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a b s t r a c t

We propose a route choice model that relaxes the independence from irrelevant alterna-
tives property of the logit model by allowing scale parameters to be link specific. Similar
to the recursive logit (RL) model proposed by Fosgerau et al. (2013), the choice of path is
modeled as a sequence of link choices and the model does not require any sampling of
choice sets. Furthermore, the model can be consistently estimated and efficiently used
for prediction.

A key challenge lies in the computation of the value functions, i.e. the expected maxi-
mum utility from any position in the network to a destination. The value functions are
the solution to a system of non-linear equations. We propose an iterative method with
dynamic accuracy that allows to efficiently solve these systems.

We report estimation results and a cross-validation study for a real network. The results
show that the NRL model yields sensible parameter estimates and the fit is significantly
better than the RL model. Moreover, the NRL model outperforms the RL model in terms
of prediction.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Discrete choice models are generally used for analyzing path choices in real networks based on revealed preference (RP)
data. There are two main modeling issues associated with (i) estimating such models consistently and (ii) subsequently
using them for prediction. First, choice sets of paths are unknown to the analyst and the set of all feasible paths for a given
origin–destination pair cannot be enumerated. Second, path utilities may be correlated, for instance, due to physical overlap
in the network. As we explain below, there is currently no path choice model that can be consistently estimated and used for
prediction, while avoiding the specification of choice sets and allowing for correlation due to path overlap. The nested recur-
sive logit (NRL) model, proposed in this paper, fills this gap.

Most of the existing path choice models are based on choice sets of paths that need to be sampled before estimating or
applying the model. Many different algorithms exist for sampling choice sets (for reviews, see e.g. Prato, 2009; Frejinger
et al., 2009) and they all correspond to importance sampling protocols where paths have non-equal probabilities of being
sampled. Frejinger et al. (2009) show that utilities need to be corrected for the sampling of alternatives, which implies that
only algorithms that allow computation of the path sampling probabilities can be used. Frejinger et al. (2009) use the logit
(MNL) model but recently Guevara and Ben-Akiva (2013a,b) have derived results for generalized extreme value (GEV) and
mixed logit models, respectively. The sampling approach can be used to consistently estimate a path choice model, but it is
still unknown how to use that model for prediction.

http://dx.doi.org/10.1016/j.trb.2015.03.015
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A three path example network is often used to illustrate why it is important to allow for correlated utilities (we present
this example in more detail in Section 3). At the origin one can take right or left. Going right there are two paths that share
one link except for a short distance close to destination where they separate. If all three paths have the same deterministic
utility, a logit model assigns the probability 1=3 to each although one would expect a probability 1=2 going left and 1=2 going
right. A number of models in the literature allow to model the correlation structure of path utilities. Examples are the
link-nested logit (Vovsha and Bekhor, 1998), mixed logit with error components (Frejinger and Bierlaire, 2007; Bekhor
et al., 2001) and paired combinatorial logit (Chu, 1989). These models are based on sampled choice sets without correcting
the utilities for the sampling protocol. Hence, the parameter estimates are conditional on the choice sets and may have sig-
nificantly different values if some paths are added or removed from the choice sets. This is problematic since the true choice
sets are unknown. As mentioned earlier, the MEV models (e.g. link-nested logit) or the mixed logit models can be corrected.
Lai and Bierlaire (2014) estimate a link-nested logit model using the results by Guevara and Ben-Akiva (2013a).

Recently, Fosgerau et al. (2013) proposed the recursive logit (RL) model where path choice is modeled as a sequence of
link choices using a dynamic discrete choice framework. The RL model can be consistently estimated and used for prediction
without sampling choice sets of paths. It is however equivalent to a MNL model over the set of all feasible paths. A correction
attribute called link size was proposed that achieves an effect similar to the path size attribute in path choice models
(Ben-Akiva and Bierlaire, 1999). These attributes correct the utilities for correlation but the models retain the independence
of irrelevant alternatives (IIA) property, unless the path size/link size attributes are updated as utilities change (e.g. changes
in link travel times).

In this paper we propose an extension of the RL model that allows path utilities to be correlated in a fashion similar to
nested logit (Ben-Akiva, 1973; McFadden, 1978) and where links can have different scale parameters. The key challenge with
this extension lies in the computation of the expected maximum utility from a current position in the network until the
destination (value functions). A computational advantage of the RL model is that the value functions can be computed by
solving a system of linear equations, which is fast and easy to do. In the case of the NRL, the value functions are a solution
to a system of non-linear equations which is substantially more difficult to deal with. We propose an iterative method with
dynamic accuracy to efficiently solve this equation system.

This paper makes a number of contributions. First we propose a model that can be consistently estimated and used for
prediction without sampling choice sets while allowing the random terms to be correlated. Second, we provide illustrative
examples and discuss substitution patterns in order to build an intuition on the properties of the model. Third, we propose
an iterative method to solve for the value functions and we derive the analytical gradient of the log-likelihood function for
the case that the scales are functions of model parameters so that the NRL model can be efficiently estimated. Fourth, we
provide estimation and cross-validation results for a real network using simulated and real observations. Finally, the estima-
tion code is implemented in MATLAB and is freely available upon request.

