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a b s t r a c t 

We propose a way to estimate a family of static Multivariate Extreme Value (MEV) models 

with large choice sets in short computational time. The resulting model is also straight- 

forward and fast to use for prediction. Following Daly and Bierlaire (2006), the correlation 

structure is defined by a rooted, directed graph where each node without successor is an 

alternative. We formulate a family of MEV models as dynamic discrete choice models on 

graphs of correlation structures and show that the dynamic models are consistent with 

MEV theory and generalize the network MEV model (Daly and Bierlaire, 2006). Moreover, 

we show that these models can be estimated quickly using the concept of network flows 

and the nested fixed point algorithm (Rust, 1987). The main reason for the short compu- 

tational time is that the new formulation allows to benefit from existing efficient solution 

algorithms for sparse linear systems of equations. 

We present numerical results based on simulated data with varying number of alterna- 

tives and nesting structures. We estimate large models, for example, a cross-nested model 

with 200 nests and 500,000 alternatives and 210 parameters that needs between 100–

200 iterations to converge (4.3 h on an Intel(R) 3.2 GHz machine using a non-parallelized 

code). We also show that our approach allows to estimate a cross-nested logit model of 

111 nests with a real data set of more than 10 0,0 0 0 observations in 14 h. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Discrete choice models with large choice sets are of interest in various applications such as route and location choice 

analysis. A large number of alternatives can make the estimation and application of models impractical. In this context, 

sampling alternatives becomes appealing. McFadden (1978) shows how to obtain consistent estimates with sampled choice 

sets for the multinomial logit (MNL) model. More recently, Guevara and Ben-Akiva (2013) extend the work of McFadden 

(1978) for the Multivariate Extreme Value (MEV) model. Their approach has been used with a cross-nested logit route 

choice model ( Lai and Bierlaire, 2015 ) and a mode destination choice model with simulated data ( Daly et al., 2014 ). Sam- 

pling alternatives may however be difficult and time consuming in practice, both for estimating model parameters and for 

making predictions. In this paper we propose a novel approach based on dynamic discrete choice models that allows to es- 

timate large-scale MEV models without sampling of alternatives. The approach is applicable when the correlation structure 
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can be represented by a network (we hence call it network-based) and it is convenient to use for prediction since choice 

probabilities can be computed quickly. 

Dynamic discrete choice models are in general more complex to estimate and to apply than static discrete choice models 

since they require dynamic programming problems to be solved in order to evaluate the log-likelihood function. Recently, 

Fosgerau et al. (2013a ), Mai et al. (2015) and Mai (2016) showed that modeling path choices in transport networks as a 

sequence of link-choices using a dynamic discrete choice formulation is actually simpler to deal with than static, path- 

based, discrete choice models. This paper builds on a similar idea but in a different context. We propose a dynamic discrete 

choice approach that allows large network-based MEV models ( McFadden, 1978; Daly and Bierlaire, 2006 ) to be estimated 

in short computational time. 

Daly and Bierlaire (2006) show how to define choice probability generating functions (CPGF) for a certain kind of MEV 

models ( Fosgerau et al., 2013b ). These models are defined by a rooted, cycle-free graph with parameters associated with 

nodes and arcs. This graph is referred to as an MEV-network (also known as Generalized Extreme Value, GEV, network). 

This way of defining an MEV model is useful because we can simply verify that the graph is an MEV-network, then this is 

an easy way to prove that the CPGF satisfies the MEV properties. This paper complements and extends the work by Daly 

and Bierlaire (2006) . 

Based on ideas from route choice modeling we consider the graph as a transport network where the root is an origin and 

nodes representing alternatives are viewed as destinations. A unit flow is inserted at the origin and is transported via the 

network, such that the expected flows arriving at the destinations correspond to probabilities. The transition probabilities of 

a flow between two nodes are defined based on a dynamic discrete choice model, in a way similar to the route choice model 

proposed by Mai et al. (2015) . We prove that the dynamic model is equivalent to a network MEV model ( Daly and Bierlaire, 

2006 ). Moreover, we prove that even if the graph contains cycles, the dynamic model is consistent with MEV theory. 

The main challenge lies in the definition and the computation of the expected maximum utility from a node in the 

graph to the nodes representing the alternatives (called value functions) and in the computation of choice probabilities. 

The value functions are computed using a value iteration method, while the choice probabilities are computed as the ex- 

pected flows from the root to destinations, which can be found as the solution to a system of linear equations. Moreover, 

efficient non-linear programming techniques require analytical derivatives of the log-likelihood function with respect to the 

unknown parameters. We show that also the derivatives of choice probabilities are solutions to systems of linear equa- 

tions. We use the nested fixed point algorithm proposed by Rust (1987) to estimate the model by maximum likelihood. We 

present a discussion on computational complexity and provide some comparisons of computational times that clearly show 

the superiority of the proposed approach, compared to the standard approach which is based on recursive equations. 

Even though the proposed dynamic model is formulated in a way similar to the recursive route choice model, the graphs 

in the present case are different from those of transport networks, as they have multiple destinations for each observation. 

Moreover, the link utilities are defined based on the structural parameters of the MEV model, and only the value function 

at the destinations represent the genetic utilities of the alternatives. 

In summary, this paper makes two main contributions. First, we formulate a family of MEV static discrete choice models 

as dynamic discrete choice models on graphs of correlation structures and show that these models, under certain conditions, 

are consistent with MEV theory and generalize the Daly-Bierlaire network MEV model. Second, we show how these models 

can be estimated by maximum likelihood in short computational time. The estimation code is implemented in MATLAB and 

we share the code freely via GitHub as an open source project. 1 

The paper is structured as follows. Section 2 briefly presents the network MEV model and Section 3 presents the dynamic 

discrete choice approach for formulating static discrete choice models. We provide an illustrative example of a cross-nested 

logit model in Section 4 . Furthermore, we show how to estimate the model by maximum likelihood in Section 5 . Numerical 

results based on simulated and real data sets are presented in Section 6 , and finally Section 7 concludes. 

2. The network MEV model 

Daly and Bierlaire (2006) propose the network MEV model as a general representation of a class of MEV models based 

on a network structure. They consider a rooted, connected and cycle-free graph G = (N , A ) where N and A are the set of 

nodes and arcs, respectively. There is at most one arc for any given node pair. Each node without successors defines an 

alternative j in choice set C . The graph defines the correlation structure (and a simple example is the well-known tree of a 

nested logit model where each leaf is an alternative). A parameter μk > 0 is associated with each node k and a parameter 

αka > 0 with each arc ( k, a ). The CPGFs are defined as 

G k (y ) = 

{
y 
μk 

k 
if k ∈ C ∑ 

a ∈N (k ) αka G a (y ) μk /μa if k ∈ N \ C, 
(1) 

where y k = e U k ( U k is the deterministic utility associated with the alternative represented by node k ) and N (k ) the set 

of successor nodes of node k . Daly and Bierlaire (2006) show that if G is cycle-free and μa ≥ μk , ∀ a ∈ N (k ) , then G k , 

for a given node k , is a μk -MEV CPGF. That is, the choice probabilities generated by G k ( y ) are consistent with random 

1 https://github.com/maitien86/ 

https://github.com/maitien86/
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utility maximization theory ( McFadden, 1973 ). Daly and Bierlaire (2006) provide a recursive formula to compute the choice 

probability, namely, 

P k ( j) = 

{ 

∑ 

a ∈N (k ) P a ( j)�ka if k ∈ N \ C 
1 if k = j 
0 if k ∈ C, k � = j 

∀ j ∈ C, (2) 

where �ka is 

�ka = 

αka G a (y ) μk /μa 

G k (y ) 
. 

The probability of choosing alternative j given by G r ( y ) is P r ( j ). 

3. Formulating the network MEV model using the dynamic discrete choice framework 

In this section we consider the same definition of the graph G as in the previous section, that is, an MEV-network. We 

focus on formulating choice probabilities using the dynamic discrete choice framework and to explain the derivation we 

use a transport network analogy. More precisely, we view the root as an origin and the nodes representing alternatives 

as destinations. There is at least one path connecting the root to any destination. The objective is to define the choice 

probability of each destination/alternative j ∈ C , where C is assumed to be a finite set. These are obtained by describing the 

choice problem as a sequential node choice made by a traveler going from the origin (root) to a destination/alternative. 

A key in our formulation is the fact that the probability of an alternative j ∈ C can be defined in terms of incoming 

flow. We consider a unit outgoing flow from the origin to multiple destinations and assign the choice probability of each 

alternative as the expected incoming flow at the respective destination. We denote the incoming flow at node a as F ( a ) and 

the probability of going from a to k as P ( a | k ), a, k ∈ N . The expected incoming flows is 

F (a ) = D (a ) + 

∑ 

k ∈N 
P (a | k ) F (k ) , ∀ a ∈ N , (3) 

where D is a vector with zero elements except for the origin which equals one. The choice probabilities P ( j ), j ∈ C are 

P ( j) = F ( j) , ∀ j ∈ C. (4) 

It is easy to show that 
∑ 

j∈ C P ( j) = 

∑ 

j∈ C F ( j) = 1 . Moreover, from (3) , the probability of choosing j ∈ C can be written 

equivalently as 

P ( j) = 

∑ 

[ k 0 , ... ,k J ] ∈ �( j) 

J−1 ∏ 

i =0 

P (k i +1 | k i ) , j ∈ C, (5) 

where �( j ) is the set of all paths connecting r and j . A path is defined by a sequence of nodes k 0 , k 1 , . . . , k J such that 

k i +1 ∈ N (k i ) , ∀ i = 0 , . . . , J − 1 , where k 0 is the root r and k J represents alternative j . 

Both definitions of P ( j ) are based on next node probabilities P ( a | k ), ∀ k, a ∈ N . In the following we present how next node 

probabilities can be computed using the dynamic discrete choice framework and ideas in Mai et al. (2015) . We associate a 

utility with each node a ∈ N (k ) conditional on its predecessor k 

u (a | k ;β) = v (a | k ;β) + 

1 

μk 

(ε(a ) − γ ) , 

where v ( a | k ; β) is a deterministic utility, β is a vector of parameters to be estimated, μk is a strictly positive scale parameter 

associated with node k , ε( a ) is extreme value type I distributed and i.i.d. over a ∈ N (k ) . Euler’s constant γ is subtracted to 

ensure that the random terms have zero mean. 

