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A Misspecification Test for Logit Based Route Choice Models 

Anh Tien Mai*, Emma Frejinger, Fabian Bastin 

Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT) 
and Department of Computer Science and Operations Research, Université de Montréal, P.O. 
Box 6128, Station Centre-Ville, Montréal, Canada H3C 3J7 

Abstract. The multinomial logit (MNL) model is in general used for analyzing route 

choices in real networks in spite of the fact that path utilities are believed to be correlated. 

For this reason different attributes, such as path size, have been proposed to 

deterministically correct the utilities for correlation and they are often used in practice. Yet, 

statistical tests for model misspecification are rarely used. This paper shows how the 

information matrix test for model misspecification proposed by White (1982) can be 

applied for testing MNL route choice models. We consider the link-based recursive logit 

models and path-based logit models with sampled choice set. We prove the holding of the 

information matrix equality when the alternatives are sampled and the model is correctly 

specified, and the correction for sample bias is included. The numerical results are based 

on real and simulated observations in a real network with more than 3000 nodes and 7000 

links. We use two different path-based models: MNL and path size logit. Similarly, we use 

two link-based models: recursive logit with and without the link size attribute. We conclude 

that, as expected, the models cannot be rejected for simulated observations while they are 

strongly rejected for real data. More interestingly, the models including the attributes 

correcting for correlation have significantly better model fit than those without, but they are 

still as strongly rejected by the information matrix test. 
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1 Introduction

The multinomial logit (MNL) model is in general used for analyzing route
choices in real networks in spite of the fact that path utilities are believed
to be correlated. For this reason different attributes, such as path size (Ben-
Akiva and Bierlaire, 1999) and commonality factor (Cascetta et al., 1996),
have been proposed to deterministically correct the utilities for correlation
and they are often used in practice. Yet, statistical tests for model misspec-
ification are rarely performed.

The information matrix (IM) test proposed by White (1982) is a general
test for model misspecification. It exploits the well-known information matrix
equality, which states that if a model is correctly specified, the expectation
of the sum of the Hessian matrix and the outer product of scores is zero. The
test statistic (Theorem 4.1 in White, 1982) has a quite complicated form and
contains third derivatives which raises computational concerns. The first
contribution of this paper is to prove that, when the models are correctly
specified, the information matrix equality holds for the MNL models with
sampled choice sets and the sampling corrections are added to the choice
probabilities. The second contribution of this paper is to show how this test
can be applied for path-based and link-based (recusive logit proposed by
Fosgerau et al., 2013) MNL route choice models. We derive the analytical
Hessian for the common case of linear-in-parameters utility functions so that
we can compute third derivatives by finite difference. Moreover, the code for
estimating route choice models and applying the test has been implemented
in MATLAB and is freely available upon request.

There are different specification tests available for the MNL model. Haus-
man and McFadden (1984) present a test for the independence of irrelevant
alternatives (IIA) property. They also show that IIA can be tested by com-
paring a nested logit and MNL models using likelihood ratio, Wald or La-
grange multiplier tests. The likelihood ratio test is easy to perform and is
hence often used in practice. To give another example, Fosgerau (2008) de-
scribes how the Zheng test (Zheng, 1996) can be applied to discrete choice
models. The IM test is complementary to these tests; it is a general test
of model misspecification and unlike the other tests it does not require the
estimation and comparison of multiple models. The IM test does however
not give any guidance as to what is the source of misspecification. If the in-
formation matrix equality is rejected, the other tests can be used for further
investigation, as also suggested by White (1982).

Several studies indicate that the finite sample distribution of the IM test
when the likelihood function is correctly specified is quite different from its
asymptotic χ2 approximation. This makes the test prone to reject the null
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hypothesis when it is true (type I error). Davidson and MacKinnon (1992)
and Horowitz (1994) provide a nice discussion on this issue. Horowitz (1994)
use bootstrap to obtain finite sample critical values and compare those with
the asymptotic critical values. The numerical results presented in this pa-
per are based on both simulated data, for which the true model is known,
and real data. The simulated data is used to numerically verify our proof of
information matrix equality for sampled choice sets and investigate whether
the incorrect size of the asymptotic critical value appears to be an issue for
our application. It is important to note that there are several alternatives
of White’s test in the literature. Chesher (1983) and Lancaster (1984) show
how to compute the IM test without the need of third derivatives. How-
ever, several later studies suggest that these methods do not perform well in
many cases due to the finite sample size issue (see for instance Davidson and
MacKinnon, 1992). Indeed, those methods are straightforward to apply with
the analytical Hessians derived in our paper.

The paper is structured as follows. Section 2 reviews maximum likelihood
estimation, the estimation of the variance-covariance matrix and the IM test.
In Section 3 we present different approaches for route choice modeling and
we derive the analytical Hessian for the MNL route choice models. Section 4
provides a proof for the information matrix equality for the MNL models with
sampled choice sets. Estimation and test results are presented in Section 5
and finally Section 6 concludes.