The paper is structured as follows. Section 2 presents the NRL model. Section 3 discusses substitution patterns by illus-
trative examples and Section 4 provide a method to compute the value functions. Section 5 derives an analytical formula for
the first order derivative of the log-likelihood function. Specifications, estimation and prediction results are presented in
Section 6 and finally Section 7 concludes.

2. The nested recursive logit model

In the RL model (Fosgerau et al., 2013) the path choice problem is formulated as a sequence of link choices and modeled in
a dynamic discrete choice framework. At each node the decision maker chooses the utility-maximizing outgoing link with
link utilities given by the instantaneous utility and the expected maximum utility to the destination. The random terms of
the instantaneous utilities are independently and identically distributed (i.i.d.) extreme value type I so that the model is
equivalent to MNL. In this section we present the NRL model which relaxes the IIA property of MNL by assuming that the
scales of random terms are non-equal across links. We derive the NRL model using the same notation as Fosgerau et al.
(2013) (we refer the reader to that paper for a more detailed presentation of the notation). Even though the derivation of
NRL is similar to the RL one, the resulting expressions of the value functions and path choice probabilities have important
differences.

A directed connected graph (not assumed acyclic) G ¼ ðA;VÞ is considered, where A and V are the sets of links and nodes,
respectively. For each link k 2 A, we denote the set of outgoing links from the sink node of k by AðkÞ. Moreover we associate
an absorbing state with each destination by extending the network with dummy links d (see Fig. 1). This is a link without

successors so a trip stops once this state is reached. The set of all links is eA ¼ A [ fdg and the corresponding deterministic

utility is vðdjkÞ ¼ 0 for all k that have destination d as sink node. Given two links a; k 2 eA, the following instantaneous utility
is associated with action a 2 AðkÞ of individual n

unðajk; bÞ ¼ vnðajk; bÞ þ lk�ðaÞ ð1Þ

where b is a vector of parameters, �ðaÞ are i.i.d extreme value type I and lk is a strictly positive scale parameter. We ensure
that �ðaÞ have zero mean by subtracting Euler’s constant. The deterministic term vnðajk; bÞ is assumed negative for all links
except the dummy link d. We emphasize the difference with the original RL model where scale parameters are assumed
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equal (lk ¼ l8k 2 A). For notational simplicity, we omit an index for individual n but note that the utilities can be individual
specific.

The expected maximum utility from the sink node of k to the destination is the value function Vdðk; bÞ. The superscript d

indicates that the value functions are destination specific and they also depend on parameters b. Vdðk; bÞ is recursively
defined by Bellman’s equation

Vdðk; bÞ ¼ E max
a2AðkÞ

vðajk; bÞ þ Vdða; bÞ þ lk�ðaÞ
� �� �

8k 2 A ð2Þ

or equivalently

1
lk

Vdðk; bÞ ¼ E max
a2AðkÞ

1
lk
ðvðajk; bÞ þ Vdða; bÞÞ þ �ðaÞ

� �� �
8k 2 A: ð3Þ

For notational simplicity we omit from now on b from the value functions Vð�Þ and the utilities vð�Þ.
Given these assumptions the probability of choosing link a given state k is given by the MNL model

PdðajkÞ ¼ dðajkÞ e
1
lk
ðvðajkÞþVdðaÞÞ

P
a02AðkÞe

1
lk
ðvða0 jkÞþVdða0 ÞÞ

¼ dðajkÞe
1
lk
ðvðajkÞþVdðaÞ�VdðkÞÞ 8k; a 2 eA: ð4Þ

Note that we include dðajkÞ that equals one if a 2 AðkÞ and zero otherwise so that the probability is defined for all a; k 2 eA (we

recall that eA ¼ A [ fdg). Since we assume that the random terms in (1) are distributed i.i.d. EV type I, the value functions (2)
are given recursively by the logsum

1
lk

VdðkÞ ¼ ln
X

a2AðkÞ
e

1
lk
ðvðajkÞþVdðaÞÞ

0
@

1
A 8k 2 A ð5Þ

and VdðdÞ ¼ 0 by assumption. Similar to Fosgerau et al. (2013) we can write (5) as

e
1
lk

VdðkÞ ¼
X
a2A

dðajkÞe
ðvðajkÞþVd ðaÞÞ

lk 8k 2 A

1 k ¼ d

8><
>: ð6Þ

and define a matrix MdðjeAj � jeAjÞ and a vector zdðjeAj � 1Þ with entries

Md
ka ¼ dðajkÞe

vðajkÞ
lk ; zd

k ¼ e
VðkÞ
lk ; k; a 2 eA: ð7Þ

The key issue here compared to the RL model is that we do not end up with a system of linear equations. Indeed, the value
functions are the solutions to the following system of non-linear equations

zd
k ¼

X
a2A

Md
kaðzd

aÞ
la=lk 8k 2 A

1 k ¼ d;

8<
: ð8Þ

where the non-linearity arises due to the scale parameters lk not being equal.
The probability of a path r defined by a sequence of links r ¼ ½k0; k1; . . . ; kI� is

PðrÞ ¼
YI�1

i¼0

e
1

lki
ðvðkiþ1 jkiÞþVdðkiþ1Þ�VdðkiÞÞ

: ð9Þ

Fig. 1. Illustration of notation.
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Unlike the RL model, the link specific value functions do not cancel out due to the scale parameters. This implies that the
path choice probabilities are computationally more costly to evaluate.