The node probabilities depend on the nodes that are available downstream. This is captured by the expected maximum 

utility (or value functions) V ( k ) from a node k to the destinations j ∈ C . We associate a deterministic utility U j with each 

alternative j ∈ C and define V ( j) = U j . We note that the node utilities play a different role than the value functions at 

the destinations. As we illustrate in Section 4 , they include parameters related to the correlation structure while the value 

functions at the destinations represent the genetic deterministic utilities of the alternatives. 

The model can be considered as a dynamic programming problem with absorbing states j ∈ C , thus the value function 

V ( k ) for k ∈ N \ C is recursively defined by Bellman’s equation 

V (k ;β) = E 

[
max 

a ∈N (k ) 

{ 

v (a | k ;β) + V (a ;β) + 

1 

μk 

(ε(a ) − γ ) 
} 

]
, ∀ k ∈ N \ C, 

or equivalently 

μk V (k ;β) = E 

[
max 

a ∈N (k ) 

{ 

μk ( v (a | k ;β) + V (a ;β) ) + ε(a ) 
} 

]
− γ , ∀ k ∈ N \ C, (6) 
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which in this case is the logsum 

μk V (k ;β) = ln 

( ∑ 

a ∈N (k ) 

e μk (v (a | k ;β)+ V (a ;β)) 
)
, ∀ k ∈ N \ C. (7) 

In order to simplify the notation we omit from now on β from the value functions V and from the node-based utilities v . It 

follows from (6) that the probability of node a given node k is given by the MNL model, 

P (k | a ) = δ(a | k ) e μk (V (a )+ v (a | k ) −V (k )) , ∀ k, a ∈ N , (8) 

where δ( a | k ) equals one if a ∈ N (k ) and zero otherwise. 

We define a vector Y of size |N | with entries 

Y k = e μk V (k ) , ∀ k ∈ N . (9) 

This allows us to write Bellman’s equation (7) as a system of non-linear equations 

Y k = 

{∑ 

a ∈N (k ) e 
μk v (a | k ) Y μk /μa 

a if k ∈ N \ C, 

e U k if k ∈ C. 
(10) 

Using (8) , the choice probability of node a given k can be written as 

P (a | k ) = δ(a | k ) e μk v (a | k ) Y 
μk /μa 

a 

Y k 
, ∀ k, a ∈ N . (11) 

The computation of the choice probabilities using (5) and (8) requires the vector of value functions Y . The latter can be 

solved by value iteration as we present in Section 5.1 . 

Proposition 1 states that if the graph is an MEV-network ( Daly and Bierlaire, 2006 ), then the proposed formulation is 

equivalent to the network MEV model. Hence, the choice probabilities of special cases of network MEV models, e.g. MNL, 

nested logit and cross-nested logit, can be computed using the proposed formulation. In this context it is interesting to note 

that any additive random utility model can be approximated by a cross-nested logit model ( Fosgerau et al., 2013b ). 

Proposition 1. If the graph G is a non-empty, cycle-free and μk ≤ μa , v (a | k ) = 

1 
μk 

ln αka , ∀ k, a ∈ N , a ∈ N (k ) , then the resulting 

model is equivalent to the network MEV model i.e. Y k = G k , ∀ k ∈ N , and the choice probabilities given by (2) and (3) are identical. 

Proof. We first prove that G k (y ) = Y k , ∀ k ∈ N . Indeed, under the hypotheses of Proposition 1 and according to (1) we have 

Y k = G k , ∀ k ∈ C. (12) 

For k ∈ N \ C, from (10) and using αka = e μk v (a | k ) , 

Y k = 

∑ 

a ∈N (k ) 

αka Y 
μk /μa 

a . (13) 

The result then follows from (1), (12) and (13) . Consequently, according to Daly and Bierlaire (2006) Y k associated with a 

node k ∈ N is a μk − MEV CPGF. Furthermore, from (11) we obtain 

�ka = P (a | k ) ∀ k ∈ N \ C, a ∈ N (k ) . 

This leads to the fact the probabilities given by (2) are identical to those given by (5) . �

Theorem 1 extends the results of Daly and Bierlaire (2006) by showing that even if the graph contains cycles, the result- 

ing model is consistent with MEV theory. 

Theorem 1. If the graph G is a non-empty and μk ≤ μa , ∀ k, a ∈ N , a ∈ N (k ) and the Bellman’s equation has a solution, then 

the model is an additive random utility MEV model with the CPGF G (e U i , i ∈ C) = Y r , and Y r is a μr − MEV CPGF. 

We provide the proof of this theorem in Appendix A . 

4. Illustrative example 

In this section we take the example of a cross-nested logit model to illustrate that the proposed formulation is equivalent 

to the CPGF given by Ben-Akiva and Bierlaire (1999) 

G (y 1 , . . . , y J ) = 

∑ 

m ∈M 

( ∑ 

j∈ C 
α jm 

y 
μm 

j 

) μ/μm 

, (14) 
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Fig. 1. A cross-nested structure. 

where M is the set of nests, μm 

, μ and αjm 

are the parameters of the model and 0 < μ ≤ μm 

, αjm 

≥ 0, ∀ j ∈ C, m ∈ M . The 

corresponding choice probability is 

P ( j) = 

∑ 

m ∈M 

(∑ 

j ′ ∈ C α j ′ m 

e μm U j ′ 
)μ/μm 

∑ 

m 

′ ∈M 

(∑ 

j ′ ∈ C α j ′ m 

′ e μm ′ U j ′ 
)μ/μm ′ 

α jm 

e μm U j ∑ 

j ′ ∈ C α j ′ m 

e μm U j ′ 
, ∀ j ∈ C. (15) 

In this case the graph consists of three layers: a root r , a set of nodes M representing the nests and a set of destination 

nodes C representing alternatives, as illustrated in Fig. 1 . 

There is an arc between the root and each nest and arcs from all nests to all alternatives. A parameter μm 

is associated 

with nodes m ∈ M and μ with the root ( μr = μ). We define v (a | m ) = 

1 
μm 

ln (αam 

) ∀ m ∈ M , a ∈ N (m ) where αam 

are nesting 

parameters but define v (m | r) = 0 , ∀ m ∈ M . According to (7) and (8) the probability of a ∈ C for a given m ∈ M is 

P (a | m ) = 

e μm (U a + v (a | m )) ∑ 

a ′ ∈N (m ) e 
μm (U a ′ + v (a ′ | m )) 

= 

αam 

e μm U a ∑ 

a ′ ∈ C αa ′ m 

e μm U a ′ 
, (16) 

and the nest probability is 

P (m | r) = 

e μr V (m ) ∑ 

m 

′ ∈M 

e μr V (m 

′ ) . (17) 

Moreover, for each node m ∈ M the value function given by (7) is 

V (m ) = 

1 

μm 

ln 

( ∑ 

a ∈N (m ) 

e μm (v (a | m )+ V (a )) 
)
. (18) 

Using (5), (16), (17) and (18) , the choice probability of choosing a ∈ C is 

P (a ) = 

∑ 

m ∈M 

P (m | r) P (a | m ) 

= 

∑ 

m ∈M 

(∑ 

a ′ ∈ C αa ′ m 

e μm U a ′ 
)μr /μm 

∑ 

m 

′ ∈M 

(∑ 

a ′ ∈ C αa ′ m 

′ e μm ′ U a ′ 
)μr /μm ′ 

αam 

e μm U a ∑ 

a ′ ∈ C αa ′ m 

e μm U a ′ 
, 

which is equivalent to the choice probability given by (15) . 

5. Maximum likelihood estimation 

In this section we show how the model can be estimated using the nested fixed point algorithm proposed by Rust (1987) . 

The algorithm combines an outer iterative non-linear optimization algorithm searching over the parameter space with an 

inner algorithm solving the value functions. The likelihood function and consequently the value functions are evaluated for 

each iteration of the non-linear optimization algorithm. The speed of the algorithm depends critically on how fast the value 

functions can be solved. We present a solution method that allows to quickly compute the value functions and the choice 

probabilities. 

5.1. Solving the value functions 

The value functions are the solution to a system of non-linear equations (10) . We can solve this system using a simple 

value iteration method. To do so we introduce matrix notation and define a matrix M of size |N | × |N | and a vector b of 



184 T. Mai et al. / Transportation Research Part B 98 (2017) 179–197 

size |N | , with entries 

M ka = δ(a | k ) e μk v (a | k ) ; b k = 

{
e U k if k ∈ C 
0 if k ∈ N \ C, 

(19) 

and a matrix X ( Y ) of size |N | × |N | , with entries X(Y ) ka = Y 
μk /μa 
a , ∀ k, a ∈ N . We can write (10) in as 

Y k = 

∑ 

a ∈N 
M ka Y 

μk /μa 

a + b k , ∀ k ∈ N , (20) 

or equivalently 

Y = [ M ◦ X (Y )] e + b, (21) 

where ◦ is the element-by-element multiplication and e is a vector of size |N | with value one for all nodes. This equation 

can be solved by a value iteration. We start with an initial vector Y (0) and compute a new vector for each iteration i 

Y (i +1) ← [ M ◦ X (Y (i ) )] e + b. 

We iterate until a fixed point is found using || Y (i +1) − Y (i ) || 2 < ς for a given threshold ς > 0 as stopping criteria. It can be 

shown that if the Bellman equation has a solution, the value iteration method converges after a finite number of iterations 

(see for instance Rust, 1987; 1988 ). If the Bellman equation has no solution, then the sequence { Y (0) , Y (1) . . . } is unbounded. 

Mai et al. (2015) use value iteration with dynamic accuracy to compute the vector of the value functions in a real road 

network which contains cycles. Theorem 2 states that, in the case of network MEV models (cycle-free graphs) the value 

iteration method converges to a unique fixed point after a finite number of iterations. We observed that, in practice, only 

a few iterations are needed, for instance, it requires only two iterations for a MNL model and three iterations for a cross- 

nested logit model, independently of the number of nodes and the structure of the graph. 