2 Maximum likelihood estimation and infor-

mation matrix test

In the context of maximum likelihood estimation (MLE), we aim to solve the
following maximization problem

max
β

L̂LN(β) =
1

N

N∑
n=1

ln f(yn|β) (1)

where f(Y |β) is some probability density function (pdf), defined on Y , con-
ditioned on a set of parameters β, and y1, . . . , yN are given observations.
Using the terminology popular in stochastic programming (SP), (1) can be
seen as the sample average approximation of the “true” problem

max
β

LL(β) = EY [ln f(y|β)]. (2)

We note here that f does not necessarily correspond to the density of Y
over the population, in which case the model is said to be misspecified. We
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can however still refer to the SP literature to establish that, under some
regularity conditions, when N rises to infinity,

d(Ŝ∗N , S
∗)→ 0 almost surely,

where d is a distance measure, Ŝ∗N and S∗ are the sets of first-order critical
points of (1) and (2), respectively, assuming that Ŝ∗N and S∗ are not empty
(see e.g. Shapiro, 2003 and Shapiro et al., 2009, Chapter 5). Moreover, if
these sets are singletons, we denote by β̂∗N the solution of (1) and by β∗ the
solution of (2). We then have that

√
N(β̂∗N − β∗)

A
v N (0,Ψ),

where
A
v designs the convergence in distribution, and N refers to the normal

distribution. Setting the gradient of (1) to zero, it can be shown that

Ψ = H(β∗)−1I(β∗)H(β∗)−1,

where H(β∗) = EY [∇ββf(Y |β∗)] and I(β∗) = EY [∇βf(Y |β∗)∇βf(Y |β∗)T ] is
the outer product of scores, also called the Fisher information matrix (see
e.g. Newey and McFadden, 1986). The asymptotic variance-covariance can
therefore be estimated using

Cov(β̂∗N) =
[HN(β̂∗N)]−1IN(β̂∗N)[HN(β̂∗N)]−1

N
(3)

where

HN(β̂∗N) =
1

N

N∑
n=1

∇2
ββ ln f(yn|β̂∗N)

and

IN(β̂∗N) =
1

N

N∑
n=1

[∇β ln f(yn|β̂∗N)][∇β ln f(yn|β̂∗N)]T

are the samples average estimates of the Hessian and the information matrix,
respectively. We refer to the variance-covariance matrix given by (3) as the
robust variance-covariance matrix.

The well-known information matrix equality implies that if the model is
well specified, i.e. f(Y |β∗) is the density of Y over the population, the Fisher
information matrix is equal to the opposite of the Hessian matrix,

I(β∗) = −H(β∗). (4)
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The robust variance-covariance of the maximum likelihood estimator then
becomes −[HN(β̂∗N)]−1/N .

The information matrix equality test proposed by White (1982) is based
on the idea that the information matrix equality (4) can be reformulated as

H(β∗) + I(β∗) = 0

and the sum can be consistently estimated by

IN(β̂∗N) +HN(β̂∗N).

The test statistic (Theorem 4.1 in White, 1982) is designed based on the
jointly normally asymptotically distributed property of DN(β̂∗N) = IN(β̂∗N) +

HN(β̂∗N) √
NDη

N(β̂∗N)
A
v N (0,VN(β̂∗N)).

Here we note that for a matrix A, vector Aη is defined by taking η indicators
of interest in A. An asymptotic χ2 statistic test is

℘N = NDη
N(β̂∗N)TVN(β̂∗N)−1Dη

N(β̂∗N)
A
v χ2

η (5)

where χ2
η is chi-square distribution with η degrees of freedom. The value of

Dη
N(β̂∗N) and VN(β̂∗N) are defined by

Dη
N(β̂∗N) =

1

N

N∑
n=1

dηn(yn|β̂∗N)

VN(β̂∗N) =
1

N

N∑
n=1

[
ψn(β̂∗N)ψn(β̂∗N)T

] (6)

where

dn(yn|β̂∗N) = [∇β ln f(yn|β̂∗N)][∇β ln f(yn|β̂∗N)]T +∇2
ββ(ln f(yn|β̂∗N))

and ψn(β̂∗N) = dηn(yn|β̂∗N) − ∇βD
η
N(β̂∗N)HN(β̂∗N)−1∇β ln f(yn|β̂∗N). Note that

(5) contains third derivatives through∇βD
η
N(β̂∗N) which raises computational

concerns. In the following section we present MNL route choice models and
derive the corresponding analytical Hessians so that we can evaluate (5) by
computing third derivatives by finite difference on the Hessian.
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3 Route choice models

Following the discussion in Fosgerau et al. (2013) we group the numerous
route choice models proposed in the literature into three approaches. First,
the classic approach that corresponds to path based models where choice
sets of paths are generated with some algorithm (typically a repeated short-
est path search) and treated as the actual choice sets. Frejinger et al. (2009)
argue that this does not yield consistent parameter estimates since they have
empirically observed that parameter estimates vary significantly for a same
dataset depending on the definition of the choice sets. The second approach,
proposed by Frejinger et al. (2009), is based on importance sampling of al-
ternatives. The idea is to correct the path utilities for the sampling protocol
that is used so that the parameter estimates do not significantly change when
the definition of the choice sets change. This approach has so far been used
for estimating the MNL and path size logit (PSL) models. Related to this
approach is the work in Flotterod and Bierlaire (2013). They propose an
approach for sampling paths according to a pre-defined probability distribu-
tion. It is important to note that the derivation of the sampling correction is
based on the MNL model. Guevara and Ben-Akiva (2013) present a correc-
tion for sampling of alternatives for the more general multivariate extreme
value models but this approach has not yet been used for route choice anal-
ysis.