We note that if the network contains cycles, the RL and NRL model allow for paths to contain loops (Akamatsu, 1996,
2013, discuss this in more detail). The probability of paths with loops depend on the data and network structure. For the
data used in this paper, Fosgerau et al. (2013) report that paths with loops have a very small probability.

Finally we note that the IIA property does not hold in the NRL model. Consider the ratio of the choice probabilities of two
paths r1 ¼ ½k1; . . . ; kI1 � and r2 ¼ ½h1; . . . ;hI2 � connecting just one origin–destination pair

Pðr1Þ
Pðr2Þ

¼
QI1�1

i¼1 e
1

lki
ðvðkiþ1 jkiÞþVdðkiþ1Þ�VdðkiÞÞ

QI2�1
i¼1 e

1
lhi
ðvðhiþ1 jhiÞþVdðhiþ1Þ�VdðhiÞÞ

: ð10Þ

When the scales lk ¼ l8k 2 A, the value function terms cancel out and the ratio (10) then only depends on the utilities of
two considered paths. For the NRL model, the ratio (10) depends on several values functions, which are evaluated based on
the whole network and therefore the IIA property does not hold. In the following section we discuss the resulting sub-
stitution pattern in more depth using several illustrative examples.

3. Illustrative examples and substitution patterns

Similar to several studies in the literature (e.g. Ben-Akiva and Bierlaire, 1999), we use a simple three path network shown
in Fig. 2 to illustrate why it is important to allow for correlated utilities. There are three paths from o to d (link o is the origin
and link d is the destination dummy link): ½o; a; d�; ½o; b; e; d�; ½o; b; f ; d�. We number these paths 1, 2 and 3 and the
corresponding path probabilities are P1; P2 and P3, respectively. The only attribute in the instantaneous utility is link length
and the values are given in the parentheses on each arc. In order to compute path probabilities we choose a length parameter
~b ¼ �1.

When the scales of random terms are equal over links lk ¼ l, the model corresponds the RL and P1 ¼ P2 ¼ P3 ¼ 1=3.
When the network has a perfect nested structure as this one (each path in the network belongs to exactly one nest when
defined by physical overlap), the NRL model is equivalent to a nested logit model. We can illustrate this by fixing all the scale
parameters to 1 except lb that we vary over the interval ð0;1�. The path probabilities are plotted in the graph on the right
hand side in Fig. 2.

In order to build intuition on the substitution patterns implied by the NRL model, we provide three more examples. The
first is shown in Fig. 3 which also has a simple nested structure. There are 4 nodes A; B; C; D and 9 links. Moreover, there are
6 possible paths from o to d : ½o; a; a1; d�; ½o; a; a2; d�; ½o; a; a3; d�; ½o; b; b1; d�; ½o; b; b2; d� and ½o; b; b3; d� and we number these
paths as 1, 2, 3, 4, 5 and 6, respectively.

For the RL model the IIA property holds, meaning that, if we remove any link in the network, the probabilities of the
remaining feasible paths will increase by the same proportion (for example if we remove link a2, the probabilities of path
½o; a; a3; d� and path ½o; b; b3; d� increase but they are still equal). For the NRL model, the scales of random terms are assigned
different values. We assign a scale of 0.5 for links a, a scale of 0.8 for links b and a scale of 1.0 for the others. Similar to an
example in Train (2003), we illustrate substitution patterns by removing in turn links a1; a2; b1; b2 and present changes in
probabilities in Table 1.

We note that the probabilities for paths ½o; a; a1; d�; ½o; a; a2; d�; ½o; a; a3; d� rise by the same proportions whenever one link
is removed from the network. This is also the case for the three paths ½o; b; b1; d�; ½o; b; b2; d� and ½o; b; b2; d�. As expected, the
IIA property holds between paths within the same nest but not for paths in different nests. For example, when link a1 is
removed, the probabilities of the paths in the first nest rise by 151% while the paths in the second nest rise by 93%.

We also consider the case when a link from node B to C is added to the network in Fig. 3. This change adds three more
paths to nest N1. In Table 2 we report the change in probabilities for the same six paths as before. We note that the absolute
values of choice probabilities change but the substitution pattern remains proportional.

The network in Fig. 3 is designed so that the paths can naturally be divided into separate nests. In the next example
shown in Fig. 4 we slightly modify the network so that paths have a cross-nested structure. More precisely, we add a node
E that splits links a3 and b1 into two links. The lengths of the paths in the new network do not change but the structure of the
network is different since apart from the origin and destination, two paths ½o; a; a3; e; d� and ½o; a; b1; e; d� share link e.
Furthermore, there is a new link f going (backward) from node E to node A so that the expected maximum utilities from link
a3 and b1 depend on the whole network.