Theorem 2. If the graph G is cycle-free, then there exists an integer number K > 0 such that Y (i ) = Y (K) , ∀ i ≥ K. 

The proof of this theorem is given in Appendix B . 

5.2. Choice probabilities 

In Section 3 we present two equivalent definitions of choice probabilities: one based on all paths connecting the root 

with the destination/alternative and another based on incoming flow. Enumerating all paths can be expensive and in this 

section we show that the latter approach is fast since it amounts to solving a system of linear equations. 

We can conveniently write (3) in matrix notation as a system of linear equations 

(I − P 

T ) F = D, (22) 

where I is the identity matrix and P is a matrix of size |N | × |N | with entries P ka = P (a | k ) , ∀ k, a ∈ N . The probabilities of 

the alternatives in C are the corresponding entry flows 

P ( j) = F ( j) , ∀ j ∈ C. (23) 

(I − P 

T ) is invertible ( Proposition 2 ), meaning that (22) has an unique solution. We can therefore compute the choice prob- 

abilities of the alternatives in C by just solving the system of linear equations in (22) . 

Proposition 2. (I − P 

T ) is invertible. 

The proof is given in Appendix C . 

5.3. Log-likelihood function and non-linear optimization 

We assume that the utilities associated with alternatives, the deterministic utility associated with a pair of nodes v ( a | k ), 

a ∈ N (k ) , and the scales of the model μk , k ∈ N are functions of parameters β to be estimated. They can, for example, be a 

sub-vector of β , constants or exponential functions of β as in Mai et al. (2015) . The log-likelihood function is defined over 

observations n = 1 , . . . , N, 

LL (β) = 

N ∑ 

n =1 

ln P (i n | C n ) , (24) 

where i n is the chosen alternative, C n the choice set of n and P ( i n | C n ) is computed using (22) . 

In large-scale MEV models there can be many parameters associated with nodes μk , k ∈ N , and node pair utilities v ( a | k ). 

Not all of them are identifiable from data and normalizations are required. More precisely, as stated by Proposition 1 and 

Theorem 1 , μa ≥ μk > 0, ∀ a ∈ N (k ) , need to be satisfied to ensure MEV consistency. Since only the ratios of μk , ∀ k ∈ N , 
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Fig. 2. A cross-nested structure. 

matter in the model, we are free to fix μr = 1 . The maximum log-likelihood estimation problem is therefore formulated as 

a constrained non-linear optimization problem 

max β LL (β) 
s.t. μa ≥ μk > 0 , ∀ a ∈ N (k ) 

μr = 1 . 

We note that specific models may require additional constraints that are not written here. For instance, in the network 

MEV model, the expected values of the random terms depend on αka , ∀ k, a ∈ N , a ∈ N (k ) , and may consequently vary 

over alternatives. It is therefore critical to define normalization constraints on the α parameters in order to have consistent 

expected utilities, Daly and Bierlaire (2006) propose such constraints. For the cross-nested logit model given by (14) and 

(15) , the α parameters could be constrained to sum to one, i.e., 
∑ 

m ∈ M 

αμm /μ
jm 

= 1 ( Abbé et al., 2007; Papola, 2004 ). 

Efficient non-linear optimization methods require the gradient of the log-likelihood function. We provide analytical 

derivatives in Appendix D and show that they are solutions to systems of linear equations, which makes their computa- 

tion convenient. Moreover, we derive elasticities in Appendix E and show that they also can be obtained by solving systems 

of linear equations. 

6. Application to large problems 

In this section we report the performance of the proposed approach based on simulated and real data. In Sections 6.1 –6.3 

we present results on different simulated data sets to illustrate the performance of our method. The objective is to evaluate 

the computational time required to estimate different MEV models with large choice sets. Simulated data serves this purpose 

well since we can choose the number of alternatives, observations and nesting structure. We also present results based on 

real data in Section 6.4 in order to illustrate how the proposed approach can be used to model a real choice problem and 

we analyze the computational time. 

6.1. Experimental setup 

For the purpose of this experiment, we use the same attribute values for all observations and we simulate a large number 

of observations so that the model parameters can be identified. This setup allows us to solve the value functions once each 

time we evaluate the log-likelihood function. This serves well the purpose of the numerical results since the computational 

time mainly stems from the evaluation of the value functions. When the value functions are specific to each observation or 

to different groups of observations, the code associated with the evaluation of the log-likelihood function can be parallelized 

to decrease the computational time. The most efficient way to do this depends on the application. We provide a more in- 

depth discussion on computation time in Section 6.3 . In the following we present the experimental setup in more detail. 

We use three different models (named CNL-1, CNL-2 and N-MEV) to generate observations. The first two models are 

cross-nested logit models (discussed in Section 4 ) and the corresponding MEV-network is illustrated in Fig. 2 . The two 

models have different numbers of nests, CNL-1 has 5 and CNL-2 has 200. The third model (N-MEV) is a three-levels cross- 

nested logit model and the graph of this model is illustrated in Fig. 3 . The first level has 5 nests and the second level has 

50 nests, level one nests connect to all level two nests and level two nests connect to all alternatives. Note that the sizes 

of these graphs depend on the numbers of alternatives in the choice sets. In this experiment we create three choice sets of 

sizes 10,0 0 0, 10 0,0 0 0 and 50 0,0 0 0, denoted by D1, D2 and D3, respectively. 

We associate 6 different attributes with each alternative. The attributes are generated uniformly in the interval [0, 5] 

using independent draws. The deterministic utility of each alternative is specified as a linear-in-parameters formulation of 

the six attributes. In order to generate observations, we manually choose parameter values in the interval [ −1 , −2] . Simi- 

larly, we choose the values of μk and αka = e μk v (a | k ) , ∀ k ∈ N \ C, a ∈ N (k ) , in the intervals the intervals [0.5, 1] and [0, 1], 

respectively. For each model we simulate samples of size 10 5 , 10 6 and 2 × 10 6 from choice sets D1, D2 and D3. We show a 

summary of the setup in Table 1 . 
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Fig. 3. A three-levels cross-nested structure. 

Table 1 

Models and simulated data sets. 

Models Nb. alternatives # arcs # Obs. 

in graphs 

CNL-1 10,0 0 0 (D1) 17,262 10 0,0 0 0 

(5 nests) 10 0,0 0 0 (D2) 172,376 1,0 0 0,0 0 0 

50 0,0 0 0 (D3) 862,597 2,0 0 0,0 0 0 

CNL-2 10,0 0 0 (D1) 30,011 10 0,0 0 0 

(200 nests) 10 0,0 0 0 (D2) 298,237 1,0 0 0,0 0 0 

50 0,0 0 0 (D3) 1,490,207 2,0 0 0,0 0 0 

N-MEV 10,0 0 0 (D1) 56,972 10 0,0 0 0 

(5–50 nests) 10 0,0 0 0 (D2) 566,751 1,0 0 0,0 0 0 

50 0,0 0 0 (D3) 2,831,668 2,0 0 0,0 0 0 

We estimate all the parameters associated with alternative utilities and all the scale parameters μk , ∀ k ∈ N \ C. There are 

many parameters αka , ∀ k ∈ N , a ∈ N (k ) and estimating all of them is impractical. For the sake of illustration, we estimate 

four of them (arbitrarily chosen) for the models CNL-1 and CNL-2 and fix the others at their true values. So model CNL-1 

has 10 parameters to be estimated and 7 constraints, model CNL-2 has 211 parameters to be estimated and 202 constraints. 

For the model N-MEV we estimate 56 scale parameters μk , k ∈ N \ C and all parameters αka ∀ a ∈ N (k ) and k, a ∈ N \ C. 

The remaining parameters are fixed to their true values. Consequently, the N-MEV model has 305 constraints and 312 pa- 

rameters to be estimated. 

Algorithm 1: Log-likelihood( β). 

begin 

# 1. Compute the value functions Y = 0 ;
do 

Y pre v = Y ; 

Y = [ M ◦ X(Y )] .e + b; 

while Y � = Y pre v ; 

# 2. Compute the gradients of the value functions, nb pars is the number of parameters, see Appendix D 

for i=1 to nb pars do 

∂V 

∂βi 

= (I − L ) −1 (Re + h ) ;

end ; 

# 3. Compute the choice probabilities 

F = (I − P 

T ) −1 D ;
# 4. Compute the gradients of the choice probabilities, see Appendix D 

for i=1 to nb pars do 

∂F 

∂βi 

= (I − P 

T ) −1 ∂P 

T 

∂βi 

F ;

end ; 

# 5. Compute the log-likelihood function and its gradient 
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Table 2 

Computational time (in seconds). 

Models Choice sets Computational time 

LL and gradient Estimation Elasticities 

CNL-1 D1 0.14 4.61 0.04 

D3 1.75 301.55 0.48 

D5 7.84 1462.9 2.27 

CNL-2 D1 1.44 84.62 0.06 

D2 18.29 1073.93 0.59 

D3 88.52 15,566.32 3.08 

N-MEV D1 2.74 715.6 0.12 

D2 38.47 11,464.06 1.14 

D3 162.52 52,168.92 5.52 

The pseudo-code in Algorithm 1 is used to compute the log-likelihood function and its gradient based on the methods 

proposed in Section 5 . We use the MATLAB fmincon interior point algorithm with BFGS Hessian approximation to solve the 

constrained optimization problems. For the large models (CNL-2 and N-MEV), the Hessian is approximated by the limited 

memory BFGS (L-BFGS) ( Liu and Nocedal, 1989 ). 

Our code is implemented in MATLAB 2015 and we use an Intel(R) 3.20 GHz machine with a x64-based processor. It is 

running in the Window 8 64-bit Operating System. The machine has a multi-core processor but we only use one processor 

to estimate the models as the code is not parallelized. 

6.2. Computational time results 

In Table 2 , we report the computation time required to estimate the models for the different data sets. Given that there 

are many parameters, we do not report the parameter estimates but note that they are not significantly different from their 

true values according t -tests at the 0.05 significance level. 