The third approach is the link-based recursive logit (RL) model proposed
by Fosgerau et al. (2013). This model is based on the same underlying as-
sumption as the sampling approach, namely, that any path in the network is
feasible and belongs to the universal choice set. However, is does not require
any choice sets of paths. The RL model is theoretically superior to the sam-
pling approach because it can be consistently estimated and efficiently used
for prediction. Fosgerau et al. (2013) also proposed an heuristic correction
for correlation, similar to path size, but that is link additive and they call
it link size (LS). The models based on sampling of alternatives can also be
used for prediction using the approach proposed by Flotterod and Bierlaire
(2013) as long as the path costs can be computed independently of other
paths which excludes PSL.

In this paper we use the two comparable approaches, namely, MNL and
PSL with sampled choice sets and RL with and without LS.

3.1 Path based logit with sampled choice sets

The MNL model can be consistently estimated on a sample of alternatives
(McFadden, 1978). The probability that an individual n choses a path σ
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given a sampled choice set of paths Dn is given by

P (σ|Dn) =
e

1
µ
vσn+lnπ(Dn|σ)∑

j∈Dn

e
1
µ
vjn+lnπ(Dn|j)

(7)

where vσn = v(xσn, β) is the deterministic utility component associated with
each path σ, xσn is a vector of observed attributes and β is a vector of un-
known parameters to be estimated. ln π(Dn|σ) is the correction for sampling
bias where π(Dn|σ) is the probability of sampling choice set Dn given that σ
is the chosen alternative. When π(Dn|σ) = π(Dn|j) for all j ∈ Dn, this cor-
rection term can be safely ignored, otherwise it is required to ensure that the
information matrix equality still holds, as we will see in Section 4. Frejinger
et al. (2009) show that in a path sampling context π(Dn|σ) = rσn

q(σ)
where rσn

is the number of times path σ was drawn when sampling set Dn and q(σ)
the path sampling probability, and report improvement in numerical results
when incorporating the correction in the model estimation. In this paper we
refer to (7) as the path logit (PL) model.

PSL is often used for route choice analysis by researchers and practi-
tioners and it is choice set dependent. Frejinger et al. (2009) propose a
heuristic sampling correction of the path size attribute called expanded path
size (EPS). A path σ is a sequence of links (k0, . . . , kI) and the probability
that n chooses σ according to PSL is

P (σ|Dn) =
e

1
µ

(vσn+βPS lnEPSσn)+lnπ(Dn|σ)∑
j∈Dn

e
1
µ

(vjn+βPSEPSjn)+lnπ(Dn|j)
(8)

where

EPSσn =
Iσ∑
i=0

L(ki)

L(σ)
∑

j∈Dn δ(j, ki)φ
σ
jn

.

L(·) is the length link ki or path σ and δ(j, ki) equals one if ki is on path j
and zero otherwise so that

∑
j∈Dn δ(j, ki) is the number of paths in Dn that

use link ki. φσjn = max{1, 1−I[j=σ]
q(j)|Dn| } is the expansion factor where I[·] is an

indicator function and |Dn| is cardinality of Dn.
The model can be estimated by maximum likelihood and given a set of
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observations n = 1, . . . , N the log-likelihood function (1) becomes

L̂LN(β) =
1

N

N∑
n=1

lnP (σn|Dn) =
1

N

N∑
n=1

ln

 e
1
µ

(vσn+βPS lnEPSσn)+lnπ(Dn|σ)∑
j∈Dn

e
1
µ

(vjn+βPSEPSjn)+lnπ(Dn|j)

 .

(9)
We denote

υσjn(β) = exp

(
1

µ
(vjn − vσn + βPS(EPSjn − EPSσn)) + ln

π(Dn|j)
π(Dn|σ)

)
so that (9) can be more concisely written as

L̂LN(β) = − 1

N

N∑
n=1

ln

(∑
j∈Dn

eυ
σ
jn(β)

)
(10)

and its gradient is

∇βL̂LN(β) = − 1

N

N∑
n=1

∑
j∈Dn

∇βυ
σ
jn(β)eυ

σ
jn(β)

∑
j∈Dn

eυ
σ
jn(β)

. (11)

In case of a linear-in-parameters utility functions vjn(β) and vσn(β), we can
write υσjn(β) = (xσjn)Tβ + κ (where κ is some constant) and the first order
derivative is trivial. Taking the derivative of (11) we obtain an analytical
expression of the Hessian

∇2
ββL̂LN(β) =

1

N

N∑
n=1

ψn(β)ψn(β)T −Ωn(β)ηn(β)

(ηn(β))2
(12)

where ψn(β) =
∑

j∈Dn ∇βυ
σ
jn(β)eυ

σ
jn(β), Ωn(β) =

∑
j∈Dn(∇βυ

σ
jn)(∇βυ

σ
jn)T eυ

σ
jn(β)

and ηn(β) =
∑

j∈Dn e
υσjn(β). We note that this expression is fast and straight-

forward to compute.

