models.
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