For the choice set D1 (10,0 0 0 alternatives) it takes around 5 s to estimate model CNL-1 and less than 2 min for estimating 

CNL-2. For the largest choices set (50 0,0 0 0 alternatives), the estimation requires approximately 20 min for model CNL-1 and 

around 4 h for model CNL-2. It is fast to compute elasticities, 5 s for the largest choice set with CNL-2. We note that for all 

the cross-nested logit models, the optimization algorithm needs around 10 0–30 0 iterations to converge. 

We now turn our attention to the results for model N-MEV which is the most time consuming model to estimate. The 

non-linear optimization algorithm requires from 300 to 500 iterations to converge (the algorithm needs less than 50 itera- 

tions if the scale parameters μk are not estimated). The results show that we can estimate a large-scale three-levels network 

MEV model (N-MEV) with the largest choice set (50 0,0 0 0 alternatives) in approximately 14 h. 

Finally, we note that if the alternative utilities are observation specific, then we need to compute the value functions 

and their gradients for each observation. In this case, the computational time increases proportionally to the number of 

observations if the code is not parallelized. For example, if the number of observations is 10 0 0, then the computation of the 

log-likelihood and its gradients would take approximately 140 s for CNL-1 with 10,0 0 0 alternatives, 1750 s for CNL-1 with 

10 0,0 0 0 alternatives, and more than 5 h for CNL-2 with 10 0,0 0 0 alternatives. For large number of observations it is obvious 

that the log-likelihood function and its gradient should be computed using several processors in parallel. 

6.3. Comparisons of computational time 

Based on the same experimental setting as in the previous section, the objective of this section is to provide a discussion 

of computational time of the dynamic programming approach as well as to present comparisons with the standard approach. 

The computations using the dynamic approach can be done as sparse matrix operations while the standard approach relies 

on recursive operations. The proposed matrix operation formulation allows us to benefit from existing efficient algorithms 

for solving large sparse systems of linear equations. This is the main reason for the reduction in computational time. In the 

following we provide more details. First, we provide an abstract discussion of computational time for the two approches in 

the case of observation specific utilities. This means that the value functions and their gradients need to be solved for each 

observation. Second, we present a comparison of computational time using the previously presented experiment. 

Algorithm 1 shows the pseudo code to compute the log-likelihood and its gradient using matrix operations. All the 

matrices in Algorithm 1 have the size of |N | × |N | . They are sparse and the number of non-zero elements is |A| , i.e., the 

number of arcs in the graph. So the complexity of matrix operations is typically proportional to |A| ( Gilbert et al., 1992 ). 

We note that, when the value functions are observation specific, given an observation, four steps #1, #2, #3, and #4 need 

to be performed to compute the choice probability as well as its gradients. In the following we discuss the computational 

complexity of those steps in more detail. 

We denote φ(|A| ) the computational time for each iteration in the value iteration method and ϕ(|A| ) the computational 

time for solving a system of linear equations Ax = b, where A is a matrix of size |N | × |N | with |A| non-zero elements. The 
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Algorithm 2: getYrecur(k) # Compute the CPGF at node k . 

begin 

forall the a ∈ N (k ) do 

if Y (a ) has not been computed then 

if a ∈ C then 

Y (a ) = e U a ; 

else 
Y (a ) = getYrecur(a) ; 

return b k + 

∑ 

a ∈N (k ) M ka Y (a ) μk /μa ; 

Table 3 

Computational time comparisons (in seconds). 

ˆ φ(|A| ) ˆ ϕ (|A| ) ˆ τ 1 (|A| ) , ̂  τ 2 (|A| ) 
[0.28;0.32] [0.035;0.045] [4.5;5.5] 

total computational time to evaluate a choice probability and its gradient using a single processor can be approximated by 

CT M = nb iters × φ(|A| ) + (2 nb pars + 1) × ϕ(|A| ) , (25) 

where nb iters is the number of iterations required for the value iteration method. 

The estimation of the network MEV model can also be carried out using the recursive functions proposed by Daly 

and Bierlaire (2006) . In this case, a choice probability and its gradients can be computed based on the first 4 steps in 

Algorithm 1 but using recursive functions instead of matrix operations. More precisely, the CPGFs and their gradients can 

be computed using (1) , and the choice probabilities using (2) . Note that under the hypotheses of Proposition 1 we have 

Y (a ) = G a and �ka = P (a | k ) , ∀ k, a ∈ N , a ∈ N (k ) . Algorithm 2 shows a recursive implementation to compute Y ( k ) (or G k ), 

for a node k ∈ N . The computational time of a recursive implementation is typically proportional to |A| . The gradients of 

the CPGFs, the choice probabilities as well as their gradients can be computed by a similar recursive implementation as in 

Algorithm 2 . Finally, the computational time to compute an observation probability and its gradients using recursive func- 

tions can be approximated by 

CT R = (nb pars + 1) × τ 1 (|A| ) + (nb pars + 1) × τ 2 (|A| ) , (26) 

where (nb pars + 1) × τ 1 (|A| ) is the time associated with the evaluation of the CPGFs and their gradients, and (nb pars + 1) ×
τ 2 (|A| ) is the time associated with the choice probability and the respective gradients. We note that, for a given alternative 

j ∈ C , (2) needs to be evaluated in order to compute P ( j | C ). 

We now turn our attention to a comparison between the computational times given in (25) and (26) . We start with a 

discussion of the four values τ 1 (|A| ) , τ 2 (|A| ) , φ(|A| ) and ϕ(|A| ) . When solving sparse systems of linear equations, iterative 

methods are often used. Many studies have focused on how to speed up large-scale sparse matrix operations, especially 

solving sparse systems of linear equations (e.g. Gilbert et al., 1992; Saad, 2003; Barrett et al., 1994 ). These methods produce 

an approximate solution after a finite number of iterations through a matrix-vector product or an abstract linear operator 

( Saad, 2003 ). This leads to the fact that ϕ(|A| ) only involves product or linear operators. Since φ(|A| ) involves raising each 

element of a matrix by a real exponent, φ(|A| ) , τ 1 (|A| ) and τ 2 (|A| ) are expected to be larger than ϕ(|A| ) . 
We now compare CT R with CT M . Since ϕ(|A| ) is expected to be smaller than φ(|A| ) , τ 1 (|A| ) , τ 2 (|A| ) , and φ(|A| ) , 

τ 1 (|A| ) , τ 2 (|A| ) may be not significantly different, we expect, for network MEV models with large number of alternatives, 

CT M to be smaller than CT R . 
We provide a numerical example using model CNL-2 with choice set D3 and report the ranges of ˆ φ(|A| ) , ˆ ϕ (|A| ) , 

ˆ τ 1 (|A| ) and ˆ τ 2 (|A| ) in Table 3 (these are approximated values of φ(|A| ) , ϕ(|A| ) , τ 1 (|A| ) , τ 2 (|A| ) when performing 

Algorithms 1 and 2 in MATLAB). We note that nb iter = 3 in Algorithm 1 , and in order to achieve good performance, we 

compute the final sum in Algorithm 2 as a matrix operation instead of a for-loop. As expected, ˆ ϕ (|A| ) < 

ˆ φ(|A| ) and 

ˆ ϕ (|A| ) < min { ̂  τ 1 (|A| ) , ̂  τ 2 (|A| ) } . Moreover, ˆ φ(|A| ) < min { ̂  τ 1 (|A| ) , ̂  τ 2 (|A| ) } . These results indicate that the matrix operations 

need less time than the recursive functions to solve systems of sparse linear equations. Consequently, the computational 

time for evaluating a choice probability and its gradient is also smaller, compared to the recursive approach. This is shown 

in Table 4 where we report the computational times for performing the first 4 steps of Algorithm 1 . In the following we 

comment on each of these steps. 

In Step # 1 we compute the value functions, relying on large sparse linear systems. In MATLAB, solving such systems is 

faster than computing the recursive functions as we can rely on matrix operations and efficient linear systems solvers. The 

two approaches are otherwise similar and both update values recursively. To illustrate this fact, we consider a cycle-free 

network. If we assign each node a rank corresponding to the number of the arcs of the longest path from this node to the 
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Table 4 

Computational time (in seconds) comparisons of ma- 

trix and recursive operations. 

Step Matrix operations Recursive functions 

#1 1.21 4.55 

#2 9.31 1117.8 

#3 0.031 5.975 

#4 8.90 1258.7 

destinations, then we can show that (see Appendix B ), during the value iteration method, the value function at the nodes 

of rank (0) (i.e. destinations) are updated to their fixed point values after the first iteration, and the value function at nodes 

of rank (1) are updated after the second iteration, and so forth. There are remarkable differences between matrix operations 

and recursive functions in Steps #2, #3 and #4. The differences in these steps are again due to the good performance 

of solving systems of linear equations. The differences between Steps #3 and #4 are mainly due to the large number of 

parameters to be estimated (the model CNL-2 has 211 parameters). If we estimate the model with 10 0 0 observations, in 

order to evaluate the log-likelihood and its gradients, the Steps #3 and #4 take 31 s and 8900 s, respectively, if using 

matrix operations while they are 5975 and ≈ 10 6 s, respectively, for the recursive functions. Hence, the matrix operation 

approach is still over a hundred times faster. 

It is important to note that, if the value functions are not observation specific, the computational time using the recur- 

sive functions still increases proportionally with the number of observations while this number does not significantly affect 

the computational time using the matrix operations, as shown in the previous section. Hence, in real applications, if the 

observations can be aggregated into different groups such that the value functions are group specific, then we can solve the 

value functions once for each group and reduce the computational cost. This is also an advantage of the dynamic program- 

ming approach, compared to the recursive functions. We acknowledge that there may exist better implementations of the 

recursive functions that we are unaware of. Nevertheless, the results clearly show the potential of the dynamic programming 

approach. 

6.4. Application to real data 

In this section we illustrate the performance of Algorithm 1 on real data by estimating a cross-nested logit model. The 

data is confidential so we cannot provide a descriptive analysis, however it still serves our purpose well since the objective 

is to assess the performance in terms of computational time and to illustrate that the approach can be used on real data. 