We report probabilities for the 6 paths without loops: ½o; a; a1; d�; ½o; a; a2; d�; ½o; a; a3; e; d�; ½o; b; b1; e; d�; ½o; b; b2; d�;
½o; b; b3; d�, which are numbered as 1, 2, 3, 4, 5 and 6, respectively. We keep the same scales as in the first example (i.e.
la ¼ 0:5; lb ¼ 0:8 and the other scale parameters are equal to one). The changes in probabilities of the six paths when
we remove in turn links a3; b1 and f are reported in Table 3. We note that the substitution patterns are different than in
the previous example since the probabilities of paths 3 and 4 no longer change by the same proportion as the other paths
in their respective nest.

In order to compare the results with path based models we report probabilities given by the nested logit and link-nested
logit (Vovsha and Bekhor, 1998) models in Table 4. The correlation structure given by the link-nested logit model is shown in
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Fig. 5. For the nested models, the nesting parameters take the same values as in the NRL mode, namely 0.8 for nest N1 and 0.5
for nest N2. The results show that for these examples, the probabilities of the nested model are identical to the NRL model
and probabilities of the link-nested logit are slightly different from NRL. We note that the sums of the path probabilities for
RL and NRL in the second example are slightly smaller than one, due to the cycle in the network.

In summary, the IIA property can be relaxed by assuming different scales. The resulting substitution pattern depends on
the network structure. If the network has a perfect nested structure (e.g Fig. 3) the NRL and nested logit models yield the
same results.

Fig. 2. Classic three paths example network.

Fig. 3. Example network with perfect nested structure.

Table 1
Change in probability when link is removed (example network with perfect nested structure).

Probabilities with link removed

Paths Original a1 a2 b1 b2

1 : ½o; a; a1;d� 0.54 – 0.65(+20%) 0.55(+1%) 0.56(+4%)
2 : ½o; a; a2;d� 0.15 0.38(+151%) – 0.16(+1%) 0.16(+4%)
3 : ½o; a; a3;d� 0.04 0.11(+151%) 0.05(+20%) 0.05(+1%) 0.05(+4%)
4 : ½o; b; b1; d� 0.02 0.05(+93%) 0.03(+15%) – 0.03(+19%)
5 : ½o; b; b2; d� 0.06 0.12(+93%) 0.07(+15%) 0.17(+6%) –
6 : ½o; b; b3; d� 0.17 0.33(+93%) 0.20(+15%) 0.18(+6%) 0.21(+19%)

Table 2
Change in probability when link is removed (example network with perfect nested structure with link from B to C).

Probabilities with link removed

Paths Original a1 a2 b1 b2

1 : ½o; a; a1;d� 0.487 – 0.572(17.52%) 0.504(3.48%) 0.522(7.27%)
2 : ½o; a; a2;d� 0.140 0.298(113.38%) - 0.144(3.48%) 0.150(7.27%)
3 : ½o; a; a3;d� 0.040 0.085(113.38%) 0.047(17.52%) 0.041(3.48%) 0.043(7.27%)
4 : ½o; b; b1; d� 0.022 0.038(73.88%) 0.024(12.84%) - 0.026(22.29%)
5 : ½o; b; b2; d� 0.059 0.102(73.88%) 0.066(12.84%) 0.063(7.86%) –
6 : ½o; b; b3; d� 0.160 0.278(73.88%) 0.180(12.84%) 0.172(7.86%) 0.195(22.29%)
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4. Computation of the value functions

The main challenge associated with the NRL model is to efficiently solve the large-scale system of non-linear Eq. (6). In
the following we describe a value iteration approach that is efficient thanks to (i) a good initial solution and (ii) dynamic
accuracy.

We define a matrix XðzÞ with entries

XðzÞka ¼ zla=lk
a 8k; a 2 eA ð11Þ

so that the Bellman Eq. (8) can be written as

z ¼ ½M � XðzÞ�eþ b: ð12Þ

Fig. 4. Example network with cross-nested structure.

Table 3
Change in probability when link is removed (example network with cross-nested structure).

Probabilities with link removed

Paths Original a1 b3 f

1 : ½o; a; a1;d� 0.54 – 0.60(+12%) 0.54(+0.7%)
2 : ½o; a; a2;d� 0.15 0.38(+150%) 0.17(+12%) 0.15(+0.7%)
3 : ½o; a; a3; e;d� 0.05 0.11(+148%) 0.05(+11%) 0.04(�1.3%)
4 : ½o; b; b1; e; d� 0.03 0.05(+86%) 0.05(+90%) 0.02(�6.7%)
5 : ½o; b; b2; d� 0.06 0.12(+93%) 0.12(+91%) 0.06(+1.4%)
6 : ½o; b; b3; d� 0.17 0.33(+93%) – 0.17(+1.4%)

Table 4
Path probabilities comparison.