3.2 Recursive logit

Fosgerau et al. (2013) recently proposed the RL model where the path choice
problem is formulated as a sequence of link choices and modeled in a dynamic
discrete choice framework. In the following we describe the model briefly but
in enough detail to allow us to derive the analytical Hessian.
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The network corresponds to a directed connected graph (not assumed
acyclic) G = (A,V) where A is the set of link and V if the set of nodes.
We denote links k, a ∈ A and the set outgoing links from the sink node of k
A(k). An instantaneous utility u(a|k; β) = v(a|k; β)+ε(a) is associated with
action a ∈ A(k). The deterministic utility v(a|k; β) is assumed negative for
all links except the dummy link d (absorbing state) that has been added to
the destination and equals zero. The random terms are independently and
identically distributed extreme value type I so that the choice model at each
decision stage is MNL.

At each choice stage a traveler observes the deterministic utilities of the
outgoing links, the random terms and the expected maximum utility until
the destination, value function V (a), and chooses the link with the maximum
utility. The key is how to compute these value functions and Fosgerau et al.
(2013) show that they are conveniently the solution to a system of linear
equations. Note that we use a simplified notation here, but the value func-
tions are destination specific, and possibly, origin-destination (OD) specific
depending on the definition of the instantaneous utilities.

We define a matrix M with entries

Mka(β) =

{
δ(a|k)e

1
µ
v(a|k) ∀k ∈ A

0 k = d

where δ(a|k) = 1 if a ∈ A(k) and equal 0 otherwise. z(β) is a vector with

elements zk = e
1
µ
V (k) and b is a vector of size [(|A|+ 1)× 1] with zero values

for all states except for the destination that equals one, bd = 1. z(β) is the
solution to the system of linear equations

[I −M(β)]z(β) = b (13)

where I is the identity matrix. Moreover, similar to the idea of a PS attribute,
the LS attribute can be added to the instantaneous utilities. This attribute
is OD specific and simply corresponds to the link flow when the demand at
the origin is one

LSod = F od(β̃) (14)

where F od is the vector of link flows computed by solving a system of lin-
ear equations for some chosen parameter values β̃. We refer the reader to
Fosgerau et al. (2013) for more details.

A path σ is a sequence links (k0, . . . , kI) with ki+1 ∈ A(ki) for all i < I
and at each link k the choice of next link is given by MNL

P (a|k) =
e

1
µ

(v(a|k)+V (a))∑
a∈A(k) e

1
µ

(v(a|k)+V (a))
= e

1
µ

(v(a|k)+V (a)−V (k)).
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The RL model can be estimated based on path observations n = 1, . . . , N by
maximum likelihood. The likelihood of a path is

P (σ, β) =
I−1∏
i=0

P (ki+1|ki)

=
I−1∏
i=0

e
1
µ

[v(ki+1|ki)+V (ki+1)−V (ki)]

= e−
1
µ
V (k0)

I−1∏
i=0

e
1
µ
v(ki+1|ki)

and the log-likelihood function (1) is

L̂LN(β) =
1

N

N∑
n=1

lnP (σn, β) =
1

µN

N∑
n=1

(v(σn, β)− V (kn0 , β)) (15)

where v(σn, β) =
∑In−1

i=0 v(kni+1|kni ) is the sum of the deterministic link utili-
ties of observed path σn.

As we did for the PSL model, we now derive analytical expressions for
the gradient and Hessian assuming a linear-in-parameters formulation of the
deterministic utilities.1 In this case the log-likelihood function (15) can be
written as

L̂LN(β) =
1

µN

N∑
n=1

(
xTσnβ − V (kn0 , β)

)
(16)

where xσn =
∑In−1

i=0 x(kni+1|kni ). We note that V (kn0 , β) = µ ln zn(kn0 , β), thus
the gradient of V (kn0 , β) can be written as

∇βV (kn0 , β) = µ
∇βz

n(kn0 , β)

zn(kn0 , β)

So the gradient of (16) is

∇βL̂LN(β) =
1

N

N∑
n=1

(
xσn −

∇βz
n(kn0 , β)

zn(kn0 , β)

)
(17)

and in the following we derive ∇βz
n(kn0 , β). As mentioned above, for each n

the vector zn(β) is computed by solving the system of linear equations (13)
either for each destination or for each OD pair depending on if a LS attribute

1The gradient is also derived in Fosgerau et al. (2013).
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is included or not. The first derivative of this equation with respect to one
parameter βq is

∂zn(β)

∂βp
= [I −Mn(β)]−1

[
∂Mn(β)

∂βp

]
zn(β) (18)

We denote the Jacobian as ∇βz
n(β) and ∇βV (kn0 , β) of (17) is simply the

row corresponding to state kn0 , ∇βz
n(kn0 , β).