The data comes from a retail business and corresponds to records of product purchases. It was collected from week 35 th 

to 52 nd in 2013 in 229 stores across the U.S. and contains 134,320 observations. The choice set contains 374 alternatives and 

the main attribute is price. In addition, the alternatives are categorized according to their characteristics and these are cap- 

tured by 111 constants. We specify a cross-nested structure grouping the alternatives according these characteristics which 

results in 111 nests and 1981 links in the network of correlation structure. We estimate the μ parameters and parameters 

associated with products’ attributes, the α parameters are kept equal for each product. So there are 223 parameters to be 

estimated. 

While the number of alternatives is considerably smaller than in the experimental setup, the choice sets are observation 

specific. More precisely, the data set contains 3565 different observed choice sets (subset of products that are available in a 

given store) and the numbers of products in the choice sets vary from 43 to 162. The value functions are choice set specific, 

meaning that in order to compute the LL function, the value functions needs to be solved 3565 times. We need 5.5 min 

to compute the log-likelihood functions and its gradients. The outer algorithm converges in 150 iterations, so in total we 

need approximately 14 h to estimate the model. We note that the recursive approach becomes too expensive for this data 

set because we need several hours to evaluate the log-likelihood function. The estimation would hence take several months, 

under the same experimental setting. Finally we note that the dynamic programming approach is fast for forecasting. We 

can compute the choice probabilities for more than 30 0 0 choice sets in a few seconds. 

7. Conclusion 

In this paper we have introduced a novel approach to construct the network MEV model using the dynamic discrete 

choice framework. We have shown that under certain conditions the resulting models is consistent with McFadden’s MEV 

theory and generalizes the network MEV model. We presented a new estimation method that is convenient to use for 

estimating network-based MEV models with large choice sets i.e. computing choice probabilities using the expected flows in 

the graph, estimating the model using the nested fixed point algorithm and computing the model derivatives and elasticities 

by solving systems of linear equations. The proposed formulation can be used to compute predicted probabilities in a fast 

and straightforward way. 

We have presented numerical experiments using simulated and real data. The results on simulated data indicate that we 

are able to quickly estimate the cross-nested logit and multi-levels network MEV models with large choice sets and large 
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number of observations. We also provided a discussion of the computational time of the dynamic programming approach 

compared to recursive operations. The key advantage of the proposed formulation is that computations to a large extent rely 

on solving sparse systems of linear equations which makes it possible to benefit from existing efficient solution methods. 

This is the main explanation for the short computational times. We also show that the model can be used to analyze real 

choices when choice sets vary over observations. In this case the estimation can be done in reasonable time and the model 

allows to compute predicted choice probabilities fast. 

A sampling of alternatives approach can also be used to estimate models when choice sets are very large or even infinite. 

In this case, utilities need to be corrected in order to obtain consistent (but not efficient) parameter estimates. Such cor- 

rections are easy to compute for logit models ( McFadden, 1978 ) but less so for other MEV models ( Guevara and Ben-Akiva, 

2013 ). While a sampling of alternatives approach represents an option for estimation, it is unclear how to use the same 

approach for prediction. The proposed formulation allows to do both in short computational time. 

Finally we note that the estimation code is implemented in MATLAB and is available on GitHub. 2 
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Appendix A. Proof of Theorem 1 

This appendix presents a proof for Theorem 1 . We first introduce some definitions. 

Definition 1. Given a set of nodes U ⊆ N and k, a ∈ U , we denote �(k, a, U ) be the set of paths of strictly positive lengths 

that connect k and a via nodes in U , i.e., �(k, a, U ) = { [ k 0 , . . . , k J ] | k 0 = k ; k J = a ; k i ∈ U; k i +1 ∈ N (k i ) ∀ i = 0 , . . . , J − 1 ; J ≥ 1 } . 
Note that if k = a and �(k, a, U ) � = ∅ , then �(k, a, U ) contains all the cycles going from k and come back to k via nodes 

in U . 

Definition 2. Given a set of nodes U ⊆ N and k, a ∈ U , π(k, a, U ) = 1 if �(k, a, U ) � = ∅ or k ≡ a , and π(k, a, U ) = 0 otherwise. 

Definition 3. Given a set U ⊆ N and a node k ∈ U , K(k, U ) is the set of nodes that are connected to k via nodes in U , i.e., 

K(k, U ) = { a | π(k, a, U ) = 1 } , ∀ k ∈ U . 

Definition 4. Given a set U ⊆ N , we define Y(U ) to be a system of non-linear equations which contains the following 

equations 

Y k = 

{ ∑ 

a ∈N (k ) ∩U M ka Y 
μk /μa 

a if k ∈ U\ C 
e U k if k ∈ U ∩ C 
0 if k / ∈ C, N (k ) ∩ U = ∅ , 

(27) 

where M ka , ∀ a, k ∈ N , are defined in (19) . 

Lemma 1. Under the hypotheses in Theorem 1 , given U ⊆ N and two nodes a, k ∈ U , if π(k, a, U ) = 1 and π(a, k, U ) = 1 then 

μa = μk . 

Proof. The lemma is obviously verified, as μk ≤ μa if π(k, a, U ) = 1 , ∀ k, a ∈ U . �

Lemma 2. Under the hypotheses of Theorem 1 and given a set U ⊆ N . If (Y k , k ∈ U ) is a vector solution to Y(U ) , then given a 

node k 0 ∈ U\ C and N (k 0 ) ∩ U � = ∅ , there exist a set of vectors { Y a , a ∈ N (k 0 ) ∩ U} and a scalar λ > 0 which is independent of 

Y i , ∀ i ∈ C, such that 

(i) Y a is a vector solution to system Y ( K(a, U ) \{ k 0 } ) , and 

(ii) Y k 0 = λ
∑ 

a ∈N (k 0 ) ∩U M k 0 a 
(Y a a ) 

μk 0 
/μa 

, 

where Y a a is the entry in Y a corresponding to node a , ∀ a ∈ N (k 0 ) ∩ U . 

Proof. From (27) , for given a node k ∈ K(k 0 , U ) \ C and N (k ) ∩ U � = ∅ we can write the recursive equation as 

Y k = 

∑ 

a ∈N (k ) ∩U 
π(a,k 0 , U )=0 

M ka Y 
μk /μa 

a + 

∑ 

a ∈N (k ) ∩U 
π(a,k 0 , U )=1 

M ka Y 
μk /μa 

a . (28) 

2 https://github.com/maitien86/ 

https://github.com/maitien86/
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We have π(k 0 , k, U ) = 1 , so for each a ∈ N (k ) if π( a, k 0 , U ) = 1 then π(k, a, U ) = π( a, k, U ) = 1 . According to Lemma 1 we 

have μa = μk and (28) can be written as 

Y k = 

∑ 

a ∈N (k ) ∩U 
π(a,k 0 , U )=0 

M ka Y 
μk /μa 

a + 

∑ 

a ∈N (k ) ∩U 
π(a,k 0 , U )=1 

M ka Y a . (29) 

In a similar way for each Y a such that π(a, k 0 , U ) = 1 , we can write Y a as a sum of two parts as in (28) . The first part 

involves nodes that are not connected to k 0 and the second involves nodes that are connected to k 0 . Hence, the value of Y k 
can be written as 

Y k = 

∑ 

σ∈ �( k,a, U ) 
a ∈K(k, U ) 

π(a,k 0 , U )=0 

v (σ ) Y μk /μa 

a + 

∑ 

σ∈ �(k,k 0 , U ) 

v (σ ) Y k 0 (30) 

where v (σ ) = 

∏ J−1 
i =0 

M h i h i +1 
given a path σ = { h 0 , . . . , h J } . 

Now using (27) and then (29) and (30) , we can write Y k 0 as 

Y k 0 = 

∑ 

a ∈N (k 0 ) ∩U 
M k 0 a Y 

μk 0 
/μa 

a 

= 

∑ 

a ∈N (k 0 ) ∩U 
π(a,k 0 , U )=0 

M k 0 a Y 
μk 0 

/μa 

a + 

∑ 

a ∈N (k 0 ) ∩U 
π(a,k 0 , U )=1 

M k 0 a 

⎛ 

⎜ ⎜ ⎜ ⎝ 

∑ 

σ∈ �( a,c, U ) 
c∈K(a, U ) 

π(c,k 0 , U )=0 

v (σ ) Y μa /μc 

c + 

∑ 

σ∈ �(a,k 0 , U ) 

v (σ ) Y k 0 

⎞ 

⎟ ⎟ ⎟ ⎠ 

= 

∑ 

a ∈N (k 0 ) ∩U 
π(a,k 0 , U )=0 

M k 0 a Y 
μk 0 

/μa 

a + 

∑ 

a ∈N (k 0 ) ∩U 
π(a,k 0 , U )=1 

M k 0 a 

∑ 

σ∈ �( a,c, U ) 
c∈K(a, U ) 

π(c,k 0 , U )=0 

v (σ ) Y μa /μc 

c + 

∑ 

σ∈ �(k 0 ,k 0 , U ) 

v (σ ) Y k 0 . 

This is equivalent to ( 

1 −
∑ 

σ∈ �(k 0 ,k 0 , U ) 

v (σ ) 

) 

Y k 0 = 

∑ 

a ∈N (k 0 ) ∩U 
π(a,k 0 , U )=0 

M k 0 a Y 
μk 0 

/μa 

a + 

∑ 

a ∈N (k 0 , U ) 
π(a,k 0 , U )=1 

M k 0 a 

∑ 

σ∈ �( a,c, U ) 
c∈K(a, U ) 

π(c,k 0 , U )=0 

v (σ ) Y μa /μc 

c . 

If we denote λ = 

1 
1 −∑ 

σ∈ �(k 0 ,k 0 , U ) v (σ ) 
, then we get 

Y k 0 = λ

⎛ 

⎜ ⎜ ⎜ ⎝ 

∑ 

a ∈N (k 0 ) ∩U 
π(a,k 0 , U )=0 

M k 0 a Y 
μk 0 

/μa 

a + 

∑ 

a ∈N (k 0 , U ) 
π(a,k 0 , U )=1 

M k 0 a 

∑ 

σ∈ �( a,c, U ) 
c∈K(a, U ) 

π(c,k 0 , U )=0 

v (σ ) Y μa /μc 

c 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. (31) 

It is obvious that λ is independent of Y i , ∀ i ∈ C , and according to (31) we have λ > 0, as Y k 0 and the term in the parentheses 

are positive. The lemma can be proved by considering each part in the sum in the parentheses in (31) as follows. 