Example 1 Example 2

Paths MNL NRL Nested logit MNL NRL Link nested logit

1 0.449 0.541 0.541 0.443 0.537 0.501
2 0.165 0.155 0.155 0.163 0.154 0.150
3 0.061 0.044 0.044 0.060 0.045 0.051
4 0.061 0.023 0.023 0.060 0.025 0.043
5 0.100 0.064 0.064 0.099 0.063 0.085
6 0.165 0.173 0.173 0.163 0.170 0.171

Fig. 5. Cross-nested structure from the Link-nested logit model.
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b is a vector of size ðjeAj � 1Þ with zero values for all states except for the destination that equals 1; e is a vector of size

ðjeAj � 1Þ with value one for all states and � is the element-by-element product.
Value iterations are based on Eq. (12). We start with an initial vector z0 and then for each iteration i we compute a new

vector

ziþ1  ½M � XðziÞ�eþ b: ð13Þ

and iterate until a fixed point is found using jjziþ1 � zijj2 < c for a given threshold c > 0 as stopping criteria.1 It can be shown
that if the Bellman equation has a solution, this method converges after a finite number of iterations (see for instance Rust,
1987, 1988). The choice of initial vector is however important for the rate of convergence. We use the solution of the system
of linear equations corresponding to the RL model (lk ¼ l8k 2 A) which is fast to compute.

The proofs in the literature establishing the existence and uniqueness of a solution to Bellman’s equation use a discount
factor less than one. In our case we do not discount future utilities and these proofs do not apply. Fosgerau et al. (2013) dis-
cuss this issue in more detail for the RL model. In essence, the existence of a solution depends on the balance between the
number of paths connecting the nodes in the network and the size of the scaled instantaneous utilities. It is easy to find a
feasible solution by using large enough magnitude of the b parameters.

Since the value functions depend on the parameter values, they need to be solved repeatedly when searching over the
parameter space (maximum likelihood estimation). In order to decrease the computational time we use dynamic accuracy.
More precisely, we update the threshold c in the iterations of the non-linear optimization algorithm so that higher accuracy
is required close to optimum (c decreases as the number of iterations of the non-linear optimization algorithm increases).

Before discussing the maximum likelihood estimation in more detail, we note that (12) can be written as FðzÞ ¼ 0, where
FðzÞ ¼ z� ½M � XðzÞ�eþ b. A standard solver can be used e.g. fsolver in MATLAB or the Newton-GMRES method (for instance
Kelley, 1995). We have tested these methods but found that they are not efficient for our application and that our approach
works better.

5. Maximum likelihood estimation

There are several different ways of estimating a dynamic discrete choice model (Aguirregabiria and Mira, 2010), we adopt
the nested fixed point algorithm of Rust (1987). This algorithm combines an outer iterative non-linear optimization algo-
rithm for searching over the parameter space with an inner algorithm for solving the value functions.2 The latter was the
focus of the previous section and we now turn our attention to the definition of the log-likelihood (LL) function and the deriva-
tion of its gradient which allows us to use classic Hessian approximation such as BHHH and BFGS (see for instance Berndt et al.,
1974; Nocedal and Wright, 2006).

The path probabilities are defined by (9) and contain scale parameters lk8k 2 A as well as the parameters b associated
with the attributes of the instantaneous utilities. Clearly, it is not possible to estimate all link-specific scale parameters
for a real network and therefore we assume that they are a function of parameters b to be estimated lkðbÞ. (We refer the
reader to the numerical results, Section 6, for an example.)

The LL function defined over the set of path observations n ¼ 1; . . . ;N is

LLðbÞ ¼
XN

n¼1

ln Pðrn; bÞ ¼
XN

n¼1

XIn

t¼0

1
lkt

vnðktþ1jktÞ þ Vnðktþ1Þ � VnðktÞð Þ ð14Þ

and is very similar to the LL function of the RL model except that the value functions for the states along a path do not cancel
out. Assuming a linear-in-parameters formulation of the instantaneous utilities, the gradient with respect to a given parame-
ter bi is

@LLðbÞ
bi

¼ 1
N

XN

n¼1

XIn�1

t¼1

1
lkt

@vnðktþ1jktÞ
@bi

þ @Vnðktþ1Þ
@bi

� @VnðktÞ
@bi

� �
�

@lkt

l2
kt
@bi

vnðktþ1jktÞ þ Vnðktþ1Þ þ VnðktÞð Þ

and hence requires the first derivative of the value functions VnðkÞ; 8k 2 eA with respect to bi. We define /ka ¼ la=lk and take
the derivative of a given value function zk as defined by (8) (without using the superscript for destination d) and obtain

@zk

@bi
¼
X
a2A

@Mka

@bi
z/ka

a þMkaz/ka
a

/ka

za

@za

@bi
þ @/ka

@bi
ln za

� �� �

¼
X
a2A

@Mka

@bi
z/ka

a þMkaz/ka
a
@/ka

@bi
ln za

� �
þ
X
a2A

Mkaz/ka
a

/ka

za

@za

@bi

� �
: ð15Þ

1 The value functions can also be used in the stopping criteria i.e. the iteration stops when
P

k2eA ðViþ1ðkÞ � ViðkÞÞ
2
< c0 . The value functions have however

larger magnitudes than z.
2 Another option is the algorithm proposed by Aguirregabiria and Mira (2002). The idea is to swap the order of the outer and inner algorithms so that the

outer algorithm solves the value functions and the inner algorithm maximizes the pseudo-likelihood function. This is very useful if the value functions are
costly to evaluate. In the case of the NRL model, it is more costly to maximize the log-likelihood function than solving the value functions.
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We note that when the scales lk contain some model parameters, the derivative of each element of matrix MðbÞwith respect
to a given parameter bi is