The analytical Hessian has a more complicated form but can be derived
based on (17)

∇2
ββL̂LN(β) = − 1

µN

N∑
n=1

∇ββV (kn0 , β)

=
1

N

N∑
n=1

−
(∇2

ββz
n(kn0 , β)

zn(kn0 , β)

)
+

(
∇βz

n(kn0 , β)∇βz
n(kn0 , β)T

zn(kn0 , β)2

)
.

(19)
∇βz

n(kn0 , β) can be calculated by (17) and ∇2
ββz

n(kn0 , β) obtained by taking
derivative of (18). The second derivative of this equation with respect to two
parameters βp, βq is

∂2zn(β)

∂βp∂βq
=
∂[I −Mn(β)]−1

∂βq

∂Mn(β)

∂βp
zn(β)

+ [I −Mn(β)]−1∂M
n(β)

∂βp

∂zn(β)

∂βq

+ [I −Mn(β)]−1∂
2Mn(β)

∂βp∂βq
zn(β).

(20)

Note that ∂[I−Mn(β)]−1

∂βq
= [I −Mn(β)]−1 ∂M

n(β)
∂βq

[I −Mn(β)]−1, substitution

into (18) gives a concise analytical expression of ∂2zn(β)
∂βp∂βq

∂2zn(β)

∂βp∂βq
= [I −Mn(β)]−1

(
∂2Mn(β)

∂βp∂βq
zn(β) +

∂Mn(β)

∂βp

∂zn(β)

∂βq
+
∂Mn(β)

∂βq

∂zn(β)

∂βp

)
(21)

which may seem complicated but is fairly fast to compute.

4 Information matrix equality and sampled

choice sets

We have introduced the information equality test which is based on the idea
that for a correctly specified model at the true parameters, H(β∗)+I(β∗) = 0.
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We aim to apply the test for link-based and path-based MNL route choice
models. For the linked-based approach (Fosgerau et al., 2013), the choice
probabilities are based on the universal choice set and it does not require
sampling alternatives. The sampling correction does not appear in the for-
mula of choice probability, meaning that the information matrix equality can
be established similarly to the general maximum likelihood estimation prob-
lem (see for instance Amemiya (1985), Chapter 1). However, to our best
knowledge, there is currently no proof when the choice set is sampled. In the
following, we show that the information matrix equality still holds for the
MNL models when the alternatives are sampled and the model is correctly
specified.

As in Section 3.1, we denote the probability of sampling a set of alterna-
tives Dn, given observed choice σ for individual n, by π(Dn|σ). We assume
that the positive conditioning property (McFadden, 1978) holds:

if π(Dn|σ) > 0, then for all j ∈ D, π(Dn|j) > 0.

We also assume that the chosen path is always included in Dn, meaning
that π(Dn|j) = 0 if j /∈ Dn. The conditional probability P (σ, β|Dn) for an
observed choice σ, given a choice set Dn, is expressed by (7):

P (σ, β|Dn) =
e

1
µ
v(xσn,β)+lnπ(Dn|σ)∑

j∈Dn

e
1
µ
v(xjn,β)+lnπ(Dn|j)

or, equivalently,

P (σ, β|Dn) =
π(Dn|σ)e

1
µ
v(xσn,β)∑

j∈Dn

π(Dn|j)e
1
µ
v(xjn,β)

The expectation over alternative samples of lnP (σ, β|Dn) is∑
D⊆Ω

π(D|σ) lnP (σ, β|D),

where Ω is the universal choice set, and taking the expectation over the
possible choices, we have∑

σ∈Ω

∑
D⊆Ω

P (σ)π(D|σ) lnP (σ, β|D), (22)
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where P (σ) is the true choice probablity of σ: P (σ) = P (σ, β∗) = P (σ, β∗|Ω).
The expectation of (22) over the population Y is then

EY

[∑
σ∈Ω

∑
D⊆Ω

P (σ)π(D|σ) lnP (σ, β|D)

]
. (23)

Replacing P (σ) using its logit expression in (23), we can write

EY

∑
σ∈Ω

∑
D⊆Ω

π(D|σ)e
1
µ
v(xσn,β∗)∑

j∈Ω

e
1
µ
v(xjn,β

∗)

∑
j∈D

π(D|j)e
1
µ
v(xjn,β

∗)

∑
j∈D

π(D|j)e
1
µ
v(xjn,β

∗)
lnP (σ, β|D)

 .
or, by definition of P (σ|D) (= P (σ, β∗|D)),

EY

∑
σ∈Ω

∑
D⊆Ω

P (σ|D)

∑
j∈D

π(D|j)e
1
µ
v(xjn,β

∗)

∑
j∈Ω

e
1
µ
v(xjn,β

∗)
lnP (σ, β|D)

 . (24)

The unconditional probability to select the sample D is

π(D) =
∑
j∈Ω

P (j)π(D|j),

so (24) is equivalent to

EY

[∑
σ∈Ω

∑
D⊆Ω

P (σ|D)π(D) lnP (σ, β|D)

]
.