We consider the first part of the sum in the parentheses in (31) . Given a node a 1 ∈ N (k 0 ) ∩ U with π(a 1 , k 0 , U ) = 0 , we 

have k 0 / ∈ K(a 1 , U ) and consequently K(a 1 , U ) \{ k 0 } ≡ K(a 1 , U ) . Now we will prove that (Y a ′ , a ′ ∈ K(a 1 , U )) is a vector solu- 

tion to the system Y ( K(a 1 , U ) \{ k 0 } ) . Under the hypotheses of the lemma and the definition in (27) we have that (Y k ′ , k ′ ∈ U ) 

is a vector solution to Y(U ) . So given a node a ′ ∈ K(a 1 , U ) ⊂ U we have the following system of equations 

Y a ′ = 

{ ∑ 

c∈N (a ′ ) ∩U M a ′ c Y 
μa ′ /μc 

c if a ′ ∈ U\ C 
e U a ′ if a ′ ∈ U ∩ C 
0 if a ′ / ∈ C, N (a ′ ) ∩ U = ∅ . 

(32) 

The following remarks are obviously verified: (i) N (a ′ ) ∩ U ≡ N (a ′ ) ∩ K(a 1 , U ) , (ii) (U \ C) ∩ K(a 1 , U ) ≡ K(a 1 , U ) \ C, (iii) (U ∩ 

C) ∩ K(a 1 , U ) ≡ K(a 1 , U ) ∩ C. From (i), (ii) and (iii), (32) can be written as 

Y a ′ = 

{ ∑ 

c∈N (a ′ ) ∩K(a 1 , U ) M a ′ c Y 
μa ′ /μc 

c if a ′ ∈ K(a 1 , U ) \ C 
e U a ′ if a ′ ∈ K(a 1 , U ) ∩ C 
0 if a ′ / ∈ C, N (a ′ ) ∩ K(a 1 , U ) = ∅ , 

leading to the fact that (Y a ′ , a ′ ∈ K(a 1 , U )) is a vector solution to the system Y ( K(a 1 , U ) ) . Moreover, as mentioned earlier, 
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K(a 1 , U ) \{ k 0 } ≡ K(a 1 , U ) , so we can write the first part of the sum in the parentheses in (31) as ∑ 

a 1 ∈N (k 0 ) ∩U 
π(a 1 ,k 0 , U )=0 

M k 0 a 1 Y 
μk 0 

/μa 1 

a = 

∑ 

a 1 ∈N (k 0 ) ∩U 
π(a 1 ,k 0 , U )=0 

M k 0 a 1 (Y 
a 1 

a 1 
) μk 0 

/μa 1 , (33) 

where Y a 1 is a vector solution to Y ( K(a 1 , U ) \{ k 0 } ) . 
We now consider the second part of the sum in the parentheses in (31) . Given a 2 ∈ N (k 0 ) ∩ U such that π(a 2 , k 0 , U ) = 1 , 

we define a vector ( ̄Y c , c ∈ K(a 2 , U ) \{ k 0 } ) with entries 

Ȳ c = Y c −
∑ 

σ∈ �(c,k 0 , U ) 

v (σ ) Y k 0 , ∀ c ∈ K(a 2 , U ) \{ k 0 } . (34) 

Based on (30) , for each c ∈ K(a 2 , U ) \{ k 0 } , c �∈ C and N (c) ∩ U � = ∅ we have 

Ȳ c = 

∑ 

σ∈ �( c,d, U ) 
d∈K(c, U ) 

π(d,k 0 , U )=0 

v (σ ) Y μc /μd 

d 

= 

∑ 

c ′ ∈N (c) ∩U 
π(c ′ ,k 0 , U )=0 

M cc ′ Y 
μc /μc ′ 

c ′ + 

∑ 

c ′ ∈N (c) ∩U 
π(c ′ ,k 0 , U )=1 

c ′ � = k 0 

⎛ 

⎜ ⎜ ⎜ ⎝ 

M cc ′ 
∑ 

σ∈ �( c ′ ,d, U ) 
d∈K(c ′ , U ) 

π(d,k 0 , U )=0 

v (σ ) Y 
μ′ 

c /μd 

d 

⎞ 

⎟ ⎟ ⎟ ⎠ 

= 

∑ 

c ′ ∈N (c) ∩U 
π(c ′ ,k 0 , U )=0 

M cc ′ Y 
μc /μc ′ 

c ′ + 

∑ 

c ′ ∈N (c) ∩U 
π(c ′ ,k 0 , U )=1 

c ′ � = k 0 

M cc ′ ̄Y c ′ . 

(35) 

Moreover, from the definition in (34) we note that Ȳ c ′ = Y c ′ if π(c ′ , k 0 , U ) = 0 , ∀ c ′ ∈ K( a 2 , U ) , so (35) can be written as 

Ȳ c = 

∑ 

c ′ ∈N (c) ∩U 
c ′ � = k 0 

M cc ′ ( ̄Y c ′ ) 
μc /μc ′ , ∀ c ∈ K(a 2 , U ) \{ C ∪ { k 0 }} , N (c) ∩ U � = ∅ . (36) 

Moreover, it is obvious to verify that (iv) (N (c) ∩ U ) \{ k 0 } ≡ N (c) ∩ K(a 2 , U ) \{ k 0 } , (v) if c ∈ C then Ȳ c = Y c = e U c and (vi) 

if N (c) ∩ U\{ k 0 } = ∅ then Ȳ c = 0 . From (iv), (v), (vi), (36) and the definition in (27) we have that Ȳ is a vector solution to 

Y ( K(a 2 , U ) \{ k 0 } ) . In summary, according to (35) , for each a 2 ∈ N (k 0 ) ∩ U and π(a 2 , k 0 , U ) = 1 , there exists a vector Ȳ which 

is a solution to Y ( K(a 2 , U ) \{ k 0 } ) such that 

Ȳ a 2 = 

∑ 

σ∈ �( a 2 ,c, U ) 
c∈K(a 2 , U ) 

π(c,k 0 , U )=0 

v (σ ) Y 
μa 2 

/μc 

c . 

Consequently, there exits vectors Y a 2 which are solutions to Y ( K(a 2 , U ) \{ k 0 } ) , ∀ a 2 ∈ N (k 0 ) ∩ U , π(a 2 , k 0 , U ) = 1 , such that 

the second part of the sum in the parentheses in (31) can be written as ∑ 

a 2 ∈N (k 0 , U ) 
π(a,k 0 , U )=1 

M k 0 a 2 

∑ 

σ∈ �( a 2 ,c, U ) 
c∈K(a 2 , U ) 

π(c,k 0 , U )=0 

v (σ ) Y 
μa 2 

/μc 

c = 

∑ 

a 2 ∈N (k 0 , U ) 
π(a 2 ,k 0 , U )=1 

M k 0 a 2 Y 
a 2 

a 2 
. (37) 

Finally, the lemma is proved using (31) , (33) and (37) . �

Lemma 3. Under the hypotheses in Theorem 1 , Y r is a μr -MEV CPGF. 

Proof. We prove this lemma by using the results from Lemma 2 . We first create a tree structure T where each node in T 
represents a pair (k, U ) , where k ∈ N and U ⊆ N . We create nodes in T recursively as follows. 

The root of T corresponds to (r, N ) . For each created node t(k, U ) ∈ T , if k ∈ C or N (k ) ∩ U = ∅ then we consider 

t(k, U ) ∈ T as a leaf of T , i.e., it has no successor. Otherwise, for each node a ∈ N (k ) ∩ U we create a new successor node 

of t and associate a pair (a, K(a, U ) \{ k } ) to the new node. We note that N (k ) ∩ U = ∅ occurs only when |U| = 1 . Fig. 4 

shows an example where the root r has two successors a 1 , a 2 ( a 1 , a 2 ∈ N (r) ). For each two nodes p(k, U ) and q (k ′ , U ′ ) in 

T such that q is a successor node of p , by definition we have the fact that |U| > |U ′ | , so T does not contain any cycle. 

Moreover, since we stop creating nodes when |U| = 1 , the number of nodes in T is finite. We denote T (p) be the set of 

successor nodes of p in T . We recursively associate each note t(k, U ) ∈ T with a value Z t such that Z t = Y k 
k 
, where Y k is a 

vector solution to Y(U ) , as follows. The root r t of T is associated with Y r , i.e., Z r t = Y r . Given a node p(k, U ) ∈ T with the 

corresponding value Z p . According to Lemma 2 , there exist vectors Y a , ∀ a ∈ N (k ) ∩ U , such that 

Z p = λ
∑ 

a ∈N (k ) ∩U 
M ka (Y 

a 
a ) 

μk /μa , (38) 
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Fig. 4. Tree T . 

where Y a is a vector solution to system Y ( K(a, U ) \{ k } ) . For each successor node q (a, K(a, U ) \{ k } ) of node p we set Z q = Y a a 

and associate arc ( p, q ) a non-negative scalar ηpq = λM ka . Note that if p(k, U ) is a leaf, i.e. k ∈ C or |U| = 1 , then Z p = e U k (if 

k ∈ C ) or Z p = 0 (if k �∈ C and |U| = 1 ). Moreover, we also associate each node p(k, U ) with a positive scalar ξp = μk . Hence, 

each node p ∈ T is associated with a positive value Z p and a scalar ξ p > 0. Based on (38) the value of Z p for each node 

p(k, U ) can be defined recursively as 

Z p = 

⎧ ⎨ 

⎩ 

∑ 

q ∈T (p) ηpq (Z q ) ξp /ξq if p is not a leaf 

e U k if k ∈ C 
0 if |U| = 1 and k / ∈ C. 

(39) 

By simply removing nodes p with zero values ( Z p = 0 ) from tree T , (39) can be written as 

Z p = 

{∑ 

q ∈T (p) ηpq (Z q ) ξp /ξq if p is not a leaf 

e U k otherwise. 
(40) 

(40) is equivalent to the definition of the CPGFs given by (1) . Accordingly, Z r t is a ξr t -MEV CPGF, or equivalently Y r is a 

μr -MEV CPGF. �

Corollary 1. Under the hypotheses in Theorem 1 , Y k , ∀ k ∈ N \ C, is a μk − MEV CPGF function. 