@Mka

@bi
¼ dðajkÞe

vðajkÞ
lk

@vðajkÞ
lk@bi

� vðajkÞ @lk

l2
k@bi

� �
; k; a 2 eA:

We introduce two matrices, Gi and K of size jeAj � jeAj, which have the two sums of (15) as entries

Gi
ka ¼

@Mka

@bi
z/ka

a þMkaz/ka
a
@/ka

@bi
ln za

Kka ¼ Mkaz/ka
a

/ka

za
; 8k; a 2 eA: ð16Þ

This allows us to define the Jacobian of vector z as a system of linear equations

@z
@bi
¼ Gieþ K

@z
@bi
) @z
@bi
¼ ðI � KÞ�1Gie; ð17Þ

which in theory, can be solved very efficiently. Nevertheless, it is possible to use the fact that VðkÞ ¼ lk ln zk8k 2 eA and derive
the Jacobian of V instead of z. In this case the gradient of VðkÞ with respect to a given bi is

@VðkÞ
@bi

¼ @lk

@bi
ln zk þ

lk

zk

@zk

@bi
: ð18Þ

Using (15) we get

@VðkÞ
@bi

¼
X
a2A

Si
ka þ

X
a2A

Hka
@VðaÞ
@bi

þ hk ð19Þ

where

Si
ka ¼ lk

@Mka

@bi

z/ka
a

zk
þ lkMka lnðzaÞ

z/ka
a

zk

@/ka

@bi
�Mka lnðzaÞ

z/ka
a

zk

@la

@bi

and

Hka ¼ Mka
z/ka

a

zk
and hk ¼

@lk

@bi
ln zk:

We denote Si; H be two matrices of size jeAj � jeAj and h;V be two vectors of size jeAj � 1 with entries Si
ka; Hka; hk; VðkÞ for all

k; a 2 eA, respectively. The Jacobian of vector V can then be written as a system of linear equations

@V
@bi
¼ ðI � HÞ�1ðSieþ hÞ: ð20Þ

Although theoretically equivalent, we now discuss the numerical differences between the two formulas (17) and (20) for

computing the gradient of the value functions. We consider the definitions of the matrix K and H. za; a 2 eA are exponential
functions of the value functions which are negative by assumption. The value of za may therefore be very close to zero. Since

the elements of matrix K can be written as Kka ¼ /kaMkaz/ka�1
a (8k; a 2 eA) if /ka < 1, the value of Kka can be very large, and if

/ka > 1; Kka can be very close to zero. These wide range of values in the elements of matrix K (and also in matrix I � K) can
lead to numerical issues when solving the system (17). Based on Eq. (8), each element of matrix H can be written as

Hka ¼
Mkaz/ka

aP
a02AðkÞMka0z

/ka0
a0

¼ 1

1þ
P

a02AðkÞ;a0–a
Mka0 z

/ka0
a0

Mkaz
/ka
a

8k; a 2 eA; a 2 AðkÞ

so that 0 < Hka < 1, meaning that the elements of matrix H are closer in value, compared to matrix K. Therefore, using (20) to
compute the gradient of LL function is better than (17) for numerical reasons. In summary, the analytical gradient of the LL
function has a complicated form but can be efficiently computed by solving systems of linear equations.

6. Numerical results

In this section we present estimation and prediction results for four different models: the RL model with and without link
size (LS) attribute and the NRL model, also with and without LS attribute. We use the same data as Fosgerau et al. (2013)
(also used in Frejinger and Bierlaire, 2007; Mai et al., 2014) which has been collected in Borlänge, Sweden. The network
is composed of 3077 nodes and 7459 links and is uncongested so travel times can be assumed static and deterministic.
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The sample consists of 1832 trips corresponding to simple paths with a minimum of five links. Moreover, there are 466
destinations, 1420 different origin–destination (OD) pairs and more than 37,000 link choices in this sample.

6.1. Model specifications

The same five attributes as Fosgerau et al. (2013) are used in the instantaneous utilities. First, link travel time TTðaÞ of
action a. Second, a left turn dummy LTðajkÞ that equals one if the turn angle from k to a is larger than 40� and less than
177�. Third, a u-turn dummy UTðajkÞ that equals one if the turn angle is larger than 177. Fourth, a link constant LCðaÞ.
The fifth attribute is LSðaÞ (for a detailed description see Fosgerau et al., 2013) and it has been computed using a linear-
in-parameters formulation of the aforementioned four attributes using parameters ~bTT ¼ �2:5; ~bLT ¼ �1; ~bLC ¼ 0:4;
~bUT ¼ �4.

Even in this fairly small network there are more than 7000 links, so it is not possible to estimate link specific parameters.
We therefore impose a constraint on the scale parameters lk > 0 by defining them as a function of link attributes. More pre-
cisely, lk ¼ ekk where kk ¼ xxk; x is a vector of parameters and xk a vector of attributes associated with link k. This assump-
tion ensures that (i) the estimation problem is unconstrained and (ii) we can use the analytical gradient (18). Note that if all

the parameters in kk are zero, the scales are equal to one for all links k 2 eA, meaning that the NRL model becomes the RL
model. As much as data allows, it is possible to elaborate on the specification of the scale parameters. For example, by includ-
ing different attributes in the exponential function or by estimating link specific scales parameters for some links in the
network.