The expectation over the population of the Hessian of (22) is therefore

H(β) = EY

[∑
D⊆Ω

∑
σ∈D

π(D)P (σ|D)∇2
ββ lnP (σ, β|D)

]
,

and the expected outer product of the gradient is

I(β) = EY

[∑
D⊆Ω

∑
σ∈D

π(D)P (σ|D)∇β lnP (σ, β|D)∇β lnP (σ, β|D)T

]
.

We now show that H(β∗) + I(β∗) = 0. For any β, we have∑
σ∈D

P (σ, β|D) = 1 (25)
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We assume that for any β under consideration, P (σ, β|D) > 0 for all σ ∈ D.
Taking the derivative of (25) with respect to β gives∑

σ∈D

∇βP (σ, β|D) = 0,

and since

∇β lnP (σ, β|D) =
1

P (σ, β|D)
∇βP (σ, β|D), (26)

we can write ∑
σ∈D

P (σ, β|D)∇β lnP (σ, β|D) = 0.

The same holds for the expectation over the sampled choice sets:∑
D⊆Ω

π(D)
∑
σ∈D

P (σ, β|D)∇β lnP (σ, β|D) = 0.

Now, taking the expectation over the population, we obtain

EY

[∑
D⊆Ω

∑
σ∈D

π(D)P (σ, β|D)∇β lnP (σ, β|D)

]
= 0.

Let’s assume that some regularity conditions allowing to permute the expec-
tation and the derivative operators are satisfied. We then have

0 = EY

[∑
D⊆Ω

∑
σ∈D

π(D)P (σ, β|D)∇2
ββ lnP (σ, β|D)

+ π(D)∇βP (σ, β|D)∇β lnP (σ, β|D)T

] (27)

At β∗, using (26), (27) becomes

EY

[∑
D⊆Ω

∑
σ∈D

π(D)P (σ|D)∇2
ββ lnP (σ|D)

]

= −EY

[∑
D⊆Ω

∑
σ∈D

π(D)P (σ|D)∇β lnP (σ|D)∇β lnP (σ|D)T

]
,

i.e. H(β∗) = −I(β∗), as announced. In other terms, the information matrix
equality holds for sampled choice sets.
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5 Numerical results

The numerical results presented in this section are based on simulated obser-
vations and real data and aims at analyzing estimation results and providing
the corresponding information matrix equality test results using the four
different models described in the previous section: PL, PSL, RL with LS
and RL without LS. The purpose of using simulated data is to validate the
estimation and the information matrix test since the true model is known.

5.1 Network

For both simulated and real observations we use the Borlänge network in
Sweden. It is composed of 3077 nodes and 7459 links and it is uncongested
so travel times are assumed static and deterministic. There are 21452 link
pairs and therefore as many non-zero elements in the M matrix of (13). The
sample consists of 1832 trips corresponding to simple paths with a minimum
of five links. There are 466 destinations, 1420 different OD pairs and more
than 37,000 link choices in this sample. The same data has been used in
Frejinger and Bierlaire (2007) and Fosgerau et al. (2013).

The route choice data was collected by GPS monitoring only so there
is no socio-economic information on the drivers. We use network specific
attributes link travel time TT (a) and turn angle from link k to a. Based
on the latter attribute with define left turn LT (a|k) (angle larger than 40
degrees and less than 177 degrees) and u-turn UT (a|k) (angle larger than
177 degrees) dummies.

5.2 Model specifications

In order to have comparable estimation results we use the same specification
of the deterministic utilities for the four different models and hence only
include link additive path attributes with the exception of path size. The
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deterministic utilities for link a given state k and path σn = (kn0 , . . . , k
n
In

) are

vRL(a|k) = βTTTT (a) + βLTLT (a|k) + βLCLC(a) + βUTUT (a|k)

vRL-LS(a|k) = βTTTT (a) + βLTLT (a|k) + βLCLC(a) + βUTUT (a|k)

+βLSLS(a)

vPL(σn) = µ[βLLTT (σi) + βLTLT (σi) + βLCLC(σi) + βUTUT (σi)]

+ ln

(
rσn
q(σn)

)
vPSL(σn) = µ[βLLTT (σn) + βLTLT (σn) + βLCLC(σn) + βUTUT (σn)

+βPSPS(σn)] + ln

(
rσn
q(σn)

)

where TT (σn) =
∑In

i=0 TT (kni ), LT (σn) =
∑In−1

j=0 LT (kni+1|kni ), LC(σn) =∑In
i=0 LC(kni ) and UT (σn) =

∑In−1
i=0 UT (kni+1|kni ). The term ln(rσn/q(σn)) is

the sampling correction as presented in Section 3.1.