Proof. It makes no difference for the statement that the graph may contain cycles since we can consider any node k ∈ N \ C
as a root and apply the proof in Lemma 3 to the sub-graph with nodes K(k, N ) to prove that Y k is a μk -MEV CPGF. �

Lemma 4. If G (y ) = Y r is a μr -MEV CPGF then the choice probability given by the generating function G (y i , i ∈ C) = Y r is 

P (i ) = 

∑ 

[ k l , ... ,k 0 = i ] ∈ �(i ) 

l−1 ∏ 

i =0 

P (k i | k i +1 ) , ∀ i ∈ C. 

Proof. We derive the probabilities given by an MEV model with the CPGF G (y ) = G (y i , i ∈ C) = Y r . Each alternative i is asso- 

ciated with the utility U i + εi , where vector ε is MEV distributed with the CPGF G ( y ). Since Y r is a μr − MEV CPGF function, 

the choice probability is ( McFadden, 1978 ) 

P (i ) = 

y i 
∂G 
∂y i 

(y ) 

μr G (y ) 

= 

y i 
μr Y r 

∂Y r 

∂y i 
, i ∈ C. 

From (10) , the partial derivative of Y k with respect to y i , i ∈ C is 

∂Y k 
∂y i 

= 

∑ 

a ∈N (k ) 

e μk v ( a | k ) μk 

μa 
Y 

μk /μa 

a 

∂Y a 

Y a ∂y i 
, k ∈ N \ C. (41) 

Denote S i 
k 

= 

y i 
μk Y k 

∂Y k 
∂y i 

, i ∈ C, k ∈ N . Based on (41) , we obtain recursive formulas for S i 
k 

as 

S i k = 

∑ 

a ∈N (k ) 

e μk v (a | k ) Y 
μk /μa 

a 

Y k 
S i a = 

∑ 

a ∈N (k ) 

P (a | k ) S i a , ∀ k ∈ N \ C. 

Note that 

S i i = 

y i 
μi Y i 

∂Y i 
∂y i 

= 

y i 

μi y 
μi 

i 

μi y 
μi −1 

i 
= 1 , 

and 

S i j = 

y i 
μi Y j 

∂Y j 

∂y i 
= 0 , ∀ j ∈ C, j � = i, 
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so the choice probability given by the MEV model is 

P (i ) = S i r = 

∑ 

[ k l , ... ,k 0 = i ] ∈ �(i ) 

l−1 ∏ 

i =0 

P (k i | k i +1 ) , ∀ i ∈ C. 

�

Since the choice probability given by Lemma 4 is identical to (5) , Theorem 1 is completely proved. 

Appendix B. Proof of Theorem 2 

We provide a detailed proof for Theorem 2 in this appendix. We first introduce a lemma. For a node k ∈ N we define l ( k ) 

be the number of arcs of the longest path (defined by the number of links) from k to the destinations. We also call l ( k ) the 

level of node k . We then denote L (t) be the set of nodes of level t : L (t) = { k ∈ N | l(k ) = t} . Since the graph is cycle-free, 

the level of each node is finite. Moreover, the root has the highest level in the graph. We have the following lemma 

Lemma 5. Given t > 0, t ∈ Z , we have Y (i ) 
k 

= Y (t+1) 
k 

, ∀ i ≥ t + 1 and ∀ k ∈ ∪ 

t 
j=1 

L ( j) . 

Proof. We prove this lemma by induction. For t = 1 , L (t) is the set of nodes that connect directly to the destination. So ∀ i 

≥ 1 and ∀ k ∈ L (1) , according to (20) we have 

Y (i +1) 
k 

= 

∑ 

a ∈ C 
M ka (Y 

(i ) 
a ) μk /μa . (42) 

Moreover, from (19) and (20) we have Y (i ) 
a = e U a ∀ a ∈ C, i ≥ 1. Substituting into (42) , we obtain 

Y (i +1) 
k 

= 

∑ 

a ∈ C 
M ka (e U a ) μk /μa = Y (2) 

k 
, ∀ i ≥ 1 , k ∈ L (1) , 

meaning that the result is true for t = 1 . Now we assume that the result is true for t ≥ 1 

Y (i ) 
k 

= Y (t+1) 
k 

, ∀ i ≥ t + 1 , k ∈ ∪ 

t 
j=1 L ( j) , (43) 

leading to the fact that 

Y (i ) 
k 

= Y (t+2) 
k 

, ∀ i ≥ t + 2 , k ∈ ∪ 

t 
j=1 L ( j) . (44) 

Given a node k ∈ L (t + 1) , we note that for each node a ∈ N (k ) , a ∈ ∪ 

t 
j=1 

L ( j) (otherwise the level of k would be greater 

than t + 1 ). From (20) we have 

Y (i +1) 
k 

= 

∑ 

a ∈N (k ) 
a ∈∪ t 

j=1 
L ( j) 

M ka (Y 
(i ) 

a ) μk /μa + b k , ∀ i ≥ t + 1 . (45) 

Then according to (43), (45) can be written as 

Y (i +1) 
k 

= 

∑ 

a ∈N (k ) 
a ∈∪ t 

j=1 
L ( j) 

M ka (Y 
(t+1) 

a ) μk /μa + b k = Y (t+2) 
k 

, ∀ i ≥ t + 1 . 

This means that Y (i ) 
k 

= Y (t+2) , ∀ i ≥ t + 2 , ∀ k ∈ L (t + 1) , and from (44) we have 

Y (i ) 
k 

= Y (t+2) 
k 

, ∀ i ≥ t + 2 , ∀ k ∈ ∪ 

t+1 
j=1 

L ( j) . 

This validates the result for t + 1 , as required. �

Now if we choose K = l(r) + 1 ( l ( r ) is the level of the root), based on Lemma 5 we have the following result 

Y (i ) 
k 

= Y (K) 
k 

, ∀ i ≥ K, ∀ k ∈ ∪ 

l(r) 
j=1 

L ( j) , 

and note that ∪ 

l(r) 
j=1 

L ( j) ≡ N . Hence, Theorem 2 is proved. 

Appendix C. Proof of Proposition 2 

We consider matrix P and note that it can be written in the following canonical form 

P = 

(
Q R 

0 1 0 2 

)
, 
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where Q is a (|N | − | C| ) -by- (|N | − | C| ) matrix corresponding to the transient states, R is a (|N | − | C| ) -by-| C | matrix, 0 1 is 

a | C |-by- (|N | − | C| ) zero matrix, and 0 2 is a | C |-by-| C | zero matrix. It is clear that Q is a sub-stochastic matrix and has no 

recurrent class, leading to the following well-known result 

lim 

n →∞ 

Q 

n = 0 . (46) 

Moreover, it is easy to show that P 

n has the following form 

P 

n = 

(
Q 

n Q 

n −1 R 

0 1 0 2 

)
. 

So according to (46) we have that lim n →∞ 

P 

n = 0 . This implies that the modulus of the eigenvalues of P lie within the unit 

disc, and consequently, (I − P) T = I − P 

T is invertible. 

Appendix D. Derivatives of the log-likelihood function 

In this appendix, we derive the derivatives of the log-likelihood function defined in (24) . The gradient of the choice 

probability P ( i n | C n ) can be obtained by taking the Jacobian of vector F which can be derived based on (22) . The Jacobian of 

F with respect to parameter β j is 

∂F 

∂β j 

= (I − P 

T ) −1 ∂P 

T 

∂β j 

F . (47) 

Hence it requires the first derivative of each element of matrix P with respect to parameter β j . Note that 

P ka = P (a | k ) = M ka 

Y 
φka 

a 

Y k 
, ∀ k, a ∈ N . 

We take the derivative of a given P ka and obtain 

∂P ka 

∂β j 

= 

∂M ka 

∂β j 

Y 
φka 

a 

Y k 
− M ka 

Y 
φka 

a 

Y 2 
k 

∂Y k 
∂β j 

+ M ka 

Y 
φka 

a 

Y k 

(
∂φka 

∂β j 

ln Y a + 

φka 

Y a 

∂Y a 

∂β j 

)
, 

involving the derivative of Y k , ∀ k ∈ N . We take the derivative of a given value Y k , k ∈ N as defined by (20) and obtain 

∂Y k 
∂β j 

= 

∑ 

a ∈N 

(
∂M ka 

∂β j 

Y 
φka 

a + M ka Y 
φka 

a 

(
∂φka 

∂β j 

ln Y a + 

φka 

Y a 

∂Y a 

∂β j 

))
+ 

∂b k 
∂β j 

. (48) 

We introduce two matrices S and H of size |N | × |N | with entries ⎧ ⎪ ⎨ 

⎪ ⎩ 

S ka = 

∂M ka 

∂β j 

Y 
φka 

a + M ka Y 
φka 

a 

∂φka 

∂β j 

ln Y a 

H ka = M ka Y 
φka 

a 

φka 

Y a 

∀ k, a ∈ N . 

So (48) becomes 

∂Y k 
∂β j 

= 

∂b k 
∂β j 

+ 

∑ 

a ∈N (k ) 

(
S ka + H ka 

∂Y a 

∂β j 

)
, ∀ k ∈ N . 

This allows us to define the Jacobian of vector Y as a system of linear equations 

∂Y 

∂β j 

= Se + H 

∂Y 

∂β j 

+ 

∂b 

∂β j 

or equivalently this is an equivalence, not an implication 

⇒ 

∂Y 

∂β j 

= (I − H) −1 

(
Se + 

∂b 

∂β j 

)
. (49) 

As suggested by Mai et al. (2015) we can derive the Jacobian of V instead of Y to avoid numerical issues. Note that Y k = 

e μk V (k ) , the gradient of Y k with respect to β j , can be written as 

∂Y k 
∂β j 

= 

∂V (k ) 

∂β j 

μk Y k −
∂μk 

∂β j 

V (k ) Y k , ∀ k ∈ N . (50) 
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Using (48) and (50) we obtain 

∂V (k ) 

∂β j 

= 

∑ 

a ∈N 
R ka + 

∑ 

a ∈N 
L ka 

∂V (a ) 

∂β j 

+ h k , ∀ k ∈ N , 

where 

R ka = 

1 

μk 

∂M ka 

∂β j 

Y 
φka 

a 

Y k 
+ 

1 

μk 

M ka Y 
φka 

a 

∂φka 

Y k ∂β j 

ln Y a − μk M ka 

V (a ) Y φka 
a 

Y k 

∂μa 

∂β j 

, 

L ka = M ka 

Y 
φka 

a 

Y k 
, 

h k = 

1 

μk Y k 

∂b k 
∂β j 

+ μk V (k ) 
∂μk 

∂β j 

. 