For the numerical results presented in this paper we use three link specific attributes: travel time, LS and the number of
outgoing links OLðkÞ ¼ jAðkÞj. Accordingly, kk is

kk ¼ xTT TTðkÞ þxLSLSðkÞ þxOLOLðkÞ: ð21Þ

We do not use a link constant since it has the same value for all links, the rationale behind using it in the instantaneous utili-
ties is to penalize paths with many crossings (links). Note that this is not a regression model, it is simply a specification of the
scale parameters lk that enter the instantaneous utility functions.

To summarize, the deterministic utilities for four different model specifications with respect to link a given link k are

vRLðajk; bÞ ¼ vNRLðajk; bÞ ¼ bTT TTðaÞ þ bLT LTðajkÞ þ bLCLCðaÞ þ bUT UTðajkÞ
vRL-LSðajk; bÞ ¼ vNRL-LSðajk; bÞ ¼ bTT TTðaÞ þ bLT LTðajkÞ þ bLCLCðaÞ þ bUT UTðajkÞ þ bLSLSðaÞ

and the instantaneous utilities are

uRLðajk; bÞ ¼ vRLðajk; bÞ þ l�ðaÞ
uRL-LSðajk; bÞ ¼ vRL-LSðajk; bÞ þ l�ðaÞ
uNRLðajk; b;xÞ ¼ vNRLðajk; bÞ þ ekk�ðaÞ
uNRL-LSðajk; b;xÞ ¼ vNRL-LSðajk; bÞ þ ekk�ðaÞ

6.2. Estimation results

We report the estimation results for the four specifications in Table 5. The results are comparable to those previously pub-
lished using the same data. The b estimates have their expected signs and are highly significant. bxLS and bxOL are significant
and negative while bxTT is not significantly different from zero when the LS attribute is included in the instantaneous utilities.
The LS attribute corresponds to expected normalized flows and takes positive values but is numerically close to zero for a
majority of the links in the network. bxLS and bxOL indicate that the scales are inversely related to flow and number of out-
going links; links with more flow and more outgoing links have smaller variance of the error terms than links with less flow
and fewer outgoing links.

It is not straightforward to analyze the resulting scale parameters based on bx. We therefore provide two histograms in
Fig. 6 showing the distribution of lk and ln /ka ¼ ln la

lk
over the links in the network for the NRL-LS model. The graph on the

left shows that the values of lk vary over the links in the network which ensures that IIA does not hold (the average value of
lk is 0.78). The peaks in the distribution are due to the attribute number of outgoing links OLðkÞ which take discrete values.
We note that a few links have values larger than one: this is consistent with utility maximization and does not imply counter
intuitive path probabilities. The graph on the right shows the distribution of ln /ka which is quite symmetric around 0 (the
average value of /ka is 1.03). The symmetry can be explained by the attribute OLðkÞ. Consider the u-turn link a0 of link
a 2 AðkÞ. Since link k and a0 have the same sink node we have OLðkÞ ¼ OLða0Þ. For our data this results in values of lk numeri-
cally close to la0 and thus

/ka/aa0 ¼
la

lk

la0

la
� 1
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or equivalently

ln /ka þ ln /aa0 � 0:

The LS attribute was designed to correct the utilities of overlapping paths in a way similar to the path size attribute.
Moreover, if the values of these attributes are updated in case of a change in any attribute in the network, they relax the
IIA property. Several studies in the literature (e.g. Bekhor et al., 2001; Frejinger and Bierlaire, 2007) report a better model
fit and prediction results if these attributes are included in the deterministic utilities in addition to correlated random terms.
It is also the case in this study: we observe a significant improvement in final log-likelihood values when we add the LS attri-
bute (the likelihood ratio test are reported in Table 6, when applicable). The best model in terms of in-sample fit is NRL-LS.
Since the scale parameters and the link size parameter are estimated off the same variation in the data, it is important to note
that an identification issue may occur. It is however not the case for this data set.

Before comparing prediction results in the following section we make some remarks concerning the estimation. We use a
basic trust region algorithm with the BHHH method for approximating the Hessian and the code is implemented in MATLAB

Table 5
Estimation results.

Parameters RL NRL RL-LS NRL-LS

bbTT �2.494 �1.854 �3.060 �2.139
Rob. Std. Err. 0.098 0.132 0.103 0.145
Rob. t-test(0) �25.45 �14.05 � 27.709 �14.75

bbLT �0.933 �0.679 �1.057 �0.748
Rob. Std. Err. 0.030 0.043 0.029 0.047
Rob. t-test(0) �31.10 �15.79 �36.448 �15.91

bbLC �0.411 �0.258 �0.353 �0.224
Rob. Std. Err. 0.013 0.016 0.011 0.015
Rob. t-test(0) �31.62 �16.13 �32.091 �14.93

bbUT �4.459 �3.340 �4.531 �3.301
Rob. Std. Err. 0.114 0.200 0.126 0.207
Rob. t-test(0) �39.11 �16.7 � 35.960 �15.95

bbLS – – �0.227 �0.155
Rob. Std. Err. – – 0.013 0.013
Rob. t-test(0) – – �17.462 �11.92

bxTT – 0.515 – 0.341
Rob. Std. Err. – 0.255 – 0.288
Rob. t-test(0) – 2.02 – 1.18

bxLS – �0.674 – �0.581
Rob. Std. Err. – 0.093 – 0.090
Rob. t-test(0) – �7.25 – �6.46

bxOL – �0.086 – �0.092
Rob. Std. Err. – 0.015 – 0.016
Rob. t-test(0) – �5.73 – �5.75