5.3 Generation of simulated observations

We generate two sets of observations using two different models: RL and RL-
LS. In order to be consistent with the underlying choice set assumption, any
feasible path in the network can be chosen. Since the RL and PL models are
equivalent we can estimate them on the same data but we cannot simulate
observations in a real network for PSL since this would require the universal
choice set to be known. Note that simulated data for PSL was used in
Frejinger et al. (2009) but for a small cycle-free network so that all paths
could be enumerated.

We simulate as many observations as there are real observations (1832)
using the same OD pairs. We use the deterministic utilities vRL and vRL-LS as
described in the previous section with the following chosen parameter values
β̃obsTT = −2.0, β̃obsLT = −1.0, β̃obsLC = −1.0, β̃obsUT = −20.0 and β̃obsLS = −0.2. These
values are the same as the ones used in Fosgerau et al. (2013) and we exclude
u-turns by fixing the parameter to a large negative value. The differences
with their study are that we simulate data for a model with LS and we use
the same OD pairs as in the real data as opposed to only one OD pair. The
main focus of this paper is the real data and the simulated observations are
mainly used as validation. We therefore use one sample but note that more
samples could be used for an in-depth analysis.
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5.4 Sampling of path alternatives

In order to estimate PL and PSL, sets of path alternatives Dn need to be
sampled. Since the RL model is very efficient for this purpose we use it
with a new set of parameters (β̃samplTT =-1.8, β̃samplLT =-0.9, β̃samplLC = −0.8 and

β̃samplUT =-4) and make 50 draws for each observation. The magnitude of the
parameter values is smaller than the model used to simulate observations.
This is to ensure that a diversity of paths are sampled. Figure 1 shows the
frequency of |Dn| over all 1832 choice sets. Some choice sets have very few
paths but these correspond to origins and destinations that are close to each
other.

Figure 1: Histogram of |Dn| (50 draws)

5.5 Estimation results

In this section we present the estimation results for both data sets. Table 1
reports the results for simulated data: parameter estimates, robust standard
errors and robust t-tests with respect to zero and the chosen (true) values.
As expected the parameter estimates are not significantly different from their
true values. The PL model estimated on the data simulated with the RL
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model is comparable to the estimates of RL which also validates the sampling
correction.

Parameters True value RL-LS RL PL

β̂TT -2.0 -2.033 -1.971 -1.960
Rob. Std. Err. 0.088 0.070 0.070
Rob. t-test (0) -23.102 -28.157 -28.0
Rob. t-test (-2) -0.375 0.414 0.571

β̂LT -1.0 -1.000 -1.018 -1.029
Rob. Std. Err. 0.037 0.039 0.039
Rob. t-test (0) -27.027 -26.103 -26.385
Rob. t-test (-1) 0.000 -0.462 -0.744

β̂LC -1.0 -1.004 -0.995 -0.989
Rob. Std. Err. 0.020 0.020 0.020
Rob. t-test (0) -50.2 -49.750 -49.45
Rob. t-test (-1) -0.200 0.250 0.550

β̂LS -0.2 -0.223
Rob. Std. Err. 0.014
Rob. t-test (0) -15.929

Rob. t-test (-0.2) -1.643

Table 1: Estimation results for simulated observations (βUT fixed to −20)

We now turn our attention to the estimation results based on real data
reported in Table 2. Here we estimate the parameter associated with u-
turns βUT because there are some observations with u-turns. Estimating
this parameter leads to a significant increase in model fit compared to a
fixed parameter of -20 (see results in Fosgerau et al., 2013) while the other
parameter estimates are similar for both RL and RL-LS. The parameter
estimates are stable for the four models (excluding LS and PS). Furthermore,
the model fit for RL-LS is significantly better than RL and the same for PSL
compared to PL.

In summary the estimation results for simulated and real observations are
as expected and comparable to earlier published results. In the next section
we analyze the results of the IM test.

5.6 Information matrix equality test

It is often assumed that paths share unobserved attributes due to the spatial
overlap in the network. If true, the utilities are correlated which in turn
implies that a MNL route choice model is misspecified. In this section we
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Parameters RL-LS RL PSL PL

β̂TT -3.060 -2.494 -2.738 -2.431
Rob. Std. Err. 0.103 0.098 0.086 0.083
Rob. t-test (0) -27.709 -25.449 -31.837 -29.289

β̂LT -1.057 -0.933 -1.000 -0.920
Rob. Std. Err. 0.029 0.030 0.027 0.029
Rob. t-test (0) -36.448 -31.100 -37.037 -31.724

β̂LC -0.353 -0.411 -0.545 -0.429
Rob. Std. Err. 0.011 0.013 0.012 0.013
Rob. t-test (0) -32.091 -31.615 -45.417 -33.000

β̂UT -4.531 -4.459 -4.366 -4.375
Rob. Std. Err. 0.126 0.114 0.118 0.119
Rob. t-test (0) -35.960 -39.114 -37.000 -36.765

β̂LS -0.227
Rob. Std. Err. 0.013
Rob. t-test (0) -17.462

β̂PS 1.461
Rob. Std. Err. 0.082
Rob. t-test (0) 17.817

L̂LN(β̂) -3.300 -3.441 -1.601 -1.688

Table 2: Estimation results for real data

test the information matrix equality using (5) and the results show that,
indeed, the information matrix equality holds for the simulated data set and
it is rejected for the real data set.