Let R, L be two matrices and h be a vector of size |N | × |N | , |N | × |N | , |N | , with entries R ka , L ka and h k , ∀ k, a ∈ N , respec- 

tively. The Jacobian of the vector of value functions can be written as a linear system 

∂V 

∂β j 

= (I − L ) −1 (Re + h ) . (51) 

Although (51) and (49) are equivalent, there are numerical considerations. On the one hand, each element of matrix L is 

defined as L ka = M ka 
Y 

φka 
a 
Y k 

and according to (20) we have Y k > M ka Y 
φka 
a > 0 , leading to the fact that the elements of L vary 

in (0,1). On the other hand, each element of H is H ka = M ka Y 
φka −1 
a φka and varies in (0, ∞ ). So the elements of matrix L are 

closer in value, compared to matrix H , meaning that using (51) to compute the gradient of LL function is better than (49) for 

numerical reasons. Note that Mai et al. (2015) has a similar conclusion when comparing two formulas of the derivative of 

the value functions in route choice applications. 

We note that the derivative of each element of matrix M with respect to parameter β j is 

∂M ka 

∂β j 

= M ka 

(
μk ∂v (a | k ) 

∂β j 

+ v (a | k ) ∂μk 

∂β j 

)
, ∀ k, a ∈ N . 

In summary, the derivatives of the model have complicated form but can be quickly computed for large-scale problems using 

the linear systems in (47) and (51) . The model derivatives allow us to use classic Hessian approximations such as BHHH and 

BFGS (see for instance Berndt et al., 1974; Nocedal and Wright, 2006 ) to maximize the log-likelihood function. We note that 

Eberwein and Ham (2008) also derive the analytical derivatives for a general dynamic discrete choice model. These formulas 

are however different with the ones derived in this section due to the different definitions of the log-likelihood functions. 

Appendix E. Elasticities 

The elasticity of demand for alternative i with respect to an attribute x j of alternative j is 

e i,x j = 

∂P (i ) 

∂x j 

x j 

P (i ) 
= 

∂P (i ) 

∂U j 

∂U j 

∂x j 

x j 

P (i ) 
, i, j ∈ C. 

If the utility U j is linear in x , 
∂U j 
∂x j 

is a constant. We now analyze the model structure in terms of the sensitivity of demand to 

changes in the utility of alternatives ∂P(i ) 
∂U j 

. Similarly to the previous section we derive formulas for the elasticity of demand 

so that they can be computed quickly. 

Note that ∂P(i ) 
∂U j 

= 

∂F i 
∂U j 

and the Jacobian of vector F with respect to U j can be derived using (22) 

∂F 

∂U j 

= (I − P 

T ) −1 ∂P 

T 

∂U j 

F , (52) 

Using (11) , the derivative of an element P ka , k, a ∈ N with respect to U j is 

∂P ka 

∂U j 

= P ka 

(
φka 

Y a 

∂Y a 

∂U j 

− ∂Y k 
Y k ∂U j 

)
, 

where φka = μk /μa . Hence it requires the first derivatives of Y k , ∀ k ∈ N , with respect to U j . Taking the derivative of (20) with 

respect to U j , we obtain 

∂Y k 
∂U j 

= 

∑ 

a ∈N 
φka M ka Y 

φka −1 
a 

∂Y a 

∂U j 

+ 

∂b k 
∂U j 

, ∀ k ∈ N . 
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And we note that 

∂b k 
∂U j 

= 

{
0 if k � = j 
Y j /μ j if k = j 

. 

So if we denote a matrix T (|N | × |N | ) with entries T ka = φka M ka Y 
φka −1 
a , ∀ k, a ∈ N , then the Jacobian of vector Y can be 

written as system of linear equations 

∂Y 

∂U j 

= (I − T ) −1 d, (53) 

where d is a vector of size |N | with zero values for all nodes except for node j that equals Y j / μj . Therefore, the elasticity of 

demand for alternative i with respect to an attribute x j can be computed by solving the linear systems (52) and (53) . 

References 

Abbé, E. , Bierlaire, M. , Toledo, T. , 2007. Normalization and correlation of cross-nested logit models. Transp. Res. Part B 41 (7), 795–808 . 
Barrett, R. , Berry, M.W. , Chan, T.F. , Demmel, J. , Donato, J. , Dongarra, J. , Eijkhout, V. , Pozo, R. , Romine, C. , Van der Vorst, H. , 1994. Templates for the Solution 

of Linear Systems: Building Blocks for Iterative Methods. SIAM . 
Ben-Akiva, M. , Bierlaire, M. , 1999. Discrete choice methods and their applications to short-term travel decisions. In: Hall, R. (Ed.), Handbook of Transporta- 

tion Science. Kluwer, pp. 5–34 . 
Berndt, E.K. , Hall, B.H. , Hall, R.E. , Hausman, J.A. , 1974. Estimation and inference in nonlinear structural models. Ann. Econ. Social Meas. 3/4, 653–665 . 

Daly, A. , Bierlaire, M. , 2006. A general and operational representation of generalised extreme value models. Transp. Res. Part B 40 (4), 285–305 . 

Daly, A. , Hess, S. , Dekker, T. , 2014. Practical solutions for sampling alternatives in large-scale models. Transp. Res. Rec. (2429) 148–156 . 
Eberwein, C. , Ham, J.C. , 2008. Obtaining analytic derivatives for a popular discrete-choice dynamic programming model. Econ. Lett. 101 (3), 168–171 . 

Fosgerau, M. , Frejinger, E. , Karlstrom, A. , 2013a. A link based network route choice model with unrestricted choice set. Transp. Res. Part B 56 (1), 70–80 . 
Fosgerau, M. , McFadden, M. , Bierlaire, M. , 2013b. Choice probability generating functions. J. Choice Modell. 8 (0), 1–18 . 

Gilbert, J.R. , Moler, C. , Schreiber, R. , 1992. Sparse matrices in MATLAB: design and implementation. SIAM J. Matrix Anal. Appl. 13 (1), 333–356 . 
Guevara, C.A. , Ben-Akiva, M.E. , 2013. Sampling of alternatives in multivariate extreme value (MEV) models. Transp. Res. Part B 48 (1), 31–52 . 

Lai, X. , Bierlaire, M. , 2015. Specification of the cross nested logit model with sampling of alternatives for route choice models. Transp. Res. Part B 80, 

220–234 . 
Liu, D.C. , Nocedal, J. , 1989. On the limited memory BFGS method for large scale optimization. Math. Program. 45 (1–3), 503–528 . 

Mai, T. , 2016. A method of integrating correlation structures for a generalized recursive route choice model. Transp. Res. Part B 93 (1), 146–161 . 
Mai, T. , Fosgerau, M. , Frejinger, E. , 2015. A nested recursive logit model for route choice analysis. Transp. Res. Part B 75 (1), 100–112 . 

McFadden, D. , 1973. Conditional logit analysis of qualitative choice behaviour. In: Zarembka, P. (Ed.), Frontiers in Econmetrics. Academic Press New York, 
pp. 105–142 . 

McFadden, D. , 1978. Modelling the choice of residential location. In: Karlqvist, A., Lundqvist, L., Snickars, F., Weibull, J. (Eds.), Spatial Interaction Theory and 

Residential Location. North-Holland, Amsterdam, pp. 75–96 . 
Nocedal, J. , Wright, S.J. , 2006. Numerical Optimization, 2nd ed. Springer, New York, NY, USA . 

Papola, A. , 2004. Some developments on the cross-nested logit model. Transp. Res. Part B 38 (9), 833–851 . 
Rust, J. , 1987. Optimal replacement of GMC bus engines: an empirical model of harold zurcher. Econometrica 55 (5), 999–1033 . 

Rust, J. , 1988. Maximum likelihood estimation of discrete control processes. SIAM J. Control Optim. 26 (5), 1006–1024 . 
Saad, Y. , 2003. Iterative Methods for Sparse Linear Systems. SIAM . 

http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0001
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0001
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0001
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0001
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0002
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0002
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0002
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0002
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0002
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0002
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0002
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0002
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0002
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0002
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0002
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0003
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0003
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0003
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0004
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0004
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0004
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0004
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0004
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0005
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0005
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0005
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0006
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0006
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0006
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0006
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0007
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0007
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0007
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0008
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0008
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0008
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0008
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0009
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0009
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0009
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0009
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0010
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0010
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0010
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0010
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0011
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0011
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0011
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0012
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0012
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0012
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0013
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0013
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0013
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0014
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0014
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0015
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0015
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0015
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0015
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0016
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0016
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0017
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0017
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0018
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0018
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0018
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0019
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0019
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0020
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0020
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0021
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0021
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0022
http://refhub.elsevier.com/S0191-2615(15)30221-6/sbref0022

	A dynamic programming approach for quickly estimating large network-based MEV models
	Citation

	A dynamic programming approach for quickly estimating large network-based MEV models
	1 Introduction
	2 The network MEV model
	3 Formulating the network MEV model using the dynamic discrete choice framework
	4 Illustrative example
	5 Maximum likelihood estimation
	5.1 Solving the value functions
	5.2 Choice probabilities
	5.3 Log-likelihood function and non-linear optimization

	6 Application to large problems
	6.1 Experimental setup
	6.2 Computational time results
	6.3 Comparisons of computational time
	6.4 Application to real data

	7 Conclusion
	 Acknowledgment
	Appendix A Proof of Theorem1
	Appendix B Proof of Theorem2
	Appendix C Proof of Proposition2
	Appendix D Derivatives of the log-likelihood function
	Appendix E Elasticities
	 References