LLðbbÞ �6303.9 �6187.9 �6045.6 �5952.0

Fig. 6. Histogram of lk and ln /ka for NRL-LS.
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(and available upon request). We use the iterative method with dynamic accuracy for the computation of the value functions
(see Section 4). We note that if we use an initial vector as a solution of the system of linear equations, about 100 iterations is
enough for a high precision (c0 ¼ 10�8) but we need about 200 iterations for the same precision when the initial vector is the
unit vector (all the elements are equal to one). Moreover, using only 50 iterations in the beginning of the optimization
(corresponding to a precision c0 2 ½1;10�) and switching to the high precision c0 ¼ 10�8 when the norm of the gradient of
the log-likelihood function is less than 10�3 we were able to double the speed of the estimation.

6.3. Prediction results

In this section we focus on comparing the prediction performance of the different models. We use a cross validation
approach where the sample of observations is divided into two sets by drawing observations at random with a fixed proba-
bility: one set is used for estimation (80% of the observations) and the other is used as holdout (20% of the observations) to
evaluate the predicted probabilities by applying the estimated model. We generate 40 holdout samples of the same size by
reshuffling the real sample. The log-likelihood loss is used as the loss function to evaluate the prediction performance. More
precisely, for each holdout sample i; 0 6 i 6 40 we estimate the parameters b̂i off the corresponding training sample and this
vector of parameters is used to compute the test errors erri

erri ¼ �
1
jPSij

X
rj2PSi

ln Pðrj; b̂iÞ

where PSi is the size of prediction sample i. Then erri is a random variable that depends on the holdout sample i. In order to
have unconditional test error values we compute the average of erri values over samples as follows

errp ¼
1
p

Xp

i¼1

erri 81 6 p 6 40: ð22Þ

Table 6
Likelihood ratio test results.

Models v2 p-Value

RL and NRL 232 5.11e�50
RL-LS and NRL-LS 187.2 2.46e�40
NRL and NRL-LS 471.8 1.30e�104

Fig. 7. Average of the test error values over holdout samples.

Table 7
Average of test error values over 40 holdout
samples.

RL NRL RL-LS NRL-LS

3.392 3.336 3.252 3.204
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The values of errp; 1 6 p 6 40 are plotted in Fig. 7 and Table 7 reports the average of the test error values over 40 samples
given by the RL, RL-LS, NRL, NRL-LS models. For each model the value of errp becomes more stable as p increases. The pre-
diction results show that models including the LS attribute perform better than those without. The NRL-LS model has a sig-
nificantly better fit and also a better prediction performance than RL-LS. We note that the differences between the models’
test error values are quite constant over the holdout samples. This is due to the fact that (i) the same holdout sample is used
across models, and (ii) the number of observations used for estimation and the size of the holdout samples are large, so the
parameter estimates are stable and so are the predicted log-likelihood values.

7. Conclusion

This paper has presented the NRL model which avoids the IIA property of the RL model by allowing scale parameters to be
link specific while keeping the advantages of the RL model. We have proposed an efficient approach to estimate the model,
solving the value functions using an iterative method with dynamic accuracy. Moreover, we have derived the gradient of the
log-likelihood function which can be computed by solving systems of linear equations.

We have provided numerical results using real data. The parameter estimates are sensible and the NRL model has signifi-
cantly better fit than the RL model. The LS attribute plays an important role and the best models including this attribute have
significantly better model fit than those without. We have also provided a cross-validation study suggesting that NRL-LS and
NRL are better than the RL-LS and RL model, respectively.

In future research we plan to investigate further the importance of the LS attribute and its definition. Moreover, there are
only few attributes available in the data set used in this paper. We would like to test the model on other data sets that allows
us to test other possible functional forms of the scale parameters.

In this paper we use a unimodal network and observations of trips made by car. We emphasize that the model is not
restricted to this type of network. More precisely, by adapting the state space, the model can be used in e.g. dynamic net-
works (state is time and location) and multi-modal networks (state is location and mode) as long as link attributes are deter-
ministic. The dynamic network is suitable for modeling congested networks, the RL model has been used for this purpose by
Ramos et al. (2012). The challenge lies in the size of the state space, which is considerably larger than a static network since it
is the number of links multiplied by the number of time intervals.

As a final remark we note that since the RL and NRL models are based on the universal choice set (including all path even
those with loops), they avoid having to consider choice set formation. They can therefore be seen as alternatives to the
approach proposed by Manski (1977). The RL and NRL may be relevant to other contexts than route choice where there is
an issue associated with large choice sets.
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