In order to apply the information matrix equality test we compute the
value ℘N (5) and the corresponding p-value based on the χ2

η distribution
where η is the degree of freedom. If the p-value does not exceed a given
critical value (for instance a significance level of 0.05), we reject the null
hypothesis that the information matrix equality holds. The vector ∇βD

η
N(β̂)

requires third order derivatives which we compute by finite difference on the
analytical Hessian given by (19) for the RL and RL-LS models and by (12)
for the PL and PSL models.

The test results for the diagonal elements (corresponding to the variances)
and for the upper triangular elements (matrix is symmetric) are reported in
Table 3. The first three rows report the results for the simulated observations.
The p-value is close to one for both RL and PL models and the information
matrix equality cannot be rejected. Based on these results we also conclude
that the sample size seems large enough for these models and that we do not
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seem to have finite sample issues.
The first row (RL-LS model and simulated data) requires more careful

analysis. Indeed, the p-value for RL-LS based on synthetic data is close to
the criteria value (0.05) to reject the null hypothesis. This raises a concern
about the finite sample issue, which is mentioned in the introduction section.
In order to validate if it is the case we increase the number of samples up
to 10 times larger (18320 observations, we generate 10 observations per each
OD pair taken from the real data). We obtain the p-value for the diagonal
test is 0.71 and for the full matrix test is 0.41. They are quite far from the
criteria value, meaning that the finite sample issue seems to affect a bit to
the validity of the information matrix equality for the RL-LS model.

The fours last rows of Table 3 report the results for the real data. The
information matrix equality is strongly rejected for all models. Similar to
the case of the simulated observations there is an important difference in
magnitude of the test value for the RL-LS model compared to the others. It
is interesting to note that the LS and PS attributes significantly improve the
model fit but they do not influence the test results.

Diagonal Full matrix
Data Model χ̄2

η η p-value χ̄2
η η p-value

Simulated data
RL-LS 5.541 4 0.24 17.7 10 0.06

RL 0.19 3 0.98 0.28 6 0.99
PL 0.14 3 0.99 0.18 6 0.99

Real data

RL-LS 69.17 5 1.53e-13 159.3 15 0
RL 21.09 4 3.04e-04 89.16 10 7.8e-15
PSL 42.63 5 4.39e-08 148.3 15 0
PL 15.93 4 3.10e-03 63.89 10 6.60e-10

Table 3: Information matrix test statistic

Given that the main challenge of applying this test is the computational
complexity, we report the computational time in Table 4. The code is in
MATLAB and we have used an Intel(R) machine, CoreTM i5-3210M CPU
2.50GHz, running Window 8. The machine is multi-core processor but we
only use one processor for the computation. We note that the LS attribute is
OD dependence and we store them in a sequence of 1832 matrices. Reading
data from this sequence increases the cost for log-likelihood computation. It
leads that the computational time for the RL-LS model is approximately 5
times longer than for the RL model. The computational time for RL and
RL-LS models is higher than for PL and PSL models due to the presence of
system of linear equations e.g.(13).
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Data Model η Computational time

Simulated data
RL-LS 4 4 hours 21 mins

RL 3 50 mins
PL 3 20 seconds

Real data

RL-LS 5 7 hours 21 mins
RL 4 1 hours 30 mins
PSL 5 44 seconds
PL 4 30 seconds

Table 4: Computational time for IM test

6 Conclusions

This paper shows the information matrix equality for sampled choice sets and
how the IM test can be applied to path- and link-based MNL route choice
models. The test statistic contains third derivatives and we address this issue
by deriving the analytical Hessian for linear-in-parameters utility functions
of MNL and RL so that we can compute third derivatives by finite difference.
This test and the estimation algorithm are implemented in MATLAB (this
code is available upon request) and can easily be used to test for model
misspecification.

We present results for simulated and real observations. As expected,
the information matrix equality is not rejected for simulated data but it is
strongly rejected for real data. We find that including a path size or LS
attribute increases model fit but it does change the outcome of the test.
Moreover, the results for simulated data numerically validate our proof for
the information matrix equality when the choice sets are sampled.

It is important to note that the IM test is general and does not provide
any guidance on the source of misspecification. It can be due to correlated
utilities, which is usually assumed to be case in route choice models. How-
ever, it could also be a misspecification due to, for example, omitted vari-
ables. As mentioned in the introduction other tests could be used for further
investigation.

Future research will be dedicated to modeling the correlation and test
whether this affect the validity of the information matrix equality. The first
step in this direction is the investigation of a nested logit version of the RL
model.
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